
An Atomic Web-Service Transaction
Protocol for Mobile Environments

Stefan Böttcher1, Le Gruenwald2, and Sebastian Obermeier1

1 University of Paderborn, Computer Science
Fürstenallee 11; 33102 Paderborn; Germany

{stb, so}@uni-paderborn.de
2 The University of Oklahoma, School of Computer Science

200 Telgar street, Room 116 EL; Norman, OK 73019-3032; USA
{ggruenwald}@ou.edu

Abstract. Atomicity is a widely required property of Web service trans-
actions that are executed in distributed networks. Compared to fixed-
wired networks, atomicity in mobile networks is much more challenging
due to network failures, e.g. network partitioning and node failures, which
make global knowledge concerning the operational status of devices dif-
ficult or even impossible to achieve. In comparison to existing atomic
commit protocols that abort or block transactions when network failures
occur, our atomic commit protocol extension significantly reduces the
number of aborts. In addition, the approach guarantees atomicity for
transactions that dynamically invoke sub-transactions during the com-
mit protocol’s execution.

1 Introduction

The application of database technology to a network of mobile devices involves
many new challenges, including guaranteeing transaction atomicity in the pres-
ence of lost connections and node failures. Atomic transaction commitment is
necessary to deal with concurrent transactions in complex systems like distrib-
uted databases and peer-to-peer systems. In addition, even Web service oriented
architectures have the need for an atomic transaction execution in the context
of cascading web service calls. 2

In mobile networks, problems like message delay, disconnection of nodes, and
network partitioning may occur, which are not appropriately solved by standard
atomic commit protocols such as 2PC, in case the coordinator fails. Conse-
quently, there are proposals to increase coordinator stability by using multiple
coordinators (e.g. [1] or [2]), but these protocols abort transactions in case of
missing abort/commit votes of participating nodes after a timeout. Since mes-
sage delay or network partitioning is likely to occur in mobile networks which
make reasonable timeouts hard to determine, the use of these protocols results
in an unnecessarily high number of aborts. Other solutions, e.g. timeout-based
approaches ([3]), demand committed transactions to be undone by applying
compensation transactions. Since committed transactions can trigger other op-
erations, we cannot assume that compensation for committed transactions in
mobile networks, where network partitioning makes nodes unreachable but still
operational, is always possible. Therefore, in this paper, we focus on a transaction

2 This material is based upon work supported by (while serving at) the National
Science Foundation (NSF) and the NSF Grant No. IIS-0312746.

model, within which atomicity is guaranteed for distributed, non-compensatable
transactions.

In addition, modern Web service architectures demand a more dynamic trans-
actional model than the classical distributed transactional model, for which 2PC
([4]) is designed. This means, atomicity must be guaranteed even for transactions
that invoke other transactions or Web services dynamically at any time during
transaction execution. Therefore, a previously unknown set of sub-transactions
must be guided to an atomic commit decision.

This paper proposes a solution, which is a useful extension to many existing
atomic commit protocols including 2PC, 3PC, and Paxos Commit Protocol ([5]),
as it is neither based on a specific architecture nor on a specific atomic commit
protocol. For simplicity of presentation, however, the scope of this paper focuses
on how 2PC can be improved by our protocol extension, and why our extension
results in protocols that reduce the number of aborts and guarantee an atomic
execution of non-compensatable, dynamically invoked Web service transactions.

The rest of this paper is organized as follows. In Section 2, we describe
the transactional model and introduce necessary requirements for guaranteeing
atomic commit in a mobile environment. In Section 3, we propose a solution,
which introduces a non-blocking state for transactions, and finally, we propose
a tree data structure used to represent the execution status of all active sub-
transactions.

2 Problem Description

In this section, we describe the transaction model for which our proposed solution
is designed. Furthermore, we identify the requirements that our protocol must
fulfill and outline the underlying assumptions.

2.1 Transaction Model
Our transaction model has the goal to support atomic execution of Web services
in a mobile ad-hoc network. Our transaction model is based on the concepts
“application”, “transaction procedure”, “Web service”, and “sub-transaction”,
as well as their relationship to each other.

