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Abstract. Wireless data broadcasting is well known for its excellent scalability. 
Most geographical data, such as weather and traffic, is public information and 
has a large number of potential users. Broadcast is a good mechanism that can 
be used to transmit the data to users at this scale. In this paper, we propose a 
cost model for access time in processing spatial range queries on broadcast 
geographical data over air. We also propose heuristics in generating orderings 
of broadcast sequences and evaluate their performances based on the cost model  

1 Introduction 

Data broadcasting is well known for its excellent scalability (Imielinski, 1997). Most 
geographical data, such as weather and traffic, is public information and has a large 
amount of potential users. Thus it is attractive to broadcast geographical data in 
metropolitan areas to reduce the increasing demands for wireless bandwidth 
resources. Furthermore, for users that are able to be aware of their locations by using 
Global Position System (GPS), network infrastructures or their combinations (Konig-
Ries, 2002), they can perform Location Dependent Queries (LDQ, Seydim, 2001) to 
request Location Dependent Services (LDS). It is easy to see that LDQ on broadcast 
geographical data over air is particular interesting in the context of large-scale 
resource-efficient data dissemination in mobile computing. Spatial range query 
(Rigaux, 2002) processing on broadcast geographical data will be one of the most 
popular techniques to provide LDS.   

The performance of a data broadcast system is characterized by two parameters 
(Imielinski, 1997), tune-in time (TT) and access time (AT). TT is defined as the time 
for a client to download data from a broadcast sequence. During this time the client 
has to be in active mode and consumes more energy than in doze/sleep mode. AT is 
defined as the time a client begin to access the broadcast sequence to the time all the 
requested data items are downloaded. A client may switch to doze mode in between 
two active downloading where usually less energy is consumed.  In Fig. 1, TT is equal 
to the total of the length of required data items (shaded) while AT is the duration 
between the first and the last required data items. 
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2 Related Work 
Range queries are the most frequently used spatial queries and have been extensively 
studied in disk-resident data management research. Several cost models have been 
proposed for measuring the performance of spatial indexing on range queries (Pagel, 
1993; Theodoridis, 1996; Theodoridis, 2000). The measurement used is the number of 
disk accesses which is equivalent to tune-in time in broadcasting without considering 
paging and buffering effects. However, to the best of our knowledge, there is no 
previous work done on access time for spatial range queries on broadcast data.  

There have been several studies on general data broadcast. Many of them focus on 
indexing techniques to make tradeoffs between TT and AT, such as tree-indexing 
(Imielinski, 1994a), hashing (Imielinski, 1994b), signature (Lee, 1996) and hybrid 
(Hu, 2001a). They can support only queries on one-dimensional data and can search 
only one data item in a query result.  Although (Imielinski, 1997) proposed to chain 
data items that have the same values in different meta-segments in its nonclustering 
index and multi-index methods, it cannot be applied to data items that have different 
values but are often in the same query results. Furthermore, in its performance 
analysis, it assumes that it takes a whole broadcast cycle to retrieve non-clustered data 
items of a particular value.  That is an unnecessary overestimation. The issue of multi-
attribute data broadcast and query was first addressed in (Hu, 2001b). However, this 
work can handle only conjunction/disjunction queries that involve fewer than three 
attributes. They are not suitable for range queries on geographical data. 

Recent works on object-oriented database broadcast (Chehadeh, 1999) and 
relational database broadcast (Lee, 2002) allow multiple data items to be accessed in a 
query. However, they assumed the access to data items had predefined orders. They 
are not suitable for spatial range queries since data items in a query result do not 
necessarily have a predefined order. The work presented in  (Chung, 2001) is 
essentially similar to our cost model of data access time. However, it excluded the 
tune in time from access time for the items in the query result set which makes the 
total access time a summation of multiple quadratic terms. To simplify the result, it 
used a linear function to approximate the quadratic cost, which makes the model 
inaccurate. Furthermore, its proof of the approximation is incorrect. We believe that 
our result in which the access time for a single query is linear with respect to a single 
quadratic term (see Section 3.2 for details) is more concise and accurate. None of the 
above cost models are designed for spatial range queries. 

