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ABSTRACT 
A sensor’s data loss or corruption, aka sensor data missing, is a 
common phenomenon in modern wireless sensor networks. It is 
more severe for multi-hop sensor network (MSN) applications 
where sensor data reach the base station via other sensors; hence a 
sensor’s failure can cause multiple missing data.   In this paper we 
present MASTER-M, a data estimation framework based on data 
clustering and association rule mining to estimate the values of 
missing sensor data for MSN.  Estimating, instead of resending, 
the missing sensor data is becoming popular as it may reduce 
query response time and sensor energy consumption; however the 
current works cater to only single-hop sensor networks. To fill 
this gap, our novel technique addresses the issues related to MSN, 
such as simultaneous missing sensors and missing spatially 
correlated sensors.  It consists of three steps:  1) clustering sensors 
online; 2) capturing association rules between sensors inside each 
cluster, and 3) estimating the values of the missing data using the 
obtained association rules. Experimental results on both real-life 
sensor data and synthetic sensor data demonstrate the efficacy of 
MASTER-M in terms of estimation accuracy compared to the 
existing techniques. Moreover, we also present experiments 
showing the supremacy of data estimation by MASTER-M in 
terms of energy savings over re-transmission of missing data.  
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1. INTRODUCTION 
Wireless sensor networks are deployed and utilized widely in 
environment monitoring [18], scientific investigation [12], roads, 
bridges, and civil structure flaw detection, battle surveillance, 
medical applications [19]  and many other fields. However, under 
the current wireless sensor networks technology, a wireless sensor 
node is prone to hardware failures such as power shortages and 
mal-functioning of sensor nodes. In addition, network issues, such 
as connection interruption and package collision, cause further 
problems in data assimilation. Due to those reasons, sensor data 
may fail to reach the base station; we call such data missing data. 
The sensors which generate these missing data are called missing 

sensors throughout this paper. 

To compensate for the missing data, researchers have proposed 
several solutions, such as ignoring the missing data, querying the 
network again, using backup sensors, and estimating missing data 
[5]. Ignoring missing data is not a very efficient solution for 
sensitive applications and querying the network again is neither 
time efficient nor realistic. Using backup sensors is another 
expensive solution which may bring up issues such as dealing 
with data duplication. Thus estimation of the values of the missing 
data may be one of the optimal solutions.  

Some research has been done for estimating missing data in 
sensor networks [17], [2], [13], but most of the existing research is 
designed for single hop sensor networks where sensors send data 
directly to the base station through a single hop communication.  
As the demand of deploying sensor networks in a broader scope 
emerges, more and more wireless sensor networks are configured 
in a multi-hop communication fashion. In these networks, as 
shown in Figure 1,   sensors are usually placed far away from the 
base station, and the distant sensors use other intermediate sensors 
to route the data to the base station. Most existing solutions for 
missing sensor data estimation are not suitable for multi-hop 
sensor networks as they do not consider the newly emerging 
issues associated with these networks, which we describe below.  

 
Figure 1. Multi-hop sensor networks architecture 

Due to multiple hops in the routing path, in a multi-hop sensor 
network more missing data are generated compared to single-hop 
routing. Moreover, critical routing node failures may cause all 
messages routed by these nodes to miss simultaneously. Due to 
the large size and complexity of multi-hop networks, it is very 
difficult to predict how, when, and how many sensors will be 
missing. 

Another issue related to sensor network is that the sensors close to 
the base station are more likely to die faster than the sensors far 
away from the base station; this situation is known as black hole 
effect [20]. Failures of the sensors close to the base station cause 
all traffic data which had been passing through the ‘dead’ sensors 
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previously to be missing. The problem is more severe in multi-
hop networks; therefore, missing data estimation solutions in 
these networks need to be more robust with respect to the number 
of missing sensors. 

Finally, single hop sensor networks are typically designed to 
monitor small-scale, stable phenomena, while multi-hop sensor 
networks are heterogeneous networks and designed for complex, 
large-scale, and changing phenomena. An example of the latter 
can be seen in the heat transferring application [15]. In this 
application, in a relatively big region, quite a few sensors are 
deployed to monitor and report temperature. There are multiple 
heat sources in a region, and complex isotherms can be formed. 
The heat resource might adjust the function to high or low level, 
and it might even move. All of these cause the temperature 
distribution in the region unstable and changeable, i.e., the 
phenomenon might keep changing in the environment that the 
multi-hop sensor networks are monitoring. 

In this paper, we propose a robust algorithm, called MASTER-M, 
to estimate the values of the missing sensor data in multi-hop 
sensor networks. It takes the issues associated with these networks 
into consideration. The rest of the paper is organized as follows:  
Section 2 discusses the related works and issues to be addressed; 
Section 3 describes MASTER-M; Section 4 presents the 
experimental results comparing MASTER-M with existing 
techniques in terms of estimation accuracy and execution time for 
both real-life and synthetic test data; Section 5 discusses the 
energy savings of MASTER-M; and Section 6 provides 
conclusions and future research. 

