
SODA: An Algorithm to Guarantee Correctness of Concurrent Transaction
Execution in Mobile P2P Databases

Zhaowen Xing1

Le Gruenwald1

K. K. Phang2

1School of Computer Science
University of Oklahoma, Norman, OK

73019, USA
{zhaowenxing, ggruenwald}@ou.edu

2Faculty of Computer Science and
Information Technology, University of

Malaya, 50603 Kuala Lumpur, Malaysia
kkphang@um.edu.my

Abstract

This paper proposes an optimistic concurrency
control (CC) algorithm, called Sequential Order with
Dynamic Adjustment (SODA), that guarantees timely
and correct execution of concurrent transaction in
Mobile P2P databases. In Mobile P2P, as every peer
is fully autonomous, needs timely response and has
inherent characteristics (mobility, low bandwidth,
limited battery power, limited storage and frequent
disconnections), existing CC algorithms cannot be
applied directly. SODA is an effort to fill in this gap.
The analysis of SODA shows that it is able to improve
the response time by applying the concept of sequential
order and reduce the transaction abort rate by
dynamically adjusting the sequential order.

1. Introduction1

Mobile P2P is a collection of mobile peers (e.g.,
laptops and PDAs) connected via relatively short-range
and low bandwidth wireless technologies. Mobile P2P
enables the sharing of critical information in
applications such as emergency response and
homeland security [1]. Since each peer not only
provides services but also requests services, it may
collect or update its own data, respond to requests and
update replica at the same time. To allow these
multiple transactions to execute concurrently without
violating their correctness, a CC technique is needed.

To the best of our knowledge, no CC technique has
been proposed for Mobile P2P databases yet. In
addition, the issues of if and how ACID properties can

This material is based upon work supported by (while serving at) the
National Science Foundation (NSF) and the NSF Grant No. IIS-
0312746. Any opinion, findings, and conclusions or
recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the NSF.

be achieved in static P2P still remain open [2]. In this
paper, we design an optimistic CC algorithm for
Mobile P2P databases, called SODA. SODA is
lightweight and addresses Mobile P2P characteristics.
The rest of this paper is organized as follows. Section 2
reviews some related work. Section 3 describes an
overview of Mobile P2P and SODA. Sections 4, 5 and
6 present SODA, prove its correctness and analyze its
performance evaluation, respectively. Finally Section
7 concludes the paper.

2. Related work

As cellular mobile networks and Mobile Ad Hoc

Networks (MANET) have many characteristics similar
to those a of a Mobile P2P network, in this section, we
review the CC techniques recently proposed for
databases in those networks.

[3] proposed V-Lock, which is based on Summary
Schema Model (SSM), for cellular mobile
heterogeneous database systems. V-Lock uses global
locking tables to guarantee the consistency of global
transactions, detect and remove global deadlocks. In V-
Lock, local sites use the strict 2PL for serializability.
[4] introduced Semantic Serializability Applied to
Mobility (SESAMO) for MANET databases.
SESAMO is based on semantic serializability and the
global serializability is automatically guaranteed if
each site maintains its own serializability by applying
strict 2PL. Single Lock Manager Approach (SLMA)
[5] is proposed for cellular mobile networks, in which
only one lock manager resides at a fixed server and
handles all lock and unlock requests from the mobile
clients. However, these three pessimistic techniques
cannot provide timely response due to their blocking
nature and frequent disconnections in Mobile P2P.

Partial Global Serialization Graph (PGSG) [6] is
introduced for the cellular mobile multi-databases. In

19th International Conference on Database and Expert Systems Application

1529-4188/08 $25.00 © 2008 IEEE

DOI 10.1109/DEXA.2008.96

337

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on July 12, 2009 at 21:35 from IEEE Xplore. Restrictions apply.

