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Abstract: This paper suggests a systolic
arrays implementation of fuzzy expert
systems based on fuzzy evidential
reasoning methodology. Evidential
reasoning systems are compute-bound
in general and fuzzy systems match
larger number of rules than in a simple
symbolic reasoning systems. The fuzzy
evidential system proposed which is a
combination of both needs much more
computation than either of these two
independently. To speed up processing
in such systems the suggested
implementation is useful.

1. Introduction.

Evidential reasoning systems will have
a set of decisions as consequents as
opposed to a single decision in rule-
based expert systems. Given a hypothesis
and a set of facts, the evidential
reasoning systems try to assign upper
and lower bounds of credibility to the
hypothesis induced by the given facts
through the rules in the system. In [10]
this methodology has been extended to
fuzzy sets by allowing the facts, rules and
hypothesis to be fuzzy sets and a dual
possibilistic evidential measures to
assign possibility bounds to hypothesis
induced by fuzzy facts through fuzzy
rules. But this method takes higher
computation time due to long fuzzy
processing functions and computations
for partially matched rules.
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Recently several ways to speed up
inferencing in reasoning systems has
been suggested [2-5]. Some of these
works are specifically meant for simple
fuzzy implication. In Togai et.al., [5] and
Manzoul et. al,[2] they have used
simple min-relational composition and
max-min inference. Systolic
architectures of [3] use simple And & Or
operations on certainty factors. Other
hardware architectures [4, 6] are specific
to given applications. In this paper a
general purpose systolic array
architecture for possibilistic evidential
reasoning has been proposed. The
implementation provided here uses
fuzzy implication as an instruction. This
can be changed as necessary and deals
with more complex fuzzy evidential
reasoning systems. Evidential reasoning
systems are compute-bound in general
{12] and fuzzy systems match larger
number of rules than in a simple
symbolic reasoning systems. The fuzzy
evidential system proposed which is a
combination of both needs much more
computation than either of these two
independently.

Fuzzy evidential reasoning approach
used here is a backward chaining
method, which enables all the rules
whose consequents have a match or
partial match with the given hypothesis
fuzzy set based on a similarity measure
[11]. Once chains are established from the
hypothesis to the facts through the rules,
fuzzy inferencing operations will
compute the possibility distributions
induced by the facts on to the hypothesis
space. The terminology and reasoning
model used are summarised in the
following section. The forward
computation of possibility distributions



is implemented using systolic arrays in
this paper.

2. Fuzzy evidential reasoning
model

The reasoning model can be visualised
as a disc of rings with a target disc at the
centre. Each ring of the disc is made up
of several frames of mutually exclusive
and exhaustive set of elements. These
frames are the frames of discernment in
the evidential reasoning model. The
outermost ring is the evidence space
which absorbs the facts from the outer
environment. The target disc contains
frames on which the reasoning model
draws its inference. Let its frames be
called target frames. The directed arcs
(edges) start from a frame in an outer
ring and connect to a frame in an inner
ring, which corresponds to the rules of
reasoning. Figure 3. shows the
evidential reasoning model for the fuzzy
washing machine evidential reasoning
model as an example.

Let S=(Eq,E),.. . } be an evidence space, a
set of frames for facts and some rule
antecedents, corresponding to the
evidence ring of the fuzzy evidential
reasoning model. Let T={T{,T5,...} be
a reasoning space, a set of frames for
hypotheses and some rule consequents,
corresponding to the target disc of the
evidential reasoning model. Let [ i ={ Ij 1
I]-2, .. . } be a set of frames corresponding

to the j-th inner ring in the reasoning
model. Let ©(X) be a set of all fuzzy sets
on a frame X.

A reasoning chain is an element of the
relation ® defined as

R = { (N(Ei)x¥(jp)) x (qu)"q’(lkq)) ..
(1) xP(Im s)) x (A m s)xP(Ty)) ) (1)

The joint possibility distribution A of a
reasoning chain, ((A,B), (C,D), . . (O,P),
(Q.R)), where AEWE)), BCEMjp), . .
LP.QED(Iy s) and RED(Ty), is defined as
follows:
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AR/A = (TIB/A. NID/C, - - . Mpjo ' NIRyQ ) ()

Now given the possibility distribution
on the frames of the evidence space a set
of basic possibility distributions (bpds)
{Yij | yx.]Ed>(Ti)} can be induced on the
target disc T; through the reasoning
chains as a fuzzy composition of the
evidence (facts) possibility distribution
and A of the reasoning chain as follows:
Yij = ﬂEoAM/N = ((((HEDHI)Onz)Ons))
©)

where MEM(T}), ENED(E;), 0 is Sup-
Min composition [8] and ( n,m,Im,..)

