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Abstract

Multistage networks are strong candidates for im-
glementatz‘on of ATM switching fabrics in Broadband
SDN networks. To prevent internal loss of data,
buffers are often used inside the switching elements
of the fabric.” The objective o{ this paper is to develop
models to evaluate the throughput and packet delay, in
the presence of a general traﬁc pattern, of an
swilching fabric using multiple buffers at the outputs
of the switching elements. The models are based on
Markov chains, and use several simplifying assump-
tions to make the model tractable. One of the models
take into account of the blocked packets and the his-
tory of blocking. The models produce accurate results
tn the case of a general traffic pattern.

1 Introduction

A multiprocessor system consists of a number of
processors and memories connected together by an
interconnection network. Multistage interconnection
networks (MINs) have been found to be suitable for
scalable large-scale systems. A MIN consists of several
stages of small crossbar switching elements (SE), con-
nected together by a permutation function. Because of
their self-routing property, MINs have also been pro-
posed as ATM switching fabrics in Broadband ISDN
networks. The overall performance of a multiprocessor
system or the Broadband ISDN depends significantly
on the interconnection network or tge switching fabric
respectively. Hence, it is extremely important to eval-
uate the performance of the network and the fabric.

Performance analysis of unbuffered MINs have been
reported in [1, 2, 3]. Buffered MINs prevent internal
loss of data in the case of routing conflicts, and in most
cases have a higher throughput than the unbuffered
MINs. Dias [4] and Jenq [5] have analyzed MINs con-
sisting of 2 x 2 switching elements with single-packet
input buffers and uniform traffic in the MIN. It has
been shown that the maximum achievable through-

ut for large sized MINs having single input-buffered
gEs is limited to approximately 0.45 under uniform in-
put traffic pattern [5]. Even with infinite-sized input
buffers, the maximum throughput of a large multi-
buffered MIN is limited to approximately 0.75 [4].

Kruskal and Snir [6] have discussed Banyans net-
works with output-buffered SEs for the case where the
buffer capacity is infinite. Kim [7] reported a queue-
ing analysis and a simulation study of output-buffered
Banyans with an arbitrary (finite) buffer size. It was
shown a maximum throughput of one can be achieved
with infinite-sized output-buffered SEs. All the above
performance analyses were made on the assumption of
the MIN operating in the presence of a uniform traffic
pattern.

Non-uniform traffic conditions can occur in a mul-
tiprocessor system, for example, in the case where
shared variables are used for synchronization. Pfis-
ter [8] discussed the phenomenon of tree saturation
arising as a result of a hot spot in a buffered MIN.
Tree saturation results in degradation in the perfor-
mance of the MIN, Nonuniform traffic conditions can
also reflect the traffic patterns of ATM networks where
a wide range of bandwidths need to be accommodated.
Therefore, the performance of MINs in the presence of
nonuniform traffic is an important issue to be studied.

Analysis of single input/output buffered MINs in a
nonuniform traffic environment is described in [9, 10].
Atiquzzaman [11] proposed an efficient Markov chain
model for the performance evaluation of a single in-
put buffered Omega network in the presence of a hot
spot. Performance studies of output-multibuffered

INs under nonuniform traffic patterns has been re-
ported in [12].

Analytical models permit a fast and inexpensive
method of performance evaluation, and provide in-
sight into tﬂe factors that determine design trade-
offs as well as quantitative estimates of their impor-
tance. Lin et.al [13] presented an analytical model for
evaluating the performance of finite-buffered packet
switching' MIN "under a general traffic pattern. In
their model, there is no buffer space at the process-
ing elements. Discarded packets are not re-submitted.
Moreover, they have not considered the history of a
blocked packet in an SE, and keep the values of the
routing probabilities of blocked packets the same as
the unblocked packets.