2. RELATED WORK AND ISSUES  
The problem of estimating missing data has received growing 
attention from researchers in various disciplines, such as 
mathematics, engineering and computer science. Most of the early 
proposed approaches are statistical in nature like maximum 
likelihood [9], imputation by regression [14], and expectation 
maximization [11]. These pure and/or simplex statistics methods, 
however, cannot be directly applied for wireless sensor network 
data as they do not address the stream data properties like 
unbounded data volume and one-pass data scan.  In addition, they 
make certain assumptions on the data sets, such as Missing at 
Random, that may not exist in sensor data applications [5]. 

TinyDB [10] is a popular querying system for wireless sensor 
networks. However, TinyDB does the data estimation for a 
missing sensor by averaging the readings of all other sensors in 
the current round of sensor readings. This approach works well if 
all sensors are supposed to report similar values but it fails to 
incorporate non-linear relationships among sensors. Because of 
this fact, TinyDB gives erroneous estimation when complicated 
relations exist among sensors or multiple sensors fail 
simultaneously. It is very difficult to discover the underlying 
trends and patterns for sensor data properly with this 
straightforward technique.  

Papadimitriou et al [13] proposed an auto regression model to 
extract correlations and hidden variables among multiple streams 
by the aid of principal component analysis (PCA) named SPIRIT. 
This technique can dynamically detect changes in streams through 
a single scan without storing data values. With the auto regression 
model, SPIRIT can predict the missing value based on the 
previous rounds using hidden variables which are a summary of 
the data correlation among all the sensors; but SPIRIT completely 

ignores the reported values in the current round from other 
sensors. The accuracy of SPIRIT is restricted because it ignores 
the relationships among the data in the current round of the sensor 
readings. 

Vijayakumar and Plale proposed a Kalman filter based approach 
for estimating missing data [17]. It uses a dynamic linear model 
and provides a very accurate prediction of missing data. However, 
this approach is completely based on the history information. The 
data distribution in a data stream changes over time [8], and in 
extreme cases, the history data from the same sensor will no 
longer be useful to predict the current data value when the 
phenomena substantially changed; hence this approach has 
limitations still. 

In [5], a missing sensor data estimation algorithm called FARM 
was presented where the association rules among the sensors are 
mined and used to estimate the missing data. Establishing the 
correlations among the sensors makes FARM achieve better 
accuracy than other popular statistical estimation methods. In 
addition, FARM employs a novel data freshness framework, 
which not only takes the temporal aspect of the data into 
consideration for mining association rules but also implements a 
data compaction scheme to store a large amount of stream data. 
The main bottleneck of FARM comes from its limitation on 
establishing association rules among the sensors. It establishes 
association rules between two sensors based on the equality 
between their readings, i.e., only equivalent relationships are 
mined. 

Mining Autonomously Spatio-Temporal Environmental Rules 
(MASTER) proposed by Chok and Gruenwald [2] is a 
comprehensive spatio-temporal association rules mining 
framework which provides both a competitive data estimation 
method and an exploratory tool to investigate the evolution of 
patterns of the sensor data in a single-hop sensor network. 
MASTER is very well equipped to discover any kind of 
association rules among the sensors. This framework includes a 
novel data structure called MASTER-tree which stores the history 
data for each sensor and represents the association rules among 
the sensors. An example of an association rule in MASTER is ��[10, 20], �	[40, 90]  →  ��[30, 40] where ��, �	 and �� are 
three sensors, and �� and �	 are called the antecedent sensors and �� is called the consequent sensor of the rule.  This rule implies 
when the sensor reading of �� is within 10 to 20 and the sensor 
reading of �	 is within 40 to 90, the sensor reading of  �� would 
be within 30 to 40. Each node in the MASTER-tree represents a 
sensor except the root node which represents an empty node; and 
each path/sub-path starting from the root node represents an 
association rule. Hence a MASTER-tree is capable of representing 
any kind of relationship among the sensors which participate in 
the MASTER-tree. 

MASTER limits the number of sensors in one MASTER-tree by 
clustering the sensors into small groups and producing an 
individual MASTER-tree for each cluster. The advantage of the 
clustering step is twofold: 1) the clustering step arranges spatially 
co-related sensors into one cluster and 2) it limits the number of 
sensors in a MASTER-tree which restricts the exponentially large 
number of association rules into a more manageable number. As 
each data round arrives, MASTER finds the appropriate 
MASTER-tree for each sensor and updates the MASTER-tree 
based on the arrived sensor readings. At any particular time if a 
sensor reading is missing, MASTER finds the appropriate 



MASTER-tree for the missing sensor and evaluates the support 
and confidence of the association rules where the missing sensor 
appears as consequent. MASTER finds the best association rule 
comparing the obtained support and confidence with the user 
defined minimum support and minimum confidence. Finally it 
uses the best association rule and the current sensor readings of 
the antecedent sensors in the best association rule to estimate the 
consequent sensor’s reading. Interested readers are referred to [2] 
for further details. 