An application AP may consist of one or more transaction procedures. A
transaction procedure is a Web service that must be executed in an atomic fash-
ion. Transaction procedures and Web services are implemented using local code,
database instructions, and (zero or more) calls to other remote Web services.
Since the invocation of a Web service depends on conditions and parameters,
different executions of the same Web service may call different Web services and
execute different local code.

We call the execution of a transaction procedure a global transaction T . The
application AP is only interested in the result of T , i.e. whether the execution of
a global transaction T has been committed or aborted. In case of commit, AP
is also interested in the return values of the parameters of T .

The relationship between transactions, Web services, and sub-transactions is
recursively defined as follows: We allow each transaction or sub-transaction T to
dynamically invoke additional Web services offered by physically different nodes.
We call the execution of such Web services invoked by the transaction T or by
a sub-transaction Ti the sub-transactions Tsi . . . Tsj of T or of Ti, respectively.
This invocation hierarchy can be arbitrarily deep.

Whenever T1, . . . , Tn denote all the sub-transactions called by either T or
by any child or descendant sub-transaction Ts of T during the execution of the
global transaction T , atomicity of T requires that either all transactions of the
set {T, T1, . . . , Tn} commit or all of these transactions abort.

We assume that each Web service only knows the Web services that it calls
directly, but not whether or not the called Web services call other Web services.
Therefore, at the end of its execution, each transaction Ti knows which sub-
transactions Tis1 . . . Tisj it has called, but Ti, in general, will not know which
sub-transactions have been called by Tis1 . . . Tisj . Furthermore, we assume that
usually a transaction Ti does not know how long its sub-transactions Tis1 . . . Tisj

are going to run.
We assume that each sub-transaction consists of the following phases: a read-

phase, a coordinated commit decision phase, and, in case of successful commit,
a write-phase. During the read-phase, each sub-transaction performs write op-
erations on its private storage only. After commit, during the write phase, write
operations on the private storage are transferred to the database, such that the
changes done throughout the read-phase become visible to other transactions
after completion of the write-phase.

In the mobile architecture for which our protocol is designed, Web services
are invoked by messages instead of invoking them by a synchronous call to a
Web service for the following reason. We want to avoid that a Web service Ti

that synchronously calls a sub-transaction Tj cannot complete its read phase
and cannot vote for commit before Tj sends its return value. Therefore, we allow
sub-transactions only to return values indirectly by asynchronously invoking cor-
responding receiving Web services, and not synchronously by return statements1.
Since (sub-)transactions describe general services, the nodes that execute these
(sub-) transactions may be arbitrary nodes and are not necessarily databases. We
therefore call these nodes resource managers (RM). Here we describe an example
application that demonstrates the necessity of atomic execution of transactions

Example 1. An application needs to book a travel package containing a flight, a
hotel, and a transfer from the destination airport to the hotel. As shown in Figure
1, the corresponding global transaction T , started by the Initiator I, invokes a
travel agency Web service. The corresponding sub-transaction T1 first chooses
among the available flights and hotels and then starts the Web services T2 to book
the chosen flight and T3 to book the chosen hotel. To organize the transportation
for the traveler from the airport to the hotel, T3 needs the Web service of a
bus company to start a sub-transaction for organizing this transportation. It is
obvious that no booking component is allowed to fail: if the hotel is no longer
available or the flight cannot be booked, the passenger cannot be transported
from the airport to the hotel upon arrival of the desired flight. Therefore, all
sub-transactions are required to be performed in an atomic fashion.

1 However, if the application needs synchronous calls, e.g. because of dependencies
between sub-transactions, the intended behavior can be implemented by splitting Ti

into Ti1 and Ti2 as follows. Ti1 includes Ti’s code up to and including an asynchronous
invocation of its sub-transaction Tj ; and Ti2 contains the remaining code of Ti. Tj

performs an asynchronous call to Ti2 which may contain return values computed by
Tj that shall be further processed by Ti2

One characteristic of our Web service transactional model is that the initiator
and the Web services do not know every sub-transaction that is generated during
transaction processing. Our model differs from other models that use nested
transactions (e.g. [6], [7], [8]) in some aspects including but not limited to the
following:
• Since network partitioning makes it difficult or even impossible to compen-

sate all sub-transactions, we consider each sub-transaction running on an
individual resource manager to be non-compensatable. Therefore, no sub-
transaction is allowed to commit independently of the others or before the
commit coordinator guarantees that all sub-transactions can be committed.