The aim of this paper is to develop an analyti-
cal model to evaluate the performance of an output-
multibuffered MIN in the Fresence of a general traffic
Faltl:tern. The objectives of the research work were as

ollows.
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o To develop a generalized analytical model which
can be applied to evaluate tilxe performance of
output- multibuffered MINs with arbitrary buffer
sizes and input load under nonuniform traffic en-
vironment, particularly in the presence of a hot
spot traffic.

o To allow resubmission of packets which are re-
jected by the network. The rejected packets are
queued at the Input Buffer Controller for resub-
mission in the next cycle.

. g}% consider the history of a blocked packet in an

o To check the validity of the proposed model by
comparison with simulation results.

Two different models are presented in this paper. The
basic model does not memorize the history of blocking,
while the memorized model is capable of taking into
account the fact that a blocked packet always hunts
for the same output link of an §E during successive
clock cycles.

In Section 2, the structure, operation, and the mod-
eling assumptions of an output-buffered Omega net-
worﬁ are described. A basic analytical model for the
performance evaluation of an output-buffered Omega
network under a general traffic environment is pro-
posed in Section 3. A memorized model is introduced
In Section 4 to account for the blocked packets and
the history of blocking. Results obtained, in the pres-
ence of uniform and hot spot traffic, from the basic
and memorized models are compared with those from
stochastic simulations in Section 5, followed by con-
cluding remarks in Section 6.

2 Modeling Assumptions

The Omega network, originally proposed by Patel
[1], will be taken as an example of a MIN to be mod-
eled. The model, in fact, applies equally well to all
unique path networks.

e make the following assumptions regarding the
operation and environment of the interconnection net-
work as in [7, 11, 12] .

1. There are N = 2" inputs and N outputs of the
network. Each input of the network has an Input

Buffer Controller (IBC) of size m.

2. The network is operated synchronously. This re-
flects the situation in an ATM environment where
all packets have a fixed length, and fit exactly into
one clock clock. For modeling purposes, we split
the clock clock into two phases

o In the first phase, the availability of buffer
space at the succeeding stage along the des-
tined path of a packet is determined; the
packet is informed whether it may proceed
to the succeeding stage or should stay in the
current buffer during the current cycle.

e Depending on the availability of buffer space

in the succeeding stage, a packet may move
forward one stage in the second phase.

3. A backpressure mechanism ensures that no pack-
ets are lost within the network.

4. A buffer squorts simultaneous enqueueing and
dequeuing of packets during the same cycle.

5. Packet arrival process at each input of the net-
work is a simple Bernoulli process.

6. There is no blocking at the output links of the
network.

7. The conflict resolution logic at each SE is unbi-
ased.

8. Since at least one time unit is spent in each buffer
even when there is no waiting, the minimum pos-
sible delay of a packet is equal to n + 1, where n
is the number o? stages. It includes the delay at
the IBC buffer.

9. For a uniform traffic pattern, an incoming packet
is equally likely to be directed to any output link.
For a hot spot traffic pattern, the probability that
an incoming packet is directed to a non-hot or a
hot memory module are (1 — h)/N and h+ (1 —
h)/N respectively, where h is defined to be the
hot spot probability.

10. When two packets from different buffers in the
same stage contend for the same output buffer
in the next stage, a contention occurs. If there
is more than one space available at the buffer in
the next stage, the switch is assumed to be fast
enough to accept both packets in one cycle. If
only one space 1s available, a packet is randomly
chosen to fill up this space; the other packet is
then ”blocked” and stays at the original buffer.
However, if no space is available in the next stage
then both the packets are blocked.

11. We assume that there is an IBC at each input of
the network . Packets buffered at the IBC are
resubmitted in the next cycle.

3 Basic Model

In this section, we develop an analytical model to
evaluate the performance of an Omega network in the
presence of a general traffic pattern. Markov chain is
used for the model, and is based on the methods given

in Kim [9, 7] and Atiquzzaman [11].
3.1 Modeling a Single Queue

We first define the following variables in the same
manner as in [9], and derive a set of state equations
relating these variables. Figure 2 shows how the SEs
are specified by parameters k, [, input ports = and
z, and output ports y and y. Figure 1 shows three
consecutive SEs in successive stages of the network.
We denote the input and output ports of the [ -th S}E
at stage k by kiz, klz, kly and kly. Let (k + 1)lj

denote the input port of the [ -th switching element,
at the (k+1)-th stage, which is fed by the output port
kly. Also, let (k — 1)IZ denote the output port of SE,
at the (k -1)-th stage, which feeds the input port klz.

