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ABSTRACT 

This thesis involves the investigation of parallelization and performance 

improvement for a class of radar signal processing techniques known as space-time 

adaptive processing (STAP).  The assumed platform, which consists of multiple DSPs, is 

the commercially available Mercury RACE System.  The main contribution of the thesis is 

the design and implementation of a network simulator for the RACE system.  This 

simulator allows for the performance of various parallel STAP algorithm implementations 

to be predicted for existing or future RACE system configurations.    

A major challenge of implementing parallel STAP algorithms on multiprocessor 

systems is determining the best method for distributing the 3-D data cube across CEs of the 

multiprocessor system (i.e., the mapping strategy) and the scheduling of communication 

within each phase of computation.  It is important to understand how mapping and 

scheduling strategies affect overall performance.  The network simulator developed in this 

thesis is used to evaluate the performance of various mapping and scheduling strategies.   
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CHAPTER I 

INTRODUCTION 

 

1.1 Background 

After taking office, the Clinton Administration launched an extensive investigation 

researching new methods and procedures for the procurement of federal government goods 

and services.   In an attempt to assist in the reduction of waste and hidden costs, President 

Clinton, in a 1994 executive order, directed all heads of executive agencies to “increase the 

use of commercially available items where practicable, place more emphasis on past 

contractor performance, and promote best value rather than simply low cost in selecting 

sources of supplies and services” [1].    

In addition to re-engineering the policies of governmental acquisition, the Clinton 

Administration drastically reduced defense expenditures.  As a result of the changing, and 

perhaps advancing, governmental procurement methodology and military cost reductions, 

the Department of Defense (DoD) is moving towards commercial-off-the-shelf (COTS) 

products for the design and deployment of military systems.  There are a number of 

embedded military applications such as airborne target recognition systems, undersea sonar 

platforms, ground processing stations, and command and control systems in which non-

commercial resources are being abandoned.  In particular, COTS parallel processing 

systems are replacing custom embedded military sonar and radar systems on ships and 

airborne aircraft [12]. 

In contrast to contemporary non-commercial products that involve costly custom 

engineering, ideally, COTS products offer lower cost hardware, faster development that 

reduces program lifecycle costs, and higher reliability while adhering to strict size, weight, 

and power (SWAP) requirements of many military applications.  These characteristics of 

commercial products are achievable simply because of volume production and 

compatibility with a wide range of applications.  Furthermore, the practice of purchasing 

COTS equipment creates a competitive market that stimulates both technological 

advancement and decreased costs [12].  
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As the demand for commercial embedded military parallel processing systems rise, 

the number of companies producing practical solutions to military-based platforms is also 

increasing.  Mercury Computer Systems, Inc. plays a significant role in providing platforms 

for DoD computationally-intensive embedded applications.  Mercury’s primary role for 

such applications involves supplying very high-performance real-time computing and data 

I/O capability [4].  Mercury Computer Systems provides state-of-the-art embedded real-

time multicomputer systems for typical digital signal processing platforms for intelligence 

data collection and processing.   

Digital signal processing is one of the core technologies central to the operation of 

military-based radar systems.  Digital signal processing is the application of mathematical 

operations on a digitally represented sequence of samples from an analog signal.  Since 

their emergence in the late 1980s, digital signal processors (DSPs) have experienced 

tremendous growth rates in areas of signal processing due to reductions in costs, advances 

in DSP architectures, and improvements in development tools.  Simply stated, a DSP is a 

special purpose microprocessor similar to a traditional microprocessor (e.g., Intel Pentium) 

that is optimized to perform mathematical operations such as multiplications, additions, and 

subtractions with greater efficiency.  In addition to their increased performance for a class 

of computations, DSPs are generally silicon conservative and less expensive than general-

purpose microprocessors.   

Classical signal processing algorithms are characterized by the need for high-

performance computing and involve repetitive, numerically-intensive tasks, which are 

ideally suited to DSP technology.  Processing speeds of a single DSP are often insufficient 

to satisfy the computation demand of military-based signal processing applications.  For 

such real-time signal processing applications, parallel processing is required to meet the 

necessary performance requirements.   

 

1.2 Focus of the Thesis 

This thesis involves the investigation of parallelization and performance 

improvement for a class of radar signal processing techniques known as space-time 

adaptive processing (STAP).  The assumed platform, which consists of multiple DSPs, is 
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the commercially available Mercury RACE System [4].  The main contribution of the 

thesis is the design and implementation of a network simulator for the RACE system.  This 

simulator allows for the performance of various parallel STAP algorithm implementations 

to be predicted for existing or future RACE system configurations.    

STAP involves signal processing methods that operate on data collected from a set of 

spatially distributed sensors over a given time interval. Signal returns are composed of 

range, pulse, and antenna-element digital samples; consequently, a three-dimensional (3-D) 

data cube naturally represents STAP data.  STAP algorithms can provide improved target 

detection in the presence of interference through the adaptive nulling of both ground clutter 

and signal jamming [18].  Typical parallel STAP involves simultaneous processing of the 

spatial signals received by the distinct elements of an array antenna and the temporal 

signals received from multiple pulses of a coherent radar waveform.  

Typical processing requirements for STAP range from 10-100 giga floating point 

operations (Gflops), which can only be met by multiprocessor systems composed of 

numerous interconnected compute elements (CEs) [13].  A CE contains a processor, local 

memory, and a connection to the network that interconnects the CEs.  In most parallel 

STAP implementations, there are phases of computation in which data must be exchanged 

among CEs.  A major challenge of implementing parallel STAP algorithms on 

multiprocessor systems is determining the best method for distributing the 3-D data cube 

across CEs of the multiprocessor system (i.e., the mapping strategy) and the scheduling of 

communication within each phase of computation.  It is important to understand how 

mapping and scheduling strategies affect overall performance.  The network simulator 

developed in this thesis is used to evaluate the performance of various mapping and 

scheduling strategies.   

The remainder of this thesis is divided eight chapters.  Chapter II provides an 

overview of radar signal processing and a computation complexity analysis of two STAP 

algorithms, namely fully-adaptive STAP and a partially adaptive heuristic (element-space 

post-Doppler STAP) used to approximate the optimal solution.  Chapter III briefly 

introduces the basic components of Mercury’s RACE multicomputer including a 

description of the CEs, the RACEway interconnection network, and network contention 
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resolution schemes.  Chapter IV illustrates the challenges associated with implementing 

STAP algorithms on a parallel-processing computer.   Two basic paradigms for distributing 

the 3-D STAP data cube among CEs of Mercury’s RACE system are described.  Chapter V 

presents small-scale examples to illustrate the effects that mapping and scheduling choices 

can have on network performance.  In Chapter VI, the design of the simulator, using the 

Unified Model Language (UML), is described and illustrated.  Chapter VII presents some 

numerical studies involving timing information obtained from the simulator.  Finally, 

Chapter VIII concludes the work with a summary of the research and results. 
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CHAPTER II 

OVERVIEW OF STAP 

 

Current methods of radar date back to 1924, when the height of the ionosphere was 

first measured [16].  By 1935, the military started developing radar-based weapon systems, 

and shortly after, at the outbreak of the war in 1939, military radar stations were in 

operation.  During the war, the military concealed knowledge of radar technology for 

obvious strategic reasons.  Consequently, detailed technical information about radar was 

not released to the public until after the war.  Today, radar technology has become an 

integral part of real-time signal and image processing for defense and commercial 

applications.  Modern airborne radar systems are required to detect smaller and smaller 

targets in the presence of clutter and interference.  Space-time adaptive processing 

algorithms have been developed to extract a desired signal from potential target returns 

comprised of Doppler shifts resulting from radar platform motion, clutter returns, and 

interference including jamming.  The sections below provide a brief overview of radar 

signal processing and STAP methods.  For a thorough theoretical analysis of STAP, the 

reader is referred to [2, 18]. 

 

2.1 Radar Signal Processing 

The basic concept of radar is relatively simple, although its practical implementation 

is not so trivial.  In military environments, radar is used to extend the capability of human’s 

senses for observing the environment, especially the sense of vision.  The basic purpose of 

radar is to detect the presence of an object of interest and provide information concerning 

that object’s range, velocity, angular coordinates, size, and other parameters [11].  Radar 

operates by radiating electromagnetic (EM) energy, oscillating at a predetermined 

frequency, f, and duration, τ, into free space through an antenna.  In general, the radar 

antenna forms a beam of EM energy that concentrates the EM wave into a given direction 

[3].  By effectively rotating and pointing the antenna, the transmitted radar signal can be 

directed to a desired angular coordinate.  
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An object or target located within the path of the transmitted radar beam will 

intercept a portion of the EM energy.  The intercepted energy will be scattered in various 

directions from the target depending on the target’s physical characteristics.  In general, 

some of the transmitted energy will be reflected back in the direction of the radar.  This 

retro-reflected energy is referred to as backscatter [3].  A portion of the backscattered wave 

or echo return is received by the radar antenna.  The echo returns, which are gathered by a 

set of sensors, are sampled, and the resulting data is processed to identify targets and 

perform parameter estimation.  The distance to the target is determined by measuring the 

time taken for the radar signal to travel to the target and back.  Furthermore, the angular 

position of the target may be determined by the arrival direction of the backscattered wave.  

If relative motion exists between the target and radar, the shift in the carrier frequency of 

the reflected wave, also known as the Doppler effect, is a measure of the target’s relative 

velocity and may be used to distinguish moving targets from stationary objects [14].   

The basic role of the radar antenna is to act as a transducer between the free-space 

propagation and guided-wave propagation of the EM wave [15].  The specific function of 

the antenna during transmission is to concentrate the radiated energy into a shape beam 

directive that illuminates targets in a desired direction.  During reception, the antenna 

collects the energy from the reflected echo returns.  Many varieties of radar antennas have 

been used in radar systems.  The type of radar antenna selected for a certain application 

depends not only on the electrical and mechanical requirements dictated by the radar design 

specifications but also on its application.  In airborne-radar applications, radar antennas 

must generate beams with shape directive patterns that can be scanned. 

The properties offered by antenna arrays are quite appealing to airborne radar 

systems.   Antenna arrays consist of multiple stationary elements, which are fed coherently, 

and use phase or time-delay control at each element to scan a beam to given angles in space 

[8].  The primary reason for using radar arrays is to produce a directive beam that can be 

repositioned electronically.  An electronically steerable antenna array, whose beam steering 

is inertialess, is drastically more cost effective when the mission requires surveying large 

solid angles while tracking a large number of targets [8].  Additionally, arrays are 
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sometimes used in place of fixed aperture antennas because the multiplicity of elements 

allows a more precise control of the radiating pattern. 

The purpose of moving-target indication (MTI) radar is to reject signal returns from 

stationary or unwanted slow-moving targets, such as buildings, hills, tree, sea, rain, and 

snow, and retain detection information on moving targets such as aircraft and missiles [12].  

The term Doppler radar refers to any radar capable of measuring the shift between the 

transmitted frequency and the frequency of reflections received from possible targets [16].  

