

1-4244-0429-0/06/$20.00 ©2006 IEEE

MANAGING DATA REPLICATION IN MOBILE AD-
HOC NETWORK DATABASES (Invited Paper)*

* This work was supported in part (while serving at) by the National Science Foundation (NSF) and NSF Grant No. IIS-
0312746

Prasanna Padmanabhan
School of Computer Science
The University of Oklahoma

Norman OK, USA
prasannap@yahoo-inc.com

Dr. Le Gruenwald
School of Computer Science
The University of Oklahoma

Norman, OK, USA
ggruenwald@ou.edu

Abstract — A Mobile Ad-hoc Network (MANET) is a
collection of wireless autonomous nodes without any
fixed backbone infrastructure. All the nodes in
MANET are mobile and power restricted and thus,
disconnection and network partitioning occur
frequently. In addition, many MANET database
transactions have time constraints. In this paper, a
Data REplication technique for real-time Ad-hoc
Mobile databases (DREAM) is proposed that
addresses all those issues. It improves data
accessibility while considering the issue of energy
limitation by replicating hot data items at servers that
have higher remaining power. It addresses
disconnection and network partitioning by
introducing new data and transaction types and by
considering the stability of wireless link. It handles the
real-time transaction issue by replicating data items
that are accessed frequently by firm transactions
before those accessed frequently by soft transactions.
DREAM is prototyped on laptops and PDAs and
compared with two existing replication techniques
using a military database application. The results
show that DREAM performs the best in terms of
percentage of successfully executed transactions,
servers’ and clients’ energy consumption, and balance
of energy consumption distribution among servers.

I. INTRODUCTION

MANET is a collection of wireless autonomous nodes
that may move unpredictably, forming a temporary
network without any fixed backbone infrastructure [4].
All the nodes in MANET are mobile and, thus, restricted
by power. These nodes not only can communicate with
nodes that are within their communication ranges, but
also can communicate with nodes that are outside their
transmission ranges using multi hop communication.

Since no fixed infrastructure is required, they fit well in
military, rescue operations and sensor networks [8].
Moreover many applications in this environment are time-
critical and, hence, their transactions should be executed
not only correctly, but also within their deadlines.

In a distributed database system, data are often
replicated to improve reliability and availability. However
one important issue to be considered while replicating
data is the correctness of the replicated data. Since nodes
in MANET are mobile and have limited energy,
disconnection may occur frequently, causing a lot of
network partitioning. Data that is available in mobile
hosts in one partition cannot be accessed by mobile hosts
in another partition. The issues related to data replication
in MANET databases are as follows:
• Server Power Consumption: Servers in MANET run

on battery power. If a server has low power
remaining and if it is replicated with many frequently
accessed data items, then the frequent data access
requests for these hot data will drain its power.

• Server mobility: Due to their mobility, servers might
sometimes move to a place where they could not be
reached by any other server or client.

• Client mobility: Clients that query servers for
information are also mobile. Clients usually send
their transactions to the nearest servers to get a quick
response. The decision to replicate data items at a
particular server may be based on the access
frequencies of data items from that specific server.
Hence, the decision to replicate data items at
appropriate servers must be dynamic and based on
the current network topology.

• Client Power: Clients in MANET also run on battery
power. If a client waits too long for its transactions’
results, it might lose its power rapidly. The
replication technique should be able to replicate data

items at appropriate servers in such a way that a
client might be able to access its requested data items
from its nearest server which has the least workload.

• Time-critical applications: Many MANET
applications, like rescue networks, military
operations, are time-critical. Data replication should
be used to improve data accessibility and
performance of the system, thereby reducing the time
to execute transactions. Transactions with short
deadlines should be sent to the nearest servers that
have the least workload for their execution. These
transactions should also be executed before other
transactions that have longer deadlines.

• Frequent Disconnection and Network Partitioning:
Disconnection and network partitioning is a severe
problem in MANET as servers in one partition that
hold required data items cannot provide services to
other clients and servers in different partitions.

• Update transactions: If there are no constraints in
storage space and if there are read-only transactions,
data accessibility and performance of MANET
databases can be increased by fully replicating the
database in all the servers. However, maintaining
consistency in a fully replicated database is a major
issue when there are frequent update transactions.

No single existing replication technique considers all of
the above issues. In the poster paper [17b], we have
briefly presented a replication technique, called DREAM
that addresses all the above issues. In this paper, we
discuss this technique and its performance evaluation in
detail. The rest of the paper is organized as follows.
Section 2 reviews the related work. Section 3 describes
the underlying MANET database system architecture.
Sections 4, 5 and 6 present DREAM, the prototype model
and the performance evaluation results, respectively.
Finally, Section 7 concludes the paper with future work.

II. RELATED WORKS
A data replication technique that replicates data items

based on their access frequencies and the current network
topology is proposed in [6]. Hot data are replicated before
cold data items. If the access characteristics of data items
are similar, there could be replica duplications at many
mobile nodes. Hence, two other techniques to reduce
replica duplication between mobile nodes are proposed in
[6]. They also detect network partitioning and replicate
hot data items before such a partitioning occurs to
improve data accessibility. However in those techniques,
when there is a replica duplication between any two
connected mobile nodes, one of the duplicate replicas is
replaced by another hot data item, irrespective of how
high the access frequency of the replaced data item is or
how low the access frequency of the new data item is.