We define the following variables to be used in our
model.
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Bj,,(t) = probability that there are i packets in the
buffer at klv, v € {y, y}, at the beginning of cycle
t.

w;; = transition probability of a buffer from state i to
state j, given that it is in state :.

Bi; = probability that a packet arriving at the i-th
input of the network is destined for the j-th out-
put of the network. Note that 8;; = 1/N for a
uniform traffic pattern.

m = number of buffers at each output of an SE.
n = number of switching stages in the network.

Priuy(t) = Probability that a packet, ready to come
to klu during clock cycle ¢ is destined to klv, u €

{z,z}, v e {y,y}.

Qriu(t) = probability that a packet is ready to come
to port klu during cycle ¢, u € {z, z}.

C%,,(t) = probability that i , 0 < 7 < 2, packets are
ready to come to the buffer at klv during cycle ¢,
ve{yy}.

Triy(t) = probability that a packet in buffer klv ad-

vances to the next stage during clock cycle ¢,
given that there is a packet in the buffer at klv,

v € {y,y}

Tkiuy(t) = probability that a packet from port klu ad-

vances to the buffer klv during clock cycle ¢, given
that a packet, destined to klv, is ready to come

to klu during cycle ¢, u € {z,z}, v € {y,y}.

p = Probability of a packet coming to an IBC during

a cycle.
k-1 k k+1
x x ) R4
EEL N ) | 1-EIDE
wy. 2T
T Qax i 5 =10y

Figure 1: Hlustration of rgzy (), and gy ()

3.2 Routing Probabilities

The steady state value of any variable z(¢) will be
represented by z. Now, we obtain equations for iy,
Triy and Qrp,. Their reiationship is shown in Figure 1.
A packet, ready to come to the klu port and destined
to klv port, can pass from klu to klv buffer when the
following conditions are satisfied.

1. There are at least two packet spaces in the buffer
of klv port, or

2. The buffer at klv has m — 1 packets and a packet
in the buffer advances to the next stage in the
same clock cycle, or

3. The buffer at klv has m — 1 packets and a packet
can not be forwarded, and there is no conflict be-
tween the packet at klu and a possible packet at

klu, or there is a packet at klu which is destined

to klv and the conflict is resolved in favor of the
packet at klu, or

4. The buffer at klv has m packets and a packet
advances to the next stage 1n the same cycle, and
there is no conflict between the packet at klu and
a possible packet at klu, or there is a packet at
klu which 1s destined fo klv, and the conflict is
resolved in favor of the packet at klu.

These conditions translate into the following equation
for Tkiuv-

Thiww = 1 = {B, + Bl '} + Bl ey 4+ {1 -
Qity + Qriu Privw + 0.5Qk1u Priww }H{ Bl !
(l—rklu)+Bmurklu}a ISkSn—l (1)
Since the network output links are always ready to
remove packets, rnp, = 1 and r,,, is obtained from
Equation (1) as
Prtuy = 1 — BvaHg(l - 0-5Pnlgv - Pﬂlﬂ) (2)
Ty can then be obtained from rijy,, as follows
Tkiv = P(k+1)iﬁy"(k+1)iay + P(k+1)fﬁgr(lc+1)fﬁg (3)
Qriw and @Qqiy can be expressed as
leu = 1- B?k—l)l-'& (4)
Quu = 1-B. (5)

where BU. is the probability of the IBC being empty.

