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Abstract 
 

This paper proposes an optimistic concurrency 
control (CC) algorithm, called Sequential Order with 
Dynamic Adjustment (SODA), that guarantees timely 
and correct execution of concurrent transaction in 
Mobile P2P databases.  In Mobile P2P, as every peer 
is fully autonomous, needs timely response and has 
inherent characteristics (mobility, low bandwidth, 
limited battery power, limited storage and frequent 
disconnections), existing CC algorithms cannot be 
applied directly. SODA is an effort to fill in this gap.  
The analysis of SODA shows that it is able to improve 
the response time by applying the concept of sequential 
order and reduce the transaction abort rate by 
dynamically adjusting the sequential order. 
 
1. Introduction1 
 

Mobile P2P is a collection of mobile peers (e.g., 
laptops and PDAs) connected via relatively short-range 
and low bandwidth wireless technologies. Mobile P2P 
enables the sharing of critical information in 
applications such as emergency response and 
homeland security [1]. Since each peer not only 
provides services but also requests services, it may 
collect or update its own data, respond to requests and 
update replica at the same time. To allow these 
multiple transactions to execute concurrently without 
violating their correctness, a CC technique is needed.  

To the best of our knowledge, no CC technique has 
been proposed for Mobile P2P databases yet.  In 
addition, the issues of if and how ACID properties can 
                                                           
This material is based upon work supported by (while serving at) the 
National Science Foundation (NSF) and the NSF Grant No. IIS-
0312746. Any opinion, findings, and conclusions or 
recommendations expressed in this material are those of the authors 
and do not necessarily reflect the views of the NSF. 

be achieved in static P2P still remain open [2].  In this 
paper, we design an optimistic CC algorithm for 
Mobile P2P databases, called SODA. SODA is 
lightweight and addresses Mobile P2P characteristics. 
The rest of this paper is organized as follows. Section 2 
reviews some related work. Section 3 describes an 
overview of Mobile P2P and SODA. Sections 4, 5 and 
6 present SODA, prove its correctness and analyze its 
performance evaluation, respectively.  Finally Section 
7 concludes the paper. 
 
2. Related work 

 
As cellular mobile networks and Mobile Ad Hoc 

Networks (MANET) have many characteristics similar 
to those a of a Mobile P2P network, in this section, we 
review the CC techniques recently proposed for 
databases in those networks. 

[3] proposed V-Lock, which is based on Summary 
Schema Model (SSM), for cellular mobile 
heterogeneous database systems. V-Lock uses global 
locking tables to guarantee the consistency of global 
transactions, detect and remove global deadlocks. In V-
Lock, local sites use the strict 2PL for serializability. 
[4] introduced Semantic Serializability Applied to 
Mobility (SESAMO) for MANET databases. 
SESAMO is based on semantic serializability and the 
global serializability is automatically guaranteed if 
each site maintains its own serializability by applying 
strict 2PL. Single Lock Manager Approach (SLMA) 
[5] is proposed for cellular mobile networks, in which 
only one lock manager resides at a fixed server and 
handles all lock and unlock requests from the mobile 
clients. However, these three pessimistic techniques 
cannot provide timely response due to their blocking 
nature and frequent disconnections in Mobile P2P.  

Partial Global Serialization Graph (PGSG) [6] is 
introduced for the cellular mobile multi-databases. In 
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PGSG, to guarantee the correctness of global 
transactions, a partial global serialization graph is built 
and checked for cycles; while the local sites serialize 
transactions using a ticketing mechanism. In [7], 
mobile clients execute transactions against the local 
cache, and use strict 2PL to serialize transactions and 
determine the sequential order. Before transactions 
commit, the commit request must be validated at the 
centralized database server by applying one of the 
three algorithms: Mobile Transaction Commit using 
Serialization Graph (MTC-SG), SeQuential order (SQ) 
or SG/SQ. Unfortunately, the drawback of these two 
optimistic techniques is that both techniques apply 
serialization graph testing, in which the complexity is 
always O(n2) [7]. 

 
3. An overview of Mobile P2P and SODA 
 

In Mobile P2P databases, each peer carries its own 
local database [1], is fully autonomous [2], and shares 
information in on-the-fly fashion [8]. Therefore, 
although global transactions (or called remote queries 
in [8]) do exist, it is unnecessary to maintain the global 
serializability among peers, which is required in 
traditional distributed databases and mobile databases 
[3, 4, 6, 7]. But, every peer must guarantee the 
correctness of transactions that it processes locally 
because it may collect or update its own data, reply 
requests and update replica simultaneously. 

