
DBOD-DS: Distance Based Outlier Detection for Data
Streams

Md. Shiblee Sadik, Le Gruenwald

School of Computer Science, University of Oklahoma
110 W. Boyd St, Norman, OK 73019, USA
{shiblee.sadik, ggruenwald}@ou.edu

Abstract. Data stream is a newly emerging data model for applications like
environment monitoring, Web click stream, network traffic monitoring, etc. It
consists of an infinite sequence of data points accompanied with timestamp
coming from external data source. Typically data sources are located onsite and
very vulnerable to external attacks and natural calamities, thus outliers are very
common in the datasets. Existing techniques for outlier detection are inadequate
for data streams because of its metamorphic data distribution and uncertainty.
In this paper we propose an outlier detection technique, called Distance-Based
Outline Detection for Data Streams (DBOD-DS) based on a novel continuously
adaptive probability density function that addresses all the new issues of data
streams. Extensive experiments on a real dataset for meteorology applications
show the supremacy of DBOD-DS over existing techniques in terms of
accuracy.

Keywords: Data stream, outlier detection, probability density function.

1 Introduction

Applications like environment monitoring, Web click stream, and network traffic
monitoring use a new data model to represent their never ending series of data called
data streams. Data stream has received a great deal of attention in the research
community in recent years due to its novel characteristics. On the other hand every
real life dataset has outliers in it [6]; therefore outlier detection is a very important
part of data acquisition. In most of the cases the work done on outlier detection for
data streams [1], [3], [8] is adopted from outlier detection techniques for regular data
with ad-hoc modifications and do not address all the novel characteristics of data
streams. In this paper we propose a novel outlier detection technique to fill the gap.
Before going further we briefly discuss the novel characteristics of data streams and
data stream processing requirements.

Applications for data streams are significantly different from those for regular data
in many facets. In data stream applications, data have the essence of time, are mostly
append only and, in many cases, are transient [2], [5]; therefore offline store and
process approaches are not very suitable for online data stream; consequently data
processing has to be online and incremental [25]. Data are continuously coming in a

2 Md. Shiblee Sadik, Le Gruenwald

streaming environment in a very fast rate with changing data distribution [17], and
thus any fixed data distribution is not adequate enough to capture the knowledge. On
top of this, in many cases uncertainty in data streams makes processing more
complicated. The novel characteristics of data streams bring the outlier detection
problem out on the open again. The next paragraph introduces the problem of outlier
detection in a real life dataset.

An outlier refers to a data point which does not conform well to the pattern of the
other data points or normal behaviors or conform well to the outlying behavior [4],
[6]. Pragmatically, normal behaviors are easy to identify and every possible outlying
behavior are difficult to compile; nonetheless the outlying behaviors are changing
over time. Almost all real datasets have outliers [6]. The major reasons behind the
outliers are malicious activity or intrusion, instrumental error or setup error, change in
environment, human error, etc. Evidently, outlier detection is not a new topic at all. It
has been in the literature since the eighteenth century [4]. Even though the problem
has been in the literature for so many years it is still very popular; this is because
nobody knows the real outliers and the detection of outliers is very subjective to the
application. The outlier detection with perfect confidence in regular data is still not an
easy problem. This is because of the inherent vagueness in the definition of outlier,
like how to define regular behavior, to what extend an outlier needs to be not
conforming to the regular behavior, etc. The problem of outlier detection becomes
more complicated when considering new characteristics of data streams, such as
unbounded data, varying data distribution, data uncertainty, and temporal dimension.
None of the existing outlier detection techniques addresses all of these characteristics.
In this paper, we present a novel outlier detection technique for data streams based on
the concept of probability density function, called Distance-Based Outlier Detection
for Data Streams (DBOD-DS), that addresses all the characteristics of data streams.
We then present the results of the experiments that we have conducted on a real
dataset obtained from a meteorological data stream application [7] to compare the
accuracy and execution time of DBOD-DS with the two outlier detection techniques
existing in the literature: ART [8] and ODTS [3].

The rest of the paper is organized as follows: Section 2 discusses the work related
to outlier detection in data stream; Section 3 describes our approach and its
implementation; Section 4 presents the experimental results we have obtained, and
finally Section 5 provides our conclusions and future research.

2 Related Work

Most of the outlier detection techniques for data streams use a sliding window to
capture the recent data values and detect the outliers inside the window [1], [3], [26]
with multi-pass algorithms. Data streams change over time and an outlier for a
particular window may appear as an inlier in another window; hence the notion of
outlier in a data stream window is not very concrete. Nevertheless, an inlier can be
shown as an outlier by changing the window size [3]; thus the outlier detection
techniques that use a sliding window work well if the window size is chosen
carefully. However, different techniques interpret window size differently; in most

DBOD-DS: Distance Based Outlier Detection for Data Streams 3

situations, it is difficult for the domain expert to choose the window size correctly
without knowing the interpretation of a particular technique.

