

Study of Power Consumption for High-Performance
Reconfigurable Computing Architectures

A Master’s Thesis

Brian F. Veale

Department of Computer Science

Texas Tech University

August 6, 1999

John K. Antonio (Chairperson)

Noe Lopez-Benitez

Copyright 1999, Brian F. Veale

 ii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and respect for my committee

chairman, Dr. John K. Antonio for his guidance, expertise, and encouragement

throughout this research effort and for giving me the opportunity to work with him in the

High Performance Computing Laboratory at Texas Tech University. He is a wonderful

mentor and friend. I thank Dr. Noe Lopez-Benitez for being on my committee and

supporting my efforts throughout my educational career here at Texas Tech University.

The work represented in this thesis is largely in part due to the tireless work of my

colleagues in the High Performance Computing Laboratory. I wish to thank Tim

Osmulski for the amazing work he did with the probabilistic power simulator, Nikhil

Gupta and Jeff Muehring for the work they did on the Wild-One and VHDL, and Jack

West for the support he has given to the whole lab.

This research was funded by a research contract from the Defense Advanced

Research Projects Agency (DARPA), Arlington, VA, “Configuring Embeddable

Adaptive Computing Systems for Multiple Application Domains with Minimal Size,

Weight, and Power,” contract number F30602-97-2-0297.

Without the loving support and caring of my parents, James H. Veale and Carolyn

S. Veale, I would have never made it this far in my educational career. They have been

there every moment along the way when I needed them the most. I thank them for the

countless hours of support and years of growth they have given me. I would also like to

thank my brother Jonathan H. Veale who has been a true friend throughout my life.

 iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii

ABSTRACT .. v

LIST OF TABLES ...vi

LIST OF FIGURES...vii

CHAPTER

 I. INTRODUCTION AND MOTIVATION ... 1

 II. OVERVIEW OF THE XILINX XC4000 SERIES PART .. 3

 2.1 General Description.. 3

 2.2 Architectural Features .. 4

 2.2.1 The Configurable Logic Block .. 4

 2.2.1.1 Function Generators ... 4

 2.2.1.2 Storage Elements.. 6

 2.2.1.3 Function Generators as RAM... 6

 2.2.2 The Input/Output Block ... 6

 2.2.3 Programmable Interconnect ... 8

 2.2.3.1 CLB Routing .. 8

 2.2.3.2 I/O Routing (VersaRing) .. 13

 2.2.4 Power Distribution... 14

 III. BACKGROUND AND RELATED WORK ... 16

 3.1 Basic Concepts of Power Consumption... 16

 3.1.1 Capacitance Charging Power Consumption .. 16

 3.2 Basic Concepts of Power Modeling... 17

 3.2.1 Time-Domain Techniques ... 17

 3.2.2 Probabilistic Techniques.. 19

 3.2.2.1 A Probabilistic Power Prediction Simulator 21

 3.3 A Low Power Divider.. 23

 3.4 The Practicality of Floating-Point Arithmetic on FPGAs 25

 IV. DESCRIPTION OF WORK PERFORMED ... 27

 iv

 4.1 An Array-Based Integer Multiplier.. 27

 4.2 Inner Product Co-processor Designs ... 30

 4.2.1 Floating-Point Co-processors .. 31

 4.2.1.1 Floating-Point Multiplier.. 32

 4.2.1.2 Floating-Point Adder.. 34

 4.2.2 Integer Co-processors .. 38

 V. RESULTS AND IMPLEMENTATION ISSUES ... 40

 5.1 Problems with Measuring Real Power Consumption 40

 5.2 Performance and Comparison of the Co-processors................................ 41

 5.3 A Phenomenon Observed with Pipelining... 44

 VI. CONCLUSIONS AND FURTHER RESEARCH... 45

REFERENCES.. 47

 v

ABSTRACT

As reconfigurable computing devices, such as field programmable gate arrays

(FPGAs), become a more popular choice for the implementation of custom computing

systems, the special characteristics of these devices must be investigated and exploited.

Usually a device’s performance (i.e., speed) is the main design consideration, however

power consumption is of a growing concern as the logic density and speed of integrated

circuits increases. Specifically, the characteristic of being reconfigurable gives FPGAs

different power dissipation characteristics than traditional ICs.

This thesis explores the problems of power consumption in field programmable

gate arrays. An introduction into power consumption and power prediction techniques is

presented as well as an overview of the composition of the Xilinx XC4000 Series

FPGAs. A probabilistic power simulator, developed under the same research contract as

this thesis, is discussed as well as the ongoing attempt to calibrate the power simulator for

Xilinx FPGAs.

