Real-Time Imaging 1, 419-426 (1995)

A Robust Hough Transform Technique for
Complete Line Segment Description

the parameters but not the length or the end points of the line. We propose a new algorithm

W hen the Hough transform is applied to the detection of straight lines in images, it provides

for the determination of the length and the end points of a line in an image. It is very
efficient in terms of computing time and does not depend on the sharpness of the peak in the accumulator

array.

Introduction

Detection of patterns in images is an important operation in
machine vision tasks. The Hough transform (1) is a power-
ful technique for the determination of parameterizable
pattemns in binary images. It is essentially a voting process
where each feature point votes for all the possible patterns
passing through that point. The votes are accumulated in an
accumnulator array, and the pattern receiving the maximum
vote is considered to be the pattern in the image. The
advantages of the transform are its robustness to noise and
discontinuities in the patterns. On the other hand, high
computational and storage requirements are the drawbacks
of the transform. Examples of parameterizable patterns are
straight lines, circles, ellipses, etc.

Several variants of the standard Hough transform (SHT)

have been proposed in the literature to reduce the time and
space complexity (2, 3). Multiprocessor implementations of
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the transform have also been suggested in order to speed-up
the execution of the transform (4,5,6). Investigations
regarding the performance of the transform have been
reported by VanVeen & Groen and Brown (7, 8).

When the Hough transform is used to detect straight
lines represented by the p — 8 parameterization, it provides
only the p and 8 parameters of the straight lines. Tt fails to
provide any information regarding the lengths or the end
points of the lines. Since many machine vision tasks require
the lengths and end points of lines to determine the location
of objects described by the lines accurately, it is extremely
important to determine the length and end points of a line.
Previous studies to detect the lengths or the end points of
the lines are either highly computation bound or are not
robust in detecting the end points. Six different algorithms
(9-14) have been proposed in the literature for finding the
length and end points of a line from the Hough accumulator
array. The algorithms described by Yomato et al. and Cosia
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et al. (9, 10) are based on the projections of the line on the
x- or y-axis. The algorithm described by Niblack and
Truong (11) is based on the concept of surface fitting and is
prohibitively expensive in terms of computing power. The
method proposed by Akhtar & Atiquzzaman (12) can detect
only the length of a line; it cannot detect the end points.

The algorithm described by Atiquzzaman & Akhtar (13)
can detect the length and the end points of a line, but the
accuracy of the detection is dependent on the accurate
detection of the line parameters, The algorithm is not effec-
tive in determining the end points of the line if the p and 8
parameters of the line cannot be detected accurately.
Hence, the method described by Atiquzzaman & Akhtar
(13} is not suitable in those cases where the peak cannot be
detected accurately. The algorithm described by Richards
& Casasent (14) is also based on the accurate determination
of the peak and hence suffers from the same drawback
experienced by Atiquzzaman & Akhtar (13). The aim of
this paper is to develop a robust algorithm to detect the
length and end points of lines. The novelty of the proposed
algerithm is its independence of the accuracy with which
the peak can be detected. For example, it has been shown
by VanVeen & Groen (7) that improper choice of discret-
ization values of the accumulator array may lead to unsharp
or multiple peaks. A second example would be an image
where, after discretization, pixels corresponding to a
straight line are not collinear. It is in those images and
cases where the proposed algorithm is superior to previ-
ously published algorithms.

In this paper, we propose a new algorithm to detect the
lengths and the end points of straight lines. The proposed
algorithm is based on an analysis of the distribution of
votes around the peak in the accumulator array. The
phenomenon of the spreading of votes in an accumulator
array has been described in detail (7, 13). The algorithm
proposed in this paper does not use the values of the p and
@ parameters of the line in order to detect the end points,
and hence is independent of the accuracy with which the
line parameters can be detected. Moreover, it has a time
complexity of O{1) which is the same as the complexity of
the best available algorithm (13). Note that the time com-
plexity of the algorithms previously described (9-12), are
Olnn; + N), O(n; + N), O(na N + N2 and O(1) respec-
tively. n, n, and N are the number of feature points, the
number of iterations, and the size of the accumulater array
respectively (12). The proposed algorithm differs from the
previously published algorithms in the following:

(i) reduced computational complexity, and
(i1} robusiness in detecting the end points.