PGSG, to guarantee the correctness of global
transactions, a partial global serialization graph is built
and checked for cycles; while the local sites serialize
transactions using a ticketing mechanism. In [7],
mobile clients execute transactions against the local
cache, and use strict 2PL to serialize transactions and
determine the sequential order. Before transactions
commit, the commit request must be validated at the
centralized database server by applying one of the
three algorithms: Mobile Transaction Commit using
Serialization Graph (MTC-SG), SeQuential order (SQ)
or SG/SQ. Unfortunately, the drawback of these two
optimistic techniques is that both techniques apply
serialization graph testing, in which the complexity is
always O(n2) [7].

3. An overview of Mobile P2P and SODA

In Mobile P2P databases, each peer carries its own
local database [1], is fully autonomous [2], and shares
information in on-the-fly fashion [8]. Therefore,
although global transactions (or called remote queries
in [8]) do exist, it is unnecessary to maintain the global
serializability among peers, which is required in
traditional distributed databases and mobile databases
[3, 4, 6, 7]. But, every peer must guarantee the
correctness of transactions that it processes locally
because it may collect or update its own data, reply
requests and update replica simultaneously.

In pure (no super-peer) Mobile P2P networks,
because no global schema [1, 2] exists, after a peer
initiates a transaction T, T is divided into sub-
transactions if any, and is broadcasted or flooded as
packets to the entire network (or called report pulling
[1]). Intermediate nodes, which do not have the
requested data, reduce the time to live field by one and
forward the packets to the next hop. The process is
repeated and eventually, the peers (if exist) containing
the required data will receive the packets and process T
and flooded the results back to the initiating peer.
Unlike in traditional distributed databases, the returned
result (called replica in [8]) will be written into the
initiating peer’s database for future sharing. Therefore,
not only the participating peers but also the initiating
peers have to run SODA.

If any sub-transaction of T is aborted, then the
initiating peer has to abort T as well due to the
atomicity requirement. However, if the initiating peer
or any participating peer is disconnected in the middle
of the execution of T, T will not be aborted
immediately. T will be marked as disconnected [6] to
allow the peers to reconnect and recover. However,
after a predefined timeout, T will be aborted to save the
limited system resources.

Inspired by the dynamic adjustment technique
proposed in MTC-SG/SQ [7], and based on the
combination of Timestamp ordering (TO), OCC [9],
and backward validation, we propose an optimistic CC
algorithm called SODA.

The design of SODA addresses the issues
associated with Mobile P2P. First, as the duration of
peer communication is short (due to peer mobility),
OCC is applied to avoid unnecessary blocking that
exists in pessimistic CC techniques. Second, to address
the issue of limited battery power and storage, a
sequential order is used to speed-up the validation test
and dynamic adjustment is adopted to reduce abort
rate. Third, to overcome the problem of frequent
disconnections, if a transaction is suspected
“disconnected”, it will not be aborted immediately.

4. Description of SODA

SODA, given a transaction T, has three phases to go
through. Read and Compute Phase (Phase 1): T reads
the values of a set of data items (called read set, and
denoted by RS(T)) and saves them into local variables.
When T reads a data item d, a timestamp is assigned
(denoted by TS(d)). T also computes the values for a
set of data items (called write set, and denoted by
WS(T)) and saves them in local variables too.
Validation Phase (Phase 2): the read set and write set
of T are validated against a set of committed
transactions. If T passes the validation test, then a
timestamp is assigned to T (denoted by TS(T)), and
used as the commit time of T and the timestamp of the
write set (denoted by WS_TS(T)). WS_TS(T) is +∞ if
T is a validating transaction. Commit and Write Phase
(Phase 3): if T succeeds in the Validation Phase, then it
can write the values of the write set into the database
and commit; otherwise, T has to be aborted.

