
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 18, 445-457 (2002)

445

Short Paper___

Adaptive Transaction Management Protocols
for Mobile Client Caching DBMSs*

ILYOUNG CHUNG, LE GRUENWALD*, CHONG-SUN HWANG**

AND SOON YOUNG JUNG**+

Department of Computer Science
Purdue University

West Lafayette, IN 47097, U.S.A.
E-mail: iychung@cs.purdue.edu

�

School of Computer Science
University of Oklahoma

E-mail: ggruenwald@ou.edu�
��

Department of Computer Science and Engineering
Korea University

SeongBuk-Gu, Seoul 136-701, Korea
E-mail: hwang@disys.korea.ac.kr

���

Department of Computer Science Education
Korea University

SeongBuk-Gu, Seoul 136-701, Korea
E-mail: jsy@comedu.korea.ac.kr

In mobile client-server database systems, caching of frequently accessed data is an
important technique that will reduce the contention on the narrow bandwidth wireless
channel. As the server in mobile environments may not have any information about the
state of its clients’ cache (stateless server), the use of a broadcast approach to transmit
the list of updated data to numerous concurrent mobile clients is an attractive approach.
In this paper, two caching methods are proposed to support transaction semantics at mo-
bile clients. Proposed protocols adopt asynchronous broadcasting and hybrid broadcast-
ing as the way of sending control messages, in order to dynamically adapt to system
workload (update pattern, data locality). We study the performance of the proposed pro-
tocols by means of simulation experiments.

Keywords: mobile computing, client-server databases, cache consistency, broadcasting,
concurrency control

1. INTRODUCTION

Mobile computing provides people with unrestricted mobility. It can satisfy people’s

Received November 24, 1999; revised June 20 & December 28, 2000 & March 2, 2001;
accepted April 25, 2001,
Communicated by Arbee L. P. Chen.
*This work was supported by the Post-doctoral Fellowship Program of Korea Science and Engineering
Foundation(KOSEF).

ILYOUNG CHUNG, LE GRUENWALD, CHONG-SUN HWANG AND SOON YOUNG JUNG446

information needs at any time and in any place. Due to the recent development of hard-
ware such as small portable computers and wireless communication network, data man-
agement in mobile computing environments has become an area of increased interest to
the database community [1].

In general, the bandwidth of the wireless channel is rather limited [1, 2]. Thus,
caching of frequently accessed data in a mobile computer can be an effective approach to
reducing contention on the narrow bandwidth wireless channel [3, 4]. However, once
caching is used, a cache invalidation strategy is required to ensure that cached data in
mobile computers are consistent with that stored in the server [4, 5].

In mobile database model, both a database server and a database are attached to
each fixed host. Users of the mobile computers may frequently query databases by in-
voking a series of operations, generally referred to as transactions. Serializability is
widely accepted as a correctness criterion for execution of transactions [5-8]. This cor-
rectness criterion is also adopted in this paper. The database server is intended to support
basic transaction operations such as resource allocation, commit, and abort.

Each mobile support station (MSS) has a coordinator which receives transaction
operations from the mobile hosts and monitors their execution in database servers within
the fixed networks. Transaction operations are submitted by a mobile host to the coordi-
nator in its MSS, which in turn sends them to the distributed database servers within the
fixed networks for execution [2, 9].

Several proposals have appeared in the literature regarding the support of transac-
tions in mobile systems [7, 8, 10]. And broadcasting is an approach that is widely ac-
cepted to maintain cache consistency, and to control the concurrent transactions in mo-
bile environments [2, 4]. With the broadcasting approach, a mobile client sends a commit
request message of a transaction after executing all operations to install the updates in the
central database. Then the server decides to commit or abort the requested transaction,
and notifies all clients in its cell with broadcasting control messages. The broadcasting
strategy does not require high communication costs, nor require the server to maintain
additional information about mobile clients in its cell, thus is attractive in mobile data-
bases.