The probaubilities of packets coming to a buffer at the
klv port are given by

Cin = 1-(Cip +Ciyy) (6)
Citv = QituPrivn(l — Qri) + Qriu Prtus (1 — Qirn)

+Qkiu Qrtu(Prtu Privw + Priuy Prtwy)  (7)
Cinw = QriuPriuvQriuPriyy (8)

3.3 Destination Port Probabilities

Priyy is 0.5 for a uniform traffic pattern. On the
contrary, a general traffic pattern implies that Py,
may not be 0.5. We model this general traffic pattern
by finding a mapping scheme that transforms a given
memory referencing pattern into a set of Pyy,’s which
reflects the given memory referencing pattern [13].

As an example, let us take an 8 x 8 Omega net-
work as shown in Figure 2. Since we assume that all
processing elements generate the same general traffic
pattern, we only discuss the mapping scheme for one
processing element. We can represent the referencing
pattern of processing element 2 in terms of the mem-
ory destination probability j3;;, the probability that a
packet chooses memory module j as its destination.
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Figure 2: Omega network in hot spot traffic pattern

Consider a packet %?nerated by processor 0 and ob-
serve the path it takes as it travels through the net-
work to access a memory module. The packet chooses
memory module 0 with probability Byo which equals
Piogy Paogy Paogy- Similarly, the packet from process-
ing element 0 chooses memory module 1 with proba-
bility Bo1 = PIOEEPZOQ“ — P30£2)- Using these two
equations, we find P30£2 in terms of Bgo and Fo;.

Boo
Boo + Bo1
The other destination port probabilities in the SEs can

be found in a similar way, once the memory referencing
patterns Pgiyy’s are known.

(9)

3.4 Stage Buffers

A buffer at any SE at stage k, 1 < k < n , is
modeled as a Markov chain. The state of a buffer is
represented by the number of packets in the buffer.
Tﬁe probability of departure of a packet from a buffer
in a stage is determined by the possibility of conflict
with a packet at the same stage and the availability of
buffer space at the destined SE of the next stage. The
(m + 1) state Markov chain of the buffer is shown in
Figure 3, with m;;,4,7 = 0,1,..., m being the transi-

tion probability from state ¢ to state j .

Figure 3: Markov state transition for stage buffers

Even a full buffer is able to accept a packet if
a packet leaves the buffer in the same cycle. With

these considerations, the transition probabilities, IT =
[7ij,0 < i,5 < m] at buffer klv are described by the
following transition equations.

oo Tor ... Tom

Tio 7Ty ... MTim
II= .

Tm0 Tmi .- Tmm

where moo = C2,,, mo1 = C}y,» mo2 = CE,, mo3 = 0,
Tio = Oy Thivs T11 = CliyPhitv + Chiy (1 — Pity), T2 =
Chi, (1 =re1,)+ CEyrkiw, s = CE(1—7ray), T4 = 0.
We obtain the steady state buffer state probabilities
B = [BY,,BL,,...,Bp,| for buffer kiv by solving
equations

B = BI (10)

and » By, = 1 (11)
=0

The output links of the last stage buffers can always
receive packets. The Markov chain remains the same
as that of the intermediate stages, except that rp;, =
1, We therefore obtain the steady buffer state proba-
bility vector B for the k£ = n by substituting rn, =1
in Equation (10) and solving the Markov chain.

3.5 IBC Buffers

The IBC buffers are also modeled as a Markov
chain. We assume the buffer as being driven by a
Bernoulli process, with grobability p of a packet ar-
rivals during a cycle and with geometric departures.
The probability of departure (rgs,) of a packet is de-
termined by the availability of buffer space at the first
staf%e. The m + 1 state Markov chain model of an m-
bufier IBC buffer is shown in Figure 4. The transition

0LOWODORNOD

o
00 11 T2 33

Figure 4: Markov state transition for IBC buffers
probabilities, IT = [m; j,0 < ¢, j < m] are given by

I-p P
(1 =p)rore (1= p)(L = row) + prow

The steady buffer state probabilities of the IBC are
obtained by solving the Markov chain as in Section 3.4
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3.6 Throughput and Delay

We use the normalized throughput () and the
delay (é) as the performance criteria. Normalized

throughput is defined as the number of packets leaving
an output of the network during a cycle.

w=1-BY (12)

The maximum normalized throughput is computed by
increasing the arrival rate (p) to the IBC until Qqp,
becomes one. @Q1;, = 1.0 means that a packet from the
IBC is ready to come to the first stage of the network
at every clock cycle.