Definition 1: Given a validating (or committed)
transaction T1, a committed transaction T2 and a
commonly accessed data item d, T1 must-be-
serialized-before T2 (denoted by T1 → T2) if any one
of the following conditions is satisfied:
o Read-Write (RW) conflict: RS(T1) ∩ WS(T2) ≠ ∅

and T1→TS(d) < WS_TS(T2).
o Write-Write (WW) conflict: WS(T1) ∩ WS(T2) ≠

∅ and WS_TS(T1) < WS_TS(T2).
o Write-Read (WR) conflict: WS(T1) ∩ RS(T2) ≠ ∅

and WS_TS(T1) < T2→TS(d).
Definition 2: Given a validating (or committed)

transaction T1, a committed transaction T2 and a
commonly accessed data item d, T1 must-be-
serialized-after T2 (denoted by T1 ← T2) if any one of
the following conditions is satisfied:

338

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on July 12, 2009 at 21:35 from IEEE Xplore. Restrictions apply.

o Read-Write (RW) conflict: RS(T1) ∩ WS(T2) ≠ ∅
and T1→TS(d) > WS_TS(T2).

o Write-Write (WW) conflict: WS(T1) ∩ WS(T2) ≠
∅ and WS_TS(T1) > WS_TS(T2).

o Write-Read (WR) conflict: WS(T1) ∩ RS(T2) ≠ ∅
and WS_TS(T1) > T2→TS(d).

Assume that Ti’s (i=1, …, n) are committed
transactions, and T is a validating/committing
transaction. If we simply let the validation/commit
order be the serialization order like OCC [9], and if
there is a RW conflict between T and Ti, i.e. RS(T) ∩
WS(Ti) ≠ ∅ and T→TS(d) < WS_TS(Ti) for some data
item d, then T is aborted because two orders are
different. Such aborts should be avoided if possible.
The following sections describe how SODA avoids
such unnecessary aborts.

We need a dynamic order among committed
transactions other than the validation order. That is, in
SODA, a Sequential Order (SO) of committed
transactions is maintained as {T1, T2, …, Ti, ..., Tn}
(also called a history list, which is ordered from left to
right) and can be dynamically adjusted. The dynamic
adjustment consists of simple and complex cases. In
the simple case, the validating transaction T can be
directly inserted into the maintained sequential order
without adjustment. And the final sequential order will
be: {T1, T2, …, low, … T, up, ..., Tn}, such that T
must-be-serialized-after low but before up. On the
other hand, in the complex case, the sequential order
must be adjusted before the insertion of T.

The simple case: Our goal is to find the transactions
low and up, such that SO(low) < SO(T) < SO(up). If
we do, then T passes the validation test (lines 2 to 19 in
Fig. 1). SO(Ti) is the function to get the sequential
order number of Ti in the history list. For instance,
SO(T2) = 2 and SO(Ti) = i if the sequential order is
{T1, T2, …, Ti, ..., Tn}.

Without loss of generality, we should find two
transactions low and up, where,
SO(low)=max{SO(Ti)|T must-be-serialized-after Ti, 1≤i≤ n},
SO(up)=min{SO(Ti)|T must-be-serialized-before Ti, 1≤i≤ n}.
If low (up) is not found, then we can conclude that T is
not serialized after (before) any other transactions, and
we say that SO(low) = 0 (SO(up)= n + 1) (line 1 in Fig.
1). However, if SO(low) = SO(up), then it is
impossible for T to be serialized before and after Ti at
the same time, thus, T is aborted. If SO(low) > SO(up),
T should be aborted because it cannot be inserted
anywhere in the list. But T passes the validation test if
the serialization graph testing is applied instead. Thus,
this kind of aborts should be avoided too if possible.
The details are given in the complex case below.

The complex case: We have SO(Ti) < SO(Tj) from
the maintained sequential order {T1, T2, T3, …, Ti, …,

Tj, …, Tn}, but we conclude that SO(Ti) > SO(T) >
SO(Tj) after finding low and up, where low = Tj and up
= Ti. Since T is just stuck between Ti and Tj, if we can
find all transactions between Ti and Tj that T must-be-
serialized-before directly and indirectly (called T_SB,
a double linked list), and if there are no transactions in
T_SB that T must-be-serialized-after, then T passes the
validation test; otherwise, a cycle is detected and T has
to be aborted (lines 20 to 32 in Fig. 1).