The design of two different sets of inner product co-processors (multiply-

accumulate and multiply-add) for integer and floating-point data is presented. The

implementation of these co-processors as well as their performance, sizes, and estimated

power consumption values are presented and analyzed in this thesis.

 vi

LIST OF TABLES

2.1 Routing per CLB in XC4000 Series devices [1] ... 10

4.1 Timing results for the array multiplier .. 30

5.1 Speed, Resource Utilization, and Power Consumption of the Co-processors....... 43

 vii

LIST OF FIGURES

2.1 Simplified block diagram of the XC4000 Series CLB [1] 5

2.2 Simplified block diagram of the XC4000E IOB [1] ... 7

2.3 Simplified block diagram of the XC4000X IOB [1]... 8

2.4 Example layout of an FPGA with 16 CLBs [7] .. 9

2.5 High-level routing diagram of the XC4000 Series CLB [1] 10

2.6 Programmable Switch Matrix (PSM) [1] .. 11

2.7 Single- and double-length lines, with Programmable Switch Matrices [1] 12

2.8 XC4000X direct interconnect [1] .. 13

2.9 High-level routing diagram of the of the XC4000 Series VersaRing [1].............. 14

2.10 XC4000X octal I/O routing [1] ... 15

2.11 XC4000 Series power distribution [1]... 15

3.1 Equivalent gate model for a CMOS transistor [7]... 17

3.2 Illustration of a CMOS implementation for the Boolean function
 321 xxxy = [7]... 18

3.3 Illustration of time-domain modeling of CMOS circuit signals [7]...................... 18

3.4 Illustration of signal probability measures associated with various
 time-domain signal data [7]... 20

3.5 Illustration of signal activity measures associated with various
time-domain signal data [7]... 20

4.1 An array-based multiplier.. 28

4.2 A propagate adder ... 29

4.3 Multiply-add scheme... 30

4.4 Multiply-accumulate scheme .. 31

4.5 SHARC DSP short word floating point format [8] ... 31

4.6 16-bit floating-point multiplier.. 33

4.7 Two possible normalization cases in floating point multiplication....................... 34

4.8 Pipelined floating-point adder ... 35

4.9 Comparing exponents by subtraction .. 36

4.10 Choosing of the exponent.. 36

 viii

4.11 Align mantissas ... 36

4.12 Add/Subtract mantissas ... 37

4.13 Normalize mantissa and adjust exponent .. 39

4.14 Examples of normalization.. 39

5.1 Linearly weighted activity values for multiply-add and multiply-accumulate 43

1

CHAPTER I

INTRODUCTION AND MOTIVATION

Reconfigurable computing devices, such as field programmable gate arrays

(FPGAs), are becoming a popular choice for the implementation of custom computing

systems. For special purpose computing environments, reconfigurable devices can offer

a cost-effective and more flexible alternative than the use of application specific

integrated circuits (ASICs). They are especially cost-effective compared to ASICs when

only a few copies of the chip(s) are needed [7]. A major advantage of FPGAs over

ASICs is that they can be reconfigured to change their functionality while still resident in

the system, which allows hardware designs to be changed as easily as software and

dynamically reconfigured to perform different functions at different times [1].

Even though digital signal processors (DSPs) are well suited for embedded

systems and can be re-programmed easily, their architecture is relatively generic,

meaning that they may have more silicon complexity than needed for any given

application. Therefore, ASICs designed for a particular application generally provide

better performance and/or less complexity than a DSP. The drawback is that ASICs are

expensive to develop in small volumes and are not reconfigurable (i.e., once the ASIC

has been manufactured its functionality cannot be changed; the entire chip must be

replaced with a different one to change the design). FPGAs on the other hand are

reconfigurable; they can implement hardware designs in a similar manner that a DSP can

execute different software programs [10], and can perform at or near ASIC and DSP

levels [7]. FPGAs are well-suited for embedded systems in which a stream of input data

must be processed, and can provide improvements in throughput and speed over DSPs by

using parallelism and eliminating overhead associated with DSPs (i.e., load operations,

store operations, branch operations, and instruction decoding). The increasing popularity

of reconfigurable systems is consistent with the growing trend of using commercial-off-

the-shelf (COTS) hardware in place of ASICs for custom systems [10].