Delay (é) is defined to be the number of clock cy-
cles required by a packet to reach the destination port
st,.airtin%1 from the source port. Let Ry be the proba-
bility that a packet in the buffer of an SE in stage k
is able to move forward. Therefore,

|
=Y — 13
kzlek (13)

B;clv 1
where, Rk = PTkly Z (’1——Bgl) ; (14)
i=1 v

The single queue analyses are made consistent by
forcing the single queue variables to yield certain
known long term flows. The input traffic is described
by the load matrix 8 = [8(¢,7)]. The steady state
flow at the k! switching element along uv, Pkiyy can
easily be computed from Equation (9). The objective
of the analysis is to determine the values of B}, , the
steady state probability of buffer occupancy at the k-
th stage. Since the equations describing the dynamics
of the network are described by recurrence relations,
the solution is obtained by an iterative method.

4 The Memorized Model

The model described in Section 3 uses static rout-
ing probabilities for the packets at the SEs. It allows a
packet at an SE to choose an output port of the SE ac-
cording to the static routing probabilities. This permits
a packet blocked at an SE to choose an output port,
during the next cycle, which is independent oFthe port
for wﬁich it was blocked. Consequently, the results
obtained from the model in Section 3 are optimistic
since it allows a blocked packet to be routed aroun
a congested queue. In practice, a blocked packet al-
ways hunts for the same output port during consecu-
tive cycles, and hence does not obey the static routing
probability. Moreover, a blocked packet at an SE has
a higher chance of being blocked again than a new
packet at the SE. To account for the above limitations
of the previous model, we develop a memorized model
which memorizes the history of a blocked packet. In
this model, a blocked packet does not use the static
routing probabilities for successive routing attempts.
The memorized model is based on the work reported
in {13].

In addition to the Markov chain representing the
occupancy of a buffer (see Section 3), we use an-
other Markov chain to define the blocking states of

the buffer. This chain memorizes whether the packet
at the head of the buffer is a blocked one. The
blocking status of a buffer is represented by the 3-
state Markov chain shown in Figure 5. The states

¢UU

Poyty

Sy , Poyby

Figure 5: The states of a buffer during its busy period

q’Ub.y

are called “blocked” for buffer By, at the next stage
(0%,,v € {y, y}) and “unblocked”(6Y),) and represent
the state of the packet at the head of the buffer at the

beginning of a clock cycle. When a packet first comes
into a buffer, the buffer remains in the unblocked state

(6%,,) and tries to route the packet. If it can be routed
successfull¥, it remains in the unblocked state irre-
spective of whether the buffer becomes empty or a
new packet moves to the head of the buffer. If the
packet can not be routed, it enters one of the blocked
state (623, ) and remains in the blocked state until the

packet can be forwarded to the next stage, when it
enters the unblocked state. While in the unblocked
state, a packet obeys the static routing probabilities
and chooses an output port according to Py -

The transition probabilities between the three
states are shown in Figure 5. For example, ¢y 5,,v €

{y,y} is the probability that a blocked packet is again

blocked when it attempts to go to the same destina-
tion. The transition probabilities are given by

duu  duby  Pusy
®=| dyyu Pryry O
¢byU 0 ¢byby

where ¢y = r@k-1yia, Pusy = 1 — Thiuy, dusy = 1 —
_ by _ by _ by
Tkluy, ¢b£U = rkh‘ga ¢b£bg = l"rklugr ¢byby B l_rkluya

Sryr = 'rzz{uy. 78 . is the probability that a blocked

packet advances from klu to klv, given that a blocked
acket which is destined to klv is ready to come to klu.
%‘he probability that a blocked packet in a stage can

be forwarded to the next stage is given by rty v €
{y, ¥}

Using Figure 5, the state probabilities at the end of
a cycle are calculated from