Auto-regression based techniques for outlier detection are very popular for time
series outlier detection [4]. Some outlier detection techniques for data streams adopt
auto-regression [8], [22]. Most of the auto-regression based techniques work similarly
in which a data point is compared with an estimated model and a metric is computed
based on the comparison. If the metric is beyond a certain limit (called cut-off limit),
the data point is identified as an outlier. The advantages of auto-regression based
models are that they are computationally inexpensive and they provide an estimated
value for the outlier. However, the success of this method depends on the quality of
the auto-regression model and the efficacy of the cut-off limit. Different data streams
show different natures in their changing patterns; therefore it is very difficult to select
an appropriate auto-regression model for data streams [8]. The selection of a magic
cut-off point not only depends upon the data but also the auto-regression model
chosen.

Outlier detection techniques for multiple data streams have been proposed in the
literature [16], [10], [11], [26]. The underlying assumptions are the availability of
multiple homogeneous data streams and their synchronous behavior. These may not
be the case as multiple homogeneous data streams may not be available or one data
stream may behave very differently from the others. In the later case comparing two
heterogeneous data streams does not help to point out the outliers.

Statistical [4] and machine learning [9] based techniques assume a fixed
distribution for the data and if the probability of a data point is very low it is identified
as an outlier by statistical and machine learning based techniques. Data streams are
highly dynamic in nature and their distribution changes over time. No fixed data
distribution is good enough for the entire data stream; hence summarizing a dynamic
data stream with a static data distribution produces questionable results.

Data clustering algorithms produce outliers as a bi-product [21], [24]; but as outlier
detection is not the focus of clustering algorithms, they are not optimized for outlier
detection. Keogh et al argued that most of the clustering algorithms for time
series/data stream produce meaningless results [18]; hence their efficacy and
correctness are still in question.

However none of the existing outlier detection technique considers the uncertainty,
concept drift and the transient property of the data stream. Moreover, not all the
outlier detection algorithms are truly incremental rather they store a subset of the data
points and use multi-pass algorithms to detect the outliers in the subset. While
designing a technique of outlier detection for data streams, one needs to consider the
uncertainty, the drift of concepts, the transient property, the temporal characteristic of
the data points, etc. On top of this, every computation has to be online and
incremental. To fill the gap, we have designed our technique addressing the fact that
data points in a data stream are very uncertain. We also address temporal
characteristics of the data points. Moreover we do not assume any type of fixed data
distribution to address the fact that the concept drift occurs in data stream. Next
section (3) portrays the details of our algorithm with the implementation issues.

4 Md. Shiblee Sadik, Le Gruenwald

3 Proposed technique: Distance-Based Outlier Detection for
Data Streams (DBOD-DS)

In this section, we first provide an overall description of our proposed technique,
DBOD-DS. We then discuss our novel probability density function, which is the
basis of our technique, and algorithms to implement it.

3.1 Overall Approach

Our approach is motivated by distance-based outlier [26], [19] and based on a
probability density function �(�) which resembles data distribution where � is a
random variable. As each data point � with the value � comes in we compute the
probability of occurrence of the values �(�,) within user defined radius 	 from the
data value � (�(�,)) by integrating the probability density function �(�) from � − 	

to � + 	, �(�,) = �(�)�����
��� . The probability of occurrence resembles the

neighbor density around the data value [19]; if the neighbor density is very low the
data point is more likely to be an outlier. According to our approach, if the probability
of occurrence �(�,) is less than the user defined minimum probability of occurrence
(�) i.e., �(�,) < � the data point � is identified as an outlier.

As we receive each data point �, we update the probability density function �(�)
by increasing the probability of occurrence of data value �. To address the data
uncertainty characteristic of data stream, when we receive the data point � we not
only increase the probability of the data value (�) by �� but also increase the
probability of other values by a fraction of (1 − ��) where �� is the probability of
occurring the data value � while there is a data uncertainty.

To address the temporal characteristic of the data streams, when we compute the
probability density function �(�) the data points (��, ��, … , ��) are weighted based
on their freshness. The most recent one receives the highest weight and the oldest one
receives the lowest weight. If the respective values are (��, ��, … , ��) where the �� is
the most recent one and �� is the oldest one, we weight them by (����, ����, … , 1),
respectively; therefore for the value (��) we update the probability density function
�(�) by increasing the probability of occurrence of �� by ������� and the probability
of others values by a fraction of (1 − ���) ����.