All approaches using broadcasting strategy adopt synchronous (periodic) methods
to broadcast those messages [7]. In these approaches, the server broadcasts the list of
updated data items and the list of transactions that will be committed among those which
have requested a commit during the last period. These approaches present some problems
due to the synchronous manner of broadcasting. In this paper we present two broadcast-
ing strategies in order to resolve the problems of the synchronous approach. Proposed
protocols can dynamically adapt to the update pattern and data locality of each mobile
client.

First, we present a protocol that adopts asynchronous (aperiodic) broadcasting, to
reduce the waiting time of a transaction that has requested commit, and to reduce aborts
of transactions that may show conflicts in the same period by synchronous broadcasting.
With asynchronous broadcasting approach, the protocol can reduce the number of
broadcasting occurrence under low probability of updates, and can reduce aborts of
transactions under high probability of updates. Second, we introduce another adaptive
protocol which is a hybrid of the synchronous and asynchronous algorithm, in order to
dynamically adjust the broadcasting method according to the system workload.

The remainder of the paper is organized as follows. In section 2 and section 3 we

ADAPTIVE TRANSACTION MANAGEMENT FOR MOBILE CACHING 447

describe and discuss the asynchronous broadcasting protocol, and hybrid broadcasting
protocol. Section 4 presents experiments and results, and finally we state our concluding
remarks in section 5.

2. ASYNCHRONOUS BROADCASTING PROTOCOL

In order to reduce aborts of transactions, and in order to adjust the frequency of the
broadcasting occurrence, we present two concurrency control protocols, which adopt
asynchronous broadcasting and hybrid broadcasting. In this section, we present the first
protocol, Asynchronous Broadcasting Protocol (ASBP), which can adapt to the update
probability.

2.1 Asynchronous Broadcasting
Some proposals have appeared in the literature regarding the use of the broadcasting

for the control of the concurrent transactions, and all of these approaches adopt synchro-
nous (periodic) method as the way of broadcasting control messages [3, 7]. In these
schemes, the server broadcasts the list of data items that should be invalidated, and the
list of transactions that will be committed among those which have requested commit
during the last period [7]. These schemes present some problems due to the synchronous
manner of broadcasting approach.

• if two or more conflicting transactions have requested a commit during the same period,
only one of them can commit and others have to abort.

• the mobile client is blocked on the average for the half of the broadcasting period until
it decides to commit or abort the transaction.

In this section, we adopt the asynchronous broadcasting approach as the way of
sending control messages. Unlike schemes using periodic broadcasting, in our scheme,
those messages are broadcast immediately after a commit request arrives. Using the
asynchronous broadcasting approach, most aborts due to conflicts within the same period
by synchronous broadcasting can be avoided, thus the protocol can reduce the abortion
rate of transaction processing. Also, the waiting time of a transaction that has sent a
commit request can be reduced, as the server immediately broadcasts messages which
notifies commit or abort.

2.2 The Protocol

Our protocol uses a modified version of optimistic control [5, 6] in order to reduce
the communication costs on the wireless network. With the optimistic approach all op-
erations of a transaction can be processed locally using cached data, and at the end of the
transaction, the mobile client sends the comm_request message to the server. Then the
server immediately broadcasts the comm_notification including data items that should be
invalidated, and the mobile client identifier. Receiving comm_notification, the invalidat-
ing action preempts the ongoing transaction, thus transactions which are concurrently
processed locally and show conflicts with the committing transaction should be aborted.

ILYOUNG CHUNG, LE GRUENWALD, CHONG-SUN HWANG AND SOON YOUNG JUNG448

With this approach, the mobile client can detect the conflicts of a transaction earlier
without interaction with the server [7, 10, 11].

All data items in the system are tagged with a sequence number which uniquely
identifies the state of the data. The sequence number of a data item is increased by the
server, when an updating transaction which writes on the data is committed. All data
items updated by a transaction are given the same sequence number. The mobile client
includes the sequence number of its cached copy of data (if the data item is cache resi-
dent) along with the commit_request message. Before describing the algorithms used at
mobile clients, information which is created at mobile clients are presented.

read_set : List of data items which are read by a transaction. Data items in this list is
attached with sequence numbers that were maintained at mobile clients.

write_set : List of data items which are written by a transaction. Data items in this list is
attached with sequence numbers that were maintained at mobile clients.

sequence_no : Sequence number of a transaction. It is determined when the first opera-
tion of the transaction accesses requested data item.

commit_request : A message which is sent to the server when a transaction Ti is com-
pleted. This message is attached with the identification of Ti, read_set and write_set
which is read and written by Ti.