Relative motion between a signal source and a receiver creates a Doppler shift of the source 

frequency.  When a radar system intercepts a moving object that has a radial velocity 

component relative to the radar, the reflected signal’s frequency is shifted.  For example, 

consider a radar that emits a pulse of EM energy that is intercepted by both a building 

(fixed target) and an airplane (moving target) approaching the radar.  As previously stated, 

each of the objects will scatter the intercepted radar signal, which will include a portion of 

backscatter energy.  After the reflected radar signal returns to the radar in a certain time 

period, a second pulse of EM energy is transmitted.  The reflection of the second pulse of 

energy from the building is returned to the antenna in the same time period as the first 

pulse.  However, the reflection of the second pulse from the moving aircraft returns to the 

antenna in less time than the first pulse because the aircraft is moving towards the radar.   

This time change between pulses is determined by comparing the phase of the received 

signal with the phase of the reference oscillator of the radar [12].  If the phase of received 

consecutive pulses change, the object of interest is in motion. 

 

2.2 STAP Algorithms 

The objective of many airborne radar systems is to search the given space for 

potential targets.  Future airborne radars will be required to detect increasingly smaller 

targets in the presence of interference such as clutter, jamming, noise, and platform motion.  

If the interference is localized in frequency and comes from a limited number of sources, 

targets can be detected by using adaptive spatial weighting of the data from each element of 

an antenna array [2].  By applying the computed weights to the data, the effects of 

interference can be reduced thus increasing the reception of the reflected signal.  For an 
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airborne radar platform that is in motion, the Doppler spread of the clutter returns is 

significantly wider, and the clutter characteristics are highly variable due to the changing 

ground terrain.  For this reason, the use of an antenna array provides the potential for 

improved airborne radar performance.  Because of the added dimensionality of received 

data, the weights must now be adapted from the data in both the time and space 

dimensions.  This signal processing method is referred to as STAP, which is an adaptive 

processing technique that simultaneously combines the signals received from multiple 

elements of an antenna array (the spatial domain) and from multiple pulses (the temporal 

domain) of a coherent processing interval (CPI) [18].  The paragraphs to follow provide a 

general description of the computation complexity involved in implementing two STAP 

algorithms, namely fully adaptive STAP and element-space post-Doppler.  For a detailed 

theoretical foundation and computational complexity analysis of STAP algorithms, the 

reader is referred to [2, 18].   

Consider an N element airborne radar array that transmits a coherent burst of M 

pulses at a constant pulse repetition frequency (PRF) fr = 1/Tr, where Tr is the pulse 

repetition interval (PRI).  The time interval over which the EM echo returns are collected is 

referred to as the coherent processing interval (CPI), and the resultant length of one CPI is 

MTr.  For each of the M pulses, L range samples are collected by each array element.  With 

M pulses and N array channels, the return signal for one CPI is composed of LMN complex 

signal samples [18].  Because the signal returns are composed of L range gates, M pulses, 

and N antenna array samples, the data may be visually represented by the three-

dimensional data set shown in Fig. 2.1.  This NML ×× data set will be referred to as the 

CPI data cube [18].   

Let xnml represent the nth array element and the mth pulse at the lth range sample time 

[26].  Next, define xm,l to represent an 1×N  column vector, or a spatial snapshot, composed 

of the complex return signals from each array element for the mth pulse and the lth range.   

By combining all of the spatial snapshots at a given range of interest, an MN ×  matrix Xl 

can be formed, where [ ]lMllll xxxxX ,,3,2,1 ,,,, L= .   The shaded plane in Fig. 2.1, referred 

to as a range gate, represents the Xl spatial snapshot at the lth range.  To detect the presence 



9 

of a target within a range gate, a linear filter or space-time processor combines the data 

samples from the range gate to produce a scalar output, which is then typically passed 

through a threshold process for target detection. 

Fig. 2.1  The STAP CPI three-dimensional data cube (derived from [18]). 

 

Three pipelined phases of processing comprise the generic space-time processor (see 

Fig. 2.2).  First, a set of rules called the training strategy is applied to the data to estimate 

the interference. The objective of training strategy is to provide a good estimate of the 

interference at a given range gate.  Because the interference is unknown, the training data is 

estimated data-adaptively from the STAP data cube. 

The training data computed in phase one is used as input to calculate the adaptive 

weight vector in phase two.  In general, the weight computation phase is the most 

computation-intense portion of the space-time processor.  Typically, weight computation 

requires the solution of a linear system of equations [18].   Additionally, each time the 

training data changes, a new weight vector must be computed.  The most common weight 

computation strategy is called sample matrix inversion (SMI).  In an SMI approach, the 

weight vector is computed from the inverse of the covariance matrix of training data or a 

QR-Decomposition of the matrix of training data.  After calculating a single weight vector, 

the final phase of weight application commences.   

Range

PRI

Array
Element

1 M

1

N

1

L

MN samples for
a fixed range gate
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Fig. 2.2 Generic space-time adaptive processor (derived from [18]). 

 

In the final phase, a scalar output is obtained by computing the inner product of the 

weight vector and range gate of interest.  The scalar output is compared to a threshold value 

to determine if a target is present at a specified angle and Doppler [18].  Because a potential 

target’s angle and velocity are unknown, the space-time processor computes multiple 

weight vectors to cover all possible target angles, ranges, and velocities at which target 

detection is to be queried [18].  

Fully adaptive STAP refers to a space-time processor that computes and applies a 

separate adaptive weight to every array element and pulse. The size of the weight vector for 

fully adaptive STAP is MN.   In order to compute the weight vector, a system of MN linear 

equations with dimension MN must be solved; thus, computing a single weight vector 

requires a O((MN)3) operations [18].  For many conventional radar systems, the product of 

MN may vary from several hundred to several thousand with M and N both ranging from 

10 to several hundred.  Furthermore, a weight vector must be calculated for each training 

set used.   The sheer computational complexity necessary to compute the weight vectors for 

fully adaptive STAP, in real-time, is typically beyond the capabilities of current computing 

systems (especially in cases where there is limited power and space for the computing 
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system onboard an aircraft).  This fact alone renders fully adaptive STAP impractical and 

provides adequate motivation for the formulation of alternative heuristic algorithms.    

The goal of partially adaptive algorithms is to break the fully adaptive problem into 

reduced-dimension adaptive problems while maintaining near-optimal results.  A partially 

adaptive processor gathers the large set of input signals from the CPI data cube, transforms 

them into a reduced number of signals, and solves the reduced-dimension filtering problem 

with the newly transformed data [18].  Partially adaptive algorithms are classified 

according to the type of preprocessing performed first.  For instance, in element-space pre-

Doppler STAP adaptive-processing is followed by Doppler filtering.    

In element-space STAP algorithms, every array element is adaptively weighted.  The 

advantage of element-space approaches is that they retain full spatial dimensionality while 

decreasing the overall problem size by reducing the number of temporal degrees of 

freedom prior to adaptation [18].  Algorithms belonging to the class of element-space post-

Doppler STAP perform filtering on the data along the pulse dimension, referred to as 

Doppler filtering, for each channel prior to adaptive filtering.  After Doppler filtering, an 

adaptive weight problem is solved for each range and pulse data vector.  By using element-

space post-Doppler STAP, the computational complexity is reduced to M separate N-

dimensional adaptive problems.  The focus of the proposed research assumes that STAP 

will be implemented using the element-space post-Doppler partially adaptive algorithm.  
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CHAPTER III 

AN OVERVIEW OF THE PARALLEL SYSTEM 

 

Since the conceptual development and implementation of serial computers in the mid 

1940’s, their computing speed, complexity, and reliability has steadily and drastically 

increased to meet the demands of emerging problems.  However, the physical constraint 

imposed by the speed of light limits indefinite improvements in the serial computer 

domain.  Because of the imposed physical constraints, serial computers are unable to meet 

the throughput requirements necessary to solve certain complex real-time applications such 

as embedded medical image processing and military signal processing.  A natural way to 

circumvent this problem is to use an ensemble of processors to solve both existing and 

future problems.  The fifth generation of computers is emphasizing scalable parallel 

processing machines to solve complex large-scale problems.  Parallel processing has 

emerged as a key hardware technology in modern computers, driven mainly by the demand 

for higher performance, lower costs, and sustained productivity in real-time applications 

[5]. 

 

3.1 Parallel Architectures 

In general, parallel architectures may be categorized into two fundamental classes, 

namely, shared-memory multiprocessors and message-passing multicomputers.  

Distinguishing the two taxonomies of parallel systems lies in their implementation of 

memory sharing and interprocessor communication.  In a shared-memory multiprocessor 

architecture, a shared-memory address space is commonly accessible by all processors 

within the system.  Processors communicate with each other by modifying data objects in 

the shared-memory address space.  In a message-passing multicomputer system, each 

compute node is composed of a processor and its own local memory, unshared with all 

other compute nodes.  Compute nodes are connected with each other via a common data 

communication fabric or interconnection network.  Interprocessor communication is 

accomplished by passing messages through the interconnection network. 
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3.2 Mercury’s RACE Multicomputer    

In recent years, Mercury Computer Systems, Inc. has emerged as one of the leaders in 

the development and manufacturing of commercially available, high-performance, 

embedded heterogeneous message-passing multicomputer systems.  Mercury’s RACE 

multicomputer provides a foundation for parallel systems and offers a set of building 

blocks that provide upward scalability.  A high-level diagram of a typical RACE 

multicomputer is illustrated in Fig. 3.1.  The system’s primary components include DSPs 

and/or reduced-instruction-set-computing (RISC) processors, I/O ports, and a network 

interface all connected via the RACEway interconnection network.     

Fig. 3.1 The RACE Multicomputer (derived from [4]). 

  

The RACEway interconnection network is used to provide high-performance 

communications among the interconnected processors and devices.  Each node in the 

multicomputer interfaces the network through the RACE network chip.  The network chip 

(see Fig. 3.2) is a crossbar with six bidirectional channels consisting of 32 parallel data 

lines and eight control leads [7].  Each crossbar transfers data synchronously at a clock rate 

RACEway Interconnection NetworkRACEway Interconnection Network

Input /
Output
Input /
Output

Network
Interface
Network
InterfaceMemoryMemoryDSPDSP RISCRISC

VME BusVME Bus

PCI BusPCI Bus



14 

of 40-megahertz (MHz).  Each channel is bidirectional but is only driven in one direction at 

a time at a rate of 160 megabytes per second (MB/s) [7].  Among the six ports comprising a 

RACE crossbar, each switch can either interconnect any three port pairs, providing and 

aggregate bandwidth of 480 MB/s, or can cause data to be broadcast to all or subset of the 

remaining five ports [4].  

Fig. 3.2 The RACEway six-port network chip (derived from [7]). 

 

The versatility of the RACE network chip allows the RACE multicomputer to be 

configured into a number of different network topologies.  Possible network topologies 

include two-dimensional (2-D) and three-dimensional (3-D) meshes, 2-D and 3-D rings, 

grids, and Clos networks; however, the most common configuration is a fat-tree 

architecture (see Fig 3.3).  For a fat-tree configuration, the crossbar switches are connected 

in a parent-child fashion.  Each crossbar has two parent ports, E and F, and four child ports, 

A, B, C, and D (see Fig 3.2).   The crossbars of the RACE multicomputer are connected 

together to form the branches of the fat-tree.  The compute nodes represent the leaves of the 

tree.   