To address the varying data distribution characteristic of data streams, our
probability density function �(�) does not assume any particular fixed data
distribution; rather we adjust our probability density function on-the-fly; therefore our
probability density function (�(�)) never becomes obsolete due to a change in data
distribution (concept drift [17]), rather our probability density function (�(�)) always
provide the most recent data distribution.

Now at any particular time if we integrate our probability density function from
� − 	 to � + 	 we obtain the probability of occurrence �(�,) of a data value �
within � − 	 to � + 	. If �(�,) is large, then the data value � has a very high
probability of occurrence or neighbor density in recent time. Therefore our approach
requires two user defined parameters, radius 	 and minimum probability of
occurrence �. However if the probability function density function �(�) is

DBOD-DS: Distance Based Outlier Detection for Data Streams 5

continuous, the same result can be produced by a different set of (, �), thus by fixing
the value of � and changing the value of 	 we can obtain the optimal result, which
reduces the curse of having two parameters to one. We fix the value of � and change
the value of 	 to receive the optimal performance. The next section (3.2) presents the
detail of our proposed probability density function.

3.2 Proposed Probability Density Function

Our proposed probability density function is based on a kernel probability density
estimator. Several techniques exist in literature to estimate probability density
function like histogram [15], wavelet [14], kernel estimation [26], etc. Among those
techniques we choose kernel probability density estimator (in short kernel estimator)
for our approach. We will justify our choice in the next paragraph.

The kernel estimator estimates the probability density function based on the data
values. For each data value � the kernel estimator increases the probability of
occurrence of � by �� and increases the probability of occurrence of other values by a
fraction of 1 − �� which fits our requirements excellently. Due to data uncertainty
when we receive a data point � with value �, we cannot assert the data value with
full confidence; therefore we cannot increase the probability of occurrence of � by 1.
Since the value � is uncertain, it might be induced by other data values other than �.
Thus to address the uncertainty of data streams, we do not increase the probability of
occurrence of � by 1. Kernel estimator increases the probability of occurrence of �
by �� and distributes the rest of the probability of occurrence (1 − ��) into the other
data values which are close to the value �. Formally, if (��, ��, … , ��) are � sample
data points, their respective values are (��, ��, … , ��) and the probability density
function �(�) is defined by equation (1) where �(�) is called the kernel function. ��
can be a scalar or vector.

(1)

The kernel function is responsible for distributing the probability of occurrence

induced by the data value ��. Various researchers have proposed various kernel
functions (e.g., Uniform kernel function, Triangle kernel function. Epanechnikov
kernel function, Normal kernel function etc. [23]). Different kernel function
distributes the probability of occurrence differently. Interestingly, the choice of a
kernel function does not affect the probability density function very much [23], [26].
Typically the kernel function distributes the probability of occurrence into the
neighbor data values which reside within a range called bandwidth (ℎ) (Normal kernel
function distributes the probability of occurrence from −∞ to +∞ [23]). A kernel
function along with the bandwith (ℎ) (is denoted by �!(�) where �(�) = ℎ�!(�).
Although the choice of the kernel function is not very significant, the choice of the
bandwidth is very important for probability density function estimation. A detailed
discussion about the choice of kernel function and bandwidth selection can be found
in [23]. In our approach we choose a data-based approach for bandwidth selection.

Scott’s rule provides a data-based bandwidth selection where ℎ = √5$��� %& where $

�(�) = 1
� ' �(�� − �)

�

�(�

6 Md. Shiblee Sadik, Le Gruenwald

is the standard deviation and � is the number of data points used for density
estimation [26].

In a kernel estimator the probability of occurrence is distributed into the equal
number of neighbor values for each data point, but in a variable kernel estimator the
probability of occurrence is distributed into different number of neighbor values for
each data point. Hence at any specific point of time, if data values are close to each
other (in terms of value) the bandwidth becomes small and if the data points are far
(in terms of value) from each other the bandwidth becomes large. Let (��, ��, … , ��)
be our data points with values (��, ��, … , ��) at times () − �,) − � + 1, … ,)), and
our corresponding bandwidths be (ℎ�, ℎ� … , ℎ�). The probability density function
(�(�)) at time) becomes equation (2) where �*(�) is the probability distribution
function at time). In our approach we use variable kernel estimator.

(2)

The use of variable kernel estimator is twofold: the variable kernel estimator offers

variable bandwidth for each data points, therefore the bandwidth can be computed on-
the-fly using Scott’s rule for each data point and the variable kernel selects the
bandwidth based on recent data values only.