• Different from CORBA OTS ([7], [9]), we assume that we cannot identify a
hierarchy of commit decisions, where aborted sub-transactions can be com-
pensated by executing other sub-transactions.

• Different from the Web service transaction model described in [8], the Initia-
tor of a transaction in our model does not need to know all the transaction’s
sub-transactions. We assume that the Initiator is only interested in the com-
mit status and the result of the transaction, but not in knowing all the
sub-transactions that have contributed to the result.

• A Web service may consist of control structures, e.g. if <Condition> then
<T1> else <T2>.This means that sub-transaction executing this Web ser-
vice may create other sub-transactions dynamically. These dynamically cre-
ated sub-transactions also belong to the global transaction and must be
executed in an atomic fashion.

• Communication is message-oriented, i.e., a Web service does not explicitly
return a result, but may invoke a receiving Web service that performs further
operations based on the result.

2.2 Requirements

T1I

T2

T3 T4

Book
Flight & Hotel Book

Flight

Book
Hotel for Flight

Organize Transport
Airport �� Hotel

Fig. 1. The initiator I of a Web ser-
vice transaction T and its sub-transactions
T1, . . . T4

The main requirement is to de-
sign an atomic commit proto-
col for guaranteeing the atomic
execution of non-compensatable
Web service transactions includ-
ing sub-transactions in mobile
networks. In comparison to proto-
cols designed for fixed-wired net-
works, we can identify the follow-
ing additional requirements for
protocols for mobile networks:
• Resource managers may fail or disappear at any time. This, however, must

not have a blocking effect on other resource managers.
• If the vote of a resource manager is lost or delayed, traditional protocols

like 2PC either wait for the missing vote and block all participating resource
managers, or abort the transaction which thereafter can be repeated as a
whole. However, since a lost vote differs from an explicit vote for abort, such
a general abort may not be necessary for many sub-transactions, especially
if there is no other concurrent transaction that tries to get a lock on the
same data that the sub-transactions are accessing.

• Our contribution should be an extension to existing atomic commit proto-
cols, such that a concrete protocol can be chosen depending on the applica-
tions’ needs.

• Our protocol extension should reduce the number of aborts that occur due
to timeout or loss of votes.

• It should be possible that the user can abort a transaction as long as the
transaction has not been globally committed.

2.3 Underlying Assumptions

Our atomic commit protocol extension is based on the following assumptions:
• Atomicity requires the following in case of resource manager failures. When-

ever a resource manager RMi is unreachable after a commit decision on a
transaction T was reached, i.e. RMi has failed or is separated from the net-
work for an indefinitely long time, we do not consider this as a violation
of the atomicity constraint, no matter whether or not RMi has executed
its sub-transaction Ti of T . However, if the resource manager RMi recovers
and returns to the network, RMi is allowed to participate further only after
having executed or aborted Ti, depending on whether the commit decision
on T was commit or abort.

• Increasing the stability of the coordinator process itself is not a topic of this
proposal. There are many proposals for handling coordinator failures, e.g.
to run special termination protocols or to increase coordinator availability
by using more than one coordinator (e.g [1], [5], or [2]). Since our proposal
is designed as an extension to one of these protocols, the user can choose a
protocol depending on the desired coordinator stability. Therefore, we do not
discuss coordinator failures further and assume that the coordinator process
does not fail.

• At least some (sub-)transactions are non-compensatable. We claim that this
assumption is realistic for mobile environments. Even in our simple example
given above (Example 1), some sub-transactions (e.g. T2 and T3) can be
considered to be non-compensatable since many of today’s airlines and some
hotels demand expensive cancellation and rebooking fees. We cannot tolerate
a commit protocol which must repeatedly change or cancel flights if there is
no hotel available for the initially booked transportation.

• A sub-transaction Ti that invokes a sub-transaction Tsi
does not need to

invoke another sub-transaction after Tsi
has aborted. Instead, if any sub-

transaction Tsj aborts, the global transaction T to which Tsj belongs must
be aborted.