A data replication technique that replicates data items at
multiple nodes and employs quorum based strategies to
update and query information is proposed in [11]. It

sends the update information to nodes in such a way that
other nodes while querying for this update information
gets the most updated information, and thereby, reducing
inconsistency and dirty read transactions. It determines
the time to send the updates, where to send them and
which nodes to query for the information in such a way
that it mitigates the impacts of network partitioning.
Another way of disseminating the update information to
mobile nodes is by data broadcasting as proposed in [19].
This replication technique delays the updates to replicas
for performance and bandwidth considerations. It also
determines what updates to broadcast and when to
broadcast them in an efficient manner.

A set of protocols that use a gossip-based multicast
protocol to probabilistically disseminate updates in a
quorum system is proposed in [15]. It achieves high
reliability even when there are large concurrent update
and query transactions. A new metric for evaluating
wireless link robustness that is used to detect network
partitioning is proposed in [7]. Its decision to replicate
data items is taken not only at the time of detecting
network partitioning, but also during the time when the
wireless connections become bad in terms of reliability,
bandwidth and delay.

Roam [18] is a replication technique that attempts to
provide data availability to mobile hosts irrespective of
the mobility of the hosts. It models the mobility of hosts
by grouping them into wards and determines periods of
motion of the mobile hosts. Ward masters are elected to
provide communication across wards, but hosts belonging
to the same ward may directly communicate with each
other. Roam maintains consistency of replicas across the
network, irrespective of the locations of movements’
different hosts. None of the above replication techniques
addresses the issues related to real-time database
transactions and mobile hosts’ power limitation. It should
also be noted that network partitioning might occur not
only due to mobile hosts’ mobility, but also due to battery
power drainage of some mobile hosts.

III. DECENTRALIZED MANET
DATABASE ARCHITECTURE

Figure 1: Decentralized MANET Database Architecture

Server3

Server2

Server1

Client3

Client26

Client2

Client1

Depending on communication strength, computing
power, disk and memory storage size, mobile hosts can be
classified into two groups: Clients and Servers. Clients
are equipped with reduced memory and computing
capabilities. They store only the Query Processing module
of the Database Management System (DBMS) that allows
them to submit transactions to appropriate servers and
receive results. Servers are equipped with higher memory
and computing capabilities; they store the complete
DBMS. For example, soldiers in battlefields, who are
equipped with handy portable computers like PDAs and
smart phones, could be considered as clients, while tanks
and humvees equipped with high end portable computers
like laptops could be considered as servers.

This paper assumes a decentralized architecture, where
clients are free to communicate (single-hop or multi-hop)
and submit their transactions to any of the available
servers in the network as shown in Figure 1. This
architecture does not place reliance on any centralized
server and, thus, improves system resilience by avoiding a
single point of failure.

IV. PROPOSED MANET DATA
REPLICATION TECHNIQUE: DREAM

A data replication for MANET databases, called
DREAM, is proposed in this section. It extends the
techniques proposed in [6] that have briefly been
reviewed in Section 2 to consider additional issues
including mobile hosts’ power limitation, real-time
database transactions as well as various data and
transaction types that exist in many MANET applications.
DREAM improves data accessibility while addressing the
issue of power limitation by replicating hot data items
before cold data items at servers that have high remaining
power. It handles the real-time transaction issue by giving
a higher priority for replicating data items that are
accessed frequently by firm transactions than those
accessed frequently by soft transactions It addresses
disconnection and network partitioning by introducing
new data and transaction types and by determining the
stability of wireless links connecting servers. The
remaining energy of connecting servers is also used to
measure their link stability. The data and transaction
types are proposed in Sections A and B, respectively,
after gathering the database requirements of a fire rescue
and a battlefield application from the Norman Fire
Department and the Reserve Officers Training Corps
(ROTC) at the University of Oklahoma. Each server in
DREAM that holds the original copy of a data item is
termed its primary copy server and the other servers that
hold the replicas of the data item are termed its secondary
copy servers. DREAM addresses the replica
synchronization issue by maintaining two timestamps that
indicate when a particular data item is updated in its
primary and secondary copy servers.

DREAM is composed of three main parts. The first part
determines the data items to be replicated and the servers

in which they have to be replicated. The second part
determines how the allocated replicas can be accessed for
transaction processing based on their data and transaction
types. The third part identifies the way to synchronize the
replicas. These parts are discussed in subsequent sections.

A. Data Types
DREAM’s data types are shown in Figure 2. Data

items are classified into read-only and read-write data
items. Read-write data items can be further classified
into two types: Temporal and Persistent. The former are
those data items the values of which are valid only for a
certain period of time. The location of a soldier and the
location of an enemy are examples of temporal data items
as they move frequently in a battlefield. However,
persistent data items are valid throughout their existence
in the database. Locations of medical assistance and a list
of wounded soldiers are examples of persistent data items.
All read-write data items can be further classified into
periodic and aperiodic update data items. Periodic update
data items are those data items that are updated
periodically at fixed intervals of time. For example, the
location of a soldier may be updated frequently at a
constant interval of time. Aperiodic-update data items are
those data items that are updated at random intervals of
time. For example, the location and information about an
enemy may be updated at random time intervals.

Figure 2: Data Types

B. Transaction Types
The transaction types proposed in DREAM are shown

in Figure 3. Transactions, both firm and soft, are
classified as read and write transactions.