MASTER was designed for single-hop sensor networks.  It suffers 
the following deficiencies.  The cluster formation step is solely 
based on spatial attributes, which causes poor performance for 
multi-hop sensor network where closely located sensors are more 
likely to be missing together, although it performs excellently on 
single-hop sensor networks where closely located sensor are not 
likely to be missing together. Moreover, the multi-hop sensor 
networks are usually targeted for complex, large-scale and 
dynamically changing phenomena where the relationship among 
the sensors changes over time. The cluster formation step is used 
in MASTER to restrict the search space for association rules; 
However in a dynamically changing environment, the static 
cluster formation step may suffer from not to have the related 
sensors in the same cluster; hence the cluster formation step 
should be dynamic and events aware. Nevertheless, in a multi-hop 
network, a failure of an intermediate sensor can cause a loss of 
multiple sensors’ data; therefore if the clusters are fixed based on 
spatial attributes, there is a chance that  all the sensors of a cluster 
would be missing together, which will result in  the  unavailability 
of the antecedent sensors to estimate the consequent sensor. 

Motivated by the drawbacks of MASTER, in this paper we 
develop a new version of MASTER, called MASTER-M, for 
multi-hop sensor network applications.  MASTER-M makes use 
of a dynamic clustering method that tackles the problems of 
simultaneously missing spatially correlated sensors and static 
location based cluster formation of spatially correlated sensors. 
Our new clustering approach dynamically adjusts the clusters with 
the change of the relationships between the sensors. Moreover 
MASTER-M is more robust with respect to the number of 
simultaneously missing sensors. The details of MASTER-M are 
presented in the next section. 

3. THE PROPOSED MASTER-M 
In this section, we first give an overview of MASTER-M, and 
then describe the details of its individual modules.  

3.1 The MASTER-M Overview 
MASTER-M consists of three major modules: online clustering, 
MASTER-tree projection, and Data estimation. It takes the 
following input:  the stream sensor data including missing values, 
user-defined maximum number of sensors in each cluster, and 
user-defined number of rounds at which a phenomenon change 
(event) occurs.  

In the clustering module, MASTER-M groups the sensors into 
some clusters based on our proposed distance function described 
in Section 3.2 to compute the distance between the sensors.  Here 
the distance measurement is derived in a bootstrapping fashion, 
i.e., the initial distance value is computed using  the first  few 
rounds of data, and the consequent distance value is updated 
incrementally., A re-clustering procedure is invoked once the 
distance bound in a cluster does not hold any more. Another 
trigger for the re-clustering procedure is the user- defined number 

of rounds when a phenomenon change occurs. The MASTER-tree 
projection module computes the MASTER-tree for each cluster. 
The MASTER-tree is capable of holding the relationships among 
all the sensors in the cluster. Through the MASTER-tree, 
association rules along with their support and confidence are 
implicitly maintained on the fly when a sensor reading arrives. 
With the first two modules we keep an effective cluster structure 
for sensors, and within a cluster, we maintain an up-to-date 
MASTER-tree. Then in the final data estimation module, the valid 
association rules are derived from the MASTER-tree to produce 
accurate estimation results for the missing sensors’ readings. This 
estimation procedure is iterative and adjusted progressively: the 
nearest known node is used to infer the missing sensor reading 
first; if the error margin from the produced results meets the 
minimum consequent spanning space (MCSS), which is supplied 
by the user, then output the estimation results; otherwise more 
known nodes according to the path order from the MASTER-tree 
are selected to refine the rules for estimation, i.e. adding the 
antecedent sensors to the rules and cutting down the search space 
for the consequent sensor, which is the missing sensor node.  

We describe the steps in MASTER-M in details in the following 
sections. In Section 3.1, we present our novel online clustering 
technique for MASTER-M. Then in Sections 3.2 and 3.3, we 
describe the MASTER-tree projection module and data estimation 
module, respectively. These two modules are mainly inherited 
from the original MASTER approach [2]. We briefly explain the 
two modules for the completeness of our approach, MASTER-M. 

3.2 The Clustering Module 
In this section, we describe how the clustering module works. 

3.2.1 Definitions and Preliminaries 
At the beginning, we arrange all the sensors according to their 
data missing rates in a descending order. The missing rate is 

defined as missing rate =  ������  ! �"##"�$ � ��%#& &'( ������  ! � ��%# .   Let (S�, S	, S�, … S�) be the sorted list of sensors after sorting them in 
descending order of their missing rates, i.e.  Sensor �- misses 
least often and sensor �� misses most often. Sensors with the 
highest missing rates will be the “seeds” of the clusters. The 
significance of a seed is twofold. For a clustering technique, 
careful seeding is usually important and helpful [1]. For data 
estimation, seeds are the most demanding nodes as they are most 
likely to miss. For each pair of sensors, �. and �/, we compute the 
distance between them. There are two types of distance between 
these two nodes: the standard deviation of the differences of the 
data readings 01232(�. , �/), and the simultaneously missing rate 0145(�. , �/). 01232(�. , �/) shows the degree that �. and �/  are 
related to each other. A relatively small 01232(�. , �/) implies a 
better correlation between �. and �/. 0145(�. , �/) shows whether �. and �/  tend to be missing simultaneously; a small 0145(�. , �/) 
implies a small chance that the �. and �/ are missing together. So 01232(�. , �/) and 0145(�. , �/) both are very important for 
deriving association rules between �. and �/ and estimating 
missing sensor data. Note that both distances between a sensor 
and itself is always zero i.e., 01232(�. , �.) = 0 and 0145(�. , �.) = 0. 