3 Solution

This section describes the solutions to our main requirements, i.e., how to guar-
antee atomicity for Web service transactions and to reduce the number of trans-
action aborts compared to standard protocols like 2PC or 3PC in case of message
loss. To reduce the number of aborts, we introduce a new non-blocking suspend
state in Section 3.1. Then, Section 3.3 proposes a data structure called “commit
tree”, which represents the commit status of all sub-transactions involved in a
global transaction, and which helps to guarantee atomicity with both reduced
blocking times and reduced aborts.

3.1 The Non-Blocking Suspend State
While waiting for the transaction’s commit decision, protocols like 2PC or 3PC
remain in a wait state as long as votes are missing, and they block the resource
managers that have voted for commit ([10]). In order to reduce this blocking,
our protocol extension suggests an additional suspend state as follows:

For each sub-transaction Ti, let RS(Ti) denote the data read by Ti and
WS(Ti) denote the data written by Ti. Then, we define the suspend state for the
sub-transaction Ti in the following way:

Definition 1. The suspend state of Ti is a state in which the resource manager
RM executing Ti waits for a decision from the commit coordinator on Ti, but
does not block the tuples WS(Ti) ∪RS(Ti).

If another transaction Tk is executed while Ti is suspended, RM checks whether

WS(Ti) ∩ (RS(Tk) ∪WS(Tk)) 6= ∅ ∨ RS(Ti) ∩WS(Tk) 6= ∅

If this is the case, there is a conflict between Ti and Tk, and therefore, RM
locally aborts Ti and can either abort the global transaction T or try a repeated
execution of the sub-transaction Ti.

3.2 Using the Suspend State to Reduce the Number of Aborts
Figure 2 shows an automaton containing the resource managers’ states. Each
resource manager executes its read-phase and sends a vote for commit or for
abort to the coordinator like in 2PC. In case of having sent a vote for commit, the
resource manager enters the wait state and waits for the coordinator’s commit
decision. In contrast to 2PC, the coordinator has, besides aborting or committing
the transaction, a third possibility, i.e., to suspend the transaction.

suspend

commit
wait

abort

invokeSubTransaction

coordinator:
commit!

abort
sent

coordinator:
suspend! coordinator:

abort!

read-phase

abort sent

commit
sent

commit
sent

Fig. 2. Automaton showing the states
and the received messages of a resource
manager

The suspend state is proposed by
the coordinator if after a timeout
some votes are still missing. In this sit-
uation, traditional 2PC would abort
the transaction because participating
resource managers have locks on read
or written tuples, and waiting for the
missing votes implies blocking these
tuples, thereby preventing concur-
rent transactions that access conflict-
ing data from completion. In fixed-
wired environments, 2PC’s transac-
tion abort makes sense because a re-
source manager whose vote is miss-
ing has most likely failed. In mobile
environments, however, the vote mes-
sage can get lost more easily or the de-
vices may be disconnected for a short
time due to the mobile character of
the network. In this case, an abort of
the whole transaction does not make sense. Instead, the suspend state can be
used to unblock all participants until one of the used resources is needed by a

concurrent transaction or all votes of the sub-transactions belonging to the same
global transaction have arrived at the coordinator.

A resource manager waits in the non-blocking suspend state until either one
of the following events occurs:
• the coordinator demands again a vote on the sub-transaction or
• the coordinator aborts the sub-transaction or
• a concurrent transaction causes an abort of the sub-transaction due to access

conflicts on the tuples accessed by the sub-transaction.
In case that the user or the application program wants to abort the transaction,
the initiator sends an abort message to the coordinator, which is allowed to
abort the transaction anytime before the commit decision has been reached. Our
protocol definition implies that each resource manager is able to give its vote
on the transaction. If, however, not all resource managers respond immediately,
the coordinator may advise the resource managers to go into the suspend state
while waiting for the missing votes.

2PC, in contrast, blocks a resource manager from the time when it finishes
its read-phase, i.e., when it is ready to vote for commit, until the time when it
receives the commit decision.

3.3 Atomicity of Web service Transactions
This section explains how atomicity can be guaranteed for the Web service trans-
actions that we have introduced in Section 2.