In pure (no super-peer) Mobile P2P networks, 
because no global schema [1, 2] exists, after a peer 
initiates a transaction T, T is divided into sub-
transactions if any, and is broadcasted or flooded as 
packets to the entire network (or called report pulling 
[1]). Intermediate nodes, which do not have the 
requested data, reduce the time to live field by one and 
forward the packets to the next hop. The process is 
repeated and eventually, the peers (if exist) containing 
the required data will receive the packets and process T 
and flooded the results back to the initiating peer. 
Unlike in traditional distributed databases, the returned 
result (called replica in [8]) will be written into the 
initiating peer’s database for future sharing. Therefore, 
not only the participating peers but also the initiating 
peers have to run SODA.  

If any sub-transaction of T is aborted, then the 
initiating peer has to abort T as well due to the 
atomicity requirement. However, if the initiating peer 
or any participating peer is disconnected in the middle 
of the execution of T, T will not be aborted 
immediately. T will be marked as disconnected [6] to 
allow the peers to reconnect and recover. However, 
after a predefined timeout, T will be aborted to save the 
limited system resources.  

Inspired by the dynamic adjustment technique 
proposed in MTC-SG/SQ [7], and based on the 
combination of Timestamp ordering (TO), OCC [9], 
and backward validation, we propose an optimistic CC 
algorithm called SODA.  

The design of SODA addresses the issues 
associated with Mobile P2P.  First, as the duration of 
peer communication is short (due to peer mobility), 
OCC is applied to avoid unnecessary blocking that 
exists in pessimistic CC techniques. Second, to address 
the issue of limited battery power and storage, a 
sequential order is used to speed-up the validation test 
and dynamic adjustment is adopted to reduce abort 
rate.  Third, to overcome the problem of frequent 
disconnections, if a transaction is suspected 
“disconnected”, it will not be aborted immediately.  
 
4. Description of SODA 
 

SODA, given a transaction T, has three phases to go 
through. Read and Compute Phase (Phase 1): T reads 
the values of a set of data items (called read set, and 
denoted by RS(T)) and saves them into local variables. 
When T reads a data item d, a timestamp is assigned 
(denoted by TS(d)). T also computes the values for a 
set of data items (called write set, and denoted by 
WS(T)) and saves them in local variables too. 
Validation Phase (Phase 2): the read set and write set 
of T are validated against a set of committed 
transactions. If T passes the validation test, then a 
timestamp is assigned to T (denoted by TS(T)), and 
used as the commit time of T and the timestamp of the 
write set (denoted by WS_TS(T)). WS_TS(T) is +∞ if 
T is a validating transaction. Commit and Write Phase 
(Phase 3): if T succeeds in the Validation Phase, then it 
can write the values of the write set into the database 
and commit; otherwise, T has to be aborted.  

Definition 1: Given a validating (or committed) 
transaction T1, a committed transaction T2 and a 
commonly accessed data item d, T1 must-be-
serialized-before T2 (denoted by T1 → T2) if any one 
of the following conditions is satisfied: 
o Read-Write (RW) conflict: RS(T1) ∩ WS(T2) ≠ ∅ 

and T1→TS(d) < WS_TS(T2). 
o Write-Write (WW) conflict: WS(T1) ∩ WS(T2) ≠ 

∅ and WS_TS(T1) < WS_TS(T2). 
o Write-Read (WR) conflict: WS(T1) ∩ RS(T2) ≠ ∅ 

and WS_TS(T1) < T2→TS(d). 
Definition 2: Given a validating (or committed) 

transaction T1, a committed transaction T2 and a 
commonly accessed data item d, T1 must-be-
serialized-after T2 (denoted by T1 ← T2) if any one of 
the following conditions is satisfied:  
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o Read-Write (RW) conflict: RS(T1) ∩ WS(T2) ≠ ∅ 
and T1→TS(d) > WS_TS(T2). 

o Write-Write (WW) conflict: WS(T1) ∩ WS(T2) ≠ 
∅ and WS_TS(T1) > WS_TS(T2). 

o Write-Read (WR) conflict: WS(T1) ∩ RS(T2) ≠ ∅ 
and WS_TS(T1) > T2→TS(d). 