Usually a device’s performance (i.e., speed) is the main design consideration,

however power consumption is of a growing concern as the logic density and speed of

2

ICs increase. This is notably true for battery-operated equipment such as cellular phones

and GPS receivers, and for remote devices housed in satellites and aircraft, where power

is a premium. Therefore, the prediction of the power consumption of a device can be an

important issue. This is even more important in reconfigurable devices because their

characteristics introduce timing and power considerations not found in traditional IC

devices and implementations [7].

Some research has been undertaken in the area of power consumption in CMOS

(complimentary metal-oxide semiconductor) devices. This work has focused primarily

on circuit activity and on power consumption in circuits designed using VLSI basic cell

techniques. Representative examples of this work are found in [3], [4], and [6]. Besides

[7], the closest research to power prediction in configurable devices is found in [6], where

a power prediction tool was developed to predict power consumption in circuits that have

been designed using VLSI techniques. This is similar to predicting power consumption

in FPGAs, but does not account for the actual implementation of VLSI cells as

techniques for power prediction in FPGAs must account for the implementation of the

configurable logic blocks (defined in Chapter II) in the device. Accordingly, because

there is little information pertaining to the evaluation of power consumption in

reconfigurable devices, few methodologies (if any) exist for designing low power

systems using reconfigurable devices. Also, because the design of systems using FPGAs

goes down to the logic function level, any methodologies for low power design in FPGAs

may be of use in designing VLSI circuits for CMOS devices.

The objectives of the research laid out in this thesis are to utilize the power

simulator developed in [7] and develop multiply-add and multiply-accumulate inner

product co-processors for both integer and floating-point data in FPGAs. The

implementation of the co-processors provides a basis for an evaluation and comparison of

data formats in FPGAs and evaluating the power simulator, as well as an exercise in

which different design methodologies may be used and evaluated on the basis of power

consumption.

3

CHAPTER II

OVERVIEW OF THE XILINX XC4000 SERIES PART

2.1 General Description

The Xilinx XC4000 Series devices are composed of a set of configurable logic

blocks (CLBs) that are connected by routing resources and surrounded by a set of

physical pin pads called input/output blocks (IOBs). The CLBs, routing resources, and

IOBs are programmable; allowing the part to be configured to implement specified

designs. The CLBs consist of function generators (implemented with look-up tables),

function selection logic (implemented with multiplexers), and D flip-flops. The routing

resources can connect CLBs to each other or to IOBs. This section discusses the major

elements of the Xilinx XC4000 Series FPGA family. The reader is also referred to [1],

from which the material here is summarized. Because preliminary power measurements

suggest that the routing interconnect of the XC4000 Series parts consume a significant

amount of energy, the routing interconnect is overviewed in considerable detail.

Re-configuration means that a device can be re-programmed an unlimited number

of times. The XC4000 Series part is capable of being re-programmed without removing

it from the system, greatly reducing overhead and making updates to the hardware similar

to software updates. Because the FPGAs can be re-programmed an unlimited number of

times, while still resident in the system, they can be used in dynamic systems where the

hardware can be adapted to the current needs of the system. They can also be used for

testing purposes during the design phase to reduce the overhead of designing a chip or to

implement self-diagnostics systems.

The Xilinx XC4000E and XC4000X are capable of running at synchronous

system clock speeds of up to 80 MHz and can run internally at speeds above 150 MHz.

This can provide significant advantages over other technologies when comparing certain

types of operations and their throughput. For example, an FPGA running at 80 MHz

performing a floating-point multiply every cycle performs at 80 MFLOPS (Millions of

Floating-Point Operations Per Second) compared to Analog Devices’ ADSP-21061 DSP

that runs at 50 MHz and performs at 150 MFLOPS. However, two floating-point

4

multipliers can be placed onto to one FPGA increasing the throughput to 160 MFLOPS,

which is comparable to the ADSP-21061.

2.2 Architectural Features

2.2.1 The Configurable Logic Block

The Xilinx FPGA consists of two major configurable elements that can provide

logic and/or registering functionality: configurable logic blocks (CLBs) and input/output

blocks (IOBs). CLBs are building blocks that provide the basic elements needed to

implement logic. This section focuses on the CLB; the IOB is covered in the next

section.