We modify the variable kernel estimator to address the temporal characteristic of
data streams. Recent data points are more interesting than old data points; therefore,
when we estimate the probability density function we need to consider the freshness
of data points. Heuristically, the recent data items should have more weight than the
old data points [22], [20], [27]. Here weight is defined as how a data point contributes
to the probability density function; thus, in our probability density function, instead of
giving all data points the same weight we weight them according to their freshness.
The most recent data point receives the highest weight while the oldest one receives
the lowest weight. Exponential forgetting is a weight assigning scheme which gives
more weight to the recent data points and less weight to the old data points and the
weight is decreasing exponentially from present to past [28]. According to
exponential forgetting the relative weight among two consecutive data points is
constant, called forgetting factor (�) where 0 < � ≤ 1. Among the two consecutive
data points, the recent data point receives weight 1 and the old one receives weight �.
In case of a series of data points, at any particular time the most recent data point
receives the weight 1 and all other data points receive the weights according to their
relative positions to the most recent data point. If (��, ��, … , ��) are the data points
with data values (��, ��, … , ��), at time () − �,) − � + 1, … ,)) respectively, the
corresponding weights are (����, ����, … ,1). We weight the kernel function with an
exponential forgetting factor. Adding the exponential forgetting factor � to the
equation (2), the probability density function becomes equation (3) where ∑ ������(� is
the total weight.

 (3)

�*(�) = 1
� ' �!�(�� − �)

�

�(�

�*(�) = ∑ �����!�(�� − �)��(�
∑ ������(�

DBOD-DS: Distance Based Outlier Detection for Data Streams 7

One advantage of using exponential forgetting factor is that it can be computed
incrementally, which eases one-the-fly implementation for data streams [28]. The λ is
the parameter which decides how many data points contribute to the probability
estimation; the value 0 implies no history, only the previous data point, while value 1
implies all previous data points. Brailsford et al [28] proposed a � selection scheme
based on a bootstrap method; we adopt this approach for � selection. The details
about and λ selection are omitted due to page limitation, the detail can be found in
[28]. The next section (3.2) discusses the online implementation of our proposed
probability density function.

3.3 Implementation of Proposed Probability Density Function

The kernel estimator requires a large amount of computation. Binned implementation
is a popular, fast implementation for the kernel estimator [13]. In this approach the
entire range of data points is divided into some equally spaced bins and data are
distributed into bins. Each bin has a representing value and all the data point in a bin
are represented by the representing value. The key idea is that lots of values are
practically close to each other and binned implementation reduces the number of
evaluations; but this popular binned implementation still requires multiple passes and
cannot be computed incrementally.

Fig 1. Binned implementation of kernel estimator

In our approach we also divide the entire range of data values into equally spaced

bins. A representing value is selected for each bin (./, .�, .�, … in the Figure 1).
Instead of binning the data points, for each bin, we store the value of probability
density function of the representing value .�, �(.�) and the derivative of the
probability density function �′(.�). �(.�) and �′(.�) are stored for each representing
value .�. �(.�) and �′(.�) are the sum of the value of the kernel function and the sum
of the derivative of the kernel function at representing value .�, respectively. The
kernel function and the derivative of the kernel function for each representing value
are computed on-the-fly and added to the previous sum; hence this is an online
incremental implementation.

8 Md. Shiblee Sadik, Le Gruenwald

Fig 1 shows the binned implementation of our proposed probability density
function. By carefully selecting the bin width we can assume each bin is a trapezoid
as shown in Figure 1 and we can approximate the probability of any value within a
bin. The top of the trapezoid is a straight line (shown in Figure 1 as the dotted line
touching the probability density function) and we store the passing point as well as
the derivative; hence using the straight line equation of the line we can estimate the
probability of occurrence of any data value within a bin. The bin width should be such
that the average error is minimum. Fan and Marron [13] stated that four hundred bins
is often optimal, fewer than four hundred bins often deteriorates the quality of the
results and more than four hundred bins offer very little improvement. In our
approach we use the optimal four hundred bins. Due to page limitation we omit the
detail discussion about bin width selection.

The data structure for binned implementation of probability density function is
composed of grid cells. As each time a data point comes in, we update the necessary
grid cells on-the-fly. Each cell corresponds to a bin. Each cell contains the value of
probability density function at .�, �(.�), derivative of the probability density function
�′(.�) at .� and the timestamp (1) when the cell is last updated. The next section
(3.3.1) describes the algorithms for updating the probability density function using
our data structure and computing the probability of occurrence of a data value.