The main problem of ensuring atomicity for Web service transactions is that
the coordinator does not know all sub-transactions. In order to inform the coor-
dinator about all the invoked sub-transactions, we outline the sub-transaction’s
ID management in Section 3.4 and propose a data structure called commit tree
to dynamically store the completion status of each sub-transaction involved in
a transaction in Section 3.5.

3.4 The Sub-Transactions´ ID Management
Since a global transaction T may consist of many invoked sub-transactions, we
propose the use of sub-transaction IDs to distinguish all sub-transactions of T .
To ensure that the coordinator gets knowledge of all invoked sub-transactions
belonging to T , we require that each vote message sent by a sub-transaction Ti to
the coordinator informs the coordinator about all sub-transactions Ts1 , . . . , Tsk

that are called by Ti. This means that each sub-transaction Ti includes a list of
IDs of all its invoked sub-transactions Ti1 , . . . , Tik

in its vote message. For this
purpose, we have included a parameter ListOfInvokedSubTransactions in the
vote message which has the following format:
VoteMessage V(bool commit, ID subtransactionID, ID callerID, ID globalTID,

ListOf(ID) ListOfInvokedSubTransactions, int sequenceNr)

Since the atomic decision of the global transaction T must include those invoked
sub-transactions, the coordinator must also wait for the votes of those newly
added resource managers. This behavior is supported by the commit tree data
structure, for which an example is given in the next section and which is generally
defined in Section 3.6.

The other parameters have the following meaning: commit tells the coordi-
nator whether or not the sub-transaction execution was successful and contains
the value of either abort or commit. subtransactionID is the sub-transaction’s

own ID whereas callerID is the ID of the parent transaction and globalTID is
the ID of the global transaction T to which the sub-transaction belongs. Finally,
sequenceNr is needed to identify the latest version of the vote message in order
to handle message delays if the vote message is sent more than once.

Furthermore, each sub-transaction Tsi belongs to exactly one global transac-
tion T , and it is called by exactly one caller Ts, i.e., the application program or
another sub-transaction. Since each sub-transaction Ts must inform the coordi-
nator about the sub-transaction IDs of all its sub-transactions Ts1 , . . . , Tsk

, we
have decided to provide a sub-transaction Tsi

with all the information when it
is called. Therefore, the sub-transaction ID of Tsi

is generated by the resource
manager running the calling parent transaction Ts and is passed in a parameter
subtransactionID to Tsi when Tsi is invoked. The following example shows the
use of IDs:
invokeSubTransaction(subtransactionID, callerID, globalTID,

<WebService name and parameters>)

The parameter callerID contains the ID of Tsi and the parameter globalTID
contains the ID of the global transaction T to which Tsi

and Ts belong. The
parameters list <WebService name and parameters> contains the name of the
called Web service and the parameters used for the Web service call.

3.5 An Example of the Coordinator´s Commit Tree

To ensure that all sub-transactions Tsi
, . . . , Tsj

invoked by a sub-transaction
Ti are known to the coordinator, the coordinator must process the parameter
ListOfInvokedSubTransactions, passed in the vote message of Ti and update
the set of required votes for the global transaction T before processing T ’s com-
mit decision. Before we describe the general use of the commit tree data struc-
ture, we give an example (c.f. Figure 3) that shows how we ensure that the
coordinator can only come to a commit decision after it has knowledge of all
necessary votes.T2 CoordinatorT4

Commit
doT(T4,T2, globalTID) Vote(true, T4, T2, globalTID, [], 1)Vote(true,T2, T1, globalTID, [T4, T5], 1) All votes arrivedCommit

T5doT(T5,T2, globalTID) Vote(true, T5, T2, globalTID, [], 1)Commit
Fig. 3. Sequence diagram of example commit tree construction

Figure 3 shows part of a sequence diagram of an example execution: Dur-
ing the read-phase, a sub-transaction T2 needs the service doT(. . .) and gen-
erates the ID “T4” to invoke the Web service with the required parameters
subtransactionID (T4), CallerID (T2) and globalTID. In our example, sub-
transaction T4 has finished earlier than T2 and sends the vote message to the
coordinator. Since T4 has not invoked any sub-transactions, the fifth parameter
denoting the set of the called sub-transactions is empty. T2, however, includes

the IDs of its invoked sub-transactions, T4 and T5, in its set of the called sub-
transactions. This makes the coordinator to require the votes of T4 and T5,
which, in this example, have arrived earlier. When the coordinator has received
all these votes, it decides on the global commit decision.