CLBs provide most of the logic that is implemented in an FPGA. A basic

diagram of the CLB is shown in Figure 2.1, taken from [1]. The three function

generators shown within each CLB allow it to implement certain functions of up to nine

variables. Each CLB also contains two storage elements, which can store function

generator outputs and can be configured as either flip-flops or latches. Adding to the

versatility of the CLB, the storage elements and the function generators can be configured

to be independent of each other. For example, the flip-flops can be used to store

(register) signals from outside the CLB where they reside. Also, the outputs of the

function generators need not pass through the flip-flops on the same CLB. Each CLB has

thirteen inputs and four outputs providing access to/from the function generators/storage

elements. The inputs and outputs of the CLBs are interconnected through the

programmable routing fabric. The different elements within the CLB are covered in the

following sub-sections.

2.2.1.1 Function Generators

Function generators provide the core logic implementation capabilities of a CLB.

Three function generators are provided, their outputs are labeled F’, G’, and H’ as shown

in Figure 2.1. All three of these function generators are implemented as look up tables

(LUTs).

5

F’ and G’ are the “primary” function generators. They are both provided with

four independent inputs and can implement any arbitrarily defined Boolean function of

up to four variables. H’ is the “secondary” function generator and is provided with three

inputs. Of these three inputs, one (H1) comes from outside the CLB, and the second can

come either from G’ or H0, and the third can come either from F’ or H2 (H0, H1, and H2

come from outside the CLB).

The outputs of the function generators can exit the CLB on two outputs, X and Y.

Only F’ or H’ can be connected to X; and only G’ or H’ can be connected to Y.

Additionally, the outputs of F’, G’, or H’ can be used as inputs to either of the two

storage elements whose outputs connect to the routing fabric (XQ and YQ).

Figure 2.1 - Simplified block diagram of the XC4000 Series CLB (RAM and carry

logic functions not shown) [1].

Given the attributes of the three function generators and their connectivity with

each other and the rest of the CLB, they can be used to implement any of the following:

6

1. Any function of up to four variables with a second function of up to four

unrelated variables and a third function of up to three unrelated variables.

2. Any single function of up to five variables.

3. Any function of four variables together with some functions of six variables.

4. Some functions of up to nine variables.

2.2.1.2 Storage Elements

The two flip-flops provided in the CLB allow the storage of two signals. These

signals can come from internal signals or from outside the CLB. The outputs of the flip-

flops can be connected to the routing fabric as well. The flip-flops can be configured as

either D flip-flops or latches. As D flip-flops they can be either falling or rising edge-

triggered, and have a common clock (K) and clock enable (EC) inputs. When they are

configured as latches they also have the common clock and clock enable inputs.

2.2.1.3 Function Generators as RAM

Each CLB can be configured to use the LUTs in F’ and G’ as an array of

read/write memory cells. There are several RAM (Random Access Memory) modes in

which each CLB can operate: level-sensitive, edge-triggered, and dual-port edge-

triggered. Given these modes a CLB can be implemented as a 16×2, 32×1 or 16×1 bit

RAM array.

2.2.2 The Input/Output Block

The interface between the actual package pins and the internal logic of the FPGA

are provided through programmable input/output blocks (IOBs). Each IOB is connected

to one physical pin and can provide control of the pin for input, output, or bi-directional

signals. For each CLB there exists two IOBs. Figure 2.2 provides a simplified block

diagram of the IOB found in the XC4000E and Figure 2.3 shows the IOB for the

XC4000X. The IOB of the XC4000X contains special logic, that is not provided in the

XC4000E IOB, and these differences are shaded in Figure 2.3.

7

There are two paths that an external signal can traverse through the IOB to gain

entrance into the interconnection fabric in the FPGA; these are labeled I1 and I2 in both

Figure 2.2 and Figure 2.3. Either of these paths may contain a direct signal or a

registered signal, which passes through a register that can be configured as an edge-

triggered D flip-flop or a level-sensitive latch. The XC4000X IOB also contains an extra

latch on the input. This latch is clocked by the output clock and allows for the very fast

capture of input data, which is then synchronized to the internal clock by passing through

the IOB flip-flop/latch.

Figure 2.2 - Simplified block diagram of the XC4000E IOB [1].

Signals that are output from the FPGA can be passed directly through the IOB to

the pad or registered into an edge-triggered flip-flop. Output signals can also be inverted

before they reach the pad.

Included in the XC4000X IOB is an additional multiplexer, which can be

configured not only as a multiplexer but also a 2-input function generator. This function

generator can implement a pass-gate, AND-gate, OR-gate, or XOR-gate with 0, 1, or 2

inverted inputs. When configured as a MUX, it allows two output signals to time-share

8

the same output pad, which can effectively double the number of device outputs without

expanding the physical package size.