3.3.1 Algorithms

Figure 2 shows the online incremental update and probability of occurrence lookup
algorithms for our proposed probability density function and outlier detection
technique. The update algorithm updates the data structure as each data point comes
in and the probability computation algorithm computes the probability of occurrence
of a given value (�). The update algorithm takes a data point and its timestamp as
input. It starts with the updating of the weighted summation (lines 2 & 3), where 2� is
the weighted summation of the data values and 2� is the weighted summation of the
square of the data values. The 3 in line 4 is the total weight of the data. 2� and 2� are
required to calculate the current standard deviation ($) and hence the bandwidth (ℎ).
In line 9 we calculate the number of cells we need to update. Some kernel function
updates the values in the range from −∞ to ∞ (e.g., Normal kernel function [23]); in
that case we restrict it to 45�6789: and 47�6789:, which represent the minimum
and maximum allowable values for a data point, respectively. Now for each bin we
update the sum of the kernel function and the latest timestamp when the bin is
updated. If the kernel function is continuous at the representing point (.�) then we
store the derivative of the kernel function at .� else we store the gradient from the
starting point (;�) to the end point (<�) of the bin. The probability lookup algorithm is
fairly simple; it finds the appropriate bin which contains the sum of the kernel
function values. Finally the probability is achieved by dividing the sum of the kernel
function values by the total weights.

DBOD-DS: Distance Based Outlier Detection for Data Streams 9

1 procedure update(dataItem d, timestamp t)
2 2� ← �2� + �; // m1 is the sum of data value and λ is our forgetting

factor
3 2� ← �2� + ��; // m2 is the sum of the square of the data value
4 3 ← �3 + 1; // ω is the total data weight
5 µ� ← 2�/3; // µ1 the first moment
6 µ� ← 2�/3; // µ2 the second moment
7 $ ← @µ� − µ��; // σ is the standard deviation
8 ℎ ← √5$3�� %& ; // h is the bandwidth
9 A ← ℎ/.5�B5�1ℎ; // c is the cell count

10 . ← 5��:�CDD�9�(�); // b is the middle cell
11 for 5 = . – A to . + A, // i is the index of the cell, where 5 ≥ 0 and

5 ≤ 47�5494 5��:�.
 // .� is the representing value of the bin/cell(A�) and αi and βi are the

starting value and the end value of the bin.
 // distance between two consecutive time stamp is 1.

12 A�[�(.�)] ← �(I � J�[I�KLMINKO])A�[�(.�)] + �!(� − .�);
13 if (�!(� − ��) is not discontinuous at ��
14 A�[�P(.�)] ← �QI – J�[I�KLMINKO]RA�[�P(.�)] − �′!(� − .�);
15 else
16 A�[�P(.�)] ← �QI – J�[I�KLMINKO]RA�[�P(.�)] – (�!(� − <�) −

 �!(� − ;�))/.5�B5�1ℎ;
17 A�[154:2174�] ← 1;
18 end for
19 end procedure
20 procedure indexLookup(dataItem d)
21 return T(� – 45�6789:)/.5�B5�1ℎU;
22 end procedure
23 procedure probability(x)
24 5 ← 5��:�CDD�9�(�);
25 �(�) ← (A�[�(.�)] + A�[�P(.)](� − .�))/3;
26 return �(�);

Fig 2. Update and probability of occurrence lookup algorithm

4 Performance Analysis

We conducted experiments using a real dataset collected from California Irrigation
Management to compare the performance of our algorithm in terms of detection
accuracy and execution time with that of the two existing algorithms: We compare
our algorithms (DBOD-DS) with two other algorithms ART [8] and ODTS [3] from
the literature. ART is an auto-regression based outlier detection technique for wireless
sensor network which estimates the value using an auto-regression model and

10 Md. Shiblee Sadik, Le Gruenwald

compare the estimated value with the data value received; if the distance is greater
than a user defined threshold the data point is identified as outlier., The ODTS is an
outlier detection technique for time series. It uses a sliding window to store the recent
subset of the data and compare each data point with median value, if the distance is
greater than user defined threshold the point is identified as outlier. Since ODTS uses
a sliding window, we run the experiments with the window sizes 10, 15, 20, … , 100
and report the average performances. In this section, we first describe the dataset and
simulation model, and then present the experimental results.