Boolean SODA(T, History) {
1: low_index = 0; up_index = History→length() + 1;
2: counter = 1; // Find transaction up
3: for (Ti = History→begin(); Ti != History→end(); Ti++) {
4: if (must-be-serialized-before(T, Ti)) {
5: up = Ti; up_index = counter;
6: break;
7: }
8: counter++;
9: }
10: counter = History→length(); // Find transaction low
11: for (Ti =--(History→end());Ti >=History→begin();Ti--) {
12: if (must-be-serialized-after(T, Ti)) {
13: low = Ti; low_index = counter;
14: break;
15: }
16: counter--;
17: }
18: if (low_index < up_index) // The simple case
19: return true;
20: range = History→subset(up, low); // The complex case
21: T_SB→push_back(T);
22: for (Ti = range→begin(); Ti != range→end(); Ti++) {
23: for (Tj = T_SB→begin(); Tj != T_SB→end(); Tj++) {
24: if (must-be-serialized-before(Tj, Ti)) {
25: if (must-be-serialized-after(T, Ti)
26: return false; // A cycle is detected
27: T_SB→push_back(Ti);
28: break;
29: }
30: }
31: }
32: return true; // Got here. T passes the validation test
}

Fig. 1: SODA—Validation and Preparation

After T passes the validation test, the sequential
order has to be updated to reflect the changes. In the
simple case, T is directly inserted in the position just
before up (lines 1 to 2 in Fig. 2). In the complex case,
by looping through all transactions between up and
low, all the transactions in T_SB constructed in the
first part of SODA are removed first (lines 3 to 11 in
Fig. 2). To construct SO(low)<SO(T)<SO(up), T and
all transactions in T_SB are inserted in the position
immediately after low (lines 12 to 18 in Fig. 2).

339

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on July 12, 2009 at 21:35 from IEEE Xplore. Restrictions apply.

void update_SO(low, up, T, History, T_SB) {
1: if (SO(low) < SO(up)) // The simple case
2: History→insert(up, T);
3: range = History→subset(up, low); // The complex case
4: Tm = T_SB→begin();
5: for (Ti = range→begin(); Ti != range→end(); Ti++) {
6: if (Ti == Tm) {
7: History→erase(Ti); Tm++;
8: if (Tm == T_SB→end())
9: break;
10: }
11: }
12: low++; // Insert T immediately after low
13: History→insert(low, T);
14: // Insert all the transactions in T_SB
15: while (!T_SB→empty()) {
16: History→insert(low, T_SB→front());
17: T_SB→pop_front();
18: }
}

Fig. 2: SODA—Updating the Sequential Order

Example 1: Let {T1, T2, T3, T4, T5, T6, T7} be a set
of committed transactions and the sequential order, and
T be a validating transaction at a peer. The read sets,
write sets and the timestamps are shown in Table 1.

Table 1: Transaction Information Used in Example 1
 T1 T2 T3 T4 T5 T6 T7 T
 RS {x} {y} {z} {a} ∅ {b} {c} {a}
WS {z} {x} {a} ∅ {b, c} ∅ ∅ {b}

TS (d) 5 15 25 35 45 50 28

TS_WS 10 20 30 40 +∞

Fig. 3: Validating Transaction T in Example 1

Since WS(T3) ∩ RS(T) ≠ ∅ and WS_TS(T3) >
T→TS(a), T must-be-serialized-before T3 and up = T3.
Similarly, low = T6. Since SO(low) > SO(up), this is
the complex case. T_SB = {T3, T4}, and none of T3 and
T4 must-be-serialized-before either T5 or T6, thus, T
passes the validation test. T3 and T4 are removed first
and then T, T3 and T4 are inserted immediately after T6,
the final sequential order is {T1, T2, T5, T6, T, T3, T4,
T7} as shown in Fig. 3.

