Project 5: Sensor Models
Questions?
Project 4

- Finish demos
- Catme surveys are due on Monday
 - Everyone should have received email already
Integer Math on the Microcontrollers

• Inexpensive microcontrollers:
 • Do have hardware for integer math operations
 • **Do not** have hardware for floating point math. Instead, floating point operations are performed by functions (this is hidden from you)

• When time is important (in particular, for a control loop), we strive to do as much with integers as possible. But, one must be cautious…
Integers

- Division: lose the remainder
- Multiplication, addition, subtraction: must make sure that we do not end up with a value that does not fit in the size of integer that we are using

- We must worry about both for the intermediate values of a computation as well as the final values.
Division

```c
int8_t a = 5;
int8_t b = 7;
int8_t c = a/b;
```

What is c?
Division

```c
int8_t a = 5;
int8_t b = 7;
int8_t c = a/b;
```

c = 0
Addition

```
int8_t a = 150;
int8_t b = 90;
int8_t c = a + b;
```

What is c?
Addition

int8_t a = 150;
int8_t b = 90;
int8_t c = a + b;

c = -16
Mixing Operations

```
int8_t a = 150;
int8_t b = 90;
int8_t c = (a + b)/4;
```

What is c?
Mixing Operations

```c
int8_t a = 150;
int8_t b = 90;
int8_t c = (a + b)/4;
```

```c
int8_t c = -4
```

The intermediate value matters!
Performing Floating Point Operations

```c
int16_t a = 150;

How do we multiply a by 0.75?
```
Performing Floating Point Operations

```c
int16_t a = 150;
int16_t b = (a * 75) / 100;
```
Fixed-Point Mathematics

• Instead of using an integer variable to represent units of “1”, use the integer to represent units of “10ths” or “100ths” (or smaller)

• So, we can write:

```c
int16_t a = 5;
```

to mean that a is capturing a value of 0.05
int16_t a = 5; // 0.05
int16_t b = 130; // 1.3
int16_t c = a + b; // = 1.35
Multiplication

```
int16_t a = 5;       // 0.05
int16_t b = 130;     // 1.3
int16_t c = a * b;
```

What is c?
Mulitplication

```c
int16_t a = 5; // 0.05
int16_t b = 130; // 1.3
int16_t c = a * b; // 6.50 ??
```
Multiplication

```c
int16_t a = 5;       // 0.05
int16_t b = 130;     // 1.3
int16_t c = a * b / 100;     // 0.06
```

Must take into account the extra factor of 100
Project 5: Sensor Models

• Derive a sensor model given the data that you have collected
• Code: function that returns a calibrated distance
• Collect data and analyze
Component 1: Sensor Model

- Given the data you have collected, design a function that will return a distance in mm given the raw analog value that you read.
- Approximate with a simple function:
 - We won’t be able to capture all points perfectly.
 - Capture the “most important” ones best & the others less well.
Component 2: Code

Functions to implement:

• `uint16_t get_distance(DistanceSensor side)`
 • Read from one or two sensors & return a calibrated distance value
 • Must use integer math

• `void display_distance(uint16_t dist)`
 • Update the LED bar

• `main()`
 • Repeatedly sample the two sensors & report the distances
Component 3: Data Collection and Analysis

• At least 5 samples each for: 5, 6, 8, 10, 14, 20, 30, 40, 60, 80 cm.

• Plot:
 • Sensed distance as a function of distance (cm)
 • One set of points for each of two sensors
New Hardware

To complete the project, you will need one more Sharp sensor. We have some now – others will be available in the next day.
Next Time

Serial communication