In contrast to 2PC, which handles flat transactions instead of nested trans-
actions, the dynamic call of Web services supported by our protocol requires
that the votes, which the coordinator needs for a global commit decision, can be
determined only during the protocol’s execution. In order to store the commit
status and vote of each sub-transaction, we propose a dynamic data structure,
called commit tree, and we define the initiator of a transaction to be the root of
this commit tree.

T1

I

T4

T3T2

T5

Vote(true, I, root,
[T1], 1)

Vote(true, T1, I,
[T2, T3], 1)

Vote(true, T3, T1,
[], 1)

Vote(true, T2, T1,
[T4, T5], 1)

Vote(true,
T4,T2,[],1) Vote(true, T5,

T2, [], 1)

Fig. 4. An example commit tree

Figure 4 shows an example
commit tree (we have omitted
the globalTIDs since all sub-
transactions belong to the same
global transaction). When the co-
ordinator has received the initia-
tor I’s vote which includes the list
[T1] for the parameter of the in-
voked sub-transactions, the root
node is generated to represent
the commit status of I. When
the coordinator has received the
vote of T1, the node T1 is cre-
ated. Since the sub-transaction
T1 invoked the sub-transactions
T2 and T3, the commit of the sub-
transactions T2 and T3 is also re-
quired to commit the whole transaction. Therefore, this information is added
to the commit tree. The coordinator builds this commit tree dynamically and
determines whether all votes needed for continuing the protocol’s execution have
arrived. Since the information about invoked sub-transactions is sent along with
a vote message of the parent transaction and the parent’s vote can arrive later
than a sub-transaction’s vote, it may be the case that an arriving sub-transaction
vote cannot be assigned to a parent transaction, like the vote messages of T4
and T5 in the example of Figure 3. In this case, the sub-transaction’s vote is
stored and assigned after the corresponding parent sub-transaction’s vote has
arrived.

3.6 The Coordinator´s Commit Tree
The commit tree for a transaction is an unordered tree with additional parame-
ters to dynamically store votes. Each commit tree corresponds to exactly one
global transaction and stores the following variables: the global transaction ID;
a tree structure containing commit tree nodes; a list unassignedN of unassigned
nodes corresponding to sub-transactions that voted for commit before their par-
ents voted for commit; and a list openSubTransactions of transaction IDs, for
which the vote was not received by the coordinator. Furthermore, each commit
tree node stores: the sub-transaction ID; the ID of the resource manager run-
ning the sub-transaction; the parent transactionID; and 0 − n IDs of invoked
sub-transactions.

Depending on the status of the commit tree and based on the timer, the
coordinator sends the following messages to the participating resource managers:
doCommit requires the recipient to commit the sub-transaction. the message

is sent, when all participants have voted for commit, i.e. the list openSub-
Transactions is empty.

doAbort requires the recipient to commit the sub-transaction. This message is
sent, when at least one participant has voted for abort.

doSuspend requires the recipient to proceed to the suspend state. This message
is sent, when some votes are still missing after a timeout.

Modification of the Commit Tree by the Vote Operation
Algorithm 1 below outlines the implementation of the coordinator’s vote opera-
tion which is executed on the commit tree whenever a client’s vote message ar-
rives at the coordinator. First, the coordinator uses the sequence number to check
that no newer message was processed earlier, e.g., due to message delay (line 3).
Thereafter, a new node N is created and the parent-child relationships between
N and the nodes representing other sub-transactions are managed (lines 5-10).
In addition, the list openSubTransactions is updated where sub-transactions,
the votes of which are necessary but have not yet arrived, are stored.
(1) preVote(boolean commitStatus, ID subtrsID, ID callerID,
(2) ID globalTID, ListOf(ID) invokedSubT, int sequenceNr) {
(3) if (isVoteValid(sequenceNr)) {
(4) if (commitStatus==false) abortTransaction();
(5) N := createNode(subtrsID, callerID, globalTID, invokedSubT);
(6) openSubTransactions.delete(subtrsID);
(7) if((ParentNode := getNodeByID(callerID)) == nil)
(8) unassignedN.add(N)
(9) else{ ParentNode.addChild(N)
(10) assignNodes(invokedSubT, N)
(11) }
(12) openSubTransactions.add(invokedSubT) } }