We now summarize our protocol for mobile clients. In the transaction processing
protocols in mobile environments, the dependency upon the server that is caused by cor-
rectness checking of transactions can be further considered. If mobile clients can decide
commit or abort of a locally executed transaction only with information broadcasted
from the server (without uplink message), the overall pathlength of transactions can be
significantly shortened, and the throughput can be improved through the offloading of
the wireless network. Although transactions which updated data items should be sent to
the server because of the update installation, special consideration can be given to
read-only transactions. As a result, the proposed protocol can increase autonomy of mo-
bile clients which can be gained at the correctness checking of read-only transactions.

Mobile Client Protocol:

• Whenever a transaction becomes active, the mobile client opens two sets, read_set and
write_set. When the transaction requests a read or write operation on data item x, it is
added to those sets along with the sequence number of this data item. The sequence_no
of the transaction is set to the number of the data item which is accessed by the first
operation of the transaction. Initially, the state of a transaction is marked as reading.
The data item is added to these sets with the sequence numbers, when the transaction
requests read or write operation on that data item. The state of the transaction is
changed into updating state when the transaction requests a write operation.

• Whenever the mobile client receives a commit_notification, it removes copies of the
data items that are found in the invalidating_list. And, if any of data items in the in-

ADAPTIVE TRANSACTION MANAGEMENT FOR MOBILE CACHING 449

validation list is found in read_set or write_set, the transaction of reading state is
changed into read-only state, and the transaction of updating state is aborted.

• When a transaction of read-only state requests any write operation, the mobile client
aborts the transaction.

• When a transaction is ready to commit, and if the state of the transaction is reading or
read-only, the mobile client checks the sequence numbers of data items in read_set and
write_set. If all of them are less than or equal to the sequence_no of the transaction, the
mobile client commits the transaction, otherwise aborts it. If the state of the transaction
is updating, the mobile client sends a commit_request message along with the read_set,
write_set and the identification number of the transaction.

• After that, the mobile client listens to the broadcasting commit_notification. If any of
data items in the invalidation list is found in read_set or write_set, and is attached with
the identification number of its own transaction, the mobile client commits the transac-
tion. Otherwise, the mobile client aborts the transaction, and removes copies of the data
items that are found in invalidating_list.

When a mobile client begins a transaction Ti, the initial state of Ti is reading, and is
changed into updating, if Ti requests any write operation in mobile client. As shown in
the mobile client protocol, completing all operations (when Ti is ready to commit), the
mobile client sends commit_request message, only when the state of Ti is updating. When
transactions are reading or read-only, the mobile client decides commit or abort autono-
mously without interaction with the server.

When Ti requests no write operation, the decision of commit or abort of Ti is done
locally by the mobile client, using the commit_notifications broadcasted asynchronously
by the server. In this case, the state of Ti is changed into read-only, if the mobile client is
informed about the commit of a conflicting transaction Tj by a commit_notification, and
Ti precedes Tj in serialization order. The mobile client aborts the Ti, if Ti requests any
write operation during read-only state, because such write operations can produce a con-
flict between Tj and Ti, which is unacceptable for serializable execution.

When Ti of reading or read-only is ready to commit, the mobile client checks se-
quence numbers of all data items accessed by the transaction, and compares them with
the sequence_no of Ti. If any of them is larger than sequence_no, the mobile client aborts
Ti, because serializability cannot be guaranteed in this case.

We illustrate this mobile client protocol using the state diagram as shown in Fig. 1.
Unlike transactions of reading or read-only state, the decision of committing a transac-
tion of updating state is done by the server, as the mobile client cannot determine the
serialization order of the transaction autonomously if the transaction has executed any
write operation. Thus, when an updating transaction is ready to commit, the mobile client
sends a commit_request message to the server, as shown in Fig. 1. In order to determine
whether to commit or abort of an updating transaction in the server, all data items in the
system are tagged with a sequence number as shown in the mobile client algorithm.