® = 0% (15)

b
where ® = [9%’,,,,9&,,0270 . By solving the above
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Markov chain, the steady state probabilities 0,12?“ and
4%, are obtained.
When a packet in stage (k — 1) is in the blocked

state at the bgginping of cycle t, the length of the
destination buffer in stage k, after the first phase of

the same clock cycle will be either m (full) or m — 1

(since, at most one packet can leave during the first

phase). The probability that a blocked packet in stage

(k — 1) will face the destination buffer with one place
m—1

is BTLEHBT' Moreover, the blocked packet may also

kiv kiv
be in routing conflict with the other buffer, in stage

(k — 1), which feeds the same destination buffer in
stage k. Considering the above two cases, we obtain
3., as follows.

rite = (1= Qiiy + QriuPriuy + 0.5Qkiy Priuv)

————1—31"1"’_1—, 1<k<n. (16)
riY is the probability that a blocked packet in buffer
klv can advance and is given by,

b

(:-}-l)fﬁv (17)

by __
Tkly =T,

In the unblocked state, the queue len%th determines
the possibility of a paci{et leaving the buffer. If there
is a packet, the packet is routed according to the static
routing probability. We now develop equations for

the equivalent input rates Q;,u and equivalent routing

probabilities ;.. The difference between the memo-

rized model and the basic model is that buffer klv tries
to transmit a packet to the next stage with probability

(1= BY,,)6%;, in the memorized model, whereas buffer
klv in the basic model tries to transmit a packet with
probability (1 — BY,,). Therefore,

A 0 U
Qerw = (1= B(k-1)1‘aw(k-1)l’a (18)

We can obtain C;?O,C;cllv and Cgv by replacing
CY,» Clyy and CF, in Equations (6) - (8) by C3,, Ci,
and C,:‘;,, respectively as follows.

Co = 1-(Ch +G) (19)
Civ = QeinPern(l— Qi) + Qity Prrun (1 — Q)

+lequktﬁ(P1;ruuP1;xﬂ + Pl’:lugpk’:lgu) (20)
Cl = QuinPerw@iiuPriue (21)

The equivalent probability ry;,, and r;c,u are ob-

tained by substituting Qri-(t) by Q;C,u in Equa-
tions (1)-(3) in Section 3 as follows.

r;&'luu = I_B;:;v _B]:;nly—l +B)r:}1,—1rklv+(1_
Quiu + Qutn ety + 0-5Qu1y P )(Bity '

(1=raw) + Biren), 1<k <n. (22)
P = Tgenyiay L (kniay T r(k+1)i&gp(k+1)f1‘4£(23)
The equivalent routing probability is given by

! Pkluv + 9?}’,“,

= 24
1+ 02})“”1))5{“0 ( )

kluyv —

and can be explained as follows. When 9,':‘{w =0, 1e,
the server is in the “unblocked” state, Py, = Priuv-
When 0,’;‘,’w = 1, i.e., the server is in the “blocked”

state, P,;,uv = 1. The equivalent routing probability

is cha,n%gd from Pgryy to 1 according to the blocked
robability . Thus, the model can store the history of
locking, 1.e., the output link for which a packet was

blocked. For calculating the time delay, we have

. — { _Bj 1
R =rhorn 3 (720 ) 1 o9)

N 1
i=1

Substituting Equations (16)-(24) in the basic model
described in Section 3, the new set of equations for the
memorized model can be obtained, which can be used
to evaluate a multistage interconnection network with
blocking behavior.