= AM/N as defined in (2).

In line with the notation of evidential

reasoning all non-empty Y 's are fuzzy

focal elements of frame Ti' Now the

credibility bounds of any fuzzy
hypothesis HE®(T;) can be obtained
from the formulae of fuzzy belief (fb) (a
lower bound) and fuzzy plausibility (fp)
(an upper bound) [10] as follows:

B(H) = o (Nec(H; D))
forall core(D)CH (4)

fp(H) =" (Poss(H; D))

for all core(D)NH= & (5)
Where Ds are fuzzy focals of frame Tj , N
and C are fuzzy set intersection and
subset operations respectively, core(X) =
{x | xis a full member of X } and

S .
Poss(X:Y) = gg { Min (X(), Y()) }
forallx€Q  (6)
Nec(:Y) = [ { Max (X(0), -Y(x)) )
forallxeQ (7)
where Q is reference set of fuzzy sets X

and Y and - is fuzzy complement
operation.



3. Systolic array architecture for
the fuzzy evidential reasoning
(FER) model

Different types of Multiprocessor
architectures like Multiple-bus, Ring,
Hypercube, etc., could be used to
implement the FER system described in
section 2. Multiple-bus, Ring and
Hypercube are ideal for implementation
of general purpose algorithms. Systolic
arrays are suitable for implementing
dedicated algorithms having a regular
structure.

The systolic architecture was first
proposed by Kung [1] in 1982. The
architecture is very suitable for a large
class of regular and symmetric
algorithms, like matrix multiplication.
A systolic architecture consists of a large
number of processing elements
connected together wusing an
interconnection network which reflects
the flow of data among the processing
elements. The crux of the architecture is
that once a data item has been retrieved
from memory, it should be used by all
the processing elements which require
it. This helps alleviate the processor-
memory communication bandwidth
problem experienced even by the fastest
Von-neumann machine. Systolic
architectures reduce the complexity of
the algorithms by exploiting the

regularity in the algorithm. They can
therefore be applied to speed up the
processing in FER systems.

Implementing fuzzy evidential
reasoning  essentially needs
implementing equations (3) to (7).
Reasoning process modules implement
equation (3). It has the evidence (E, E,
~.E;} from the set of evidences and the
matching reasoning chain (g R ..r } from
the set of chains as inputs. From the
inputs it computes the bpds (y),

W ol T oMl - Mg o Mg }-as @ composition
of evidence possibility distribution and
joint possibility distribution of the
reasoning chains. The systolic arrays for
this module are shown in Figure 1.

For illustration, we have shown the
details of one reasoning process module
having possibility distributions of
evidence and hypothesis (target) sets
defined on a reference set of cardinality
three. Each reasoning process consists of
three systolic arrays each of which
produces an element of bpds, y. The
function carried out (and hence the
instructions executed) in each of the
systolic arrays is exactly the same as that
of module computing the Possibility, P-
modules, described later except the logic
channel is disabled. Equations (6) and
(7)are implemented in the P and N
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Figure 1. Systolic array implementation of reasoning process
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modules respectively as shown in
Figure 2. The instructions executed in
the processor elements (PE) are shown in
Table 1. Each PE inside P has two inputs
from the preceding PE. It also has an
element of the possibility distributions of
the hypothesis (H) and bpds, y, as inputs.
Each PE computes the minimum of the
elements of the H and y inputs and then
finds the maximum of this minimum
and the data (D) coming from the
preceding PE. The values in the logic
channel (L) propagates conditions
required in equations (4) and (5). The
output of the data channel (D) of P and N
contains the results of the equations (6)
and (7) respectively, if the conditions in
(4) and (5) are satisfied or else the results
will be 0.