Figure 3: Transaction Types

Read transactions: they are further classified into three

sub-categories depending on the freshness of the data

Transactions

Read
Transaction

Write
Transaction

MR Outdated Insert/
Delete

MRVP Overwrite
Current
Value

Use
Current
ValueMRV – Most Recent Value Transaction

MRVP – Most Recent Value in a Partition

Data Items

Temporal Data
Items

Persistent Data
Items

Periodic
Update

Aperiodic
Update

Read-
Only Data

Items
Periodic
Update

Aperiodic
Update

read. Some transactions need the most recent values of
data items across all the database servers in the network
for transaction processing. These transactions are called
Most Recent Value (MRV) transactions. For example, a
military officer might need the most recent location of an
enemy to launch a missile. Some other transactions give
less importance to the freshness of the data for transaction
processing and can be executed even if the retrieved data
is stale. Such transactions are called outdated transactions
(OD). For example, a soldier might need the weather
information of a particular place to prepare for his or her
clothing.

Another type of read transactions is called the Most
Recent Value in a Partition (MRVP) transactions. These
transactions require the most recent values of data items
across all the database servers in a network partition. The
result of a MRVP transaction may or may not be the most
recent value of the requested data item across the entire
database. For example, a wounded soldier might query for
the location of medical assistance. This transaction would
have ideally been a MRV transaction. However in a
MANET environment, not all nodes are connected all the
times and, hence, the most recent values of data items
across all the database servers may not sometimes be
determined. An outdated transaction for this case is also
not an ideal one. Therefore, the most recent values of the
required data items across all the database servers in the
network partition in which the wounded soldier currently
resides should be returned back to him or her.

Write transactions: they are further divided into three
sub-categories depending on how their data updates
occur. Some write transactions insert or delete records
into the database. These transactions are called
Insert/Delete transactions. Another type of write
transactions is called the Use Current Value (UCV)
transactions. These transactions need the current values of
data items for transaction processing. For example in a
military application, a soldier might update the number of
wounded soldiers by a certain value. For this transaction
to be successfully executed, the number of currently
wounded soldiers must be known.

Another type of write transactions is called the
Overwrite Current Value (OCV) transactions. These
transactions overwrite the current values of data items and
can be executed successfully irrespective of the current
values of the data items. For example, soldiers in a
battlefield may update their locations periodically and
such update operations on their locations overwrite the
current values of their locations.

C. What and Where to Replicate?
Figure 4 shows this part of DREAM. Each server in

DREAM can store only a certain number of data items,
called maximum capacity. The first step of the algorithm
is to calculate the weighted access frequencies of data
items based on their data and transaction types. After
determining their weighted access frequencies, data items

with higher weighted access frequencies (hot data items)
are replicated before data items with lower weighted
access frequencies (cold data items) in servers that have
the maximum remaining power. After storing the hot data
items at appropriate servers, if there are any redundant
data items among neighboring servers, they are eliminated
depending upon the stability of the links connecting them
and the access frequencies of the next available hot data
items. Such a decision to replicate data items at
appropriate servers is taken every time during a certain
period of time called the relocation period [6].

1. Computing Access Frequencies based on Data and
Transaction Types

Access frequency of a data item d at a particular server
s, Access_Frequencyd

s, is the number of times that d is
accessed at s. From the access logs, similar to [6], the
access frequency of each data item at each server is
computed. In addition, in DREAM, the numbers of times
a data item is accessed by Firm, Soft, MRV and Non-
UCV transactions at all servers are computed. These are
computed only once by all the servers when running the
replication algorithm for the first time. These access
frequencies are then further calculated using a weight
factor based on the data and transaction types presented in
Sections 4.1 and 4.2. The resulting access frequencies are
thus the weighted ones to reflect replication prioritization
as shown in the following sections.

a) Firm and Soft Transactions: if a data item is accessed
more often by firm transactions than another data item is,
then the former data item is given a higher priority to be
replicated than the latter. This is to reduce the number of
transaction aborts since firm transactions must be aborted
if they missed their deadlines. Firm transactions’
execution time can decrease considerably if their required
data items reside in the servers to which the requests were
sent. The replication priority is set by assigning weighted
access frequencies to data items that are accessed by firm
transactions using the below formula where
Access_Frequencyd_Firm

s is the number of times data item
d is accessed by firm transactions at server s.

b) Temporal Data Item: a temporal data item is valid only
for a certain time period called its age. If the time
remaining during which a temporal data item is valid is
greater than the relocation period, then the probability for
successfully accessing that temporal data item until the
next relocation period is high as the temporal data item is
valid throughout the entire relocation period. However, if
the remaining valid time interval is less than the
relocation period, then the temporal data item is valid for

Access_Frequencyd
s = Access_Frequencyd

s +
Access_Frequencyd_Firm

s * (Access_Frequencyd_Firm
s /

Access_Frequencyd
s)

only some portion of the relocation period. The ratio
between the remaining valid time interval and the
relocation period is called the Age Relocation Ratio of a
temporal data item. A data item with a higher age
relocation ratio is replicated before the one with a lower
age relocation ratio. This is because the probability of
successfully executing a transaction that accesses the
former is more than the one accessing the latter as the
former is valid for a longer interval of time. Hence, the
weighted access frequency of a temporal data item is
calculated based on its age relocation ratio using the
following formula where Age_Relocation_Ratiod

s is the Age
Relocation Ratio of temporal data item d at server s.