2.2.3 Programmable Interconnect

All of the internal connections within the FPGA are composed of metal segments

with programmable switching points and switching matrices to implement the desired

connection of signals within the device. There are three basic classes of interconnect

available: CLB routing, IOB routing, and global routing. We will not discuss global

routing in this overview; the reader is referred to [1] for information on global routing.

Figure 2.3 - Simplified block diagram of the XC4000X IOB (shaded areas indicate

differences from XC4000E) [1].

2.2.3.1 CLB Routing

The CLBs are arranged in a grid array with the IOBs surrounding the grid. An

example layout is shown in Figure 2.4. The programmable interconnect is located

between CLBs and between the grid and the IOBs.

Each CLB has a myriad of interconnect resources to which it can connect its

outputs. A diagram representing these resources is shown in Figure 2.5. The five

9

interconnect types are single-length lines, double-length lines, quad and octal lines

(XC4000X only), and longlines that are distinguished by the relative length of their

segments. Table 2.1 shows how much of each interconnect type is accessible to a single

CLB. CLB inputs and outputs are distributed on all four sides of the CLB and in general

are symmetrical and regular. This makes the device well suited to placement and routing

algorithms. An additional feature is that inputs, outputs, and function generators can

effectively swap positions within a CLB, which can help in avoiding routing congestion.

IOBs

CLBs

Figure 2.4- Example layout of an FPGA with 16 CLBs [7].

10

Figure 2.5 - High-level routing diagram of the XC4000 Series CLB (shaded arrows

indicate XC4000X only) [1].

Table 2.1 - Routing per CLB in XC4000 Series devices [1].
XC4000E XC4000X

Vertical Horizontal Vertical Horizontal
Singles 8 8 8 8
Doubles 4 4 4 4
Quads 0 0 12 12
Longlines 6 6 10 6
Direct Connects 0 0 2 2
Globals 4 0 8 0
Carry Logic 2 0 1 0
Toal 24 18 45 32

The single and double length lines intersect at Programmable Switch Matrices

(PSMs), shown in Figure 2.6. Each of these matrices consist of programmable pass

transistors, which allow the signals to be routed from one line to selected other lines of

the same type within the matrix.

Associated with each CLB are 16 single-length lines (8 vertical and 8 horizontal).

These lines offer the most flexibility and provide fast routing capability between adjacent

CLBs. They connect with PSMs located at every intersection of the rows and columns of

the CLB interconnect, this is shown in Figure 2.7. Signals on single-length lines are

11

delayed every time they go through a PSM, so they are generally not efficient for routing

signals for long distances. They are usually used to connect signals within a localized

area and provide branching for output signals with a fan-out (of greater than one).

Double-length lines are twice as long as single-length lines and they run past two

CLBs before entering a PSM, as shown below in Figure 2.7. These lines are grouped into

pairs with the PSMs staggered so that each line goes through a PSM at every other row or

column. There are four double-length lines associated with each CLB providing faster

routing over intermediate distances, while still retaining reasonable routing flexibility.

Associated with each CLB row and column in the XC4000X series devices are 24

(12 vertical and 12 horizontal) quad lines, which are four times as long as single-length

lines. These lines pass through buffered switch matrices and run past four CLBs before

doing so.

Each buffered switch matrix consists of one buffer and six pass transistors and

resembles a PSM, but only switches signals routed on quad lines. The matrix accepts up

to two independent inputs and provides up to two independent outputs. However, only

one of the independent inputs can be buffered. The Xilinx place and route software can

automatically decide whether or not a line should be buffered, given the timing

requirements of the signal. Buffered switch matrices make the quad lines very fast and in

fact quad lines are the fastest resource for routing heavily loaded signals long distances

across the FPGA.

Figure 2.6 - Programmable Switch Matrix (PSM) [1].

12

Longlines run the entire length or width of the CLB array and are used for high

fan-out, time-critical nets, or nets that span long distances. Two longlines per CLB can

be driven by 3-state drivers or open-drain drivers allowing them to implement

unidirectional buses, bi-directional buses, wide multiplexers, or wired-AND functions.

Each longline in the in the XC4000E series device has a programmable switch at

its center. In addition, each longline driven by an open-drain driver in the XC4000X

series device also has a programmable switch at its center. This programmable switch

can separate the longline into two independent lines, each spanning half the length or

width of the CLB array.

Every longline in the XC4000X series devices that is not driven by an open-drain

driver has a buffered programmable switch at the ¼, ½, and ¾ points of the CLB array.