The ouput of P and N are fed to two
maximum finding modules to compute
the Plausibility and Belief. The
implementation of the maximum
finding modules using systolic arrays is
widely available in the literature. From

Rules

the bpds, iy and the given hypothesis Hy
systolic arrays Py,. . P, and Ny, .. N,
compute the Possibility and Necessity
from equations (4) and (5). The outputs
of the systolic arrays are fed to two
different maximum finding units to
compute the Plausibility and Belief as
shown in (6) and (7). Each processing
element inside P; and N, has four input
channels (three data channels and one
logic channel) and one output channel.
The instructions executed in the

processing elements are shown in Figure
2

4. Fuzzy washing machine
reasoning with fuzzy evidential
model

For testing the evidential reasoning
model architecture a fuzzy washing
machine with three rules for selecting
the washing powder quantity given the
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Figure 2. Systolic array implementation of fuzzy evidential reasoning system
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N-processing ele ment 's inst ructions:
losteuction I:
[fyl(x)< 1.0
then
temp](x) =00
else
tempI(x) =10.
Instruction 2
1f Héx)x temp, (x)
then
temp-logl(x) = true
else
temp-logl(x) = false.

temp»maxl(x) =MAX {Hq(xL 1.0 - 7]()())

Instruction 4
If(temp-log](x) AND in-log)
then
out-min = MlN(‘u\—mm,tm\p—max](x))
out-log = true
eise

out-min = 0.0
out-log = false.

P-processing _element's instruct iona:

Instrugtion I
Iy (x)< 1.0
then
emp, (x) = 0.0
eise
Emp‘(x) =10.
Instruction 2

If (Min (Hq(x), templ(x))- 0.0)

Inst

Instruction 41: (all units except last one)
If (temp-log;(x} OR in-log)

then

else

Instruction 42: (for last P- processing element only)
If (temp- log[(x) OR in-log)

then

else

ruction ¥
Empnunl(x) =MIN{ Hq(x), yl(x) }

then

temp-log,(x) = true
else

temp- lagl(x) = false.

out-max = MAX (in-oun, lemp-mml(x))
out-log = true

out-max =MAX(in-!mruemp-mml(x))
out-log = false.

out-max = MAX (in-oun, lemp—minl(x))

out-max = 0.0.

Table 1. Instructions for N and P processor elements

dirt level is considered. The fuzzy rules
are as follows:

A: IF dirt low THEN use washing
powder around 40 to 60 grams.

B: IF dirt medium THEN use washing
powder around 70 to 110 grams.

C: IF dirt high THEN use washing
powder nearly 200 grams.

Where the bold faced fuzzy predicates in
antecedents and consequents of the rules
are fuzzy sets defined on dirt on a
hypothetical scale and washing powder
in grams scale.

Given a fact that dirt is 'between low and
medium' the credibilities derived for
hypotheses for washing powder {40 to 60
grams, 30 to 70 grams, 70 to 110 grams,
50 to 130 grams} are as follows:

Hypothesis Credibilities
40 to 60 grams (Hl) [1, 0.05]
30 to 70 grams (H,) (1,0.65)
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70 to 110 grams (H3) [1,0.05]

50 to 130 grams (H,) [1,1].

It can be observed from the derived
credibilities that the system hypothesis
that includes more of both consequents
of Rule A and Rule B are more credible
than the others, as the given fact lies
between the antecedents of these rules.

5. Conclusions

Fuzzy evidential reasoning systems are
highly compute bound. Different
specialised architectures have been
suggested for simple reasoning systems.
Systolic arrays are most suitable for
regular and symmetric algorithms. The
suggested architecture exploits the
regularity in fuzzy evidential reasoning
systems to reduce their complexity.

A fuzzy systolic array for the fuzzy
evidential reasoning system has been
described in this paper. The architecture



Target disc with only one
frame of washing powder

D Ordinary sets

Figure 3. Evidential reasoning model for a fuzzy washing machine

is composed of mainly three modules.
The first module implements the
reasoning process. The Possibility and
Necessity are implemented in the
second module. Plausibility and Beliefs
are computed in the third module by
combining the Possibility and Necessity
obtained from the second module. In
this paper only the second and third
modules of computation has been
shown on systolic arrays. Design and
implementation of the first module is
proposed in future. For the time being
in the first part all possible reasoning
chains through the rules are considered
to be fired. By feeding the evidence
(facts) continuously to the first module,
Plausibility and Beliefs are obtained
continuously for different hypotheses
which are fed to the second module.
Therefore, this architecture is most
suitable for adaptive control systems [13]
which learn fuzzy rules in real-time.
The architecture is linearly scalable with
increase in the size of the evidence and
hypothesis sets.
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