c) Read-Write Data Item: a read-write data item that is
accessed frequently by UCV transactions is given a lower
priority to be replicated than a read-write data item, which
has the same access frequency as the former and is
accessed frequently by Non-UCV transactions. This is
due to the fact that the probability of executing an UCV
transaction is lower than the probability of executing a
Non-UCV transaction as the latter can be executed
irrespective of the current values of their required data
items. Similarly, the probability of successfully executing
a MRV transaction is lower than the probability of
successfully executing a Non-MRV transaction. Thus, a
read-write data item that is accessed frequently by MRV
transactions is given a lower priority to be replicated than
a read-write data item which has the same access
frequency as the former and is accessed frequently by
Non-MRV transactions.

2. Replica Allocation and Redundancy Elimination

By comparing the movements of two connected
neighboring servers, the distance between them can be
calculated. Based on their distance, transmission ranges
and velocity, the time in which they would be
disconnected can be estimated as presented in [6]. This
time is called the disconnection time of these two servers.
If the disconnection time of two servers is greater than the
relocation time period, these two servers can share data
reliably until the next relocation time period. However,
unlike [6] which does not address mobile hosts’ power
limitation, we believe that even if two servers are within
each others’ transmission ranges, they might not be able
to communicate with each other if they are out of power.
Hence, in DREAM, the link stability connecting two
servers until the next relocation period is given by the
formula:

A higher reliability ratio between two servers means
that the link connecting them is more stable to share data
between them. For example, if the reliability ratio of two
servers is 0.5, then only for 50% of the relocation period
can these servers share data, while for the rest of the time
they might be disconnected.

After determining the access frequencies and the
reliability ratio of all servers, data items in the descending
order of their access frequencies are assigned to servers
until the max capacity of data items in those servers has
been reached. If the access frequencies of data items are
similar at many servers, the same data items would be
replicated at those servers [6]. Replica duplication among
neighboring servers can be eliminated by replacing a
duplicate data item with the next highest accessed data
item as presented in [6]. However, if those neighboring
servers get disconnected in the future, data accessibility
would even decrease because of such a replacement.
Hence, in DREAM, the decision to eliminate redundancy
is taken only if it improves data accessibility. Assume
there is a replica duplication of a data item dx between
two neighboring servers, si and sj. The decision to remove
this redundancy in DREAM is based on the following two
conditions:

a) One of the servers (say si) is the primary copy server of
dx: in this case, the next highest accessed data item in sj,
dy, is computed. This data item dy can replace dx in sj only
if the link connecting si and sj is stable so that all requests
for dx in sj can be successfully executed by forwarding the
request to si. There is, however, no use in replacing dx by
dy if the difference between the access frequencies of dx
and dy in sj is very high or if the link connecting si and sj
is unreliable. As discussed above, the reliability ratio of
two servers indicates the stability of the links connecting
them. It is beneficial to replace dx by dy in sj only if the
sum of the number of times that dy can be accessed from
sj (Access_Frequencydy

sj) and the number of times that dx
can be accessed from si (Reliability_Ratiosi

sj *
Access_Frequencydx

sj) is greater than the number of times
that dx can be accessed from sj (Access_Frequencydx

sj).

b) Both of the servers are secondary copy servers of dx:
when these servers, si and sj, hold only the replica and not
the original copy of dx, the decision to remove this
redundancy is based on the access frequencies of the next
frequently accessed data items in both si and sj. The next
frequently accessed data items, du and dv, for si and sj,
respectively, are computed. As in case (a), DREAM first
determines if it is beneficial to replace dx by du in si, and
dx by dv in sj. If either of one of them is beneficial, then dx
is replaced by the appropriate data item at the server in
which it is beneficial. If none of them is beneficial, then
the redundancy is not eliminated. If both of them are
beneficial, the redundancy is eliminated in the server in
which more benefit is obtained.

Access_Frequencyd
s = Access_Frequencyd

s *
 Age_Relocation_Ratiod

s

Reliability Ratio = Percentage of Server Power
Remaining * (disconnection time / relocation period)

What_to_Replicate_in_Which_Server(data_item d,
server s, data_type, Access_Frequencyd

s,
Relocation_Period)
/* Valid_Remaining_Timed

s – the time remaining until which
the temporal data item d in the server s is valid;
Absolute_Validity_Intervald

s
 – the absolute validity interval of

data item d in server s;
Timestamp_Current_Valued

s
 – the time when the current value

of the temporal data item d is obtained in server s */
Begin
 /* Compute the access frequencies of data items based on
 their data types */
 If (d is a Temporal Data Item)
 Compute Valid_Remaining_Timed

s using the formula
 Valid_Remaining_Timed

s = Timestamp_Current_Valued
s +

 Absolute_Valid_Intervalds – Tnow
 If (Valid_Remaining_Timed

s >= Relocation_Period)
 Age_Relocation_Ratiod

s = 1
 Else
 Age_Relocation_Ratiod

s = Valid_Remaining_Timed
s /

 Relocation_Period
 End If
 /* Access frequencies of temporal data items are computed
 based on their remaining valid time period */
 Access_Frequencyd

s = Access_Frequencyd
s *

 Age_Relocation_Ratiod
s

 End If
 If (d is a read-write data item)
 If (s is not the primary copy server of d)
 /* assume p is the primary copy server of d
 UCV and MRV transactions accessing d should be
 forwarded to p */
 Access_Frequencyd

s =Access_Frequencyd_Non UCV
s +

 Access_Frequencyd_Non MRV
s + Reliability_Ratiop

s *
 (Access_Frequencyd_UCV

s + Access_Frequencyd_MRV
s)