We further normalize 01232(�. , �/) and 0145(�., �/) to be the 
values between 0 and 1 and we name them 61232(�. , �/) and 6145(�. , �/) respectively. These two distances form a two 



dimensional geometric space for a sensor node (�.) where 61232(�. , �/) is placed along the x-axis and 6145(�. , �/) is placed 
along the y-axis. Each data point in the two dimensional space 
formed for �. represents a sensor node (�/) where the abscissa is 61232(�. , �/) and the ordinate is 6145(�. , �/). The origin is 
composed of the sensor itself, i.e., the point (0, 0) represents the 
sensor (�.). The  Euclidean distance ( 
07�. , �/8 = 9612327�. , �/8	 + 61457�. , �/8	

) is measured from 

the origin to �/. The distance is then characterized as a 
measurement of the priority/benefit of putting �. and �/ into the 
same cluster. Now we establish a matrix of distances from each 
node to all other nodes. Note that the distance relationship is 
symmetric i.e., 0(�. , �/) and 0(�/ , �.) are the same (07�. , �/8 =0(�/ , �.) ). Due to the symmetry of the distance function, we do 
not need the full matrix. The half matrix is defined as M,   

; =  
<
=>

0 0(��, �	) 0(��, ��) … 0(��, �-) 0 0(�	, ��) … 0(�	, �-)  0 … 0(��, �-)   ⋱ ⋮    0 A
BC 

procedure initialClusterSetup  

1 construct a sorted list of the sensors according to their 
missing rates: DS = {S1, S2, S3, …, Sn}; 

2 form a set of clusters C1, C2, C3, …, Cn where Ci = {Si} 
for i=1 to n; 

3 loop until no change takes place 

4    find the two closest sensors (Si, Sj) (without losing any     
generality we can assume i < j); 

5    find the cluster Ci  where sensor Si belongs to; 

6    find the cluster Cj where sensor Sj belongs to; 

 7    if |Ci| + |Cj| < resource constraint (c)  

8       merge (Ci, Cj); 

9    end if; 

10 end loop; 

end procedure 

Figure 2. The Initial Clustering Algorithm 

3.2.2 The Initial Cluster Structure and Clustering 
Algorithm 
Figure 2 shows the detailed algorithms for the initial cluster setup. 
The initial clustering algorithm starts with sorting the sensors 
according to their missing rates (line 1). In the next step we setup 
a set of clusters where each cluster contains only one sensor (line 
2). In the third step the two nearest sensors that do not belong to 
the same cluster is identified (line 4) and their respective clusters 
are also obtained (lines 5 & 6). Merge the two clusters unless the 
sum of their size is greater than the resource constraint (c) [2] 
(lines 7 and 8). Step 3 is repeated until no merge operation can 
take place. Finally the algorithm outputs a set of clusters where 
each cluster contains no more than c number of sensors and two 
sensors in the same cluster are less likely to be missing together 
and more likely to be correlated. 

3.2.3 Online Cluster Adjustment 
In Figure 3 we describe the online cluster adjustment procedure. 
As each round of sensor readings (or each round for short) comes 
we compute the distances between the reported values of each pair 
of sensors and compute the number of simultaneously missing 
sensors if there is any sensor missing. We compute 61232(�. , �/), 6145(�. , �/) and 0(�. , �/) (lines 2, 3 and 4) for each pair of 
sensors �. and �/ from the rounds arrived since the cluster has 
formed.  In the next step, for each cluster we evaluate the distance 
between every two sensors inside a cluster. If the distance 
between any pair is greater than 1, we identify the current cluster 
as an obsolete cluster where the standard deviation of difference 
and/or simultaneous missing rate changed substantially; hence we 
need re-clustering. The value 1 signifies either the correlation or 
the simultaneously missing rate among sensors in a cluster 
reaches the maximum limit. Concurrently we check if the number 
of rounds reaches a user-defined ceiling as the user who has 
domain knowledge may anticipate phenomenon changes 
occurring and the need of re-clustering. The re-clustering is done 
by invoking the initial cluster setup algorithm (line 12). By online 
adjustment we maintain the most correlated sensors in a separate 
cluster and the sensors that are more likely to be missing together 
in other clusters. 

procedure onlineClusterAdjustment (each data round)  

1 for each pair of sensors  Si and Sj 

2    compute 61232(�. , �/) 

3    compute 6145(�. , �/) 

4    compute 0(�. , �/) 

5 end loop 

6 for each cluster 

7    if the distance between any two sensors d(Si, Sj) is 
greater than 1 or the number of rounds reaches the user 
defined number of rounds at which a phenomenon change 
occurs 

8       needReCluster = true; 

9    end if; 

10 end loop; 

11 if needReCluster 

12    invoke initialClusterSetup(); 

13 end if; 

end procedure 

Figure 3. The Online Cluster Adjustment Algorithm 

3.3 The MASTER-tree Projection Module 
Providing a feasible data structure for storing and mining stream 
data is challenging as the volume of stream data is usually 
unbounded, and thus they cannot be completely stored due to 
practical storage restrictions. For stream data association rules 
mining purposes, a compact data structure which can hold and 
represent various kinds of relationships among objects effectively 
and efficiently is greatly desired. MASTER-tree is a state-of-the-
art representation of such data structure.  