To route a message from one processor to another, the message goes up the tree, 

selecting one of the two parents as it goes, until it reaches a network chip that is a common 

ancestor of both the source and destination node [7].  After reaching the common ancestor 
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network switch, the message travels down the fat tree to the destination compute node.  

Fig. 3.4 illustrates a message transfer from two CNs. 

Fig. 3.3 The RACE Multicomputer fat-tree interconnection network.  

 

In conventional tree architectures, there is only one path between any pair of 

processors.  One major problem associated with such conventional networks is that they 

suffer communication bottlenecks at higher levels in the tree.  For example, when several 

compute nodes in the left subtree communicate with compute nodes in the right subtree, the 

root node must handle all the messages [6].  This problem can be partially alleviated by 

increasing the number of effective parallel paths between compute nodes.  This type of 

modified tree architecture is referred to as a fat-tree. 

The RACE system is a circuit-switched network.   In a circuit-switched network, a 

compute node establishes a path through the network prior to data transfer.  Once the 

compute node has been granted a path to the destination node, the path is occupied for the 

duration of the data transmission.  Data is transferred from one CN to another across the 

RACEway interconnect in packets of up to 2048 data bytes in length [20].  Each data 

transfer initiated by a source CN contains only a single packet consisting of up to 514 32-
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bit words.  The first two words of a given packet constitute the packet header.  The packet 

header contains the information for routing the packet through the sequence of RACEway 

crossbars between the source and destination CN, as well as transfer control information 

such as the packet priority of the transfer [20].  Additionally, the destination memory 

address of the data transfer is included in the packet header.      

Fig. 3.4 Packet transfer between two CNs. 

 

To send a packet through Mercury’s fat-tree network, the first step is to establish a 

path.  To establish a path, a packet header specifying a path is sent through the network 

along a given channel.  A channel’s status is categorized as either free or occupied [7].  The 

header makes as much progress as possible through the network until blocked.  After a 

packet header has been blocked, it waits until a free channel becomes available.  When a 

free channel matching the path specification (of the packet header) becomes available, the 

channel is flagged as occupied, and the packet header advances along that path.  After 

establishing a path to the destination node, the packet header sends an acknowledgment to 
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[7].  During the transmission of the last byte of data, each of the occupied channel’s status 

is set to free. 

The preceding discussion of path establishment assumed that a clear and contention 

free path between the source and destination node existed.  However, in networks that 

support a large number of simultaneous packet transfers, a clear path may not exist, thus 

contention for a crossbar port along a desired path requires arbitration.  Clearly, for point-

to-point transactions, a given crossbar port can only be part of one transaction per clock 

cycle [20].  Arbitration between two or more packets is required when the transfer paths 

pass through common crossbar ports. 

When arbitration for a given crossbar port, or sequence of ports, becomes necessary, 

the arbitration is carried out on the basis of a combination of the user-programmable packet 

priority and a fixed hardware priority at each crossbar based on the entry and exit ports at 

the given crossbar [20].  Notably, the hardware priority of a given packet transaction path 

varies at each crossbar while the user-programmable packet priority is fixed for the 

duration of the packet’s existence.  For this work, the user-programmable packet priority is 

assumed equivalent for all data packets.  Consequently, only the hardware priority 

arbitration rules associated at each crossbar will be used to resolve contention at a given 

crossbar port between two or more transactions. 

In order to implement a fixed hardware priority at a given crossbar, each possible 

port-port path must be assigned a priority.  In general, for an N-port crossbar there are 

)1( −× NN  unique port-port pairs or possible connecting paths [20].  In this case, the 

RACE six-port crossbar has 30 (i.e., 56× ) possible connection paths.  The assignment of 

the hardware priorities to each of the 30 possible paths through a RACE crossbar is 

complex and depends not only on the particular path, but also upon both the status of the 

contending transaction and the priority arbitration mode of the crossbar. 

The hardware priority arbitration process performed at each crossbar to resolve 

contention for a given port between two or more packets depends on the following three 

factors.  First, the directed path of a given packet through the crossbar; second, the 

transaction status of the two contending packets; and third, the priority arbitration mode at 
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the given crossbar [20].  For a more detailed description of the three hardware priority 

arbitration factors, the reader is referred to [20]. 

The assignment of hardware priorities to crossbar transaction paths is far from trivial, 

and the assignment of crossbar path priorities must be such as to guarantee that no deadly 

embrace conditions occur in the system [20].  A deadly embrace occurs when two 

transactions, that proceed in opposite directions along two different paths between the same 

two crossbars, simultaneously contend with each at both of those common crossbars, with 

the result that each transaction kills the other [20].  In a fat-tree architecture, the only way 

to prevent a deadly embrace situation is to implement the following rules:  First, packets 

entering port F of any crossbar are given a different priority than those entering port E;  and 

second, for any pair of crossbars that that can be connected via two alternative paths, the 

path leaving port F of one crossbar must be selected as to enter port F of the other crossbar 

[20].  For a more detailed analysis of the deadly embrace problem and solution, the reader 

is referred to [20].  

Although the crossbars used to implement the fat-tree are physically identical, each 

crossbar may be configured to perform two different hardware priority arbitration 

algorithms [20].  The two algorithms are named Top-Level and Standard.  The selection of 

the appropriate algorithm at a given crossbar depends upon the location of the crossbar in 

the network.  For example, crossbars located at the top of the interconnected fat-tree are 

configured to implement the Top-Level algorithm while the remaining crossbars in the 

systems are configured to implement the Standard algorithm [20].  The reader is referred to 

[20] for further detail on both the Top-Level and Standard arbitration algorithms. 

The priorities for hardware arbitration of crossbar port contention resolution, as a 

function of transaction’s path through a given crossbar, are different in each transaction 

status case, as well as for each of the two crossbar arbitration algorithms [20].   The 

priorities of each of the thirty possible paths are enumerated in Fig. 3.5 and Fig. 3.6 for the 

case of the Standard and Top-Level algorithm, respectively, in order of priority [20].  As 

illustrated in the figures, there are a total of 7 different hardware priority levels, with 7 

having the highest priority and 1 the lowest [20].  If two contending transactions have 

different hardware priority levels at a given crossbar, as defined by their respective entry 
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and exit ports at the crossbar and the transaction status of the exit port, the transaction 

having the highest hardware priority level will kill the contending lower-priority level 

transaction [20].  Conversely, if two or more contending transactions have the same priority 

level, the first one started will hold off any other contending transactions at the same level 

until the transmission of its data is completed [20].  The objective is to illustrate via Figures 

3.5 and 3.6 the complexity of each of the two hardware priority arbitration algorithms.  For 

a complete discussion of each algorithm, the reader is referred to [20]. 

Fig. 3.5  Standard hardware priority arbitration algorithm [derived from 20]. 

Fig. 3.6 Top-Level hardware priority arbitration algorithm                  
[derived from 20]. 
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As stated earlier in this section, the Mercury interconnection network under 

consideration is a fat-tree architecture comprised of multiple parallel paths.  An interesting 

feature of the Mercury system is that it provides auto route path selection (i.e., adaptive 

routing) at the crossbar level, which means the multiple paths in the RACEway network 

may be automatically and dynamically selected by the RACE network crossbars.  For 

instance, if one path is currently occupied with a data transfer and another path matching 

the path specification is free, the free path is automatically selected by the crossbar logic 

[10].  Adaptive routing is used to adaptively route packets that enter on either of the four 

child ports and exits either of the two parent ports.  Auto route path selection frees the 

programmer from the details of path routing.  Additionally, applications that require 

tremendous interprocessor communication such as distributed matrix transpose and corner 

turns often benefit from adaptive routing [4].    

With the network configured as a fat-tree, the RACEway interconnection fabric 

provides very good scaling properties.  In an p-processor system, the height of the fat-tree 

is = ph 4log .  Thus, the network diameter or maximum number of links traversed is 

12 −= hD .  The bisection bandwidth of a system, which is defined as the minimum 

number of edges (or channels) that have to be removed along a cut that partitions the 

network into two equal halves, assuming p = 4i processors, is pB 160=  MB/s [7].  (Each 

channel in the RACEway system has a bandwidth of 160 MB/s.) 

The RACE system may be configured as a heterogeneous multicomputer composed 

of two or more different types of processors.  The potential heterogeneity of the RACE 

multicomputer includes various possible configurations of i860, PowerPC, and Super 

Harvard Architecture Computer (SHARC) DSP processors.  The SHARC DSP is ideally 

suited for embedded vector signal processing applications such as Fast Fourier Transforms 

(FFTs) where physical size and power are at a premium or other similar algorithms that 

have a high ratio of data-to-computation.  Furthermore, the Analog Devices’ SHARC 

processor enables more than twice the physical processor density of reduced instruction set 

computer (RISC) based CNs.  In contrast, the PowerPC and i860, both RICS processors, 
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are appropriate for executing scalar-type applications, with a low ratio of data-to-

computation, generated by arbitrary compiled code. 

 The CNs in Figs. 3.3 and 3.4 are composed of three basic components: one to three 

processors (all of the same type), 8 to 64 MBs of dynamic random access memory 

(DRAM), and a Mercury-designed application specific integrated circuit (ASIC).  Each 

ASIC is composed of address mapping logic, a direct memory access controller (DMA), 

processor support functions such as timers, and interfacing logic for effective RACEway 

transfers [4].  The address mapping logic enables local CN access to any DRAM location 

in any remotely located CN on the network [4].  The DMA engine provides a mechanism 

for rapid block-transfers between DRAM and other CNs, input/output (I/O) devices, or 

bridges nodes on the network.  There is a unique CN ASIC for each CN processor type. 

Because partially adaptive STAP is a signal processing application characterized by a 

high ratio of data-to-computation, the work to be completed will focus on the use of 

SHARC CNs.  The composition of SHARC CNs includes one to three SHARC processors 

sharing a common DRAM and ASIC interface (see Fig 3.7).  Within a CN, multiple 

SHARC processors are connected via a common 32-bit bus.  

Fig. 3.7 SHARC compute node (derived from [4]). 
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CHAPTER IV 

A PARALLELIZATION APPROACH FOR STAP 

 

STAP refers to a class of signal processing methods that operate on a set of radar 

returns gathered from a set of array channels over a specified time interval. STAP is 

inherently three-dimensional (i.e., range, pulse, and channel), because the signal returns are 

composed of range, pulse, and antenna-element digital samples.  Thus, a three-dimensional 

(3-D) data cube naturally represents STAP data.  Typical processing requirements for 

STAP data cubes range from 10-100 Gflops, which can only be met by multicomputer 

systems composed of numerous interconnected CNs [6].  Imposed real-time deadlines for 

STAP processing restricts processing to parallel computers. 

Developing a solution to any problem on a parallel system is generally not a trivial 

task. A major challenge of implementing STAP algorithms on multiprocessor systems is 

determining the best method for distributing the 3-D data set across CEs of a 

multiprocessor system (i.e., the mapping strategy) and the scheduling of communication 

within each phase of computation.  Generally, STAP comprises three phases of processing, 

one for each dimension of the data cube.  During each phase, the vectors of data along each 

dimension are distributed among the CNs for processing in parallel.  During the processing 

for each dimension, the entire vector of data along the dimension of interest must reside in 

local memory at each CN.  Additionally, each CN may be responsible for processing one or 

more vectors of data during each phase.  