 End If
 End If

Store maxCapacity number of data items in descending
order of their access frequencies in server s
For each server si

 For each server sj adjacent to si
 For all data items dx that is redundant
 between si and sj

 If (one is a primary copy server (say si) and the
 other a secondary copy (say sj))

 Find the next highest access frequency data item,
 dy, in sj

 /* Replace dx by dy in sj only if the sum of the
number of times that dy can be accessed from sj
(Access_Frequencydy

sj) and the number of
times that dx can be accessed from si
(Reliability_Ratiosi

sj * Access_Frequencydx
sj) is

greater than the number of times that dx can be
accessed from s Access_Frequencydx

sj); dx
should be replaced by dy in sj only if it would
increase data accessibility */

 If (Access_Frequencydy
sj + Reliability_Ratiosi

sj
 * Access_Frequencydx

sj >
 Access_Frequencydx

sj)
 Replace dx by dy in sj
 End If
 Else if (Both si and sj are secondary copy servers)

 /* either change one or change none */
 Find the next highest access frequency data
 items du and dv for si and sj,, respectively.

/* Can_du_Replace_dx – Check if the data
accessibility would be improved if dx is
replaced by du in si. This is done by checking if
the sum of the number of times that du can be
accessed from si (Access_Frequencydu

si) and
the number of times that dx can be accessed
from sj (Reliability_Ratiosj

si *
Access_Frequencydx

si) is greater than the
number of times that dx can be accessed from si
(Access_Frequencydx

si) */
 Can_du_Replace_dx = Access_Frequencydu

si +
 Reliability_Ratiosj

si * Access_Frequencydx
si

 > Access_Frequencydx
si

/* Can_dv_Replace_dx – Check if the data
accessibility would be improved if dx is
replaced by dv in sj. */

 Can_dv_Replace_dx = Access_Frequencydv
sj +

 Reliability_Ratiosi
sj * Access_Frequencydx

sj
 > Access_Frequencydx

sj
 If (Not Can_du_Replace_dx &&
 Not Can_dv_Replace_dx)
 The redundancy is not eliminated in
 either of the servers
 Else If (Can_du_Replace_dx &&
 Can_dv_Replace_dx)

/* If the data accessibility is more when dx
is replaced by du in si than when dx is
replaced by dv in sj, then dx will be
replaced by du in si; else dx will be replaced
by dv in sj */

 If (Access_Frequencydv
si+ Reliability_Ratiosj

si *
 Access_Frequencydx

si > Access_Frequencydv
sj +

 Reliability_Ratiosi
sj * Access_Frequencydx

sj)
 Replace dx by du in si
 Else
 Replace dx by dv in sj
 End If
 Else If (Can_du_Replace_dx)
 Replace dx by du in si
 Else
 Replace dx by dv in sj
 End If
 End For
 End For
 End For
End What_to_Replicate_in_Which_Server
Figure 4: What and Where to Replicate in DREAM

D. How to Access Replicas?
Due to space limitation, we present here only the basic

ideas of the algorithm; interested readers are referred to
[17] for the detailed algorithm.

Once data items are replicated at appropriate servers,
they are accessed in different ways based on the proposed
data and transaction types. When there is a request for a
data item d to a server that is the primary copy server of d,
d can be accessed directly from that server, irrespective of
its data type. If the initiated transaction is a write

transaction, the primary copy server, after updating its
original copy of d, broadcasts its update timestamp to
indicate to the other secondary copy (replica) servers that
hold d that their replicas are out of synchronization.

In contrast, if the coordinating server is not the primary
copy server of the requested data item, the data item is
accessed in different ways based on the data and
transaction types as discussed in the following sections.
Every server s that holds a replica of data item d has two
timestamps: the time when d is updated in s,
Local_Update_Timestampd

s, and the time when d is
updated at its primary copy server,
Primary_Update_Timestampd

s. These two timestamps are
used to determine if the replica is in synchronization with
the original copy.
1. Read Transactions

If the requested data item is a read-only data item, it can
be accessed from any server that holds it. Similarly, if the
initiated transaction is an OD transaction, it can be
accessed from any server that holds it. For both of these
two cases, if the requested data item is available at more
than one server, the decision to choose an appropriate
server is based on the real time transaction type. A firm
transaction is sent to the nearest server with the least
workload, while a soft transaction is sent to the highest
energy server with the least workload, for transaction
processing. The objective is to reduce the number of
transaction aborts and, at the same time, balance the
energy consumption distribution among servers.

If the requested transaction is a MRV transaction, the
requested data item should be accessed from the server
that has its most recent value among all the servers that
hold it. If the requested transaction is a MRVP
transaction, the requested data item should be accessed
from the server that has its most recent value among all
the servers in its network partition that hold it. Based on
the Local_Update_Timestampd

s of all servers s, the most
recent value of data item d can be determined.