The non-iterative nature of the algorithm and the use of a
small accumulator array account for its reduced computa-
tional complexity. The robustness of the algorithm is due to
it being independent of the peak detection accuracy.
Because of its low computational complexity and high
robustness, the algorithm is very suitable for implementa-
tion in real-time machine vision tasks. Results show that
the proposed algorithm can detect the end points and the
line length very accurately.

Notations

A straight line, represented by the normal parameterization,
is expressed as

p=xcos 8+ ysin 8 [1]

where p is the length of the normal to the line and @ is the
angle of the normal with the positive x-direction. The p and
8 axes of the accumulator array are divided into a number
of equal divisions of resolution Ap and A@ respectively.
The accumulator array is constructed by sampling the
values of @ at Ag intervals, and quantizing the p values
which are computed using Equation [1]. A cell, a P in the
accumulator array corresponds in the image plane to a bar-
shaped window of infinite length, of width Ap, making an
angle & with the positive x-axis, and at a distance p from
the origin (7). The cells a.., In the accumulator array,
therefore, correspond to a set of parallel bars of width Ap
and each making an angle 8, with the positive x-axis in the
image plane as shown in Figure 2. The seis of cells in the
different columns of the accumulator array correspond to
different sets of parallel bars in the image plane.

A sharp and distinct peak in the accumulator array
(Figure 1) is necessary for accurately determining the para-
meters of the line to be detected. The accuracy with which
the line parameters can be detected also depends on the
values of Ap and A8. In general, smaller values of Ap and
A8 result in a higher accuracy with which the line para-
meters can be detected. However, it the Ap and A@ are
made too small, the detection of the peak becomes difficult
due to the spread of the votes in the peak as described by
VanVeen and Groen (7). The sharpness and the shape of
the peak depend on the discretization of the image, width of
the digitized line, and the quantization resclution (denoted
by Ap and AG) of the accumulator array.

Van Veen et al. (7) have demonstrated that the peak in
the accurnulator array spreads in the p direction as Ap is
decreased. On the contrary, a decrease in Af results in a
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Figure 1. Accumulator array A showing the cells around the
peak.

spread of the peak in the & direction. It 18 well known that
the pixels belonging to a line (expressed in the p — 8
parameterization} in an image preduce a butterfly shape in
the parameter space. The angle subtended by the wings of
the butterfly depends on the length and the position of the
line (15).

The parameters of a line along with its length and coordi-
nates of the end points are sometimes referred to as the
complete line segment descriptions. The following nota-
tions will be used in describing the proposed algorithm for
finding the complete line segment descriptions. To maintain
consistency, we use the same notations as Atiquzzaman &
Akhtar (13).

Where
Py Bipe = Size of the accumulator array
=g, 0=i=p, - 1,0=7=6, —1]
= Hough accumulator array.
Py Praxe = Minimum and maximum values of p and 6
i O axes of Fhe accumulator array.
Ap, AB = Resolution of the p and @ axes of the accu-
mulator.
b = The bar in the image plane corresponding
to the cell g, , in the accumulator array.
C, = k-th column in the accymulator array. The
colwmn consists of the celis a ,.
C‘u = The column in the accumulator array con-

taining the peak.

P, 6, = Actual parameters of the line.

