Last Time

• Memory Implementation
• Project 2
Today

• Midterm review
• Homework 3
• Project 2
Midterm Preparation

• Exam discussion on D2L
 – Post sample questions (and answers)
 – Some may appear on the exam
• Look to homework assignments and exams from last year (both the midterm and final) for the types of questions
Midterm Exam

• No books
• No electronic devices
• You may bring 1 page of your own notes
 – Double-sided
Digital Logic

• Basic gates
 – Truth table
 – Symbols used in circuit diagrams
 – NOT, AND, OR, NAND, NOR, XOR
 – Tristate buffers

• Boolean algebra
 – Notation
 – Precedence
 – Basic laws: associative, distributive, commutative
 – Demorgan’s laws
 – Basic identities
Digital Logic

• Digital circuits
 – Cascading basic gates
 – Truth table to algebraic representation to circuit design
 – Multiplexers, demultiplexers

• Circuit reduction
 – Algebraic manipulation
Number Representations

- Conversion between binary and:
 - Decimal
 - Hexidecimal
- Bit-wise operations
Sequential Logic

• Notation
 – Timing diagrams
• D flip flops
• Circuit analysis
 – How does the circuit behave?
 – A “state” describes the stored information
• Basic circuit design
Sequential Logic

• Circuits with flip flops
 – Shifters
 – Counters
 – Memory
Microprocessor Components

• Memory

• Registers:
 – General purpose
 – Special purpose
 • Program counter
 • Instruction register

• Instruction decoder

• Arithmetic logical unit

• Data bus
Microcontroller I/O

- Function of the primary components
 - DDRB
 - PORTB
 - PINB
- Relationship to C code
Memory

- Components and behavior
- Types of memory
- Memory elements
- Primary I/O lines
 - Address
 - Data
 - Chip select
 - R/W
 - Clock