The MASTER-tree is illumined by pattern tree, which was 
proposed to present arbitrary relationships among all Boolean 
itemsets [4]. A pattern tree can be equivalent to a spanning tree of 



a binary hypercube structure which also catches all possible 
Boolean item relationships. Pattern tree has a computational 
exponential complexity thus is very expensive in terms of 
computation. So grouping items to a set of clusters and pruning 
the pattern tree or its equivalent hypercube lowers the 
computational complexity substantially. As the pattern tree favors 
one node (the right most leaf node) and extracts all relationships 
to other nodes from that node, it cannot handle all nodes fairly. 
The MASTER-tree is proposed to solve this issue: it combines all 
various pattern trees regarding each node and prunes the common 
paths in the resulting tree, then forms a new tree called MASTER-
tree [2]. 

Specifically, in the MASTER-tree data structure, each tree node 
represents a sensor. The data distribution in one sensor node over 
a particular vector space is stored in each node. The complete 
vector space where the sensor readings may fall into is discretized 
into a finite number of cells. For each cell, an arbitrarily accurate 
data distribution function or probability distribution function can 
be represented by an infinite number of moments in statistical 
theory. In computational practice, only a finite number of 
moments plus elements counter are stored in the MASTER-tree 
nodes (a typical configuration is the first four moments). Elements 
counter is the number of sensor readings, the value of which 
belong to the cell associated with the corresponding MASTER-
tree node. Now for each cell, a few moments are stored, and cells 
across nodes are linked following the MASTER-tree paths.  These 
cells and links form a grid structure (GS). GS satisfies the 
compactness requirements as it does not grow along with data 
rounds because it only depends on the finite number of cells and 
the fixed number of nodes in a cluster. As the data distribution 
information and elements counter are stored in the nodes of the 
MASTER-tree, from that information and following the path 
(representing the relationships) among the nodes of the tree, 
antecedent nodes with a value over specified cells can infer 
consequent nodes value distribution, so we can claim that 
association rules are implicitly stored along the MASTER-tree 
paths between nodes.   

The MASTER-tree projection module is to establish a MASTER-
tree for each cluster when the initial clustering procedure or the 
re-clustering process happens, then to incrementally update GS as 
a new round of data comes in. By doing this, the up-to-date 
association rules between the sensors in a cluster are implicitly 
held to serve data analysis purposes.  

3.4 The Data Estimation Module  
This data estimation module produces the estimation result for the 
missing sensor (MS). It accomplishes the task in an iterative way. 
First the module obtains the prior distribution of MS from the 
MASTER-tree, i.e., the rule ø → MS (here ø means empty). If the 
rule satisfies the user-defined error margin (the MCSS) and the 
support and confidence thresholds, the rule holds and the 
estimation result is produced by taking the average of the prior 
distribution of MS; . If it is not the case, i.e. the error margin 
requirement is not satisfied, the related information from other 
nodes needs to be considered to refine the estimation. The data 
estimation module chooses one more new antecedent node to infer 
the MS’s reading.  The initial relevant subspace for the antecedent 
node is simply the cell picked up based on its current reading. If 
the actual support does not satisfy the minimum support threshold, 
the relevant subspace is augmented iteratively until the actual 
support is not less than the minimum support. If it is not the case 

again, i.e. the support requirement cannot be satisfied even 
thought the relevant space reaches its limit, which is the complete 
subspace, the module takes this node away and switch to try a 
new prior node. The process of adding a new antecedent node 
repeats until the estimation procedure meets one of these two 
cases: (1) a rule satisfying all requirements as we showed above, 
or (2) no more node within the cluster is to be added to the 
antecedent nodes set. The procedure then returns the estimated 
value using the last expected value (the average) over the obtained 
consequent subspace.  

4. EXPERIMENTAL DESIGN AND 
ANALYSIS  
In this section, we compare MASTER-M with two existing 
algorithms: SPIRIT [13] and TinyDB [10]. 

4.1 Experimental Dataset 
We perform our experiments based on one real-life dataset and 
one synthetic dataset which we describe in the next two sections. 

4.1.1 Intel Berkeley Lab Data 
This real life application dataset is from the Intel Berkeley Lab. It 
contains environmental readings collected between February and 
April in 2004 in an indoor setting [7]. The dataset was collected 
using a multi-hop sensor network consisting of 54 sensors 
(Mica2Dot). Each sensor detects the temperature of the floor. The 
number of hops and the network topology for the dataset change 
dynamically based on TinyDB [10]. The total number of rounds 
collected for all the sensors are approximately 65,000 ([7]). Some 
random sensors’ readings are missing in every round. Although 
the original dataset contains missing data we cannot use the 
inherent missing data to evaluate the performance of the 
algorithms. This is because we do not know the correct value of 
the missing sensor readings; hence it is impossible to determine 
the accuracy of the algorithms. Therefore we cleaned the data in 
the first step and implanted the missing values in random for a 
number of consecutive rounds into the cleaned dataset. Our 
cleaning process is iterative. Each round consists of sensor 
readings from all the sensors. If any of the sensors’ readings is 
missing in a round, we removed the entire round. This is 
necessary because we process the data round by round.  But we 
found that very few rounds can be obtained if we cleaned round 
by round; therefore in the second step we cleaned sensor by 
sensor. If a sensor is missing in more than fifty percent of the 
rounds we removed that sensor. Removing such a sensor will stop 
us removing the rounds where only that sensor was missing. By 
repeating the entire process we ended up with nine sensors (sensor 
ids 41 to 49). We obtained three thousands rounds of data for 
those nine sensors. 