[ Bp = Line parameters obtained from the coord-
inates of the peak in the accumulator array.

p. 0, = Line parameters calculated from the end

points of the line by using the method pro-
posed in this paper.

u* = Row index corresponding to the first non-
zero cell in C,. The first non-zero cell in €,
(see Figure 1) is defined to be the first cell
containing a non-zero vote when scanning
the cells in C, from p=0top,, . — 1.

pk = Row index corresponding to the last non-

zero cell in C,. The last non-zero cell in C,

is the first cell containing a non-zero vote

when scanning the cells in C, from

p = Py, — 1 down to 0. The number of

cells between the first and the last non-zero

celis in C, will be called the spread of

votes in C,.

=The spread of votes in C,.

Number of columns between C , and C.

= Length of the line computed from the co-

ordinates of the end points obtained from
the proposed algorithm.

€ = Error in the x-coordinates of the end points
obtained from the proposed algorithm.

€ = Error in the y-coordinates of the end points
obtained from the proposed algorithm.

Pk = Length of the normal to the bar (in the
image plane) corresponding to the first
non-zero cell in C,. Note that the first non-
zero cell in C; corresponds to the bar b, in
the image plane containing the end point
(x5, ¥,) in Figure 2.
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Figure 2. Illustration of parallel bars corresponding to the cells
in Ck.
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5 = Length of the normal to the bar (in the
image plane) corresponding to the last non-
zero cell in C,. Note that the last non-zero
cell in C, corresponds to the bar b, in the
image plane containing the end point (x|,
v,) in Figure 2.

The Proposed Method

As mentioned in the previous section, the cells a.,p, COITES-
pond to a set of parallel bars of width Ap in the image
plane. The number of non-zero cells in Aoy, (called the
spread in a.,ek) is equal to the number of parallel bars (in
the set corresponding to a.,g,) intersected by the line. The
proposed algorithm is based on a microanalysis of the dis-
tribution of the votes around the peak in the accumulator
array.

A flow chart describing the proposed algorithm is given in
Figure 3 followed by a detailed explanation of the algorithm.

Atiquzzaman & Akhtar (13) obtained the end points of a
line by determining the intersecting points between the bar
corresponding to the peak (in the accumulator array) and
the two bars corresponding to the cells p ’} and g% in any
coluomn C,.The accuracy of the detection therefore,
depends on;

M. ATiIQuzZzAMAN AND M. W. AKHTAR

(1) the choice of C > and
(ii) the accuracy with which the peak can be detected.

An algorithm for the choice of C, has been described by
Atiquzzaman & Akhtar (13). However, an accurate detec-
tion of the peak in the accumulator array is a non-trivial
task (8). The accuracy with which the peak can be detected
depends on the sharpness and uniqueness of the peak. It has
been shown (7) that the peak in the accumulator array may
spread due to discretization of the image space and the
accurmnulator array. Due to the dependence of the algorithm,
described in Atiquzzaman & Akhtar (13), on the accuracy
with which the peak can be detected, the end points
obtained from the above algorithm are not always reliable.
In this paper, we propose an algorithm which is indepen-
dent of the accuracy with which the peak is determined.
Hence the proposed algorithm is more reliable and robust
than the one described previously (13). In the proposed
algorithm, the 6 value of the peak (Gp) is only used to deter-
mine two columns, C ! and C,, as described below.

Consider two columns C, and C, whose cells correspond
to the two sets of parallel bars having their normals inclined
at angles 6, and 6, respectively with the positive x-axis.
The lengths of the normals p 4, p 4, o /|, and p  (see Figurc
4) to the bars corresponding to the cells i GSatd prhand p]
respectively are determined from the accumulator array.
The above lengths are the lengths of the normals to the bars

Build accomulator array

Detect the peak and determine
the corresponding p and 8

y

Select two colu
one on each side of the peak

mns Cp and C,,

Scan C), and C,, to find the cells
,u;i', oy p;, and ;" and calculate
p3. pl, p1 and p;, from Eqns (6)4(9)

Compute coordinates of the end
points using Eqns (10)~(13}, and calculate p and 8

Figure 3. Flowchart of the proposed algorithm.
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corresponding to the first and last non-zero elements in C v
and C,. These normals can be expressed as

P =x cos Gq + y, sin 9q 2]
p=xcosf +y sin6 {3]
p%=x,0c08 Gq + v, sin Bq 4]
phL=x,c08 8 + y,sin 6 [5]

p% p% p’, and p¥ can be expressed by the following
equations (see Figures | and 4).