Assume that Ti’s (i=1, …, n) are committed 
transactions, and T is a validating/committing 
transaction. If we simply let the validation/commit 
order be the serialization order like OCC [9], and if 
there is a RW conflict between T and Ti, i.e. RS(T) ∩ 
WS(Ti) ≠ ∅ and T→TS(d) < WS_TS(Ti) for some data 
item d, then T is aborted because two orders are 
different. Such aborts should be avoided if possible. 
The following sections describe how SODA avoids 
such unnecessary aborts.  

We need a dynamic order among committed 
transactions other than the validation order. That is, in 
SODA, a Sequential Order (SO) of committed 
transactions is maintained as {T1, T2, …, Ti, ..., Tn} 
(also called a history list, which is ordered from left to 
right) and can be dynamically adjusted. The dynamic 
adjustment consists of simple and complex cases. In 
the simple case, the validating transaction T can be 
directly inserted into the maintained sequential order 
without adjustment. And the final sequential order will 
be: {T1, T2, …, low, … T, up, ..., Tn}, such that T 
must-be-serialized-after low but before up. On the 
other hand, in the complex case, the sequential order 
must be adjusted before the insertion of T. 

The simple case: Our goal is to find the transactions 
low and up, such that SO(low) < SO(T) < SO(up). If 
we do, then T passes the validation test (lines 2 to 19 in 
Fig. 1).  SO(Ti) is the function to get the sequential 
order number of Ti in the history list. For instance, 
SO(T2) = 2 and SO(Ti) = i if the sequential order is 
{T1, T2, …, Ti, ..., Tn}. 

Without loss of generality, we should find two 
transactions low and up, where,  
SO(low)=max{SO(Ti)|T must-be-serialized-after Ti, 1≤i≤ n}, 
SO(up)=min{SO(Ti)|T must-be-serialized-before Ti, 1≤i≤ n}.
If low (up) is not found, then we can conclude that T is 
not serialized after (before) any other transactions, and 
we say that SO(low) = 0 (SO(up)= n + 1) (line 1 in Fig. 
1). However, if SO(low) = SO(up), then it is 
impossible for T to be serialized before and after Ti at 
the same time, thus, T is aborted. If SO(low) > SO(up), 
T should be aborted because it cannot be inserted 
anywhere in the list. But T passes the validation test if 
the serialization graph testing is applied instead. Thus, 
this kind of aborts should be avoided too if possible. 
The details are given in the complex case below. 

The complex case: We have SO(Ti) < SO(Tj) from 
the maintained sequential order {T1, T2, T3, …, Ti, …, 

Tj, …, Tn}, but we conclude that SO(Ti) > SO(T) > 
SO(Tj) after finding low and up, where low = Tj and up 
= Ti. Since T is just stuck between Ti and Tj, if we can 
find all transactions between Ti and Tj that T must-be-
serialized-before directly and indirectly (called T_SB, 
a double linked list), and if there are no transactions in 
T_SB that T must-be-serialized-after, then T passes the 
validation test; otherwise, a cycle is detected and T has 
to be aborted (lines 20 to 32 in Fig. 1).  

 

Boolean SODA(T, History) { 
1: low_index = 0; up_index = History→length() + 1; 
2: counter = 1; // Find transaction up 
3: for (Ti = History→begin(); Ti != History→end(); Ti++) { 
4:        if (must-be-serialized-before(T, Ti)) { 
5:                 up = Ti; up_index = counter; 
6:                 break; 
7:         } 
8:         counter++; 
9: } 
10: counter = History→length(); // Find transaction low 
11: for (Ti =--(History→end());Ti >=History→begin();Ti--) { 
12:         if ( must-be-serialized-after(T, Ti)) { 
13:                 low = Ti; low_index = counter; 
14:                 break; 
15:         } 
16:         counter--; 
17: }  
18: if (low_index < up_index) // The simple case 
19:         return true; 
20: range = History→subset(up, low); // The complex case 
21: T_SB→push_back(T); 
22: for (Ti = range→begin(); Ti != range→end(); Ti++) { 
23:      for (Tj = T_SB→begin(); Tj != T_SB→end(); Tj++) { 
24:           if ( must-be-serialized-before(Tj, Ti)) { 
25:                 if ( must-be-serialized-after(T, Ti)  
26:                         return false; // A cycle is detected 
27:                 T_SB→push_back(Ti); 
28:                 break; 
29:           } 
30:      } 
31: } 
32: return true; // Got here. T passes the validation test 
}