5 Results

The analytical models presented in Sections 3 and
4 can be applied to any %eneral traffic fpattern. In this
section, we present results for the performance of the
MIN, obtained from the two models, in the presence
of uniform and hot-spot traffic patterns and compare
them with simulation results. We compare the results

10 T T
@&—=o Simulation
a——=¢ Basic model
. 03§ o——© Memorized model
2, &—=a Lin’s model
= N=8
""g’ 06 m=4
3
‘:;g 04 |
(<]
Z
02}
]
00,5 02 08 10

04 0.6
Hot spot probability (h)

Figure 6: Comparison of throughput for p = 1,m =4
and N = 8.

from the memorized and basic models with those from
simulation in Figures 6-11. Figure 6 shows the nor-
malized throughput versus the hot spot probability

11b.1.6

1453



1.0 .
Lo 6—>o Simulation
& 3 &— Memorized model
= o——= Basic model
-g 06
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‘—é 04 m=4
o
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Figure 7: Comparison of throughput for p = 1.0, m =
4 andN = 64.

1.0 T T Y
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_ "8I o—e Simulation :
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_g %8I ¢—v Memorized model h=0.0
=
s
g N=64
<} m=4
“ h=02_ _
. e o o y
00 : : .
00 02 08 10

04 06
Offered traffic load

Figure 8: Throughput for different offered traffic load.

obtained from simulation, basic model, Lin’s model
[13], and the proposed memorized model for N = 8,

= 1.0, and m = 4. When h = 0, the results from the
ﬁasic model are much more optimistic than those from
simulation, and the results from Lin’s and memorized
models show very good correspondence with simula-
tion. As h increases from 0 to 0.5, there is a signifi-
cant discrepancy between the simulation, basic model,
and Lin’s model. Lin’s model does not store the his-
tory of blocking but partially takes into account of the
blocking. Hence it produces better results than the
basic model in low hot spot probabilities. The mem-
orized model takes a rigorous account of the history
of blocking and hence produces results which are close
to simulation and are significantly better than those
obtained from other models. It is important to store
the history because a blocked packet always hunts for
the same output link during successive cycles. When
h increases from 0.5 to 1, the normalized throughput
for all the models decreases to 1/N. Figure 7 shows

6—=o Basic model
58—+ Basic model
o—o Simulation
&—=A Simulation

N=64

;g? oy <—— Memorized model

§ ¥—% Memorized model

Q

&

-]

L sl Ne64 1
m=8

0
0.0

Figure 9: Mean delay vs. throughput p = 1.0,m = 4,8
and N = 64.
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5 04
E 03 m=6
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01+
00

100 ] 200 300
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Figure 10: Variation of throughput for different net-
work sizes with p = 1, and m = 6.

throughput comparison for N = 64. The results from
the memorized model are found to be very accurate.
Figure 8 shows the throughput for different offered
traffic load with m = 8, h = 0 and m = 4,h = 0.2.
Throughput is plotted vs. mean delay in Figure 9.
Figure l(s)shows the throughput for different network
sizes. The results from the memorized model are still
optimistic for a large network. However the model is
suitable for networks of various sizes. Figure 11 shows
the throughput for various buffer sizes with p = 1 and
N = 64. 1t shows that the memorized model 1s suitable
for studying the tradeoffs between the throughput and
different buffer sizes.

6 Conclusions

Two Markov chain models have been proposed
to evaluate the performance of output-multibuffered
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Figure 11: Variation of throughput for different buffer
sizes for p =1 and N = 64.

MINs under a general traffic pattern. It can be ap-

lied to both uniform and nonuniform traffic patterns.
E)ach buffer in an SE is modeled as a Markov chain,
and the relationship between the SEs is described by
average flow constraints. The analytic models are gen-
eral enough to handle MINs with arbitrary buffer sizes
and network sizes. It can be applied to other types of
networks as well, such as the Banyan and Baseline
networks. We have compared the analytic results to
simulation results. The result have been found to be
in close agreement. The basic model’s low accuracy at
high loads results from several independence assump-
tions that have been made in the model. The memo-
rized model produces significantly better results than
the basic model. The reason behind the memorized
model’s higher accuracy is its ability to take a rigor-
ous account of blocking at the SEs by memorizing the
output link of a SE for which a packet was blocked.
Development of an analytical model for a,, x a, output
multibuffered multistage interconnection networks b{
considering the correlations between consecutive cloc
cycles as well as the states of the buffers in the adja-
cent stages is currently underway.
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