This re-distribution of data or distributed “corner-turn” requires interprocessor 

communication.  Minimizing the time required for interprocessor communication helps 

maximize STAP efficiency.  To assist in the minimization of interprocessor communication 

time during the data re-distribution phases, a paradigm for distributing the 3-D STAP data 

set among CNs of a multicomputer system has been proposed in [13].  Sections 4.1 and 4.2 

summarize the work found in [13]. 
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4.1 Data Set Partitioning by Planes 

At each of the three phases of processing, data access is either vector oriented along a 

data cube dimension, or a plane-oriented combination of two data cube dimensions.  Figure 

4.1 illustrates the STAP flow.  The three phases of processing include pulse compression, 

Doppler filtering, and beam weight computation and beam formation.  During the first 

phase, pulse compression, the range dimension is processed.  Next, the data cube is corner-

turned to process data vectors along the pulse dimension termed Doppler filtering.  After a 

second corner-turn, beam weight computation is performed by implementing a QR 

decomposition on a data matrix composed of samples from a combination of the range and 

channel dimensions.  Finally, beam formation processing occurs along the contiguous 

vectors in the channel dimension. 

The primary goals of many parallel applications are to reduce latency and minimize 

interprocessor communication (IPC) while maximizing throughput.  It is indeed necessary 

to accomplish these objectives in STAP environments.  To reduce latency, the processing at 

each stage must be distributed over multiple CNs in a single program multiple data 

(SPMD) approach.  (In a SPMD approach, each CN executes the same program 

asynchronously.)  However, prior to each processing phase, the data set must be partitioned 

in a fashion that attempts to equally distribute the computational load over the CNs.  

Furthermore, because each phase processes a different dimension of the data cube, the data 

cube must be re-distributed in a manner that minimizes IPC.  

One approach to data set partitioning is to distribute the data set by data planes (see 

Fig 4.2).  Each data plane is composed of two entire dimensions of the STAP data cube 

(and one or more elements of the third dimension).  For this approach, the number of 

processors over which the data planes may be distributed is limited to the smallest 

dimension of the data cube.  Shown in Fig. 4.2 is a decomposition of the N planes, one for 

each pulse.  Data re-partitioning requires IPC between all N processors, which requires 

approximately N2 data transfers. 
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Fig. 4.1 Block diagram illustration of STAP flow (derived from [13]). 

Fig. 4.2 STAP data cube partitioning by data planes (derived from [13]). 
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4.2  Data Set Partitioning by Sub-Cube Bars  

A second approach to data set distributing in STAP applications is to partition the 

data cube into sub-cube bars.  Each sub-cube bar is composed of partial data samples from 

two dimensions while persevering one whole dimension of the data cube as shown in Fig. 

4.3.  The maximum number of processors over which the data set may be partitioned is 

equal to the product of the two smallest dimensions of the data cube. 

Fig. 4.3 STAP data cube partitioning by sub-cube bars (derived from [13]). 
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become segmented (see Fig 4.4).  Implementing this partitioning scheme for the first phase 

would require twelve processors.         

Fig. 4.4 Sub-cube bar partitioning prior to pulse compression (derived from [13]). 

 

Applying the same 43×  process set to the Doppler filtering phase, results in the 

segmentation of both the channel and range dimensions (see Fig. 4.5).  In this phase, the 

pulse data vectors include every pulse entry for a given array channel and range. 

 Fig. 4.5 Sub-cube bar partitioning prior to Doppler filtering (derived from [13]). 
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Fig. 4.6).  As illustrated in Fig. 4.7, the required data exchange occurs only between 

processors in the same row.  For example, process 1 transfers data to process 2, 3, and 4 

while process 5 distributes data to process 6, 7, and 8.  During this procedure, multiple 

phases of communication may take place in parallel.  Assuming a P-processor systems, 

data set re-partitioning would require approximately P sets of P data transfers. 

Fig. 4.6 Process set re-partitioning prior to Doppler filtering (derived from [13]). 

Fig. 4.7 STAP data cube re-partitioning prior to Doppler filtering (derived from [13]). 
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does, however, require a rotation local to each processor.  The final step is to repeat each of 

the first four steps on each dimension of the STAP data cube.  Fig 4.8 illustrates STAP 

processing using sub-cube bar partitioning. 

Fig. 4.8 STAP processing using sub-cube bar partitioning (derived from [13]). 
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4.3 Comparison of Data Plane versus Sub-Cube Bar 
Partitioning 

Partitioning the STAP data cube along data planes has one potential advantage over 

sub-cube bar partitioning.  If the initial data plane partitioning is performed along the 

channel dimension (leaving the range and pulse contiguous), both range processing and 

Doppler filtering may be performed without a re-partitioning phase taking place between 

the two steps.  By implementing this scheme, only one re-partitioning step needs to take 

place, which occurs after Doppler filtering.  Unfortunately, data plane partitioning has 

several disadvantages.  Partitioning the data set along the smallest dimension or the channel 

dimension greatly reduces the number of potential processors as compared to sub-cube bar 

partitioning.  Because the number of available processors is smaller, each processor in a 

data plane partitioning scheme is allocated a larger chunk of the data cube.  Besides 

increasing the local memory requirement at each node, larger data segments demand more 

processing time thus increasing total completion time.  Additionally, data set re-partitioning 

requires IPC between all processors. 

In contrast, sub-cube bar partitioning of the data set provides a method whereby 

potential gains can be made in scalability and performance while minimizing the IPC time.  

Also, sub-cube bar partitioning has the potential for finer-grained parallelism because the 

maximum number of processors over which that data may be divided is the product of the 

two smallest dimensions of the data cube.  Typically, the number of processors allocated to 

solve a sub-cube bar partitioned data cube is greater than in a data plane partitioning 

approach. Consequently, each processor performs fewer computations resulting in a shorter 

completion time.  Furthermore, IPC between processing stages is isolated to only clusters 

of processors and not the entire system.  On the other hand, sub-cube bar partition has a 

few disadvantages.  First, this approach requires two separate re-partition and rotation 

phases.  Secondly, scheduling data transfers during the re-partition phase is more 

complicated because communication is confined to groups of processors.  The proposed 

research is to model, through simulation, the timing effects associated with how data is 

mapped onto the CNs and how the data transfers are scheduled.   



30 

CHAPTER V 

MAPPING DATA AND SCHEDULING COMMUNICATIONS 

FOR IMPROVED PERFORMANCE 

 

The overall performance of parallel computer systems can be highly dependent upon 

network contention.  In general, the mapping of data and the scheduling of communication 

impacts network contention of parallel architectures.  During phases of data re-distribution 

on parallel computers, the number of required communications is vastly impacted by the 

current location and future destination of the data.  Determining the optimal schedule of 

data transfers through interconnection networks is generally an NP-hard problem [5].  

Consequently, heuristics are often used to provide sub-optimal solutions.  A combination of 

these two factors, data mapping and communication scheduling, provides the key 

motivation for the network simulator described in Chapter VI.  The following two sections 

illustrate the importance of data mapping and the scheduling of communications issues that 

exist implementing a sub-cube bar partitioning scheme on STAP data cubes.  

 

5.1 Mapping a STAP Data Cube onto the Mercury 
RACE System 

As described in Section 4.2, data set partitioning by sub-cube bars entails partitioning 

the data cube into bars composed of two partial dimensions and one whole dimension.  

After partitioning, the sub-cube bars are distributed over a two-dimensional set of 

processors.  Partitioning the STAP data cube across the Mercury System consists of an 

increased level of complexity because each CN is composed of three SHARC processors 

(i.e., CEs).  (In general, a CN can contain one, two, or three CEs; three CEs are assumed 

here.)  An important issue is how to map the sub-cube bars onto the available CNs on the 

Mercury System.  To illustrate the impact of mapping, consider the examples of sub-cube 

bar partitioning prior to pulse compression in Fig. 5.1.  For this example, assume that the 

Mercury System is composed of twelve CEs (see Fig. 5.2), and the STAP data cube is 

divided into twelve sub-cube bars.  Additionally, the number on each sub-cube bar 
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indicates the CE to which the bar is assigned for processing.  The left-hand portion of the 

figure illustrates a mapping scheme where the sub-cube bars are raster-numbered along the 

pulse dimension.  In contrast, the right-hand portion of the figure depicts a mapping 

scheme whereby the sub-cube bars are raster-numbered along the channel dimension.  The 

coloring code of each bar corresponds to its destination CN (recall that each CN is assumed 

to consist of 3 CEs).  For instance, the three blue sub-cube bars are assigned to the blue 

CN, while the red CN processes the three red sub-cube bars.  

Fig. 5.1 Examples of sub-cube bar mapping schemes prior to Doppler filtering. 

Fig. 5.2 An example configuration of a four CN (twelve CE) Mercury System. 
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After performing pulse compression on the data samples along the range dimension, 

the data set requires re-partitioning prior to Doppler filtering.  The initial mapping of the 

data prior to pulse compression affects the number of required communications during the 

re-partitioning phase.  In the case where the data cube is raster-numbered along the pulse 

dimension, six messages, totaling 20 units in size, must be transferred through the 

interconnection network (see Fig. 5.3).  

Each CN is assumed to be configured as one master CE and two slave CEs.  The 

master CE allocates the entire shared memory pool and distributes memory to the other two 

CEs.  Having a master CE on each CN is advantageous during data re-partitioning phases.  

When two or more CEs within the same CN have one or more messages to send a common 

destination CN, the messages may be combined into one message by the master CE’s direct 

memory access (DMA) controller.  The newly created message may now be transferred to 

the destination node by the CN ASIC DMA controller.  For increased efficiency, message 

transfers should be performed by the CN ASIC DMA controller while the CEs are 

concurrently processing.  The reversal of this same process may be applied to message 

arriving at a CN.  Messages arriving at a CN may be composed of one or more messages 

sent to one or more of its CEs.  After receiving the message from the CN ASIC DMA 

controller, the master CE distributes the message’s contents to the appropriate memory 

location.   For this example, the blue CN (or master CE labeled 1) transfers data of size 

three units to the yellow CN.  Furthermore, the yellow CN needs to transfer two messages, 

one to the blue CN of size three units and one to the green CN of size four units.   
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Fig. 5.3 Data set re-partitioning with raster numbering along the pulse dimension. 
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Fig. 5.4 Data set re-partitioning with raster-numbering along the channel dimension. 
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through the interconnection network.  If the six messages were sequentially communicated 

(i.e., no parallel communication) through the network, the completion time (Tc) would be 

the sum of the length of each message, which totals 20 network cycles.  If two or more of 

the messages could be sent through the network concurrently, then the value of Tc would be 

reduced (i.e., below 20).  The purpose here is to illustrate that the order (i.e., the schedule) 

in which the messages are queued for transmission can impact how much (if any) 

concurrent communication can occur.  Thus, it will be shown that scheduling choices affect 

the value of Tc.  