The server continuously performs the following algorithm.

Server Protocol:

• Whenever the server receives a commit_request from a mobile client, it compares the
sequence numbers of all data items in read_set and write_set with the server’s.

ILYOUNG CHUNG, LE GRUENWALD, CHONG-SUN HWANG AND SOON YOUNG JUNG450

Fig. 1. States of a transaction in the mobile client.

If all of them are identical to the server’s, take the following steps:
− put the identification of the transaction to the commit_notification.
− put the invalidating_list, which is the list of data items in the write_set of the com-

mit_request, to the commit_notification.
− install the values of data items which have been updated by the transaction in the

server, and give them unique sequence number which is increased sequentially by
the server.

− broadcast the commit_notification.

Otherwise, the server just ignores the commit_request.

The server decides commit or abort of an updating transaction, by comparing se-
quence numbers of data items in read_set and write_set with those maintained in the
server. If all of them are consistent with the server’s, the server can conclude that the
transaction has executed its operations after receiving commit_notifications of conflicting
transactions which precede in serialization order. Thus the server decides to commit the
transaction. On the other hand, if the sequence number of any data item in read_set and
write_set is lower than the server’s, the server cannot commit the transaction, as the mo-
bile client executed the transaction without knowing the result of conflicting transactions
which precede in serialization order.

The protocol described above adopts asynchronous broadcasting, thus the server
immediately broadcasts commit_notifications, when it receives a commit_request from a
mobile client. Our protocol has some advantages with this asynchronous approach. First,
when write operations are infrequent at mobile clients, the protocol can reduce the com-

ADAPTIVE TRANSACTION MANAGEMENT FOR MOBILE CACHING 451

munication costs by broadcasting commit_notifications only when updating transaction
occurs. It is unnecessary to send commit_notifications periodically without data items
that should be invalidated. On the other hand, when updating transactions occur fre-
quently, the protocol can avoid many aborts by reducing the conflicts between updating
transactions. With synchronous broadcasting approach, when two or more updating
transactions are conflicting within the same period, only one of them can commit, as
commit_notifications are broadcast once for a period. Our protocol can avoid most of
these aborts, because mobile clients are sent the list of updated data items immediately.

3. HYBRID BROADCASTING PROTOCOL

In this section, we present another protocol which integrates two broadcasting ap-
proaches, synchronous broadcasting and asynchronous broadcasting.

3.1 Hybrid Broadcasting

ASBP, proposed in section 2, may resolve these problems with the asynchronous
broadcasting which sends commit_notifications immediately after receiving com-
mit_requests. Thus, ASBP can dynamically adjust the frequency of the broadcasting oc-
currence according to the update pattern of transactions. However, for data items that are
used by a specific mobile client exclusively, applying an asynchronous approach is quite
wasteful. In this case, it is sufficient to send the updated data items periodically, along
with the list of data items updated during the last period.

Thus synchronous protocol can be advantageous if a high degree of locality is
shown on accessed data by mobile clients. When a data item is updated by a transaction,
and if there is no other mobile clients caching this data, a synchronous broadcasting
strategy is advantageous, because delayed commit_notification of data items does not
cause aborts of other transactions, and it dose not seriously degrades the throughput of
transaction processing. So, it is unnecessary to send commit_notifications separately,
wasting the broadcasting bandwidth of the wireless channel.

On the other hand, when mobile clients do not show such locality on data items that
are accessed, an asynchronous broadcasting approach is more attractive, since the imme-
diate invalidation of the updated data items can prevent a large portion of aborts of other
transactions accessing local copies of these data items.

Considering the tradeoff, integrating these two broadcasting strategies (synchronous
and asynchronous broadcasting) yields another adaptive algorithm, which we call hybrid
broadcasting protocol (HBP). In HBP, the server dynamically adopts appropriate broad-
casting strategy between synchronous broadcasting and asynchronous broadcasting ac-
cording to the locality of data items which have been updated. With HBP, when the
server receives commit_request from a mobile client, it checks if any data item which has
been updated by the transaction is widely shared by many clients’ cache or not.