The only previous work on geographical data broadcast we know is (Hambrusch, 
2001). It studied the execution of spatial queries on broadcast tree-based spatial index 
structures. Their work assumed the client had very limited memory that the whole R-
tree cannot be fit into the client memory and the client has to discard some retrieved 
R-Tree nodes to hold more useful ones during the query process. Their work focused 
on reducing extra access time incurred by having to access multiple broadcast cycles 
due to the discard and replacement. Our cost models assume that a client has already 
have the pointers to data items in the data channel, either from another separate index 
channel or from the same channel that combines both data and index. A client can sort 
the values of the pointers and thus only one scan of data channel is sufficient to 
retrieve all the data items. We believe that our assumption that a client can hold the 
entire index segments related to a spatial range query is more realistic for LDQs. 



3 The Cost Model 

3.1   Preliminaries 

Let DS=[x1,x2)× [y1,y2) be the data space that defines all the geographical data 
items. Suppose the size of a range query window is (qx,qy).  

We define an Extended Region Ru of data item Pu as the rectangle of (qx,qy) 
centered at Pu. As shown in Fig. 3, the distribution of the centers of query window 
(qx,qy) that contains data item Pu is the extended region of Ru. Furthermore, from Fig. 
4 we can see that the distribution of the centers of query window (qx,qy) that contains 
both data items Pu and Pv is the intersection of their extended regions Ru and Rv. This 
relationship can be extended to higher orders, i.e., up to the intersected region among 
all n extended regions where n is the number of points in the data set to broadcast.    
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3.2 Access Time for Processing A Single Query 

Let function π(u) maps point u to its position in the broadcast sequence. Suppose 
the single query result set contains k data items n1, n2 … nk. Assume the data 
broadcast cycle length is L. Let L2 denote the access time of a query result set with a 
query window size of (qx, qy). Let L1 and L3 denote the time before L2 and after L2 
(Fig. 5). It is easy to see that L=L1+L2+L3, )}(),...(),(min{ 211 knnnL πππ= , and 

.  )}(),...(),(min{)}(),...(),(max{ 21212 kk nnnnnnL ππππππ −=
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Fig. 5 Illustration of L1, L2 and L3 

 
Since a client might begin to access data channel at any position (between 0 and 

L), we need to consider the following three cases separately. We first compute the 
total access time in these three cases and then compute the average.  

 
Case1: Begin access in L1, the total access time is the sum of the rest of L1 and the 

whole L2: 
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Case 2: Begin access in L2, the total access time is equivalent to the whole 
broadcast cycle regardless of the access position: 
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Case 3: Begin access in L3, the total access time is equal to the rest of L3 in the 
current broadcast cycle plus L1+L2 in the next broadcast cycle: 
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The average access time is : 
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From the result we can see that the average access time to the data channel is 
determined only by L and L2.  We can rewrite the average data access time as follows:  
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Since L2<L, the average access time of a range query decreases monotonically as 

L2 decreases.  Since the number of data items in a query is usually much smaller than 
the number of data items to broadcast, we assume L-L2>>1. Thus the formula can be 
simplified as 

L
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3.3 Access Time for Processing All Queries 

Let function g(L2) be 
L

L
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22 −+= . The total data access time for a 

query window (qx,qy) can be written as follows by  summarizing the access time over 
all possible query result sets. Substituting L2 back with 
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The final total access time will be the summation of  over all 

possible query windows Q, i.e.,  
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It is easy to observe that the cost model we have developed is similar to the 

Minimum Linear Arrangement (MinLA) problem in graph theory defined as follows 
(Daíz, 2002): 
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There are two differences between MinLA and our cost model. First, there are 

multiple data items in a query result set and a hyper-graph representation is more 
appropriate for our cost model than a graph representation for MinLA. Second, our 
cost model is quadratic with respect to the differences in the positions of the 
beginning and ending nodes in a hyper-edge while it is linear in MinLA. It might be 
interesting to extend the existing low computation cost approximation methods for 
MinLA (Bar-Yehuda, 2001; Koren, 2002) to optimise access time based on our cost 
model which we leave for our future work.  