A periodic update data item is updated once every
certain period of time called its update frequency. Hence,
a MRV or a MRVP transaction accessing a periodic
update data item can access it from any server that has
updated it during its last known update time interval. For
example, consider a periodic data item d that is updated
every one hour. A server s has the most recent value of d
if the difference between the current time (Tnow) and the
last update timestamp of d in s
(Local_Update_Timestampd

s) is less than its update
frequency (Frequency_Updated

s), which is one hour in
this example.
2. Write Transactions

If the transaction is an update transaction and if the
coordinating server is connected to the primary copy
server of the requested data item, the update transaction is
forwarded to the primary copy server for transaction
processing. If the coordinating server holds a replica of
the requested data item, and if the transaction is not an

UCV transaction, the local replica is also updated as
further read requests for that data item can be accessed
directly from the local replica.

However, if the coordinating server is not connected to
the primary copy server, and if the transaction is not an
UCV transaction, the update transaction is forwarded to
the server that holds the requested data item. If there is
more than one server that holds the requested data item, a
firm transaction is sent to the nearest server that has the
least workload and a soft transaction is sent to the highest
energy server that has the least workload for transaction
processing.

However, if the transaction is an UCV transaction, we
need the most recent current value of the requested data
item for transaction processing. The most recent current
value of a data item usually resides at its primary copy
server. However, if the coordinating server is not
connected to the primary copy server as in this case, the
transaction cannot be executed successfully. Hence, the
coordinating server will try to connect to the primary
copy server unless the deadline of this transaction has
expired, in which case the transaction is aborted. The
deadline here means the first deadline if the transaction is
firm and the second deadline if the transaction is soft.

E. How to Synchronize Replicas?
 Every time during the relocation period, the primary
copy server of a data item tries to synchronize its data
item with other connected servers that hold its replica.
The primary copy server requests for the last updated
timestamps from all replicas. Based on the update
timestamp of the primary copy and the update timestamps
of the replicas, the primary copy server determines if
there is any other server that has a more recent value of its
data item. If such a server exists, the new value of the data
item is synchronized with all other servers. However, a
server that is disconnected from the network during the
relocation period cannot synchronize its data item. Even if
the disconnected server has the most recent value of the
data item, the primary copy server cannot determine it
since the former is disconnected. Hence, it will only try to
synchronize the data item during the next relocation
period.

V. PERFORMANCE EVALUATION -
PROTOTYPE MODEL

After considering the various open source database
servers and clients based on our application requirements,
we have chosen MySQL [16] server on Linux as the
framework for our server database and DALP (Database
Access Libraries for PDA) [2] on Windows CE as the
framework for our client database system. We have
modified the OLSR routing protocol in Linux to route
packets and broadcast additional information like the
energy and position of each mobile host. We have used a

Global Positioning System (GPS) to track the locations of
mobile hosts that are used for both routing packets and for

Table I: Static Parameters

Parameters Value
Memory_Size_Server 512 MB [3]
Memory_Size_Client 127 MB [10]

Processor_Speed_Server 2.8 GHz, 5503 MIPS [3]
Processor_Speed_Client 200MHz, 350 MIPS [10]

Battery_Life_Server 3hrs [3]
Battery_Life_Client 2.5hrs [10]
Bandwidth_Server 11 Mbps [14]
Bandwidth_Client 11 Mbps [1]

Table II: Dynamic Parameters

Parameters Default
value Range

IAT (Inter Arrival
Time between
transactions)

0.5 Expon (0.1 – 1)
[13]

Firm Transaction
Probability 0.5 0, .25, .5, .75, 1

MRV Transaction
Probability 0.34 0, .25, .5, .75, 1

MRVP
Transactions
Probability

0.33 0, .25, .5, .75, 1

OD Transactions
Probability 0.33 0, .25, .5, .75, 1

Temporal Data
Probability 0.4 0, .25, .5, .75, 1

Number of
Partitions 2 1, 2, 3

MH disconnection
probability 0.5 PROB(0.1) TO

PROB(.9) [13]
Broadcast
Frequency 2 sec 2- 100 sec

Relocation Time 256 sec 1 – 8192 sec [5]
Access Frequency

Characteristics
(pi)

0.5 Zip parameter 0 -
.99 [9]

Periodic Update
Frequency 100 sec 0 – 300 sec [6]

efficient transaction processing. We have modified
MySQL and DALP to include our algorithm, DREAM.
We have used this prototype to compare DREAM with
the replication technique proposed in ([5], [6]), which we
call the Hara’s model and the “No Replication” baseline
model. Sections 5.1 and 5.2 describe the client and the
server transaction workflow in our prototype,
respectively, and Section 5.3 describes the test database
application.

The deadline of a transaction is computed based on its
run time estimate and slack factor. A soft transaction’s

second deadline is twice as that of its first deadline. The
performance is measured in terms of the percentage of
transactions successfully executed, energy consumption
of servers and clients, and the average difference in
energy consumption between two servers. This third
metric measures the balance of energy consumption
distribution among servers. The static and the dynamic
parameters used in our prototype model are shown in
Tables 1 and 2, respectively. The impacts of the following
five dynamic parameters are reported in this paper:
firm/soft transaction ratio, transaction inter-arrival time,
probability of mobile host disconnection, number of
network partitions and broadcast interval.