5. Proof of correctness

To prove the correctness (or completeness) of
SODA, we must show that any schedule produced by

SODA is serializable. To fulfill this goal, we utilize the
Serializability Theorem “A schedule S is serializable
iff SG(S) is acyclic” [10], that is, we must prove that
the new serialization graph is still acyclic after the
addition of a newly committed transaction that has
passed the validation test.

Lemma 1: Given a sequential order {T1, T2, T3, …,
Tn} produced by SODA, SODA either does not create
any cycles or detects every cycle, if any, in SG({T1, T2,
T3, …, Tn}+{T}) during the validation of any
committing transaction T.

Proof: Since the sequential order of transactions
complies with their serialization order, every edge (Ti,
Tj), if any, must have the same direction. In other
words, the edge (Ti, Tj) goes from left to right because
SO(Ti) < SO(Tj), where 1 ≤ i, j ≤ n.

In the simple case, SODA does not create any
cycles in SG({T1, T2, T3, …, Tn}+{T}): Since low and up
are found and SO(low) < SO(T) < SO(up), all newly
added edges are either (Ti, T) or (T, Tj), where SO(Ti)
≤ SO(low) and SO(up) ≤ SO(Tj). Therefore, all existing
edges and newly added edges must have the same
direction i.e. going from left to right, and thus it is
impossible for T to involve any cycle.

In the complex case, SODA captures every cycle in
SG({T1, T2, T3, …, Tn}+{T}): Since low and up are
found, but SO(low) ≥ SO(up) in the sequential order,
and consequently, T may be involved in cycles, such
as, T → [up] →… Ti … → [low] → T, where SO(up)
< SO(Ti) < SO(low), and [up] and [low] are optional.

Without loss of generality, let the cycle be T → Ti1
→… Tim → T, where SO(up) ≤ SO(Tik) ≤ SO(low), i1 ≤
ik < im, and im equals to the number of
nodes/transactions in the cycle and between up and low
in the sequential order. Now, we prove that SODA
captures every cycle during the validation for T by the
induction on im.

The basic step, for im = 1: that is, the cycle is T →
Ti1 → T. Since T → Ti1, the function must-be-
serialized-before(T, Ti1) returns true (line 24 in Fig.1).
Since Ti1 → T, the function must-be-serialized-after(T,
Ti1) returns true (line 25 in Fig.1). Thus, SODA returns
false because a cycle is detected (line 26 in Fig.1).

The induction step for im = k: Suppose every cycle
is detected for im ≤ k, that is, the cycle T → Ti1 → …
Tik-1 → Tik → T is detected because T_SB = {Ti1, Ti2,
…, Tik-1}, Tik-1 → Tik and Tik → T (lines 22 to 26 in
Fig.1). Actually, this cycle is equivalent to T → T_SB
→ Tik → T. Now, we show that every cycle is detected
for im = k+1. Since Tik-1 → Tik, and T is not serialized
after Tik directly, Tik is also added into T_SB (lines 24
to 29 in Fig.1). Since Tik → Tik+1 and Tik is part of the
T_SB and Tik+1 → T, the cycle T → Ti1 → … → Tik →
Tik+1 → T (or T → T_SB → Tik+1 → T) is detected as

340

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on July 12, 2009 at 21:35 from IEEE Xplore. Restrictions apply.

well. Thus, SODA returns false for im = k+1 (lines 22
to 26 in Fig.1).

Therefore, SODA either captures every cycle, if
any, or does not create any cycles in SG({T1, T2, T3,
…, Tn}+{T}) during the validation for any committing
transaction T.

Theorem 1: If S is a schedule produced by SODA,
then S is serializable.

Proof: By Lemma 1, SODA either detects every
cycle in SG(S) or does not create any cycles when it
validates any committing transaction, so SG(S) is
acyclic. Thus, S is serializable according to the
Serializability Theorem [10].

6. Performance evaluation

Lemma 2: The time complexity of SODA is O(p*n2
+ n), where n is the number of committed transactions
in the sequential order, and p is the probability of a
committing transaction conflicting with both low and
up and SO(low) ≥ SO(up).