4 Experiments and Results 

4.1 Ordering Heuristics  

The order of the geographical data items in a broadcast channel determines the 
total access time of spatial range queries on such data items. Space Filling Curves 
(SFC, Gade, 1998), such as row-wise enumeration of the cells, Peano curve or Z-



Ordering, Hilbert-Ordering and Gray-Ordering, which transforms multi-dimensional 
data into one-dimension can be used to generate orderings by comparing the SFC 
codes.  Although spatial index trees such as R-Tree family (Guttman, 1984; Sellis, 
1987; Beckmann, 1990) are not originally designed to be aware of the order of data 
items, traversals of these trees do generate orderings that can be used to sequence the 
data items. Since spatial indexing methods usually maintain spatial adjacencies, the 
orderings generated by SFCs and spatial index tree traversals are good candidates 
with low computation costs. We will evaluate the performances of the two heuristics 
based on our cost model using a real data set. 

4.2 Experiments Setup 

We use a data set from the MapInfo census 2000 data samples ([HREF 1]). There 
are 586 points in the area representing service locations, such as hospitals and parks.  
The data set is shown in Fig. 6.  We choose four query window sizes with qx=qy (We 
thus use qx to denote the query window size hereafter). The sizes of the query 

windows are 0.5, 1.0, 2.5 and 5.0 miles 
respectively. We believe they are meaningful 
in practice. The C program from ([HREF 2]) 
was used to generate the Hilbert codes for all 
the points. The codes are then sorted to 
generate the Hilbert ordering. We also obtain 
the code from ([HREF 3]) to generate the R-
trees and their traversal orderings. To 
investigate the effect of the branch factor in 
generating R-Tree traversal ordering, we vary 
its value factor from 4 to 19.  

4.3 Results and Discussion 

The results of the total access times versus 
the branch factors for the four query window 
sizes are shown in Fig 7.  Note that the 
absolute access time values presented in this 
section does not reflect the constant factor as 
discussed in Section 3.1.  

From the results we can see that the total 
access time does not have a perceivable 
relationship with the R-Tree branch factor. An 
obvious pattern in the results is that the total 
access time has a strong relationship with the 
query window size. Interestingly the total 
access times reach their maximum for the 
query window size of 2.5 miles. We suspect 

that this pattern is rather data-dependent. Fig. 6 The Data Set 
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By comparing the result of Hilbert ordering and R-Tree traversal orderings we can 

see that Hilbert ordering is generally better than the best R-tree orderings. In Table 1 
the access time of Hilbert ordering is compared with the minimum access times of R-
tree orderings for all the four window sizes. The result suggests that the Hilbert 
ordering is about 9% better than the R-Tree traversal ordering on average.   

 
Table 1. Comparison of Hilbert and Best R-Tree Traversal Orderings 

 
Query Window 

Size (Miles) 
Hilbert 

(A) 
Best R-Tree 

(B) 
(B-A)/A 

(%) 
0.5 8.33124 8.92838 7.17% 
1.0 18.03957 20.12991 11.59% 
2.5 27.09348 30.08675 11.05% 
5 23.51733 25.49852 8.42% 

5 Conclusions and Future Work Directions 

We believe we are the first to address the problem of spatial range queries over 
broadcast geographical data. We developed a precise and concise cost model for data 
access time in processing spatial range queries on broadcast geographical data. We 
also presented several heuristics in generating orderings and evaluate their 
performances based on the cost model  

For future work, we first would like to extend our cost models to handle the access 
time both to the data channel and the index channel. Second, we want to optimise the 
access time by generating better orderings based on our cost model. Finally we would 
like to do more experiments using real data sets as well as synthetic data sets to 
evaluate the cost models, ordering heuristics and optimization methods. 
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