4.1.2 Factory Floor Temperature Data 
Besides the above real-life application dataset, we also 
synthesized a factory floor temperature dataset [16] which 
exhibits dynamically changing phenomena. In this experiment 
machines are placed on a grid floor. In the beginning all machines 
are off and the initial temperature for all grid points is set to zero. 
The boundary grid point temperature is held at zero throughout 
the experiment. Some machines will be turned on for a number of 
rounds; the temperatures on those machines will reach a high 
constant temperature and heat will disperse on the floor. For each 
time step, at any non-boundary grid point (E, F), the temperature G(E , F) is updated using the following formula [3]: 



G(E, F, � G)E, F,  :  HIJKH L �G)E : 1, F, : G
G)E, F,  :  MNOH L �G)E, F : 1, : G)E, F P 1, P
alpha and beta are ≤ 0.25 and are the dispersion factor
and y directions, respectively. In this simulation, we simulated the 
scenario in which we sampled the sensor readings once per hour. 
In total we gathered 4500 rounds of readings from 
equal to a six month period, much longer than the duration in 
which the Intel Berkeley Lab dataset was collected. For this 
dataset, the machines’ on and off status reflects the thermal 
phenomena changes. Machines were placed at different 
and they were turned on randomly. As a set of machines turned 
on, the heat transfer started from the turned
boundary and the transfer process took place in a different 
direction. So the relationship among the different location
changed overtime; hence this dataset reflects the phenomena 
change, a property of many applications in multi
networks. 

4.2 Performance Comparison Stud
In this section we compare the performances of MASTER
SPIRIT [13], and TinyDB [10] in terms of 
(MAE).  MAE is calculated using the following formula:
∑ |STUVT|W

TXY

-
 where N. is the estimated value and 

value for the i-th data point).  We specifically study the impacts of 
the number of rounds of sensor readings on the estimation 
accuracy. 

4.2.1 Results for the Intel Berkeley Lab Dataset
The results (Figure 4) show that when the number of rounds of 
sensor readings is large, i.e. the amount of data used in the 
estimation process is large; MASTER-M perfo
than the other two algorithms although it is not the best one
the number of rounds is small. MASTER-M show
performance over time, while the other two methods perform very 
well at the beginning but deteriorates over time
distribution changes and different sensor readings vary differently
over time; hence the estimation accuracy for TinyDB and SPIRIT 
drops. The stable performance of MASTER
that MASTER-M is not vulnerable to concept drift. As an 
approach applied on data streams, the long term trend is more 
important than the results obtained in the beginning stage
MASTER-M shows its advantages. 

Table 1. Relative average error compared to 
the Intel Berkeley dataset

Approach Average 
MAE 

Error 
percentage

MASTER-M 1.11 1.71% 
TinyDB 2.70 4.17% 
SPIRIT 2.20 3.39% 

Figure 5 is a further illustration of how MASTER
estimation accuracy. Figure 5 demonstrates the relative error for 
TinyDB and SPIRIT compared to MASTER
for TinyDB is computed as 100 x (MAETinyDB

M)/MAETinyDB, where MAETinyDB and MAE
computed for TinyDB and MASTER-M; similarly we
the relative error for SPIRIT. At the beginning SPIRIT shows a 
negative relative error which means at the beginning SPIRIT 
performs better than MASTER-M; but over time, the error for 
SPIRIT increases; while MASTER-M shows an alm
error rate. Table 1 shows the average MAE for all the three 
approaches, average percentage of error and the relative average 

G)E P 1, F, P 2 L
P 2 L G)E, F,�  where 

dispersion factors in the x 
, respectively. In this simulation, we simulated the 

scenario in which we sampled the sensor readings once per hour. 
In total we gathered 4500 rounds of readings from 24 sensors. It is 
equal to a six month period, much longer than the duration in 
which the Intel Berkeley Lab dataset was collected. For this 
dataset, the machines’ on and off status reflects the thermal 
phenomena changes. Machines were placed at different locations 
and they were turned on randomly. As a set of machines turned 
on, the heat transfer started from the turned-on machines to the 
boundary and the transfer process took place in a different 
direction. So the relationship among the different locations 
changed overtime; hence this dataset reflects the phenomena 
change, a property of many applications in multi-hop sensor 
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In this section we compare the performances of MASTER-M, 

s of mean absolute error 
).  MAE is calculated using the following formula: ;Z[ �

is the estimated value and \. is the original 
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Results for the Intel Berkeley Lab Dataset 
show that when the number of rounds of 

sensor readings is large, i.e. the amount of data used in the 
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it is not the best one when 
M shows a very stable 

the other two methods perform very 
over time. The data 

distribution changes and different sensor readings vary differently 
; hence the estimation accuracy for TinyDB and SPIRIT 

drops. The stable performance of MASTER-M over time implies 
concept drift. As an 