4.1 Dataset

The California Irrigation Management Information System (CIMIS) manages a
network of over 120 automated weather stations in California [7]. Each weather
station collects data in every minute and calculates hourly and daily values. The data
are analyzed and stored in the CIMIS database and publicly available. The measured
attributes are solar radiation, air temperature, relative humidity, wind speed, soil
temperature, etc. For our experiments, we use the daily soil temperature data collected
from 1998 to 2009, and implanted the random synthesized outliers in them along with
inherent outliers. We use fifty stations in random and report the average results. On
average each station has 4000 rounds of data (total 200,000 data rounds).The first 500
data points are used for bootstrapping from each data stream. This dataset has
consecutive rounds of inherent outliers. We use 7% outliers for all of our experiments,
except for those experiments in which we vary the percentage of outliers to study its
impacts on the algorithms’ performance.

4.2 Simulation Model

In our simulation model we mimic the typical data streams architecture. Each data
source produces one data stream. We create the virtual data sources and the virtual
base station. Each virtual data source obtains a data value at a fixed interval and sends
it to the virtual base station. The virtual base station receives one data point from one
data stream at a time and processes it. We execute DBOD-DS, ART and ODTS, one
technique at a time, at the base virtual base station to detect the outliers. The entire
simulation model is built on the Java platform and we ran the simulation using GNU
Compiler for the Java version 1.4.2. The GNU was running on Red Hat Linux
Enterprise 5 [29]. We use the Cluster Supercomputer at the University of Oklahoma
to run our simulation experiments. The comparison is fair since each technique is run
on the same machine.

4.3 Accuracy

We measure the accuracy in terms of Jaccard Coefficient (JC) and Area Under the
receiver operator characteristic Curve (AUC). A good outlier detection technique is
the one which maximizes true positive (TP) and minimizes false negative (FN) and
false positive (FP). Basu and Meckesheimer [3] proposed the use of Jaccard
Coefficient (JC) as a performance metric for outlier detection. Mathematically JC

DBOD-DS: Distance Based Outlier Detection for Data Streams 11

defined as WX = *Y
ZY�Z[�*Y. The metric (JC) consider the true positive, false negative

and false positive. JC is inversely proportional to the wrong classification and
directly proportional to the correct classification, and assigns equal weight to the
correct classification and the wrong classification [3]. So, the better JC an outlier
detection algorithm yields the more accurate results the algorithm provides. However,
JC is not independent of the distribution of inliers and outliers. We use the receiver
operator characteristic (ROC) curve to establish a distribution independent
performance metric. On top of this, ROC curve has two other fascinating properties:
1) the ROC curve is not sensitive to a particular choice of the cut-off value and 2) the
Area Under the ROC curve (AUC) provides a single scalar value which represents the
performance of the classifier [12]. The ROC curve is a two dimensional graph in

which the true positive rate (TPR,)\] = *Y
*Y�Z[) goes along the y-axis and the false

positive rate (FPR, ̂\] = ZY
ZY�*[, TN is true negative) goes along the x-axis. TPR is

the rate of correct classification (called benefit) and FPR is the wrong classification
(called cost); hence the ROC curve is the graph of cost vs. benefit [12]. The algorithm
which has higher AUC is considered as a better algorithm. The optimal algorithm will
increase the TPR without increasing the FPR; if we push it further it will increase the
FPR only because there is no room for improvement of TPR; hence the graph will be
two line segments joining (0, 0) to (0, 1) which is called conservative region and
(0, 1) to (1, 1) which is called flexible region. So the better algorithm will follow the
curve of the optimal algorithm. The results for ART, ODTS and DBOD-DS are
reported for the optimal cut-off value which maximizes the Jaccard Coefficient of the
respective algorithms. The next two sections (4.3.1 and 4.3.2) compare the three
algorithms in terms of JC and ROC, respectively.

4.3.1 Jaccard Coefficient (JC)

Fig 3. JC of each algorithm

Figure 3 shows the Jaccard Coefficient with respect to different percentages of
outliers for our dataset. DBOD-DS outperforms all other algorithms regardless of the
percentage of outliers. The JC for DBOD-DS is almost twice of the JC of the other
two algorithms. DBOD-DS, ART and ODTS show constant JC with respect to change

12 Md. Shiblee Sadik, Le Gruenwald

of the percentage of outliers. If the percentage of outlier increases, the true positive
increases along with false negative and false positive; hence the increment of the
numerator and denumerator in the JC formula makes JC constant with respect to the
percentage of outliers.

4.3.2 Receiver operator characteristic curve

Fig 4. Receiver operator characteristic curve.