Algorithm 1: Coordinator’s implementation of the preVote procedure

If all votes are present, the list openSubTransactions is empty and the global
decision can be made. To ensure that in case of a resource manager’s failure no
infinite blocking occurs, the coordinator starts the timer. If the time is over and
some votes are still missing, the coordinator sets the status stored in each node
of the commit tree back to suspend, proposes the suspend state to T and to all
sub-transactions belonging to T , and demands the votes for the transaction once
more. Demanding for votes is repeated until a maximum number defined by the
application is exceeded.

4 Related Work
We can distinguish contributions to the field of atomicity and distributed trans-
actions according two main criteria: first, whether their transactional models use
flat transactions or support nested transaction calls, second, whether transac-
tions and sub-transactions are regarded as compensatable or non-compensatable.
Our contribution is based on a transactional model that allows nested transac-
tion calls and assumes sub-transactions to be non-compensatable.

The requirement to allow sub-transactions to invoke other sub-transactions
originated from business applications. Within such a business application, the
atomicity constraint is to complete all “sub-transactions” of a workflow ([11]).

Today, Web services and their description languages (e.g. BPEL4WS [12] or
BPML [13]) are more and more used to implement nested Web service transac-
tions, which are called Web services orchestration.

However, these languages do not provide a coordination framework to im-
plement atomic commit protocols. For this purpose, our contribution can be
combined with these description languages, like the “WS-Atomic-Transaction”
proposal ([8]) does. Note that our contribution is different from [8] in several
aspects. For example, [8] has a “completion protocol” for registering at the co-
ordinator, but does not propose a non-blocking state – like our suspend state –
to unblock transaction participants while waiting for other participants’ votes.
In comparison, our suspend-state may even be entered repeatedly during the
protocol’s execution.

Besides the Web service orchestration model, there are other contributions
that set up transactional models to allow the invocation of sub-transactions, e.g.
the Kangaraoo Model [6]. However, this model can not give global atomicity
guarantees, as defined in [14], if compensation for all sub-transactions is not
possible.

In Corba OTS ([7], [9]), the term “suspend” is also used for describing a state.
However, the Corba “suspend” differs from our model because our suspend state
is a non-blocking state for a mobile environment. Regarding the transactional
model, Corba OTS uses a hierarchy of commit decisions, where an abort of a
sub-transaction does not necessarily lead to an abort of the global transaction.
Instead, the calling sub-transactions can react on this abort and use other sub-
transactions, for example. Although we also assume that Web services invoke
other Web services and the coordinator uses a tree structure to maintain infor-
mation about commit votes, we do not have this hierarchical commit decisions,
since in the presence of non-compensability, this implies waiting for the commit
decision of all descendant nodes.

The idea of using a suspend state is also proposed by [15]. However, this ap-
proach is intended for the use within an environment with a fixed network and
several mobile cells, where disconnections are detectable and therefore transac-
tions can be compensated. In contrast, our assumed environment, which allows
ad-hoc communication, demands a more complex failure model that takes net-
work partitioning into consideration.

While our solution in combination with 2PC reduces blocking of resource
managers during the commit protocol’s execution, there is one case left where
infinite blocking can occur: in case of network partitioning and coordinator fail-
ure during the vote phase. [16] has proven that this blocking cannot be avoided
in asynchronous networks if we are not able to distinguish whether a node has
failed or is still working in another network partition. However, our proposal re-
duces the chance that this blocking occurs by reducing the duration of the vote
phase, in which the resource managers are blocked. To enhance the coordinator’s
availability, other contributions propose the use of protocols with more than one
coordinator ([1],[2],[5]). Nevertheless, since all these protocols require a resource
manager to send a vote on the sub-transaction, the protocols can be extended
to support the suspend state by adding a separate vote phase to the protocols.