P4 =Py T 1P 6]
P 4= Pig + 1 AP [7]
P = Prin T M AP (8]
P o= Py T M AP (91

Since p,;, and Ap are known, p 9%, p%, p’, and p’, in
Equations (6)—(9} can be calculated after B u p and
#i are obtained by scanning the columns Cq and C, for the
first and last non-zero elements. The calculated values of
PY% p% p', and p’ are then substituted in Equations
(2)—(5). Since Bq and 6, are known from the choice of Cq
and C, solution of Equations (2} and (3) will give the coor-
dinates (x,, y,) of one of the end points. The other end point
(x,, y,) can be obtained similarly by solving Equations (4)
and (5). The coordinates obtained by solving the above two
sets of equations are as follows.

YA
Solution
), Fegion
(x1,51) oy
s
,oli (x9,¥5)
P
]6,—9q|
8.\ 9

Figure 4. Computation of the end points independent of Bp for 8 ),
>45°

p']q sin Gr - p{ sin Bq
X, =
~1 i -
sm(Gr Bq)

{10]

[ _ N4
P cosﬂq P cos@r

(11)

T e -8,
) =p§ sinﬂr—pgsineq .
"2 sin(Gr - Bq)

_ pg cos@q - pg cos Br 131
2 sin9, =,)

We define a thick line as one which has 8, # 45°, Thick
lines exhibit the phenomenon of a line being split up into a
number of smaller horizontal or vertical line segments. Due
to the splitting of a thick line into several smaller line seg-
ments, the following rules regarding the choice of € and
€ have to be applied for the accurate detection of the end
points of a thick line. The reasons behind the above rules
are explained elsewhere (13).

. Rule I Select C v {orC). g (orr)>p,
if —45° <8, <45°,135° <8, <225°

. Rule 2: Select Cq {orC),glorr)<p,
if453° < 8, < 135°,225" < 6, <315

The above rules determine whether C, and C, should be
chosen to the left or the right of C,. To apply the above
rules, 8, can be approximated by 6 . For a thin line, defined
as a line having 6 =45°, it does not matter whether Cq and
C_ are chosen to the left or the right of C,

Once the end points of a line are determined from the
above algorithm, the line length (/) is obtained from the
end points by

I :\[(xl*xz)z‘*"()ﬁ _)’2)2 [14]
and the normal parameters are obtained as

_ KX — 4 Y,
pl‘ - 2 2
'\/(Il Y+ -»)

[15]
8, = arctan(u} -90° [16]
X, —x

The maximum errors in the coordinates of the end points
depend on the area enclosed by the intersection of the two
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bars (C ; and C ) as shown by the shaded parallelograms in
Figure 4. The maximum errors in the x and y-coordinates
can be easily shown to be

L _(Ap/2)sin(®, +6,)/2)
T sin((6,-6,)/2)

{17]

. _ 8p/2)cos((6, +6,)/2)
YT sin(@, -6,)/2)

[18]

From Equations [17] and [18] it is seen that the errors can
be reduced by:

(i) increasing A, thereby making 18 — B | large
(Increasing A8 has the additional advantage of requir-
ing less computational time to construct the
accumualtor array.) and

(ii) choosing two columns C p and C_which are far apart,
i.e., ig — rlislarge,

Results

In this section, we present results regarding the accuracy of
the end points and line length from the proposed algorithm.
The main focus of this paper is to illustrate the effective-
ness of the proposed algorithm in accurately determining
the end points of a straight line. The effectiveness is illus-
trated by comparing the difference between the coordinates
obtained from the proposed algorithm and the actual coor-
dinates of the line in the image. The parameters and end
points of a straight line generated in a synthetic image are
known much more precisely than a line in a real-world
image. Therefore, to determine the accuracy of the results
obtained from the proposed algorithm and calibrating the
results, we have used synthetic images in our experiments.