A. Client Side

Each client is provided with an easy to use interface to
generate real time transactions and associate appropriate
deadlines to them. DALP provides a set of application
programming interfaces that allows handheld devices to
connect to MySQL databases. The client sends its firm
transactions to the nearest server that has the least
workload for processing to minimize the chance of
missing their deadlines, while it sends its soft transactions
to the highest energy server that has the least workload for
professing so that a balance of energy consumption of
mobile nodes can be achieved. When the transaction
execution is completed, the client receives the transaction
results and displays them to the end user.

B. Server Side

The database server after receiving a transaction
fdetermines if it is a global transaction using its global
conceptual schema. Distributed transaction processor
functionality has been added to the MySQL database
server, which divides transactions into sub-transactions
and forwards these sub-transactions to appropriate
participating server(s) that holds the required data. The
local transaction processor then forwards these
transactions to the real time scheduler that we have built
into the MySQL server. The real time scheduler schedules
transactions with shorter deadlines for execution before
those with longer deadlines. The MySQL server has also
modified to include a commit protocol that decides to
abort or commit the transaction after communicating with
the participating servers. After executing the commit
protocol, the MySQL server sends the results back to the
client.

C. Test Database Application

We have obtained the data and transaction requirements
for a military database application from the Reserve
Officers Training Corps (ROTC) at the University of
Oklahoma. We have created relational database tables for
this application, populated each table with one million
rows of data, and generated transactions to retrieve and
update the data in the tables.

VI. PERFORMANCE EVALUATION
RESULTS

A. Impact of Firm/Soft Transaction Ratio
 The impact of the firm/soft transaction ratio on the
percentage of successfully executed transactions and the
server energy consumption is shown in Figure 6. More
transactions miss their deadlines as the ratio of firm to
soft transactions increases. Transactions with longer
deadlines have more time to be processed and, hence, the
probability of successfully executing such transactions is
high. DREAM gives more priority for data items that are
accessed frequently by firm transactions than those that
are accessed frequently by soft transactions. Hence,
DREAM has more successfully executed transactions.
Consequently, the power consumption of servers in
DREAM is the highest. However, the difference in server
energy consumption between DREAM and the other two
models is considerably lower compared to the difference
in the number of successfully executed transactions.

Figure 6: Impact of Firm/Soft Transaction Ratio

B. Impact of Transaction Inter-Arrival Time

In this experiment, the effect of system workload is
studied by varying the transaction inter-arrival time. As
transaction inter-arrival time increases, the speed of
generating transactions decreases and, hence, the system
workload decreases. Thus, transactions have less waiting
time for resources and, subsequently, have a higher
probability for successful execution. Since DREAM
successfully executes more transactions, the power
consumption of servers in this model is more than that in
the other two models. However, Figure 7 also shows that
the additional amount of energy that DREAM requires

from servers is much less than the gain it makes in terms
of the number of transactions successfully executed.

Figure 7: Impacts of Transaction Inter-Arrival Time

C. Impact of Disconnection Probability

Figure 8: Impact of Disconnection Probability

In this experiment, the impact of mobile hosts’

disconnection is studied by varying the mobile hosts’
disconnection probability. When the disconnection
probability is 0.5, the servers are kept out of each other’s
transmission ranges for 50% of the entire experimental
run. When the probability for disconnection increases, the
probability for nodes to be in different network partitions
also increases. Thus, some servers might not be able to
provide data services to clients that are in a different
partition. Hence, the number of successfully executed
transactions decreases with the increase in the probability
of mobile hosts’ disconnection as seen in Figure 8. As

Ex
ec

ut
ed

 T
ra

ns
ac

tio
ns

0
10
20
30
40
50
60
70
80
90

0 0.25 0.5 0.75 1
Percentage of Firm Transactions

Pe
rc

en
ta

ge
 o

f S
uc

ce
ss

fu
lly

No Replication
Hara
DREAM

0
10
20
30
40
50
60
70
80

0 0.25 0.5 0.75 1
Percentage of Firm Transactions

A
ve

ra
ge

 S
er

ve
r E

ne
rg

y
C

on
su

m
pt

io
n

 P
er

ce
nt

ag
e

No Replication

DREAM

0

10

20

30

40

50

60

70

80

0.01 0.25 0.5 0.75 1
Transaction Inter-Arrival Time

Pe
rc

en
ta

ge
 o

f S
uc

ce
ss

fu
lly

Ex
ec

ut
ed

 T
ra

ns
ac

tio
ns

No Replication
Hara
DREAM

0

10

20

30

40

50

60

70

80

90

0.1 0.3 0.5 0.7 0.9
Mobile Host Disconnection Probability

Pe
rc

en
ta

ge
 o

f S
uc

ce
ss

fu
lly

Ex

ec
ut

ed
 T

ra
ns

ac
tio

ns

No Replication
Hara
DREAM

0
10
20
30
40
50
60
70
80

0.1 0.3 0.5 0.7 0.9
Mobile Host Disconnection Probability

A
ve

ra
ge

 S
er

ve
r E

ne
rg

y
C

on
su

m
pt

io
n

 P
er

ce
nt

ag
e

No Replication
Hara
DREAM

0

10

20

30

40

50

60

70

0.01 0.25 0.5 0.75 1
Transaction Inter-Arrival Time

A
ve

ra
ge

 S
er

ve
r E

ne
rg

y

C
on

su
m

pt
io

n
Pe

rc
en

ta
ge

No Replication

 DREAM

expected, the power consumption of clients is the
maximum in DREAM as it successfully executes the most
transactions among all the three models. But DREAM
yields the most balance in energy consumption
distribution among servers.