This buffering keeps the performance of longlines from deteriorating with larger CLB

array sizes. If the programmable switch splits the longline, then each of the resulting

partial longlines are independent of each other.

In the XC4000X series device, quad lines are preferred over longlines when

implementing time-critical nets. The quad lines are faster for high fan-out nets due to the

buffered switch matrices that they pass through.

Figure 2.7 - Single- and double-length lines, with Programmable Switch

Matrices (PSMs) [1].

13

There are two direct connections between adjacent CLBs in the XC4000X

devices. These signals experience minimal interconnect delay and use no general routing

resources. This direct interconnect is also available between CLBs and adjacent IOBs as

shown in Figure 2.8.

2.2.3.2 I/O Routing (VersaRing)

The XC4000 Series devices also include extra routing around the IOB ring, which

is called a VersaRing and facilitates pin swapping and re-design without affecting board

layout. There are eight double-length lines spanning four IOBs (two CLBs), and four

longlines. Also included are global long lines and wide edge decoders, which are not

discussed here. For information on global long lines and wide edge decoders, the reader

is referred to [1]. The XC4000X has eight additional octal lines. A high level view of

the VersaRing is given in Figure 2.9.

Figure 2.8 - XC4000X direct interconnect [1].

In-between the XC4000X CLB array and the VersaRing there are eight

interconnection tracks (called Octals) that can be broken every eight CLBs by a

programmable buffer that can also function as a splitter switch. The buffers are staggered

so that each line goes through one every eight CLBs around the device edge.

When the octal lines bend around the corners of the device, the lines cross at the

corner so that the segment most recently buffered has the farthest distance to go until it is

14

buffered again. A diagram showing the bending of octals around corners is given in

Figure 2.10. IOB inputs and outputs connect to the octal lines via single-length lines,

which can also be used to communicate between the octals and double-length, quads and

longlines within the CLB array.

WED = Wide Edge Decoder (dark shaded areas indicate XC4000X only)

Figure 2.9 - High-level routing diagram of the XC4000 Series VersaRing (left edge) [1]

2.2.4 Power Distribution

The power distribution in the Xilinx XC4000 Series part is achieved through a

grid, in order to provide high noise immunity and isolation between logic and I/O. A

dedicated Vcc and Ground ring surrounds the logic array providing power to the I/O

drivers, while an independent matrix of Vcc and Ground lines provide power to the

interior logic of the device. A diagram showing this distribution method is shown in

Figure 2.11.

15

Figure 2.10 - XC4000X octal I/O routing [1].

Figure 2.11 - XC4000 Series power distribution [1].

16

CHAPTER III

BACKGROUND AND RELATED WORK

3.1 Basic Concepts of Power Consumption

This material is summarized from [7], which was developed under the same

research contract that supported the work of this thesis.

In order to predict the power consumption in a CMOS device, three types of

current flow need to be considered: leakage current, switching transient current, and load

capacitance charging current. The leakage current is related to the imperfection of field

effect transistors (FETs) that are used in CMOS devices. This type of current flow in

CMOS technology is very small and usually ignored when evaluating power

consumption.

CMOS gates consist of pairs of complimentary MOSFETs (metal-oxide

semiconductor field effect transistors). The switching transient current within CMOS

gates is caused by a brief short circuit that can occur when the state of the complimentary

gates change from on-to-off and off-to-on. This short circuit occurs when the

complimentary MOSFETs are concurrently “on” for a brief transient period of time. The

power loss due to switching transient current is dependent on the switching frequency of

the gate and is more considerable than leakage current.

The final type of current flow is load capacitance charging current. This is the

current flow that is required to charge the capacitance that is associated with a transistor

gate, and occurs when the state of a gate changes. This is the dominant type of power

consumption in CMOS devices, and is the only component of power consumption

considered in the remainder of this thesis.

3.1.1 Capacitance Charging Power Consumption

Two assumptions about CMOS transistors must be made in order to derive the

power consumption associated with capacitance charging. First, there is a non-zero

resistance in the electrical connection to the gate of each transistor. Second, the rate of

the switching of the transistor must be sufficiently slow for the capacitance to completely

17

charge or discharge. Figure 3.1 shows an equivalent model for the switching of a

transistor. The source voltage is V, the resistance in the connection to the gate is R, and

the capacitance of the gate is C.

Let τ represent the time that the switch remains at V before moving to ground.