Fig. 1: SODA—Validation and Preparation 
 

After T passes the validation test, the sequential 
order has to be updated to reflect the changes. In the 
simple case, T is directly inserted in the position just 
before up (lines 1 to 2 in Fig. 2). In the complex case, 
by looping through all transactions between up and 
low, all the transactions in T_SB constructed in the 
first part of SODA are removed first (lines 3 to 11 in 
Fig. 2). To construct SO(low)<SO(T)<SO(up), T and 
all transactions in T_SB are inserted in the position 
immediately after low (lines 12 to 18 in Fig. 2).  
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void update_SO(low, up, T, History,  T_SB) { 
1: if (SO(low) < SO(up)) // The simple case 
2:         History→insert(up, T);  
3: range = History→subset(up, low); // The complex case 
4: Tm = T_SB→begin(); 
5: for (Ti = range→begin(); Ti != range→end(); Ti++) { 
6:         if (Ti == Tm) { 
7:                 History→erase(Ti); Tm++; 
8:                 if (Tm == T_SB→end()) 
9:                         break; 
10:         } 
11: } 
12: low++; // Insert T immediately after low 
13: History→insert(low, T); 
14: // Insert all the transactions in T_SB  
15: while (!T_SB→empty()) { 
16:         History→insert(low, T_SB→front()); 
17:         T_SB→pop_front(); 
18: } 
} 

Fig. 2: SODA—Updating the Sequential Order 
 

Example 1: Let {T1, T2, T3, T4, T5, T6, T7} be a set 
of committed transactions and the sequential order, and 
T be a validating transaction at a peer. The read sets, 
write sets and the timestamps are shown in Table 1.  

 

Table 1: Transaction Information Used in Example 1 
 T1 T2 T3 T4 T5 T6 T7 T 
 RS  {x} {y} {z} {a} ∅ {b} {c} {a} 
WS {z} {x} {a} ∅ {b, c} ∅ ∅ {b} 

TS (d) 5 15 25 35  45 50 28 

TS_WS 10 20 30  40   +∞ 
 

 
Fig. 3: Validating Transaction T in Example 1 

 

Since WS(T3) ∩ RS(T) ≠ ∅ and WS_TS(T3) > 
T→TS(a), T must-be-serialized-before T3 and up = T3. 
Similarly, low = T6. Since SO(low) > SO(up), this is 
the complex case. T_SB = {T3, T4}, and none of T3 and 
T4  must-be-serialized-before either T5 or T6, thus, T 
passes the validation test. T3 and T4 are removed first 
and then T, T3 and T4 are inserted immediately after T6, 
the final sequential order is {T1, T2, T5, T6, T, T3, T4, 
T7} as shown in Fig. 3. 
 
5. Proof of correctness 
 

To prove the correctness (or completeness) of 
SODA, we must show that any schedule produced by 

SODA is serializable. To fulfill this goal, we utilize the 
Serializability Theorem “A schedule S is serializable 
iff SG(S) is acyclic” [10], that is, we must prove that 
the new serialization graph is still acyclic after the 
addition of a newly committed transaction that has 
passed the validation test. 

Lemma 1: Given a sequential order {T1, T2, T3, …, 
Tn} produced by SODA, SODA either does not create 
any cycles or detects every cycle, if any, in SG({T1, T2, 
T3, …, Tn}+{T}) during the validation of any 
committing transaction T. 

Proof: Since the sequential order of transactions 
complies with their serialization order, every edge (Ti, 
Tj), if any, must have the same direction. In other 
words, the edge (Ti, Tj) goes from left to right because 
SO(Ti) < SO(Tj), where 1 ≤ i, j ≤ n.  

In the simple case, SODA does not create any 
cycles in SG({T1, T2, T3, …, Tn}+{T}): Since low and up 
are found and SO(low) < SO(T) < SO(up), all newly 
added edges are either (Ti, T) or (T, Tj), where SO(Ti) 
≤ SO(low) and SO(up) ≤ SO(Tj). Therefore, all existing 
edges and newly added edges must have the same 
direction i.e. going from left to right, and thus it is 
impossible for T to involve any cycle. 

In the complex case, SODA captures every cycle in 
SG({T1, T2, T3, …, Tn}+{T}): Since low and up are 
found, but SO(low) ≥ SO(up) in the sequential order, 
and consequently, T may be involved in cycles, such 
as, T → [up] →…  Ti … → [low] → T, where SO(up) 
< SO(Ti) < SO(low), and [up] and [low] are optional.  