An illustration of the required data transfers is depicted in Fig. 5.5.  The left-hand 

portion of the figure shows the current location of the STAP data cube on the given CEs 

after pulse compression. The coloring scheme of each sub-cube bar indicates the 

destination CN for the next phase of processing.  If part or all of the sub-cube bar is a 

different color than its current processor color, the data must be transferred to the 

corresponding colored destination node.  The data cube on the right-hand of the figure 

illustrates the sub-cube bars of the STAP data cube after re-partitioning.  Each of the sub-

cube bars is composed of sample data of the whole pulse dimension, thus each sub-cube 

bar is a single color.  After re-partitioning the data, Doppler filtering may be applied to 

each sub-cube bar in parallel. 
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Fig. 5.5 An example of data set re-partitioning prior to Doppler filtering.  
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message units.  The actual communication time, Tc, that would result for this example with 

the given message queue orderings (i.e., scheduling) is 17 network units.   

Fig. 5.6 A sub-optimal communication scheduling example. 
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crossbar are numbered 0 to 3).  The crossbar resolves the network contention problem by 

scanning the child ports from left to right.  By using this contention resolution approach, 

message A is granted access to the link connected to the yellow CN, while message B waits 

in the queue.  Furthermore, message D seizes the link to the green compute node, because 

message C is unable to establish a link to the yellow CN, which is occupied by message A.   

At time t = 3, messages A and D complete and release the four channels occupied.  

After the status of the four occupied channels are set to free, queued messages B and C 

request links through the crossbar to their respective destination nodes.  Because messages 

B and C both require access to the link connecting the yellow CN to the network, only 

message B, with a lower port number than C, establishes a path through the crossbar at 

time t = 3.  After message B finishes transfer at time t = 6, queued messages E and C query 

the crossbar for a free path to their destination nodes.  In this case, messages E and C are 

contending for the same two channels resulting in a sequential transfer of the two 

messages.  Based on the port numbers, message C follows message E.  Furthermore, 

messages C and F require sequential transfer because they both originate at the same CN.  

As a result, the remaining three messages are transferred sequential (i.e., no parallel 

communication) in an E → C → F ordering, totaling eleven network cycles.  Compared to 

the minimum possible communication time of fourteen message cycles, the above message 

scheduling example renders a sub-optimal completion time, Tc, of 17 message cycles.  

However, changing the ordering of the messages in the outgoing queues, as described 

below, will yield an optimal scheduling of the messages.    

The message queues in Fig. 5.7 are identical to those in Fig. 5.6 except messages C 

and F have swapped positions on the green CN.  Swapping the ordering of the messages on 

the green compute node allows for an increase in the number of messages that can be 

communicated in parallel.  To understand how the ordering yields improved performance, 

note that at time t = 0, the first messages in the queue, messages A, B, F, and D, are ready 

for transmission.  In parallel, each CN sends its first message to the six-port crossbar.  As 

before, all four of the incoming messages arrive at the crossbar simultaneous with each 

message requesting an outgoing channel.  The crossbar resolves the network contention 

problem by scanning the port numbers in order, which allows messages A and F to 
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establish communication links through the network to their respective destination locations.   

Messages A and F are transferred in parallel and complete in three network cycles.   

Fig. 5.7 An optimal communication scheduling example. 
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CHAPTER VI 

DESIGN OF THE SIMULATOR 

 

The goal of the simulator’s design was to produce an accurate model or 

representation of the proposed system that could be implemented.  As a broader 

understanding of the underlying details of the Mercury System was developed, the design 

of the simulator was further refined and modularized.  The Unified Modeling Language 

(UML), a third generation object-oriented modeling language, was utilized to formalize the 

simulator’s requirements in software terms [21].  UML is a language for specifying, 

visualizing, and constructing the artifacts of complex software systems.  It simplifies the 

complex process of software design and provides a blueprint for construction [21].  The 

primary goals of UML are as follows: (1) provide an expressive visual modeling language 

to develop meaningful models; (2) provide specialization mechanisms to extend core 

concepts; (3) be independent of programming languages and development processes; (4) 

provide a basis for formal modeling languages; (5) encourage the growth of object-oriented 

tools; and, (6) integrate the best practices [21].      

 

6.1  UML Class Definitions 

The design of the simulator incorporates all the underlying components of the 

Mercury System.  Within the structure of the design, only one definition of a class exists in 

the model; however, it may appear on several class diagrams.  An important aspect of the 

simulator’s object oriented design is modularity.  By separating the functional components 

of the system into classes, the classes and their operations provide inherent modularity as 

well as information hiding.   

The class diagram is one of the core components to a UML model.  A class diagram 

illustrates the important abstractions in the system including relationships.  The primary 

elements included on a class diagram are class icons and relationship icons.  Fig. 6.1 shows 

a suppressed UML class diagram of the network simulator.  The rectangular boxes 

represent the classes, while the lines connecting the classes signify the relationships.  A 
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solid line with a hollow diamond at one end indicates an aggregation relation (i.e., one 

object is composed of another object).  An association (i.e., a dependency) between objects 

is represented by a solid line.  A line with a directed arrow at one end denotes an 

inheritance relationship (i.e., one object is a specialization or extension of another object).  

The adornments, such as 1..*, indicates the number of potential objects participating in the 

relationship (in this case, the * means many).   

The main class, Network, is composed of a File Output class, a Clock class, a 

Random Scan class, a Crossbar class, and a Routing Table class.  The Network class also 

gets data from the Data Cube class, and the Data Cube class gets data from the Process Set 

class.  In these two cases, information relating to the data cube and the process set are 

passed to instantiated Network objects prior to the start of the simulation.  Because both the 

data cube and process set may change, while the structure of the network remains the same, 

the two corresponding classes are not contained within the composition of the Network 

class.  This allows a single Network object to operate on different data cubes and process 

sets without regeneration of the network.  A more detailed description of the Network class 

will be presented in Section 6.2.  

    Fig. 6.1 A UML class diagram of the Network class. 
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A UML class diagram of the Crossbar class is illustrated in Fig. 6.2.  The Crossbar 

class is composed of six Link objects (i.e., two parent links and four child links) and four 

Compute Node objects.  For cases where a Crossbar object is positioned at the lowest level 

of the fat-tree architecture, the four Compute Node objects are enabled, and the four child 

Link objects are disabled.  Otherwise, the four child Link objects are enabled and the four 

Compute Node objects are disabled for Crossbar objects not located at the lowest level in 

the network.  Also shown in Fig. 6.2 is a UML diagram of the Compute Node class.  Each 

Compute Node class is composed of two Message Queue objects, one outgoing and one 

received queue, and two Packet Stack objects, one outgoing and one received stack.  A 

Message Queue object may be composed of zero or more Message objects, and zero or 

more packets may be included within each Packet Stack object.  A more detailed account 

of each object represented in Fig. 6.2 is discussed in Section 6.2.     
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Fig. 6.2 A UML class diagram of the Crossbar class. 

 

Both the Message Queue object and Packet Stack object are composed of data items 

that traverse the network links during phases of communication.  Because a Packet class 

and a Message class contain common instance variables and operations, an abstract class, 

Data, was designed to collect the common components of each class (see Fig. 6.3).  The 
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goal of the abstract class definition is to reuse as much of the data and methods as possible.  

In this case, both the Message class and the Packet class inherit from the abstract Data 

class.  In addition, a Header Route List class composes each Packet class.  The Route List 

class contains one or more Route objects that posses the information necessary to route a 

packet through the network to its destination.  

Fig. 6.3 A UML class diagram of the Data class. 
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proceeds with the following two tasks.  First, the object enables the correct number of CNs 

that equates to the number of required CEs.  Second, a Routing Table object is dynamically 

constructed, based on the size of the network, that defines the routing between any two 

CNs in the network.  This information is used to generate the source-to-destination packet 

header routing information for each packet prior to transmission.  

Fig. 6.4 Network class refinement and operations. 
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outgoing message queues at each CN are randomly ordered prior to message 

communication. 

The complexity of simulating, in software, the message traffic of a real-time 

embedded parallel system requires significant management.  During phases of 

communication in a real-time embedded system, possibly numerous data items are making 

connections and transmitting information simultaneously.  Simulating the concurrency of 

such events in a single threaded software simulator is challenging.  One approach to 

solving this problem would be to generate a separate thread of execution for each data 

packet that is currently transmitting data or attempting to establish a path to its respective 

destination in the network.  Unfortunately, the overhead associated with managing the 

potentially high volume of currently executing threads at a given time would severely 

degrade the performance of the simulator.  Furthermore, the crossbars and their associated 

connections would be a shared resource amid all the concurrently executing threads; as a 

result, critical sections, mutexes, or semaphores would be required to protect the shared 

resources by ensuring that only one thread can modify a shared resource at any given time.  

Implementing the necessary requirements to solve the data dependency problem would also 

require significant processing resources.   

A second approach to simulating the real-time aspect of the network involves 

implementing a single thread of execution and scanning the compute nodes with current 

packets, during a given clock cycle, in a random order.  Although this approach does not 

realistically simulate the exact execution of the real multicomputer, it does introduce some 

equality amongst the current packets.  Additionally, this approach eliminates any shared 

resource problem that surfaced in the first approach.   

To facilitate the necessity to scan the enabled Compute Node objects in random 

order, a Random Scan object was incorporated into the design.  An instance of a Random 

Scan object generates a pseudo-random sequence of the enabled CNs.  The simulator then 

proceeds, in the order designated by the Random Scan object, to evaluate and potentially 

alter the state of a packet at the specified CN.  Prior to the execution of pass 1 of each 

simulation cycle, a new random scan ordering is generated by the instantiated Random 

Scan object.  Details pertaining to the simulation cycle will be discussed later in the section. 
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  The final object encompassing the Network Object is the Clock object.  The clock 

object is based on the RACE multicomputer clock of 40 MHz (i.e., .025 µs period); 

however, the simulation clock operates at 5 times the frequency of the actual clock (i.e., 

.125 µs period).  The reasons for selecting a multiple of the true clock cycle are three fold.  

First, the initial packet start-up cost is consumed in one simulation clock cycle.  Second, the 

time required to arbitrate through a crossbar takes more than one actual clock cycle.  Third, 

because a majority of the operations require more than one cycle to complete and 

implementing a simulation clock cycle of .025 µs would increase the number of required 

simulation cycles while degrading overall performance, an appropriate multiple of the 

actual clock frequency was selected for the simulation clock.  Obviously, certain side 

effects result from the multiple-cycled simulation clock.  First, because the effective data 

transfer rate of the actual network is 157.5 MB/s, the simulator transfers approximately 20 

data bytes per simulation clock cycle.  Second, during one simulation clock cycle, a packet 

can arbitrate through two crossbars.    

A major operation of the Crossbar object entails the implementation of the hardware 

priority arbitration algorithms.  Clearly, the RACEway architecture supports a large 

number of simultaneous data transactions where each of these transactions can occur along 

independent paths that have no crossbar ports in common [20].  However, not all data 

transactions occur along independent paths.  Whenever two or more transactions are 

contending for the same port at a given crossbar, arbitration is required. Recalling from 

Section 3.2, a user-programmable packet priority is provided to give the user some level of 

control over the given data transfer transaction’s priority [20].  Unfortunately, user-

programmable priorities do not eliminate the need for arbitration at the hardware level.  For 

example, the hardware priority associated with a given path through a crossbar (defined by 

the entry and exit ports on that crossbar) comes into play when the two or more 

transactions having identical user-defined packet priorities are contending for the same exit 

port on a given crossbar [20].   