, the long term trend is more 
in the beginning stage, and 

compared to  MASTER-M for 
dataset 

percentage 
Relative average 

error 
 Best Approach 
 58.89% 
 49.55% 

is a further illustration of how MASTER-M improves the 
demonstrates the relative error for 

TinyDB and SPIRIT compared to MASTER-M. The relative error 
TinyDB – MAEMASTER-

and MAEMASTER-M are MAE 
M; similarly we compute 

the relative error for SPIRIT. At the beginning SPIRIT shows a 
negative relative error which means at the beginning SPIRIT 

M; but over time, the error for 
M shows an almost constant 

shows the average MAE for all the three 
and the relative average 

error for TinyDB and SPIRIT compared to MASTER
According to Table 1 MASTER
TinyDB and 49.55% less error t

Figure 4. MAE vs.  multiple number of rounds for Intel 
Berkeley Lab dataset

Figure 5. Relative error of TinyDB and SPIRIT compared to 
MASTER-M for the Intel Berkeley dataset

4.2.2 Results for the Factory Floor Temperature 
Dataset 
Figure 6 shows the MAE with respect to the number of rounds 
using the synthetic dataset. MASTER
performance over time even though the dataset includes 
phenomena changes. During the 4,500 rounds time period, the 
phenomena change many times, and e
correctly puts the related set of sensors into the same cluster; 
therefore, MASTER-M produces more meaningful association 
rules and hence better estimation accuracy. 
show a poor performance because they are not capable 
estimating missing sensor readings when 
change randomly and there exist different relationships among the 
sensors at different points of time.

Figure 6. MAE vs.  multiple number of rounds for the 
synthetic dataset
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Figure 7 shows the relative error for TinyDB and SPIRIT 
compared to MASTER-M for the synthetic dataset. MASTER
performs much better than the other two methods; hence the 
relative error is very large for both TinyDB and SPIRIT. 
MASTER-M has approximately 90% less average relative error
than TinyDB and SPIRIT. Table 2 shows the average MAE
average percentage of error and average relative error for all three 
approaches. On average MASTER-M outperforms other two 
methods significantly. 

Figure 7. Relative error for TinyDB and SPIRIT compared to 
MASTER-M for the synthetic dataset

The next section (Section 5) demonstrates the feasibility and 
supremacy of data estimation using MASTER
transmission of missing sensor data in terms of energy 
consumption to emphasize the significance of data estimation for 
multi-hop sensor networks. 

Table 2. Relative average error compared 
the synthetic dataset 

Approach Average MAE Error 
percentage

MASTER-M 3.90 0.78%
SPIRIT 32.2 6.44%
TinyDB 67.1 13.42%

5. ENERGY CONSUMPTION 
EVALUATION 
In this section, we study how much energy savings MASTER
would produce in comparison to simple re
missing readings. Heinzelman [6] proposed a power calculation 
equation (PCE) where the amount of energy used in transmitting a 
sensor reading is directly proportional to the number of bits and 
the distance over which they are transmitted. It considers a 
network of n sensors arranged linearly and gives the power 
consumed by the network in transmitting k-
sensor to the base station. It also incorporates the energy used by 
the intermediate hops (sensors between the data originating sensor 
and the base station) in receiving and forwarding the data to the 
base station. To have more accurate results, 
distances among the sensors instead of the average distances used 
in [6] to calculate energy consumption. O
calculation formula, given by Equation (1), calculates the energy 
consumed (En) using the actual distance (r i) between the sensors. 
En = n(Etransmit ×k) + Eamplifier×(r 1

2+….+r
1)×(Ereceive×k)… … … (1) where n is the number of hops, 
including the sensor where the data originates,
data  pass before reaching the base station,; k
transmitted; r i is the distance of the ith hop; E
the amount of energy consumed in running each transmit and 
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ENERGY CONSUMPTION 

In this section, we study how much energy savings MASTER-M 
would produce in comparison to simple re-transmission of 

] proposed a power calculation 
equation (PCE) where the amount of energy used in transmitting a 
sensor reading is directly proportional to the number of bits and 
the distance over which they are transmitted. It considers a 

early and gives the power 
-bit data from the nth 

sensor to the base station. It also incorporates the energy used by 
the intermediate hops (sensors between the data originating sensor 

ing and forwarding the data to the 
To have more accurate results, we use the real 

average distances used 
. Our modified energy 

tion (1), calculates the energy 
) between the sensors. 
+….+rn

2)×k + (n-
is the number of hops, 

including the sensor where the data originates, through which the 
k is the number of bits 
Etransmit and Ereceive  are 

the amount of energy consumed in running each transmit and 

receive circuitry, respectively; and 
dissipated in amplification circuitry for achieving acceptable 
transmission capability [6]. The values used for each of the above 
mentioned parameters are given in Table 3

Table 3. List of constants for the 

Etransmit 

Ereceive 

Eamplifier 

k 
We divided our network into sub
path. The sub-networks consist 
each sub-network can be considered a linear network as given by 
Heinzelman. The PCE is now readily applicable to each of the 
sub-networks. Using Equation (1), we calculate the energy 
consumed in transmitting a k bit data originating from each of the 
n sensors in an individual sub
consumed by that individual sub
data round of transmission, is given by Equation (2). Finally, the 
summation of the total energy consumption by each sub
gives us the total transmission energy cost of a multi
network.  