Then, according to the derivations given in [7], the average power dissipated through the

transistor is (assuming that τ ≥ 4RC):

2

2
1 CVPavg τ=

. (3.1)

Provided that there is non-zero resistance and the transistor fully changes state,

then all of the energy stored in the capacitor (C) is dissipated through the resistor during

the time interval τ. However, the amount of power dissipated when the transistor

changes state is dependent only on the amount of capacitance related to the gate (i.e., it is

independent of the value R). If the value of τ is decreased, indicating that the transistor is

changing states more frequently, then the power consumption will increase. This

indicates that the faster that a CMOS circuit runs, the greater the power consumption

related to the circuits operation.

0=t

C

R

V

Figure 3.1 - Equivalent gate model for a CMOS transistor [7].

3.2 Basic Concepts of Power Modeling

3.2.1 Time-Domain Techniques

Because the primary source of power consumption in CMOS ICs is due to the

current that is required to charge the capacitance associated with each transistor during

state transitions, the time-domain representation of all signals is therefore sufficient to

18

predict power consumption. This approach requires the simulation of time-domain data

signals throughout the device over the entire interval corresponding to the input data

stream [7].

For example, consider the logic function 321 xxxy = whose transistor level

implementation is shown in Figure 3.2. The input signals to the logical gates correspond

to the voltage levels for the gates of the transistors. In the time-domain approach, this

function requires that the voltages associated with each transistor be modeled, which is

illustrated in Figure 3.3.

x3

x2

x1

y

x3

x2

x1
y

Figure 3.2 – Illustration of a CMOS implementation for the Boolean function

321 xxxy = [7] .

Figure 3.3 – Illustration of time-domain modeling of CMOS circuit signals [7].

After the voltage signals for each transistor being modeled are known, the average

power is computed for each gate g based on the number of transitions (Ng) the gate

19

experiences over the time interval T. Average power consumed by the gate g is then

given by :

gNCV

T
2

2
1

. (3.2)

Therefore average power consumed by all gates in a device is given by:

∑

∈ gates all

2
2
1

g

g
T

N
CV

. (3.3)

In addition to this, the activity of the signal at gate g, relative to the gate frequency f, is

given by ()
f

T
N g

and will be denoted as Ag. Therefore the value of Ag is normalized

between zero and one. A value of 0.25 corresponds to a signal that transitions every

fourth clock cycle, on average, and a value of unity indicates that the signal transitions at

every clock cycle. Calculating Ag is straightforward when the time-domain signals

driving each gate g are known. The problem is that the determination of the exact time-

domain signals is computationally expensive for the number of signals present in a

realistic design.

A power simulator called PET (Power Evaluation Tool) has been developed at the

University of California, Irvine that uses time-domain power modeling techniques [12].

This simulator models IC circuits developed using basic cell techniques. By estimating

power for each basic cell in a manner similar to estimating power for transistor gates, the

simulator can sum the power estimates for all cells to derive power consumption for the

entire device. This method of power estimation requires that the device be simulated and

that the simulator is given characteristic data about every type of cell used in the device.

This simulator is presented in [12] and is also used in order to estimate the power

consumption of a low-power divider developed in [6].

3.2.2 Probabilistic Techniques

Under the same contract as this thesis work, a probabilistic simulator has been

implemented and is covered in detail in [7]. A discussion of the current work being done

on this simulator is given in Section 3.2.2.1. Probabilistic techniques were used in order

20

to obtain acceptable results within a reasonable amount of computation time. The basic

notion behind this approach is to distill important probability-domain information from

the time-domain input. The probability-domain information can then be used in place of

the actual time-domain signal values in estimating average power and thereby removing

the dimension of time from the calculations, which reduces the complexity of the power

calculations considerably [7].

Two probabilistic parameters: signal probability and signal activity, are used in

[7]. The signal probability, denoted as p(s) for signal s, represents the percentage of time

that a signal has a logical value of one, while the signal activity, denoted as A(s) for the

signal s, is a normalized fraction of the signal’s activity divided by the device’s clock

frequency. The activity of a signal refers to the amount of times the signal changes state

from on-to-off and off-to-on during the period of interest. Illustrations of signal value

probability and signal activity measures are given in Figures 3.4 and 3.5, respectively.

() 88.01 =xp

() 50.0=clockp () 29.02 =xp

() 69.03 =xp

Figure 3.4 – Illustration of signal probability measures associated with various time-
domain signal data [7].

() 10.01 =xA

() 0.1=clockA () 17.02 =xA

() 27.03 =xA

Figure 3.5– Illustration of signal activity measures associated with various time-domain
signal data [7].