If all updated data items are cached by few mobile clients, the server just put these
items to the invalidating_list. Immediate broadcasting of data items which are cached by
few clients or no other client except the updating one is quite wasteful. Thus, in this case,
HBP just adds those data items to the invalidating_list that will be broadcast periodically.
On the other hand, when the server receives a commit_request of a transaction which has

ILYOUNG CHUNG, LE GRUENWALD, CHONG-SUN HWANG AND SOON YOUNG JUNG452

updated widely shared data items, HBP applies the asynchronous approach to send the
commit_notifications. So, in this case, the server immediately sends data items which
have been updated, along with the invalidating_list produced after the last broadcasting.
Thus, with HBP, commit_notifications are broadcast in one of the following two situa-
tions:

• when a commit_request contains widely shared data items in its write_set.
• when it is time to send periodic commit_notifications. (unless the invalidating_list is

empty)

3.2 The Protocol

Now, we need to explain how to apply the appropriate broadcasting approach ac-
cording to data items which have been updated by transactions. Because ASBP itself is
adaptive to the change of update frequency, as we mentioned in section 3, HBP should
control the broadcasting mechanism based on the locality of cached copies that should be
invalidated. For this we define the sharing state for each data item, in order to classify
them. Based on this sharing state, the server adopts an appropriate broadcasting approach
for each updated data item.

As the server in mobile computing environment does not know about the state of the
client’s cache (stateless server) [3], the sharing state should be estimated with some other
criteria. In HBP we propose the number of data requests for a unit of time as the criteria
for the sharing state. Once a data item is updated by a transaction, every cached copy of
the data item maintained by each mobile client is invalidated. If a mobile client is to ac-
cess updated value of the data item, it should send a data request message to the server.
Thus, frequent requests on a data item implies that it has been updated recently, and that
many copies exist in mobile clients’ cache.

Based on this criteria, all data items are assigned one of the following two classes
by the server. The sharing state should be managed dynamically as the access pattern or
locality of data changes.

• shared : data items that are cached by many clients
• exclusive : data items that are cached by few or no clients

Now, we need to summarize algorithms of HBP, which utilizes the sharing state of
data items. The algorithms running on mobile clients are identical with ASBP, and the
server performs the following protocol:

• Whenever the server receives a commit_request from a mobile client, it checks the se-
quence numbers of all data items in read_set and write_set.

− If they are identical with the server’s, and if all data items in write_set are marked
as exclusive state, the server commits the transaction. The server adds updated
data items to invalidating_list, and gives them the same sequence number. The
identification of the transaction is also attached to the commit_notification.

− If they are identical with the server’s, and if there is any data item in write_set
which is marked as shared state, the server commits the transaction, adds the up-

ADAPTIVE TRANSACTION MANAGEMENT FOR MOBILE CACHING 453

dated data items to the invalidating_list, and gives them the sequence number.
Then the server sends the commit_notification containing invalidating_list and
transaction identifiers immediately.

− If sequence numbers have fallen behind the server’s, the server just ignores the
commit_request.

• When it is time to broadcast periodic commit_notification, the server checks if the in-
validating_list is empty. If the list is not empty, the server broadcasts com-
mit_notification.

4. PERFORMANCE

We ran a number of simulations to compare the behavior of the two proposed pro-
tocols, ASBP and HBP, and a protocol with synchronous broadcasting. In this section, we
present the results from these performance experiments. We performed experiments un-
der the following conditions: (1) when a low portion of data items are shared by mobile
clients, (2) when a high portion of them are shared. In order to provide such experimental
environments, we set the system parameter SharedDegree to 10% and 40%. This implies
that 10% or 40% of entire data items are classified as shared state, while the rest are clas-
sified as exclusive state.