Without loss of generality, let the cycle be T → Ti1 
→… Tim → T, where SO(up) ≤ SO(Tik) ≤ SO(low), i1 ≤ 
ik < im, and im equals to the number of 
nodes/transactions in the cycle and between up and low 
in the sequential order. Now, we prove that SODA 
captures every cycle during the validation for T by the 
induction on im.  

The basic step, for im = 1: that is, the cycle is T → 
Ti1 → T. Since T → Ti1, the function must-be-
serialized-before(T, Ti1) returns true (line 24 in Fig.1). 
Since Ti1 → T, the function must-be-serialized-after(T, 
Ti1) returns true (line 25 in Fig.1). Thus, SODA returns 
false because a cycle is detected (line 26 in Fig.1). 

The induction step for im = k: Suppose every cycle 
is detected for im ≤ k, that is, the cycle T → Ti1 → …  
Tik-1 → Tik → T is detected because T_SB = {Ti1, Ti2, 
…, Tik-1}, Tik-1 → Tik and Tik → T (lines 22 to 26 in 
Fig.1). Actually, this cycle is equivalent to T → T_SB 
→ Tik → T. Now, we show that every cycle is detected 
for im = k+1. Since Tik-1 → Tik, and T is not serialized 
after Tik directly, Tik is also added into T_SB (lines 24 
to 29 in Fig.1). Since Tik → Tik+1 and Tik is part of the 
T_SB and Tik+1 → T, the cycle T → Ti1 → … → Tik → 
Tik+1 → T (or T → T_SB → Tik+1 → T) is detected as 
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well. Thus, SODA returns false for im = k+1 (lines 22 
to 26 in Fig.1). 

Therefore, SODA either captures every cycle, if 
any, or does not create any cycles in SG({T1, T2, T3, 
…, Tn}+{T}) during the validation for any committing 
transaction T. 

Theorem 1: If S is a schedule produced by SODA, 
then S is serializable. 

Proof: By Lemma 1, SODA either detects every 
cycle in SG(S) or does not create any cycles when it 
validates any committing transaction, so SG(S) is 
acyclic. Thus, S is serializable according to the 
Serializability Theorem [10]. 
 
6. Performance evaluation 
 

Lemma 2: The time complexity of SODA is O(p*n2 
+ n), where n is the number of committed transactions 
in the sequential order, and p is the probability of a 
committing transaction conflicting with both low and 
up and SO(low) ≥ SO(up). 

Proof: Assume that the number of operations in a 
transaction is constant and the time to check if two 
transactions conflict is also constant [7]. In the simple 
case (case 1): SODA runs one FOR loop after another 
to find low and up, and the maximum number of 
iterations in each loop is n (lines 2 to 17 in Fig.1). In 
the complex case (case 2): SODA runs two nested 
FOR loops to test the possibility of dynamic 
adjustment, the maximum number of iterations in each 
loop is n, and the probability of the complex case to 
happen is p (lines 18 to 32 in Fig.1). In update 
sequential order (case 3): SODA runs one FOR loop 
and one WHILE loop to update the sequential order, 
and the maximum number of iterations in each loop is 
n (lines 3 to 18 in Fig. 2). By combining the three cases 
above, the complexity of SODA is O(p*n2 + n).  

For optimistic CC, it has been shown that conflicts 
among transactions are rare [10, 11]. Furthermore, as 
most transactions in Mobile P2P are read-only, the 
value of p will be very small. Therefore, we can safely 
say that SODA mostly runs in the linear time. In 
contrast, the complexity of a serialization graph testing 
algorithm is always O(n2) [7]. As stated in Section 4, 
OCC suffers from unnecessary aborts that SODA has 
been able to avoid. 

 
7. Conclusion 
 

In this paper, we proposed a CC algorithm, called 
SODA, which takes into consideration the inherent 
characteristics of Mobile P2P databases. The 
processing time of SODA is decreased by applying the 
concept of sequential order. At the same time, the 

transactions abort rate is reduced through dynamically 
adjusting the sequential order.  

For future research, SODA will be evaluated with 
respect to response time and abort rate by means of 
simulation. An algorithm will be designed to trim the 
maintained sequential order in order to save the limited 
storage and to reduce the processing overhead. 
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