5 Summary and Conclusion
In this paper, we have presented two key ideas for guaranteeing atomicity for
Web service transactions in a mobile context that also reduce the number of
transaction aborts. The first idea is to use the suspend state for a transaction
when, after a timeout, the coordinator still waits for the votes of some of its

sub-transactions. In the suspend state, the sub-transaction still can be aborted
by the resource manager when the resource manager decides to grant the re-
sources used by this sub-transaction to other concurrent transactions to prevent
them from blocking. This is especially useful in mobile environments where de-
vices are more likely to fail and to disconnect. If votes of some devices are
lost, waiting in the suspend state involves no risk of long-term blocking the re-
sources accessed by the transaction. Second, we have presented the commit tree
as a data structure that can be used to implement the coordinator’s manage-
ment of transaction atomicity for a dynamically changing set of sub-transactions.
We have embedded our atomic commit protocol in a Web service transactional
model, the characteristics of which is that sub-transactions must not be known
in advance. We have furthermore presented all key solutions as an extension to
the 2PC protocol, however, our contribution is applicable to a much broader set
of commit protocols. Finally, our protocol extension merges nicely with a variety
of concurrency control strategies including validation and locking. Although a
serializability proof for arbitrary schedules of concurrent transactions running
under such an integrated protocol is beyond the scope of this paper, we have
evidence that serializability of concurrent transactions can be guaranteed, and
we plan to report on this on a forthcoming paper.
References

1. Reddy, P.K., Kitsuregawa, M.: Reducing the blocking in two-phase commit with
backup sites. Inf. Process. Lett. 86 (2003) 39–47

2. Böse, J.H., Böttcher, S., Gruenwald, L., Obermeier, S., Schweppe, H., Steenweg, T.:
An integrated commit protocol for mobile network databases. In: 9th International
Database Engineering & Application Symposium IDEAS, Montreal, Canada (2005)

3. Kumar, V., Prabhu, N., Dunham, M.H., et al.: Tcot-a timeout-based mobile trans-
action commitment protocol. IEEE Trans. Comput. 51 (2002) 1212–1218

4. Gray, J.: Notes on data base operating systems. In Flynn, M.J., Gray, J., Jones,
A.K., et al., eds.: Advanced Course: Operating Systems. Volume 60 of Lecture
Notes in Computer Science., Springer (1978) 393–481

5. Gray, J., Lamport, L.: Consensus on transaction commit. Microsoft Research –
Technical Report 2003 (MSR-TR-2003-96) cs.DC/0408036 (2004)

6. Dunham, M.H., Helal, A., Balakrishnan, S.: A mobile transaction model that
captures both the data and movement behavior. Mobile Networks and Applications
2 (1997) 149–162

7. OMG: Transaction Service Specification 1.4. http://www.omg.org/ (2003)
8. Cabrera, L.F., Copeland, G., Feingold, M., et al.: Web Services Trans-

actions specifications – Web Services Atomic Transaction. http://www-
128.ibm.com/developerworks/library/specification/ws-tx/ (2005)

9. Liebig, C., Kühne, A.: Open Source Implementation of the CORBA Object Trans-
action Service. http://xots.sourceforge.net/ (2005)

10. Skeen, D.: Nonblocking commit protocols. In Lien, Y.E., ed.: Proceedings of
the 1981 ACM SIGMOD International Conference on Management of Data, Ann
Arbor, Michigan, ACM Press (1981) 133–142

11. Workflow Management Coalition. (http://www.wfmc.org/)
12. Curbera, F., Goland, Y., Klein, J., Leymann, F., et al.: Business Process Execution

Language for Web Services, V1.0. Technical report, BEA, IBM, Microsoft (2002)
13. Arkin, A., et al.: Business process modeling language, bpmi.org. (Technical report)
14. Kifer, M., Bernstein, A., Lewis, P.M.: Database Systems: An Application Oriented

Approach. Pearson Addison-Wesley (2005)
15. Dirckze, R.A., Gruenwald, L.: A pre-serialization transaction management tech-

nique for mobile multidatabases. Mobile Networks and Applications 5 (2000) 311–
321

16. Ancilotti, P., Lazzerini, B., Prete, C.A., Sacchi, M.: A distributed commit protocol
for a multicomputer system. IEEE Trans. Comput. 39 (1990) 718–724