Proof: Assume that the number of operations in a
transaction is constant and the time to check if two
transactions conflict is also constant [7]. In the simple
case (case 1): SODA runs one FOR loop after another
to find low and up, and the maximum number of
iterations in each loop is n (lines 2 to 17 in Fig.1). In
the complex case (case 2): SODA runs two nested
FOR loops to test the possibility of dynamic
adjustment, the maximum number of iterations in each
loop is n, and the probability of the complex case to
happen is p (lines 18 to 32 in Fig.1). In update
sequential order (case 3): SODA runs one FOR loop
and one WHILE loop to update the sequential order,
and the maximum number of iterations in each loop is
n (lines 3 to 18 in Fig. 2). By combining the three cases
above, the complexity of SODA is O(p*n2 + n).

For optimistic CC, it has been shown that conflicts
among transactions are rare [10, 11]. Furthermore, as
most transactions in Mobile P2P are read-only, the
value of p will be very small. Therefore, we can safely
say that SODA mostly runs in the linear time. In
contrast, the complexity of a serialization graph testing
algorithm is always O(n2) [7]. As stated in Section 4,
OCC suffers from unnecessary aborts that SODA has
been able to avoid.

7. Conclusion

In this paper, we proposed a CC algorithm, called
SODA, which takes into consideration the inherent
characteristics of Mobile P2P databases. The
processing time of SODA is decreased by applying the
concept of sequential order. At the same time, the

transactions abort rate is reduced through dynamically
adjusting the sequential order.

For future research, SODA will be evaluated with
respect to response time and abort rate by means of
simulation. An algorithm will be designed to trim the
maintained sequential order in order to save the limited
storage and to reduce the processing overhead.

References

[1] Y. Luo and O. Wolfson, “Mobile P2P Databases,”

Encyclopedia of GIS, pp. 671-677, 2008.
[2] A. Bonifati, P. Chrysanthis, and et al, “Distributed

Databases and Peer-to-Peer Databases: Past and
present,” Vol. 37, No. 1, pp. 5-11, March 2008

[3] J. Lim and A. Hurson, “Transaction Processing in
Mobile Heterogeneous Database System,” IEEE
Transactions on Knowledge and Data Engineering,
Vol. 14, No. 6, pp. 1330-1346, 2002.

[4] A. Brayner and F. S. Alencar, “A Semantic-
serializability Based Fully-Distributed Concurrency
Control Mechanism for Mobile Multi-database
Systems,” Proceeding of the 16th International
Workshop on Database and Expert Systems
Applications, pp. 1085-1089, 2005.

[5] S. A. Moiz and L. Rajamani, “Single Lock Manager
Approach for Achieving Concurrency Control in Mobile
Environments,” International Conference on High
Performance Computing, pp. 650 –660, 2007.

[6] R. Dirckze and L. Gruenwald, “A pre-serialization
transaction management technique for mobile multi-
databases,” ACM Mobile Networks and Applications,
Vol. 5, No. 4, pp. 311-321, 2000.

[7] S. Hwang, “On Optimistic Methods for Mobile
Transactions,” Journal of Information Science and
Engineering, Vol. 16, No. 4, pp. 535-554, 2000.

[8] A. Mondal, S. K. Madria, and M. Kitsuregawa,
“EcoRepL An Economic Model for Efficient Dynamic
Replication in Mobile-P2P Networks,” International
Conference on Management of Data, 2006.

[9] H. Kung and J. Robinson, “On Optimistic Methods for
Concurrency Control,” ACM Transactions on Database
Systems, Vol. 6, No. 2, pp. 213-226, 1981.

[10] P. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems, Addison-Wesley, Reading, MA, 1987.

[11] B. Bhargava, “Concurrency Control in Database
Systems,” IEEE Transactions on Knowledge and Data
Engineering, Vol. 11, No. 1, January/February 1999.

341

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on July 12, 2009 at 21:35 from IEEE Xplore. Restrictions apply.