Total Epower =∑
=

n

i

iE
1

… … … (2)

However, using a simple re-transmission of the missing sensor 
data instead of MASTER-M, all the 
transmission, are in the receiving mode for a possible re
transmission request from the base station. For our real
dataset [7], as each data round is for 31secs, this implies that the 
possible re-transmission requests take place dur
Hence in such a scenario, all the sensors are using energy in 
staying ‘awake’. Here, we assume that the re
requests involve a single re-transmission of the missing data. 
Then, the total energy (EnM) consumed in this case is give
Equation (3) where t is the duration for which a sensor must be in 
‘awake’ mode for possible re
n(Etransmit ×k) + Eamplifier

1)×(Ereceive×k)+t×(E receive×k)… … … (3) Thus, Equation (3) 
gives us the total energy consumed in transmitting 
originating from each of the 
network using a simple re-transmission process. Next, the total 
energy consumption by each of the sub
network as a whole is calculated using Equation (2). 

The difference in total energy consumption in transmission  when 
using the data estimation algorithms like MASTER
1) and when using a simple re-
the amount of energy saved using M
experiments, the energy savings amount to 20% which is 
significant considering that we fixed the missing data rate at 20% 
and limiting to single re-transmission of the missing data. Figure 
shows the percentage of energy saved for variou
rates at 1- 20%. Thus, greater the percentage of missing data in a 
network, greater the energy consumed by the network in re
transmissions, and greater the energy savings produced by 
MASTER-M. This justifies our stated argument for developin
data estimation techniques like MASTER
simple re-transmissions. 

receive circuitry, respectively; and Eamplifier is the energy 
dissipated in amplification circuitry for achieving acceptable 

. The values used for each of the above 
parameters are given in Table 3 [6]. 

constants for the energy equation 

50 nJ/bit 

50 nJ/bit 

100 pJ/bit/m2 

2000 bit 
We divided our network into sub-networks based on the routing 

 of linearly arranged sensors so that 
network can be considered a linear network as given by 

The PCE is now readily applicable to each of the 
Equation (1), we calculate the energy 

bit data originating from each of the 
sensors in an individual sub-network. Then, the total energy 

consumed by that individual sub-network with n sensors, in one 
data round of transmission, is given by Equation (2). Finally, the 

nergy consumption by each sub-network 
gives us the total transmission energy cost of a multi -hop sensor 

… … … (2) 

transmission of the missing sensor 
M, all the sensors, after one 

transmission, are in the receiving mode for a possible re-
transmission request from the base station. For our real-life 

, as each data round is for 31secs, this implies that the 
transmission requests take place during this time. 

Hence in such a scenario, all the sensors are using energy in 
staying ‘awake’. Here, we assume that the re-transmission 

transmission of the missing data. 
) consumed in this case is given by 

is the duration for which a sensor must be in 
‘awake’ mode for possible re-transmission requests. EnM = 

amplifier×(r 1
2+….+rn

2)×k + (n-   
… … … (3) Thus, Equation (3) 

tal energy consumed in transmitting k bit data 
originating from each of the n sensors in an individual sub-

transmission process. Next, the total 
energy consumption by each of the sub-networks and the entire 

alculated using Equation (2).  

The difference in total energy consumption in transmission  when 
using the data estimation algorithms like MASTER-M (Equation 

-transmission (Equation 3) gives us 
the amount of energy saved using MASTER-M. From our 
experiments, the energy savings amount to 20% which is 
significant considering that we fixed the missing data rate at 20% 

transmission of the missing data. Figure 8 
shows the percentage of energy saved for various missing data 

20%. Thus, greater the percentage of missing data in a 
network, greater the energy consumed by the network in re-
transmissions, and greater the energy savings produced by 

M. This justifies our stated argument for developing 
data estimation techniques like MASTER-M rather than using 



In summary, our evaluation of energy consumption shows that 
using MASTER-M saves energy by avoiding re
There is a linear correlation between the percentage 
data and the percentage of energy savings by MASTER
(Figure 8). MASTER-M saves more energy with increasing 
percentages of missing data. In our energy calculation we did not 
consider the subsequent missing sensor readings after a single re
transmission which will require even more energy than the one we 
show for a single re-transmission. In that case the actual energy 
savings by MASTER-M in real life scenarios is even greater than 
what we showed in Figure 8. 

Figure 8:  Energy Saved using MASTER
single re-transmission for variable missing data rate per 

round from 1-20% 

6. CONCLUSION AND ONGOING WORK
In this paper, we have presented an algorithm that makes use of 
data clustering and association rule mining to estimate
of missing sensor data in multi-hop sensor networks. We propose 
a dynamic clustering algorithm based on the distance between two 
sensors. Our novel distance function definition addresses the 
simultaneous missing problem and phenomenon change in
environment. The novel distance represents the relationships of 
the sensor pairs in multi-hop networks. We performed extensive 
experiments on both real-life and synthetic datasets, which show 
that our algorithm provides better estimation accuracy comp
with existing algorithms.   The experiments also show that our 
algorithm is able to save energy. We are currently considering 
how to extend MASTER-M to accommodate mobile sensor 
networks as mobility   introduces new challenges which 
complicate data estimation. 
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