D. Impact of Number of Network Partitions
The impact of the number of network partitions is

shown in Figure 9. As the number of network partitions
increases, the number of successfully executed
transactions decreases as servers in one network partition
cannot provide data services to clients/servers in other
network partitions. Server energy consumption
distribution becomes less balanced with the increase in
the number of network partitions as the isolated servers
which host hot data items consume higher power than the
other isolated servers

Figure 9: Impact of Number of Network Partitions

VII. CONCLUSIONS AND FUTURE WORK

A data replication technique called DREAM for real-
time mobile ad-hoc network database systems was
proposed in this paper. By replicating hot data items at
appropriate servers based on the data model, real-time
transaction model, read/write transaction model, current
network topology, stability of wireless links, data access
frequencies, and servers’ remaining power, DREAM was
demonstrated to perform the best in terms of percentage
of successful transactions, energy consumption and
distribution among nodes. As part of our future research,
we plan to extend DREAM for group-based MANET
architectures. We will also combine data caching and data
replication for further improvement.

 REFERENCES

[1] Cisco, http://www.cisco.com, Nov. 2004.

[2] DALP, http://www.kalpadrum.com/dalp, Nov 2004
[3] Dell, “Dell Users Guide”, 2004.
[4] IETF MANET Home Page -
http://ietf.org/html.charters/manet-charter.html, Dec 2003.
[5] T. Hara, “Replica Allocation Methods in Ad Hoc
Networks with Data Update”, ACM-Kluwer Journal on
Mobile Networks and Applications, Vol. 8, No. 4, Aug.
2003, pp. 343-354.
[6] T. Hara, Y.H.Loh, S.Nishio, “Data Replication
Methods Based on the Stability of Radio Links in Ad Hoc
Networks”, Journal of the Information Processing Society
of Japan, Vol.44, No.9, Sept. 2003, pp.2308-2319.
[7] M. Hauspie, D. Simplot, J. Carle, “Replication
decision algorithm based on link evaluation services in
MANET”, Technical Report, LIFL Univ, May 2002.
[8] X. Hong, M.Gerla, G.Pei, and C.Chiang, “A group
mobility model for ad-hoc wireless networks,”
ACM/IEEE MSWiM, Seattle,Washington, 1999, pp.53-60.
[9] J. Gray, P. Helland, P. O’Neil, and D. Shasha, “The
Dangers of Replication and a Solution”, ACM SIGMOD
Int. Conference on Management of Data, June 1996, pp.
173-182.
[10] Hewlett-Packard Laboratories, “Energy Management
on Handheld Devices”, Nov. 2004.
[11] G. Karumanchi, S. Muralidharan, R. Prakash,
“Information Dissemination in Partitionable Mobile Ad
Hoc Networks”, Symposium on Reliable Distributed
Systems, 1999, pp. 4-13.
[12] C. N. Lau, “Handling mobile host disconnection,
data caching, and data replication in managing real-time
transactions for mobile ad-hoc network databases”,
Master Thesis, University of Oklahoma, Aug. 2002.
[13] Y.Li, “Data Caching in Mobile Ad-Hoc Databases”,
Master Thesis, The University of Oklahoma, May 2004.
[14]Lucent, lucent.com/press/0400/000404.nsa.html, 04
[15] J.Luo, J.Pierre, H.P.Eugster,“PAN:Providing reliable
storage in ad-hoc networks with probabilistic quorum
systems”, ACM/SIGMOBILE Symposium on Mobile Ad
Hoc Networking & Computing, 2003, pp. 1-12.
[16] MySQL Open Source Database Server,
http://www.mysql.com, Nov. 2004.
[17] P. Padmanabhan, “DREAM: Data Replication in Ad-
Hoc Mobile Network Databases”, Master’s Thesis,
University of Oklahoma, Dec. 2004.
[17b] P. Padmannabhan, L. Gruenwald, “DREAM: A
Data Replication for Real-Time Ad-Hoc Mobile Network
Databases,” IEEE Int. Conference on Data Engineering,
April 2006, pp. 134-137.
[18] D. Ratner, P. Reiher, G.J. Popek, “Roam: A Scalable
Replication System for Mobility”, Mobile Networks and
Applications, Vol. 9 No. 5, Oct. 2004.
[19] B.Xu, O.Wolfson, S.Chamberlain, Y.Yesha,
“Adaptive Lazy Replication in Unreliable Broadcast
Networks”, Conference on Extending Database
Technology,2000.

0
10
20
30
40
50
60
70
80
90

1 2 3
Number of Network Partitions

Pe
rc

en
ta

ge
 o

f S
uc

ce
ss

fu
lly

Ex

ec
ut

ed
 T

ra
ns

ac
tio

ns

No Replication
Hara
DREAM

0
5

10
15
20
25
30

1 2 3
Number of Network Partitions

A
ve

ra
ge

 D
iff

er
en

ce
 in

 E
ne

rg
y

C
on

su
m

pt
io

n
of

 tw
o

Se
rv

er
s

No Replication
Hara
DREAM