Using the algorithm proposed earlier, the errors in the
line length are shown in Figure 5 for different values of Ap.
A line with p = 90 and 8, = 25° was used with
A8 = 0.7087. The errors are lower than those obtained from
the previous algorithm (13). The increased accuracy is due
to the proposed algorithm being independent of the accu-
racy of the line parameters,

Note that the errors decrease with an increase in d,
This is expected since the area of the solution reglon
(shaded parallelogram in Figure 4) decreases with an
increase in d o due to a reduction in the angle between the
bars corresponding to the cells in C,and C,.

The variation of the average errors in the length and end
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Figure 5. Errors in the line length vs, d,, for a line having p =
90and 8 =25". 0, Ap=0.0898; ¢, Ap = 00998+Ap 01]23
X, Ap= 0.1283.

peints vs. d,, are shown in Figures 6 and 7 for different
combinations of Ap and A#. The average errors were
obtained by applying the proposed algorithm to a large
number of lines with different values of p and 6 and taking
the mean of the errors from the different lines. Different
combinations of Ap and A# have been used in the above
figures to show the effectiveness of the proposed algorithm
for different values of Ap and A8. The errors decrease with
a decrease in Ap, as can be seen from the lower errors in
Figure 7 compared to the errors in Figure 6.

The effects of varying Ap and A8 (keeping d . constant)
are shown in Figures 8 and 9. Figure 8 shows the error in the
detenmnatmn of the line length as a function of Ap for

= 10 and three different values of A8(0.31, 0.47 and 1.0),
It 1s seen that the errors increase with an increase in Ap andfor
a decrease in A#. This is because the area of the solution
region increases with an increase in Ap and/or a decrease in
A, and thus validates Equations [17] and [18]. Figure 9 shows
the effect of Ap and az’q'r (keeping A& constant) on the errors in
the computed length. It is observed that the errors increase
with a decrease in dq and an increase in Ap, The above obser-
vation further confirms the validity of Equations {17} and [18].
Figure 10 shows a real image and the corresponding image
showing straight lines which have been detected. The pro-
posed algorithm requires about 5s of execution time for a
256 > 256 binary image on a SUN Sparcstation.

Conclusions
The Hough transform, when applied to the detection of

straight lines in images, provides only the parameters of the
line, It fails to provide the length or the end points of the
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line. Previous extensions of the Hough transform for
obtaining the length or the end points are either highly
computation intensive or rely on the ability of the standard
Hough transform to detect the parameters of the line accur-
ately. In this paper, we have proposed an improved
algorithm to detect the end points and determine the line
length. The proposed algorithm is very robust against the
failure of the standard Hough transform to detect the para-
meters of the line due to spreading of the peak in the
accumulator array. It is not computation intensive and has a
time complexity of Q(1) which is the lowest among the
algorithms reported in the literature,
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When the Hough transform fails to determine the line
parameters due to the peak in the accumulator array not
being very sharp, the proposed algorithm can serve as an
alternative method to compute the parameters using the
coordinates of the end points. Thus the algorithm can be
used to obtain the parameters or to verify the parameters
obtained from the peak in the accumulator array by the
standard Hough transform.

Results show that the proposed algorithm can detect the
length and the end points very accurately. The proposed
algorithm is non-iterative in nature and is based on a micro-
analysis of the spreading of the votes in the accumulator
array. This approach makes the algorithm very robust com-
pared to previous algorithms, most of which analyse the
image space to obtain the line length and the end points.
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Figure 10. Real-world image and the corresponding image showing detected lines.
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