Mostly the performance of the ART, ODTS and DBOD-DS depends on the
correctness of their respective thresholds. Hence, we compare DBOD-DS with those
two algorithms to establish a parameter less comparison metric. Figure 4 shows the
ROC curve for DBOD-DS, ART and ODTS for the dataset. DBOD-DS performs
very well in the conservative region [12]; it correctly identifies the outliers without
increasing the false positive ratio after the true positive ratio reaches 0.8, which is
very close to the optimal performance. The optimal performance in the conservative
region resembles the fact that DBOD-DS is capable of identifying true positives
without increasing false positives (the sharp transition from the conservative region to
the flexible region in Figure 4 confirms this fact). The most important plus point for
the ROC curve is that the area under the curve (AUC) resembles a single metric for
performance comparison among two classifiers. The AUC for DBOD-DS is 0.94 and
the AUC for ART and ODTS are 0.82 and 0.88, respectively.. Interestingly, the
performance of ODTS is better than that of ART in terms of AUC. This is because
ODTS produces fewer false negatives than ART. The most appealing characteristic of
AUC is that it resembles the probability of correct classification regardless of the
percentage of outliers; therefore, in terms of AUC, DBOD-DS is much more superior
to ART and ODTS.

4.4 Execution Time

The DBOD-DS performs much better than the other two algorithms in terms of JC
and AUC, but this performance benefit does not come without cost. The DBOD-DS
takes more execution time compared to ART and ODTS. Figure 5 shows the
execution time for the algorithms with respect to the change of the percentage of

DBOD-DS: Distance Based Outlier Detection for Data Streams 13

outliers. The time is recorded for each round from receiving a data point to identifying
its outlier-ness. On an average DBOD-DS takes twice more time than ART and 20
times more time than ODTS but the execution time for DBOD-DS is less than 1.5
milliseconds. The outlier detection takes place within two rounds and this time is
practically enough for any type of data stream. In a typical data stream application the
data source is kept onsite and the data values travel from the data source to the base
station. Sending frequency lower than 1 millisecond is impractical for most of the
current data stream applications. The execution time increases a little bit with the
increase of the percentage of outlier; this is because if the percentage of outliers
increases, the dispersion of the probability density function increases, hence more bin
needs update for each data point. In our opinion the extra time is worthy for DBOD-
DS because it offers a significant performance improvement over ART and ODTS in
terms accuracy.

Fig 5. Execution time for each algorithm with respect to percentage of outliers

5 Conclusions and Future Research

We have developed an outlier detection algorithm for data stream applications based
on our novel probability density estimation function. The performance of our
algorithm compared with that of the existing algorithms in the literature is shown by
extensive empirical studies on a real dataset. Our algorithm outperforms the existing
algorithms in terms of accuracy, but requires more time to execute. However, the
time our algorithm needs is less than 1.5 milliseconds, which is much smaller than the
time required sending and receiving data in many data stream applications. From our
empirical studies it is clear that our algorithm can perform excellently for a reasonable
percentage of outliers. Even though we designed the algorithm considering both
single dimensional data and multi dimensional data, our experiments so far have
focused on the former case. In our future experiments we want to cover multi
dimensional data. In addition, we want to extend our novel probability density
function to estimate the data values and to detect concept drifts. In our technique we
require user-defined parameters to identify outliers; it would be interesting to make

14 Md. Shiblee Sadik, Le Gruenwald

our approach completely intelligent so that it would not expect any parameter from
the user.

6 References

1. Anguiulli F. and Fassetti F.: Detecting Distance-Based Outliers in Streams of Data In
Proceedings of the sixteenth ACM conference on Conference on information and knowledge
management: Pages 811 – 820 (2007)

2. Babcock B., Babu S., Mayur D., Motwani R., Widom J.: Models and Issues in Data Stream
Systems: In proceedings of 21st ACM Symposium on Principles of Database Systems
(PODS 2002). Pages: 1 – 16 (2002).

3. Basu S. and Meckesheimer M.: Automatic outlier detection for time series: an application to
sensor data: Knowledge Information System, pages: 137 – 154 (2007).

4. Barnett V. and Lewis T.: Outliers in Statistical Data: Wiley Series in Probability and
Mathematical Statistics, Publisher: John Wiley & Sons Inc (1994).

5. Carney D., Çetintemel U., Cherniack M., Convey C., Sangdon Lee, Seidman G.,
Stonebraker M., Tatbul N., and Zdonik S.: Monitoring Streams – A New Class of Data
Management Applications: In proceedings of the 28th international conference on Very
Large Data Bases. Pages 215 – 226 (2002).

6. Chandola V., Banarjee A. and Kumar V.: Outlier Detection : A Survey: Technical Report,
University of Minnesota (2007).

7. California Irrigation Management Information System, web-link:
http://wwwcimis.water.ca.gov/cimis/welcome.jsp, (accessed January, 2010).

8. Curiac D., Banias O., Dragan F., Volosencu C., and Dranga O.: Malicious Node Detection
in Wireless Sensor Networks Using an Autoregression Technique: In proceedings of the
Third International Conference on Networking and Services, Pages 83 – 88 (2007).