First, Figs. 2 and 3 show the average number of transactions that should be aborted
with proposed protocols and the synchronous protocol. As can be seen, more transactions
are aborted with increasing write operations, in both Figs. 2 and 3 where SharedDegree is
low and high, respectively. In Fig. 2 (SharedDegree = 10%), increased write operations
do not cause frequent conflicts between updating transactions, because most data items
are accessed exclusively by each mobile client. Thus, in this case, the protocol with syn-
chronous broadcasting does not suffer a high ratio of aborts. On the other hand, in Fig. 3
(SharedDegree = 40%), the number of aborts is more dependent on the probability of
write operations. Thus, as the probability of write operations increases, aborts rise sig-
nificantly with all three protocols. This is because updates on shared data make copies
cached by large numbers of mobile clients out-of-date. In the protocol with synchronous
broadcasting, aborts increase more rapidly, because more conflicting transactions request
commit during the same broadcasting period. In this case the synchronous protocol per-
mits only one transaction to commit, thus all other transactions that show conflicts with
the committing one should abort. This shows the primary drawback of the synchronous
protocol. For ASBP, the number of aborts increases relatively slowly, as the server sends
broadcasting message immediately after receiving commit_requests. The immediate
broadcasting avoids most aborts of the synchronous protocol, as it reduces transactions’
chance to access stale copies of updated data items. HBP shows satisfying results, which
are similar to those of ASBP, as it applies the asynchronous broadcasting scheme to up-
dated data items which are likely to be accessed by many clients.

Figs. 4 and 5 show the throughput results for all three protocols. As shown in this
figure, the throughput degrades with increasing write operations, due to aborts and delay
for updating transactions. When only 10% of data items are widely shared by mobile
clients, the protocol using synchronous broadcasting shows a stable throughput as can be
seen in Fig. 4. When the write probability is low, ASBP and HBP show better perform-

ILYOUNG CHUNG, LE GRUENWALD, CHONG-SUN HWANG AND SOON YOUNG JUNG454

Fig. 2. Average number of aborts with 10% SharedDegree.

Fig. 3. Average number of aborts with 40% SharedDegree.

Fig. 4. Throughput with 10% SharedDegree.

ADAPTIVE TRANSACTION MANAGEMENT FOR MOBILE CACHING 455

Fig. 5. Throughput with 40% SharedDegree.

ance than the synchronous protocol, because of autonomous commit of read-only trans-
actions. However, the throughput of ASBP degrades rapidly with increasing write opera-
tions, mainly due to the frequent transmission of broadcasting messages. The immediate
broadcasting strategy of ASBP is a communication overhead which cannot reduce aborts
of transactions, when SharedDegree is low (see Fig. 2). Thus, in this case, the synchro-
nous protocol is more satisfactory, because it does not suffer from a high ratio of aborts
without high communication costs. HBP shows intermediate result between ASBP and
the synchronous protocol, as it applies immediate broadcasting to 10% of all data items.
On the other hand, when 40% of data items are widely shared by mobile clients, pro-
posed protocols show better performance in the whole range of update probability, be-
cause ASBP and HBP can avoid a number of aborts with asynchronous broadcasting (see
Fig. 3).

5. CONCLUSIONS

Caching of data items in mobile clients is an effective model that will reduce con-
tention on narrow bandwidth wireless channels. In this paper, we propose two cache
management protocols, supporting transaction semantics. ASBP adopts an asynchronous
broadcasting strategy to reduce conflicts between transactions and to decrease waiting
time after completing all operations. Thus it can adapt to the update probability of trans-
actions in mobile clients. HBP dynamically adopts an appropriate broadcasting strategy
between synchronous and asynchronous strategies, according to the locality of cached
copies of updated data. Thus HBP can adapt not only to update probability, but also to
locality of data copies. Simulations were conducted to evaluate the performance of pro-
posed protocols. Our simulations show that ASBP performs well when large part of data
items are widely shared by clients in their cache, due to reduced aborts of transactions.
Also, our results show that HBP can achieve a satisfactory balance between abort prob-
ability and broadcasting costs.

ILYOUNG CHUNG, LE GRUENWALD, CHONG-SUN HWANG AND SOON YOUNG JUNG456

REFERENCES

1. E. Pitoura and B. Bhargava, “Maintaining consistency of data in mobile computing
environments,” in Proceedings of International Conference on Distributed
Computing Systems, 1995, pp. 404-413.