Each Crossbar object is configured to implement both the Standard crossbar priority 

algorithm and the Top-Level crossbar arbitration algorithm (see Fig. 6.5).  The selection of 

the appropriate algorithm depends on the location of the crossbar in the network.  Crossbars 
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located at the top of a hierarchy of crossbars utilize the Top-Level algorithm, and all other 

crossbars employ the Standard algorithm.  Both the Standard and Top-Level priority 

arbitration algorithms are defined as a function of the transaction entry and exit ports and 

transaction status.  The assignment of the hardware priorities to crossbar transactions paths 

is far from trivial. Details of these two arbitration algorithms are provided in Section 3.2.       

Fig. 6.5 Crossbar class refinement and operations. 

 

In addition to the hardware arbitration, a Crossbar object exams the status of its 

internal and external ports and routes packets through the crossbar to the next location.  A 

crossbar is also responsible for freeing its connections when a packet has completed or 

been suspended or killed.  Finally, once the connection is established from the source to the 

destination CN, the crossbar transmits the data through the occupied connection. 

The primary focus of the Compute Node class involves the management of the 

message queues and packet stacks (see Fig. 6.6).  Because data is transferred from source to 

destination node across the RACEway network in packets of up to 2048 data bytes in 

length, each message in the outgoing message queue must be exploded into the appropriate 

number of corresponding packets.  During simulation, the top message in the outgoing 

message queue is exploded into packets.  After each of the packets for that message has 
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been transmitted to its respective destination node, the next message at the top of the queue 

is exploded into packets.  This process repeats for each CN until all the outgoing messages 

queues are empty.   

Fig. 6.6 Compute Node class refinement and operations. 

 

During the generation of a packet, a packet header is constructed.  The packet header 

(i.e., the Route List object) contains the information for routing a packet through the 

sequence of crossbars from the source CN to the destination CN.  The routing information 

is retrieved from the Routing Table object within the given Network object.  Via user 

selection, packets destined for the same location may be direct memory access (DMA) 

chained together.  Essentially, DMA chaining provides a mechanism for transferring blocks 

of data to the same location without paying the startup cost for each packet.  Furthermore, 

the Compute Node object is responsible for initiating the request for arbitration through the 

first terminal crossbar.  Once access to the terminal crossbar is established, the crossbars 

are responsible for routing the packet through the network to the destination.  Finally, when 

an active, transmitting packet is suspended by another packet, the Compute Node object is 

responsible for generating a new packet composed of the unsent packet data.  
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6.3 UML Statecharts and Activity Diagrams of the 
Simulator 

The UML statechart models are based on finite state machines using an extended 

Harel state chart notation with modifications to make them object-oriented [2l]. A 

statechart diagram represents a state machine and illustrates the sequence of states that an 

object goes through during its life cycle.  The states are represented by a rectangular box 

with rounded corners, and the transitions are represented by arrows connecting the states.  

The initial (pseudo) state is shown as a small solid filled dot representing any transition to 

the enclosing state [21].  A final (pseudo) state is shown as a small filled dot enclose by a 

circle representing the activity in the enclosing state [21].  In a state diagram, the 

occurrence of an event may trigger a state transition.      

A UML Activity model is a variation of a state machine in which the states are 

activities representing the performance of operations, and the transitions are triggered by 

the completion of an event [21].  The purpose of an activity diagram is to focus on the 

flows driven by internal processing.  Statecharts and not Activity Diagrams should be used 

in situations where asynchronous events occur.  

Fig. 6.7 shows a UML Activity model of the software simulator.  The ovals represent 

action states, and the transitions, which are triggered by the end of the activity, are depicted 

as lines with directed arrows.  A diamond represents a decision process.  After the user 

enters information relating to the size of the network, the size of the STAP data cube, and 

the size of the process set, the simulator proceeds to build the network, the data cube, and 

the process set.  Next, the simulator enables the appropriate setting for phase 1 or phase 2 

communication traffic phase (described in the following paragraph), DMA chaining, and 

CN or CE message traffic pattern.  Once the input parameters have been initialized, the 

simulator simulates the designated traffic pattern and displays the timing results. 
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Fig. 6.7 A UML Activity Model of the Simulator. 

 

The simulation of the network traffic is a complex and detailed process.  Therefore, 
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random order in pass 2, but the actual ordering of the visits in this pass has no affect on the 

network performance.       

A combination of the Compute Node objects and the Crossbar objects are responsible 

for the transferring of the packets through the network.  The CNs implement the two-pass 

simulation architecture that is required to deliver a packet from its source node to its 

destination node.  The crossbars handle the arbitration of the connections at the switches as 

well as the allocation of the interconnected links.  A UML statechart best illustrates the 

process performed by each CN object (see Fig. 6.8).  First, an instantiated CN object 

determines if a current packet has already been removed from the packet stack.  If so, the 

Compute Node object transitions to the Pass 1 state.  In this view, the Pass 1 state is a 

superstate.  (The states and transitions that occur during the simulation of Pass 1 will be 

elaborated on later in this section.)  Otherwise, the Packet Stack is evaluated for the 

existence of an available packet.  If the Packet Stack is not empty, the top packet is popped 

from the top of the stack and becomes the current packet.  Afterwards, the CN object 

transitions to the Pass 1 state.  An error code is generated if a failure occurs during the 

popping of the Packet Stack.  In cases where the Packet Stack is empty, the Message Queue 

is evaluated for available messages.  At this point, if the Message Queue is empty, the CN 

is tagged as completed, and control is passed back to the calling state.  Otherwise, the top 

message is exploded into packets of size 2048 data bytes or less, and the CN transitions to 

the Pop the Top of Stack state.  As illustrated in the figure, a CN is tagged as done only 

when the both the Message Queue and Packet Stack are empty and a current packet does 

not exist. 
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Fig. 6.8 A UML Statechart of the Compute Node class simulation Pass 1. 

 

The Compute Node statechart diagram of the operations executed during Pass 2 of 

the simulation is significantly more simplistic than that of Pass 1 (see Fig. 6.9).  If a current 

packet exist, a transition to the Pass 2 superstate takes place.  On the other hand, if there is 
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Fig. 6.9 A UML Statechart of the Compute Node class simulation Pass 2. 

 

One of the main objectives of the software simulator is to transfer data (i.e., packets) 

through the network.  The transitions of the Packet objects detail the underlying operation 

of the simulator.  Fig. 6.10 illustrates the state diagram for a Packet object.  The blue 

arrows represent transitions that can occur only during Pass 1 of the simulation, while 

transitions that take place during Pass 2 are indicated by red arrows.  Initially, a given 

packet begins in either the Start Up state or Ready state.  Normally, a packet begins in the 

Start Up state; however, for cases where DMA chaining of packets to the same destination 

CN is utilized, the packet’s initial state is Ready.  A packet in the Ready state is ready for 

route arbitration to the destination node.  After the packet header is constructed, a packet in 

the Start Up state transitions to the Ready state.  A Ready packet may transition to either an 

Active state, a Blocked state, or stay in the current state.  A change to the Active state 

transpires only if the connection to the destination node is established.  If the packet 

successfully acquires a partial path through the network but does not occupy a complete 

route to its destination, the packet transitions to the Blocked state.  Finally, if the packet is 

unable to make any progression through the network, the packet remains in the Ready state. 
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Fig. 6.10  A UML Statechart of the Packet class 

 

A Blocked packet is categorized as a packet that occupies at least one connection in 

the network but has yet to make a complete connection to its final destination.  A packet 

may be blocked for two reasons.  First, the exit port that the packet requires at a particular 

crossbar is occupied by another packet, and the hardware arbitration algorithm does not 

allow for the suspension of that packet.  Second, the simulation clock cycle completed 

before the arbitration to the destination was achieved.   A Blocked packet may transition to 
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node is established.  A Blocked packet may also transition to the Suspended state if it is 

terminated by a another packet.  If the currently blocked packet suspends another packet, 

the current packet transitions to the Waiting for Kill state.  Finally, a packet may remain in 

the Blocked state for the same two reasons that it first arrived in this state.           

A packet that is transmitting its contents is in the Active state.  Throughout the 

transfer of packet data, the packet remains in the Active state unless suspended.  A packet 
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Packets that are terminated prior to completion transition to the Suspended state.  

While in the Suspended state, packets that were previously Active require the construction 

of a new packet with the remaining data content.  Additionally, the connections occupied 

by the packet are freed during the next simulation clock cycle, and the newly formed 

packet transitions to the Start Up state.  Packets arriving at the Suspended state that were 

previously in the Blocked state are handled differently.  Because none of the data was 

transferred, a new packet is not required; however, the packet header does require updating.  

After updating the packet header with new routing information, a transition to the Start Up 

state occurs. 

Finally, packets in the Wait for Kill state are waiting for a suspended packet to release 

its occupied connections.  During the pass 2, the waiting packet transitions to the Blocked 

state.  Once in the Blocked state, the packet may be able to gain access to the newly freed 

connections in the next clock cycle, but because this is a real-time system, there is no 

guarantee that the connection will be available in the next clock cycle.  For instance, 

another packet may allocate the connection before the waiting (now currently blocked) 

packet can occupy the connection. 

 

6.4 Implementation 

The software simulator was written in Java, although the design is language 

independent.  Java was selected for its portability and the need for Internet access to the 

simulator.  The actual implementation, which is based on the design described in this 

section, was developed in Borland’s JBuilder 1.0.  Although the studies on network traffic 

described in the next chapter were conducted based on STAP algorithms, the simulator is 

designed to simulate any communication pattern requirement.  That is, the simulator can 

take as input any CE traffic matrix.  After implementation, the software simulator was 

extensively tested prior to the collection of data. 
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CHAPTER VII 

PRELIMINARY NUMERICAL STUDIES 

 

Recalling that the objective of this research is the design and implementation a 

network simulator to model the effect data mapping and communication scheduling has on 

the performance of a STAP algorithm on the Mercury RACE system. Determining the 

optimal communication schedule of queued messages during the two phases of data re-

partitioning is beyond the scope of this research. In addition to scheduling, one could 

consider the complexity of determining the optimal routing of the queued messages (recall 

that there are multiple paths connecting pairs of CNs in the RACEway system).  The goal 

of the research is not to solve these types of optimizations, but to simulate the effects 

different schedules and data mapping have on performance.  The scope of the research 

involved the investigation of the following four areas: process set configuration, CN and 

CE message traffic, adaptive routing settings, and DMA chaining options.     

 

7.1 Process Set Configuration 

In a sub-cube bar partitioning approach, the STAP data cube is distributed to the 

available CEs by partitioning the data cube into sub-cube bars by applying a two-

dimensional process set to the data cube.  Before processing can take place at the next 

phase, the data vectors must be re-distributed to form contiguous vectors of the next 

dimension.  Five separate studies were conducted related to the size of a process set.  Each 

simulation involved recording both the phase 1 and phase 2 completion times for fifty 

randomly selected schedules.  After these fifty completion times for each phase were 

collected, the resulting data was placed in histogram format. 
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7.1.1 Performance Metric for a 123x  and 124x  Process Set 

Fig. 7.1 shows the timing results collected from both a 123x  and a 124x  process set.  