9. Eskin E.: Anomaly Detection over Noisy Data using Learned Probability Distributions: In
proceedings of the Seventeenth International Conference on Machine Learning. Pages 255 –
262 (2000).

10. Franke C. and Gertz M.: Detection and Exploration of Outlier Regions in Sensor Data
Streams: In IEEE International Conference on Data Mining Workshop, Pages 375 – 384
(2008).

11. Franke C. and Gertz M.: ORDEN: outlier region detection and exploration in sensor
networks: In proceedings of the 35th SIGMOD international conference on Management of
data, Year 2009, Pages 1075 – 1078.

12. Fawcett T.: Roc graphs: Notes and practical considerations for data mining researchers:
Technical report hpl-2003-4, HP Laboratories, Palo Alto, CA, USA, (2003).

13. Fan J. and James S. J. S.: Fast Implementations of Nonparametric Curve Estimators:
Journal of Computational and Graphical Statistics, Vol. 3, No. 1, Pages 35-56 (1994).

14. Gilbert A. C., Kotidis Y., Muthukrishnan S., and Strauss M.: Surfing Wavelets on Streams:
One-Pass Summaries for Approximate Aggregate Queries: In Proceedings of the 27th
International Conference on Very Large Databases, Pages 79 – 88 (2001).

15. Guha S. and Koudas N.: Approximating a Data Stream for Querying and Estimation:
Algorithms and Performance Evaluation: In Proceedings 18th International Conference on
Data Engineering, Pages 567 – 676 (2002).

16. Ishida K. and Kitagawa H.: Detecting Current Outliers: Continuous Outlier Detection over
Time-Series Data Streams: Lecture Notes in Computer Science, Spinger Publications,
Volume 5181, Pages 255 – 268, (2008).

DBOD-DS: Distance Based Outlier Detection for Data Streams 15

17. Jiang N. and Gruenwald L.: Research issues in Data Stream Association Rule Mining.
ACM SIGMOD RECORD, Volume 35 , Issue 1. Pages: 14 – 19 (2006).

18. Keogh E., Lin J. and Truppel W.: Clustering of Time Series in Meaningless: Implications
for Previous and Future Research: In proceedings of the 8th ACM SIGMOD workshop on
Research issues in data mining and knowledge discovery, Pages 56 – 65, (2003).

19. M. Knorr E. M. and Ng R. T.: Algorithms for Mining Distance-Based Outliers in Large
Datasets: In proceedings of the 24rd International Conference on Very Large Data Bases,
Pages 392 – 403 (1998).

20. Madsen H.: Time Series Analysis: Texts in Statistical Science. Publisher: Chapman &
Hall/CRC (2007).

21. Ng R. T. and Han J.: Efficient and Effective Clustering Methods for Spatial Data Mining:
In proceedings of the 20th International Conference on Very Large Data Bases, Pages 144 –
155 (1994).

22. Puttagunta V. and Kalpakis K.: Adaptive Methods for Activity Monitoring of Streaming
Data: In proceedings of International Conference on Machine Learning and Applications,
Pages 197-203 (2002).

23. Scott D. W.: Multivariate Density Estimation: A Wiley-Interscience Publication (1992).
24. Sheikholeslami G., Chatterjee S., and Zhang A.: WaveCluster: A Multi-Resolution

Clustering Approach for Very Large Spatial Databases: In proceedings of the 24rd
International Conference on Very Large Data Bases. Pages 428 – 439 (1998).

25. Stonebraker M., Çetintemel U., Zdonik S.: The 8 Requirements of Real-Time Stream
Processing: ACM SIGMOD Record Volume 34, Issue 4. Pages: 42-47 (2005).

26. Subramaniam S., Palpanas T., Papadoppoulos D., Kalogeraki V. and Gunopulos D.: Online
Outlier Detection in Sensor Data Using Non-Parametric Models: In proceedings of the 32th
international conference on VLDB, Pages 187-198 (2006).

27. Gruenwald L., Chok H., Aboukhamis M.: Using Data Mining to Estimate Missing Sensor
Data: In Seventh IEEE International Conference on Data Mining Workshops, Pages 207 –
212 (2007).

28. Brailsford T. J., Penm J. H. W., and Terrell R. D.: Selecting the forgetting factor in Subset
Autoregressive Modelling: In Journal of Time Series Analysis, Vol 23, Pages 629 – 650
(2002).

29. OU Supercomputer Resources: web-link http://www.oscer.ou.edu/resources.php (accessed
May, 2010).