2. E. Pitoura and G. Samaras, Data Management for Mobile Computing, Kluwer, Bos-
ton, 1998.

3. D. Barbara and T. Imielinsky, “Sleepers and workaholics: caching strategy in mobile
environments,” VLDB Journal, Vol. 4, 1995, pp. 567-602.

4. J. Jing, A. Elmagarmid, A. Helal, and A. Alonso, “Bit sequences: an adaptive cache
invalidation method in mobile client/server environments,” Mobile Networks and
Applications, Vol. 2, 1997, pp. 115-127.

5. M. J. Franklin, “Caching and memory management in client-server database sys-
tems,” Ph.D. Thesis, Dept. of Computer Science, University of Wisconsin, 1993.

6. P. A. Berstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery
in Database Systems, Addison-Wesley, Massachusetts, 1987.

7. D. Barbara, “Certification reports: supporting transactions in wireless systems,” in
Proceedings of IEEE International Conference on Distributed Computing Systems,
1997, pp. 466-473.

8. J. Shanmugasundaram, A. Nithrakashyap, and R. Sivasankaran, “Efficient concur-
rency control for broadcast environments,” in Proceedings of ACM SIGMOD Inter-
national Conference on Management of Data, 1999, pp.85-96.

9. T. Imielinski and B. Badrinath, “Mobile wireless computing: challenges in data
management,” Communications of the ACM, Vol. 37, 1994, pp. 18-28.

10. E. Pitoura and P. K. Chrysanthis, “Exploiting versions for handling updates in broad-
cast disks,” in Proceedings of International Conference on Very Large Databases,
1999, pp .114-125.

11. V. C. S. Lee and K.-W. Lam, “Optimistic concurrency control in broadcast environ-
ments: looking forward at the server and backward at the clients,” in Proceedings of
International Conference on Mobile Data Access, 1999, pp. 97-106.

IlYoung Chung received his BS, MS and Ph.D. degree in computer science from
Korea University, Seoul, Korea in 1994, 1996 and 2001, respectively. He is currently a
post-doctorate research associate in the Department of Computer Sciences at Purdue
University. His research interests include distributed systems, transaction processing,
distributed databases, and mobile databases.

Le Gruenwald received her BS in Physics from the University of Saigon, Vietnam
in 1978, MS in Computer Science from the University of Houston in 1983, and Ph.D. in
Computer Science from Southern Methodist University in 1990. She was a software en-
gineer at White River Technologies, a lecturer in the Computer Science and Engineering
Department at Southern Methodist University, and a member of technical staff in the
Database Management Group at the Advanced Switching Laboratory of NEC, America.
She is a Samuel Roberts Noble Foundation Presidential Professor and an associate pro-

ADAPTIVE TRANSACTION MANAGEMENT FOR MOBILE CACHING 457

fessor in the School of Computer Science at University of Oklahoma. Her research inter-
ests include distributed and mobile databases, real-time main memory databases, web
databases, object-oriented databases, data warehouse, data mining, and multimedia data-
bases.

Chong-Sun Hwang received his BS and MS degrees in mathematics from Korea
University, Seoul, Korea in 1966 and 1970, respectively, and his Ph.D. degree in com-
puter science and statistics from University of Georgia in 1978. From 1978 to 1980, he
was an assistant professor at University of South Carolina, Lander. He is currently a pro-
fessor in the Department of Computer Science and Engineering at Korea University,
Seoul, Korea. His research interests include distributed systems, distributed algorithms,
fault tolerant systems, and mobile computing.

SoonYoung Jung received his BS, MS, and Ph.D. degrees in computer science
from Korea University, Seoul, Korea in 1990, 1992 and 1997, respectively. From 1997 to
2000, he was an senior researcher at Korea Advanced Integration Technology, ECO Inc..
He is currently a professor in the Department of Computer Science Education at Korea
University, Seoul, Korea. His research interests include web-based education systems,
database systems, knowledge management systems, and mobile computing.