For a 123x  process set, which includes thirty-six CEs or 12 CNs, the horizontal dimension 

is 3, and the vertical dimension is 12.  Intuitively, a 124x  process set contains 16 CNs or 

48 CEs, and the horizontal dimension is 4 while the 12 represents the vertical dimension.  

The notation above the illustrated graph, which is consistent throughout this chapter, 

defines the additional parameters of the simulation.  The first label, CN, signifies that the 

message traffic pattern generated was CN traffic.  The parameters of the STAP data cube 

are defined by the sizes of the range (R) dimension, the pulse (P) dimension, and the 

channel (C) dimension.  For this simulation, an antenna array including sixteen channels 

obtained two hundred range samples from a CPI of twenty-two pulses.  Additionally, 

adaptive routing is used to adaptively route the packets that enter the child ports to an exit 

parent port.  In this instance, the F parent port is evaluated prior to the E parent port (i.e., 

adaptive routing, F first).  The x-axis expresses the time line in milliseconds, and the y-axis 

denotes the tallied appearance of a particular time interval.  

Fig. 7.1: Phase 1 performance metric for a 123x  and 124x  process set 
with range: 200, pulses: 22, channels: 16, and adaptive F routing. 
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Notice that the communication time for the 123x  process set is zero.  Recall that each 

CN contains 3 CEs, so in this case, the data required for the second processing phase is 

located on the correct CN because the horizontal dimension contains exactly 3 CEs.  For 

the CN 16 case, where the horizontal dimension contains 4 CEs, communication is required 

before processing of the next dimension can commence.  In this instance, the 124x  process 

set is outperformed by the 123x  process set. 

An examination of the communication times for the second corner-turn reveals a 

different outcome (see Fig. 7.2).  In this simulation, the communication times are quite 

similar, although the CN 12 configuration again records the smallest time by approximately 

.25ms.  Intuitively, the CN 12 configuration has fewer messages to communication because 

there are fewer processors and more data locate at each CN.  However, in the CN 16 case, 

the STAP data is distributed to more processors, which results in a larger number of 

messages during the phase 2 corner-turn distribution of the data.     

Fig. 7.2: Phase 2 performance metric for a 123x  and 124x  process set 
with range: 200, pulses: 22, channels: 16, and adaptive F routing. 
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7.1.2 Performance Metric for a 46x  and 64x  Process Set 

Fig. 7.3 illustrates the phase 1 simulation timing results obtained for an 8 CN system 

configured with the STAP data cube partitioned by a 46x  and a 64x  process set.  In this 

example, the communication pattern for the 46x  process set records the same time for each 

iteration.  Because the horizontal dimension is a factor of three, the communication pattern 

is a more predictable.  In the first phase, CEs are sending messages to other CEs in the 

same row (i.e., the horizontal dimension).  Additionally, because the data cube size is 

particularly large (i.e., 800 range samples, 32 pulses, and 22 channels), the messages are of 

significant size, which translates to a high number of packets sent from the same source 

node to the same destination node.  Furthermore, there is only one message in the outgoing 

queue of each CN, so the number of possible orderings at each CN is one.  Unfortunately, 

this is not the case with the 64x  process set.  In this instance, there is more than 1 message 

in the outgoing queues, and the messages are not uniform in size, resulting in a more 

diverse recording of completed simulation times.    

Fig. 7.3: Phase 1 performance metric for a 46x  and 64x  process set 
with range: 800, pulses: 32, channels: 22, and adaptive E routing. 
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In contrast to the different communication times in phase 1, the times in phase 2 have 

less variation between the two process sets (see Fig. 7.4).  Furthermore, the completion 

times for phase 2 are a factor of 3 to 4 greater than phase 1 times because there is more data 

to distribute in this phase.  In fact, the phase 2 communication dominates the total 

completion time for each case presented in this chapter.  This simulation reveals that the 

46x  process set size would yield the shortest total completion time.   

Fig. 7.4: Phase 2 performance metric for a 46x  and 64x  process set 
with range: 800, pulses: 32, channels: 22, and adaptive E routing. 
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In addition, the 94x  process set performs better in phase 1 than both the 312x  and 49x  

process set.  Furthermore, this simulation unveiled that the phase 1 communication 

benefited from lower horizontal dimension process set value.  However, it is important to 

note that this may not be true for all horizontal cases (i.e., data cube sizes, routing, options, 

etc.).   

Fig. 7.5: Phase 1 performance metric for a 312x , 49x , 66x , and 94x  
process set with range: 200, pulses: 22, channels: 16, and adaptive F 
routing. 
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not reflect the actual location of the source data.  As a result, the process sets with the 

lowest times for corner-turn communication phases 1 and 2 must have the same process set. 

However, the ordering of the CEs within the structure of the process could be altered 

between phases. 

Fig. 7.6: Phase 2 performance metric for a 312x , 49x , 66x , and 94x  
process set with range: 200, pulses: 22, channels: 16, and adaptive F 
routing. 
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space.  The 123x  process set requires no communication during the phase 1 

communication cycle due to the dimensions of the process set (see Fig. 7.7).  The 
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given CN; as a result, the data required for both range compression and Doppler filtering 

are currently available on the same CN.  In this instance, there is no data transfer 

requirement for phase 1.  The 312x  and 94x process set, which are elaborated on in 

Section 7.1.3, are include here for comparison only.   

Fig. 7.7: Phase 1 performance metric for a 123x , 312x , and 94x  
process set with range: 200, pulses: 22, channels: 16, and adaptive F 
routing. 

 

 

In the second corner-turn phase, the 123x  partitioning of the data cube also performs 

the data redistribution in the shortest period (see Fig. 7.8).  Recalling from Section 7.1.3, 

the 94x process set was the best overall performer; nevertheless, the 94x  process set is, on 

average, roughly a millisecond slower compared to the 123x  process set in phase 2.  In 

addition, because the 123x  process set does not require communication in the first phase, it 

is the best process set for the listed problem parameters. 
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Fig. 7.8: Phase 2 performance metric for a 123x , 312x , and 94x  
process set with range: 200, pulses: 22, channels: 16, and adaptive F 
routing. 

 
 

 

7.1.5 Performance Metric for a 412x , 68x , and 124x  
Process Set 

The final process set performance metric compares a subset of the possible process 

set combinations for a 16 CN system.  If the minimum sized dimension of a process set is 

2, the number of possible process set size combinations is 10.  For illustration purposes, 

only a subset of the possible process sets is presented for a set of fixed problem parameters. 

Fig. 7.9 shows the phase 1 communication times recorded for a 412x , 68x , and 124x  

process set.  In phase one, there is slightly less than a 50% difference in the separation 

between that shortest and longest time recorded.  As illustrated in the graph, the 

124x process set is, on average, approximately 20% faster than the 68x  process set and 

28% percent faster than the 412x process set.  The 68x  has a longer interval of recorded 
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completed times, which indicates that the ordering (i.e., the scheduling) of the messages 

impacts the performance of this process set more than the others. 

Fig. 7.9: Phase 1 performance metric for a 412x , 68x , and 124x  process 
set with range: 200, pulses: 22, channels: 16, and adaptive F routing. 

 
 

The 124x  process set also produces the best completion time for the phase 2 

communication pattern (see Fig. 7.10).  In fact, the performance increase is almost thirty 

percent.  The 412x  and 68x  process sets generate comparable results during phase 2, but 

each are roughly 1 to 1.25 ms slower in the best case.  In addition, there is around a 1 ms 

variation in completion times which indicates message ordering affects performance.   
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Fig. 7.10: Phase 2 performance metric for a 412x , 68x , and 124x  
process set with range: 200, pulses: 22, channels: 16, and adaptive F 
routing. 

 

 

7.2 Compute Node and Compute Element Traffic 
Investigation 

The simulator is capable of generating either compute node traffic or compute 

element traffic.  Messages from the same CN to the same destination CN are combined to 

form one message in a CN traffic approach to message generation.  In contrast to CN 

traffic, each CE generates its own message to the destination CE, and messages to the same 

“CN destination” are not combined together in a CE traffic approach.  In general, CN 

traffic contains larger and fewer messages than CE traffic.  Simulations involving CE 

traffic contain more messages but each message is smaller.  Three distinct investigations 

were conducted related CN and CE traffic.  As in Section 7.1, each simulation involved 

recording both the phase 1 and phase 2 completion times for fifty simulations.  After the 

fifty completion times for each phase were collected, the resulting data was placed in a 

histogram format. 
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7.2.1 Message Traffic Performance Metric for 16 CN 
( 412x ) Configuration 

A message traffic investigation of a 16 CN system with a 412x process set 

configuration is provided in Fig. 7.11.  From the graph, the CE traffic is approximately 

10% faster than the CN traffic on average.  In a CN traffic approach to message generation, 

the larger messages tend to allocate the same path through the network for longer back-to-

back periods.  However, when CE traffic is utilized, there is an increase in the number of 

messages, but the messages are smaller.  By having more messages, the number of possible 

orderings in the outgoing queues increase.  Additionally, because the messages are smaller 

and the orderings more diverse, the same CN is not necessary requesting a connection to 

the same destination node repeatedly.  Furthermore, notice the variation in communication 

times for CE traffic.  This indicates that the ordering of the messages in the queues affects 

the completion time of the communication pattern.   
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Fig. 7.11:  Phase 1 message traffic performance metric for a 16 CN ( 412x ) 
configuration with range: 400, pulses: 22, channels: 16, and adaptive E/F 
routing. 

 

The phase 2 message traffic results for the same set of parameters are opposite of 

phase 1 (see Fig. 7.12).  In phase 2, the CN traffic appears to dominate the CE traffic.  In 

fact, the CE traffic is approximately 25% slower than the CN traffic.  For this scenario, it 

would be possible and advisable to employ a CE distribution of messages in phase 1, and a 

CN deployment of messages in phase 2.  Also worth mentioning in the phase 2 CN 

message traffic results is the variation in completion time.  This again indicates that the 

ordering of the outgoing messages is correlated to the completion time. 
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Fig. 7.12:  Phase 2 message traffic performance metric for a 16 CN ( 412x ) 
configuration with range: 400, pulses: 22, channels: 16, and adaptive E/F 
routing. 

 

 

 

7.2.2 Message Traffic Performance Metric for 16 CN 
( 86x ) Configuration 

In Section 7.2.1, the CN and CE traffic was examined for a 16 CN system configured 

with a 412x  process set.  In this section, a 16 CN system is studied, but the process set 

configuration is 86x .  Fig. 7.13 illustrates the results from the phase 1 corner-turn of the 

STAP data cube.  In this scenario, the times for CN and CE message traffic in phase 1 are 

almost identical.  In addition, the completion time for the 86x  process set is approximately 

60% faster than for the 412x  process set in Section 7.2.1. 
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Fig. 7.13:  Phase 1 message traffic performance metric for a 16 CN ( 86x ) 
configuration with range: 400, pulses: 22, channels: 16, and adaptive E/F 
routing. 

 
 

As in Section 7.2.1, the CN traffic performs better than the CE traffic in phase 2 (see 

Fig. 7.14).  On average, the CN traffic is approximately 30% quicker than the CE traffic.  

The variation in the CN traffic completion times also indicates that the ordering of the 

messages in the queues at each compute node is related to the performance of the 

communication pattern. 
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Fig. 7.14:  Phase 2 message traffic performance metric for a 16 CN ( 86x ) 
configuration with range: 400, pulses: 22, channels: 16, and adaptive E/F 
routing. 

 

 

 

7.2.3 Message Traffic Performance Metric for 12 CN 
( 66x ) Configuration 

In the previous two investigations, the communication phase prior to QR-

Decomposition (i.e., phase 2), was best suited to CN traffic.  However, this scenario will 

reveal that CE traffic could be best served for the phase 2 corner-turn.  Fig. 7.15 illustrates 

the differences recorded in the completion times of both CN and CE traffic for a 12 CN 

system with a 66x  process set configuration.  In this example, the CE traffic is only 

slightly slower than the CN traffic in phase 1.  In fact, the overall difference is less than 

1%.     
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Fig. 7.15:  Phase 1 message traffic performance metric for a 12 CN ( 66x ) 
configuration with range: 800, pulses: 32, channels: 22, and adaptive E 
routing. 

 

 

In phase 2, the best completion times for both CN and CE traffic are approximately 

identically (see Fig. 7.16).  In the above two examples, the CN traffic clearly out performed 

the CE traffic.  For this example, the number of CNs, the size of the data cube, and the 

arrangement of the process set were altered to demonstrate that CE traffic, under the right 

conditions, could prove valuable during the phase 2 communication.  In this simulation, the 

results indicate that the number of CNs, size of the STAP data cube, and the layout of the 

process set significantly affects the message traffic performance of communication phases 

on the Mercury network.  In addition, there is a 10% variation in the completion times for 

the CN traffic.  Consequently, the ordering of the messages can both improve and degrade 

the communication performance. 
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Fig. 7.16: Phase 2 message traffic performance metric for a 12 CN ( 66x ) 
configuration with range: 800, pulses: 32, channels: 22, and adaptive E 
routing. 

 

 

 

7.3 Adaptive Routing Configurations 

An adaptive routing technique may be used to route packets through the connections 

at each crossbar.  Packets exiting one of the parent ports may be routed to the other parent 

port if the first port is not free and adaptive routing is used.  Because each crossbar contains 

two parent ports, the adaptive routing option may be set to evaluate either E or F first.  

Additionally, a combination of both adaptive E and adaptive F could be used to arbitrate 

packets through the interconnection of crossbars.  The following sections illustrate the 

effects of adaptive routing on the communication time. As before, each simulation involved 

recording both the phase 1 and phase 2 completion times for fifty simulations.  
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7.3.1 Adaptive Routing Performance Metric 1 for a 16 CN 
( 68x ) Configuration 

In the first simulation, a 16 CN system configured with an 68x  process set was 

studied.  The STAP data cube size for this simulation was eight hundred range bins, thirty-

two pulses, and twenty-two channels.  For this simulation the combination of adaptive E 

and adaptive F routing recorded the shortest communication times (see Fig. 7.17).  

Additionally, the adaptive E/F configuration accounted for the smallest completion time 

interval.  When configured with adaptive E routing only, the simulation record the widest 

variation in completion times.  Again, this indicates that the scheduling of the messages 

impacts the performance of the communication pattern.   

Fig. 7.17:  Phase 1 adaptive routing performance metric for a 16 CN 
( 68x ) configuration with range: 800, pulses: 32, and channels: 22. 
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ms faster than adaptive E routing (i.e., approximately a 25% decrease).  The adaptive E 

routing completed last.  This is primarily due to the two hardware priority arbitration 

algorithms at the crossbars. Packets entering port F are given a higher hardware priority 

than those entering port E.  For this simulation, a combination of adaptive E/F routing 

produces the smallest completion times for both phase 1 and 2. 

Fig. 7.18: Phase 2 adaptive routing performance metric for a 16 CN 
( 68x ) configuration with range: 800, pulses: 32, and channels: 22. 

 

 

 

7.3.2 Adaptive Routing Performance Metric 2 for a 16 CN 
( 68x ) Configuration 
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different timing results were obtained.  In this simulation, the input parameters of the STAP 

data cube were modified to produce a smaller data sample.  In this case, the range samples 

were reduced to four hundred, the pulses to twenty-two, and the channels to sixteen.  As a 

result of the changes, the adaptive E/F routing approaches the completion times of adaptive 
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combination still records the shortest time for each phase.  In addition, the adaptive E 

routing options continued to account for the longest completion times. 

Fig. 7.19:  Phase 1 adaptive routing performance metric for a 16 CN 
( 68x ) configuration with range: 400, pulses: 22, and channels: 16. 
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Fig. 7.20:  Phase 2 adaptive routing performance metric for a 16 CN 
( 68x ) configuration with range: 400, pulses: 22, and channels: 16. 

 
  

7.4 DMA Chaining Options 

Direct Memory Access (DMA) block transfers may be utilized to send multiple 

packets to the same destination CN.  When packets destined for the same location are 

DMA chained together, only the first packet is assessed the DMA start up time, which is 

required to start the DMA controller.  The remaining packets do not incur a start up cost, 

and proceed directly to the route arbitration state. Three distinct investigations were 

conducted related to DMA chaining.  Each of the three simulations generate CE traffic.  CE 

traffic was selected because it tends to create more, but smaller messages than CN traffic. 

Each simulation involved recording both the phase 1 and phase 2 completion times for fifty 

simulations. 
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7.4.1 DMA Chaining Performance Metric 1 for a 24 CE 
( 38x ) Configuration 

In the first DMA chaining investigation, the parameters of the system studied 

included twenty-four CEs, an 38x  process set, two hundred range samples, twenty-two 

pulses, sixteen channels, and adaptive F first routing.  Fig. 7.21 illustrates the timing results 

collected from the simulator with DMA chaining enabled and disabled.  Under these 

conditions, the DMA chaining option has only a limited effect on the timing results.  

Disabling the DMA chaining for this scenario achieves the shortest completion time.  

Furthermore, each option contains a disparity of approximately .3 ms in recorded 

completion times.  The variation is a product of message ordering prior to communication.  

This alone suggests that the ordering of the messages influences the performance of the 

communication pattern. 

Fig. 7.21:  Phase 1 DMA chaining performance metric for a 24 CE ( 38x ) 
configuration with range: 200, pulses: 22, channels: 16, and adaptive F 
routing. 
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The phase 2 communication details yield a similar results (see Fig. 7.22).  The overall 

performance for both DMA chaining enabled and disabled are comparable.  In this 

instance, the shortest possible completion time is recorded by both options.  In addition, the 

average completion time for no chaining is approximately .2 ms better than with chaining 

enabled.  

Fig. 7.22: Phase 2 DMA chaining performance metric for a 24 CE ( 38x ) 
configuration with range: 200, pulses: 22, channels: 16, and adaptive F 
routing. 
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7.4.2 DMA Chaining Performance Metric 2 for a 24 CE 
( 38x ) Configuration 

In section 7.4.1, DMA chaining had only a small effect on the performance of the 

communication pattern.  The second performance metric involved investigating the same 

hardware configuration (i.e., a twenty-four CE system, an 38x  process set, and adaptive F 

first routing) but with a larger data cube.  Increasing the size of the data cube equates to 

increasing the amount of packets transmitted during corner-turn phases.  The results of 

increasing the data cube range parameter from two hundred to four hundred for both phases 

of communication are illustrated in Figs. 7.23 and 7.24.  In each phase, disabling the DMA 

block transfers accounted for the shortest completion time.  For this simulation 

configuration, packets chained together tended to occupy the same connection path 

repeatedly.  Consequently, certain packets remained blocked until the entire DMA block 

transfer was completed.  Disabling the DMA chaining yielded a greater diversity of packets 

successfully arbitrating through the network.  Finally, the variation in recorded completion 

times for each phase signifies the importance of the outgoing order of messages.        
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Fig. 7.23: Phase 1 DMA chaining performance metric for a 24 CE ( 38x ) 
configuration with range: 400, pulses: 22, channels: 16, and adaptive F 
routing. 
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Fig. 7.24: Phase 2 DMA chaining performance metric for a 24 CE ( 38x ) 
configuration with range: 400, pulses: 22, channels: 16, and adaptive F 
routing. 

 

 

 

7.4.3 DMA Chaining Performance Metric 3 for a 24 CE 
( 38x ) Configuration 

The third and final performance metric involved investigating the same hardware 

configuration (i.e., a twenty-four CE system, an 38x  process set, and adaptive F first 

routing) but with a larger data cube size than either of the first two investigations.  Again, 

increasing the size of the data cube equates to increasing the amount of data communicated 

during corner-turn phases.  The results of increasing all three of the data cube parameters 

for both phases of communication are illustrated in Figs. 7.25 and 7.26.  In both cases, 

DMA block chaining significantly improved the performance of data transfers.  The 

disparity between the completion times illustrates the fact that message order effects the 

communication performance whether DMA chaining is enabled or not.     
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Fig. 7.25: Phase 1 DMA chaining performance metric for a 24 CE ( 38x ) 
configuration with range: 800, pulses: 32, channels: 22, and adaptive F 
routing. 

Fig. 7.26: Phase 2 DMA chaining performance metric for a 24 CE ( 38x ) 
configuration with range: 800, pulses: 32, channels: 22, and adaptive F 
routing. 
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CHAPTER VIII 

CONCLUSIONS 

 

Achieving real-time performance for STAP algorithms on parallel embedded systems 

like the Mercury RACE multicomputer, largely depends two major issues.  First is 

determining the best method for distributing the 3-D STAP data cube across CNs, 

composed of multiple processors, of the multiprocessor system (i.e., the mapping strategy).  

Second is determining the scheduling of communications prior to Doppler filtering and 

weight computation and beamforming.   In general, STAP algorithms contain three phases 

of processing, one for each dimension of the data cube (i.e., range, pulse, and channel).  

During each phase of processing, the vectors along the dimension of interest are distributed 

as equally as possible among the CNs for parallel processing.  In a sub-cube bar approach, 

before processing can take place at the next phase, the data vectors must be re-distributed to 

form contiguous vectors of the next dimension.  

Determining the optimal communication schedule of queued messages during the two 

phases of data re-partitioning may be classified as an NP-hard problem.  The goal of the 

research was to model (through simulation) the effects associated with how data is mapped 

onto the CNs of the Mercury system using a sub-cube partitioning approach and how the 

data transfers are scheduled. 

Chapter VI described the design and implementation of the network simulator for the 

RACE system.  Chapter VII provided numerical studies of a subset of the data recorded 

from simulation scenarios investigated.  In general, five parameters can be modified to 

produce different results from the simulator.  The five parameters are: the data cube size, 

the process set size, the DMA chaining options, the adaptive routing options, and CN or CE 

message traffic.  Investigating all possible combinations of the above simulation 

parameters is far beyond the scope of this work.  However, the results obtained illustrate 

the importance a network simulator in investigating the effects of communication on 

performance.   
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Although used here to study the communication times for parallel STAP algorithms, 

the simulator is generic enough to be used to predict communication times for any 

communication pattern.  The simulator is very complex and; its implementation required 

over 6500 lines of Java code.  Future work will involve systematic approaches to parameter 

selection for optimizing performance. 
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