In the paper by Parker and McCluskey [15] a symbolic method that relates

operations on Boolean data to corresponding operations on probabilistic data is

introduced. This allows a digital circuit simulation algorithm to operate on probabilistic

information; a detailed summary is given in [7]. Signal activities are “transformed” as

21

they pass through logic gates. This transformation is more complicated than probability

transformations. Signal probabilities must be known before the activity values are

calculated. These activity values are then used to model signal frequencies at the gates of

transistors and provide a straightforward way to estimate consumed power at the

transistor level. Then, the average power for each gate in the device can be calculated

and summed yielding the device’s power consumption. This method of estimating power

consumption is the basis of the power simulator presented in [7] and is briefly discussed

in Section 3.2.2.1. This power simulator estimates power at the CLB level of FPGAs

whereas the PET simulator [12] discussed in Section 3.2.1 simulates the device on the

basic cell level of ICs.

3.2.2.1 A Probabilistic Power Prediction Simulator

This section discusses the simulator that was developed in [7] and is currently

being calibrated. A brief discussion of how the simulator works and how it is being

calibrated is given here.

The simulator, which is implemented in Java, takes as input two files: (1) a

configuration file associated with an FPGA design and (2) a pin file that characterizes the

signal activities of the input data pins to the FPGA. The configuration file defines how

each CLB (configurable logic block) is programmed and defines signal connections

among the programmed CLBs. The configuration file is an ASCII file that is generated

using a Xilinx M1 Foundation Series utility called ncdread. The pin file is also an

ASCII file, but is generated directly by the user. It contains a simple listing of pins that

are used to input data into the configured FPGA circuit. For each pin number listed, the

probabilistic parameters of signal activity (As) and signal value (p(s)) are provided which

characterize the data signal for that pin.

Based on the two input files, the simulator propagates the probabilistic

information associated with the pins through a model of the FPGA configuration and

calculates the activity of every internal signal associated with the configuration. The

activity of an internal signal s, denoted As, is a value between zero and one and represents

22

the signal’s relative frequency with respect to the frequency of the system clock, f. Thus,

Asf gives the average frequency of signal s.

Computing the activities of the internal signals represents the bulk of

computations performed by the simulator. Given the probabilistic parameters for all

input signals of a configured CLB, the probabilistic parameters (including the activity) of

that CLB’s output signals are determined using a well-defined mathematical

transformation. Thus, the probabilistic information for the pin signals is transformed as it

passes through the configured logic defined by the configuration file. However, the

probabilistic parameters of some CLB inputs may not be initially known because they are

not directly connected to pin signals, but instead are connected to the output of another

CLB for which the output probabilistic parameters have not yet been computed (i.e., there

is a feedback loop). For this reason, the simulator applies an iterative approach to update

the values for unknown signal parameters. The iteration process continues until

convergence is reached, which means that the determined signal parameters are

consistent based on the mathematical transformation that relates input and output signal

parameter values, for every CLB.

The average power dissipation due to a signal s is modeled by ½ Cd(s)V2Asf, where

d(s) is the Manhattan distance the signal s spans across the array of CLBs, Cd(s) is the

equivalent capacitance seen by the signal s, and V is the voltage level of the FPGA

device. The overall power consumption of the configured device is the sum of the power

dissipated by all signals. For an N x N array of CLBs, signal distances can range from 0

to 2N. Therefore, the values of 2N + 1 equivalent capacitances must be known to

calculate the overall power consumption. Letting S denote the set of all internal signals

for a given configuration, the overall power consumption of the FPGA is given by:

)4.3(.

2
1

2
1

)(
2

2
)(avg

∑

∑

∈

∈

=

=

Ss
ssd

ssd
Ss

ACfV

fAVCP

The values of the activities (i.e., the As’s) are dependent upon the parameter

values of the pin signals defined in the pin file. Thus, although a given configuration file

23

defines the set S of internal signals present, the parameter values in the pin file impact the

activity values of these internal signals.

Let Si denote the set of signals of length i, i.e., Si = {s ∈ S | d(s) = i}. So, the set

of signals S can be partitioned into 2N + 1 subsets based on the length associated with

each signal. Using this partitioning, Eq. 3.4 can be expressed as follows:

+++= ∑∑∑

∈∈∈ NSs
sN

Ss
s

Ss
s ACACACfVP

210

210
2

avg
2
1

L . (3.5)

To determine the values of the simulator’s capacitance parameters, actual power

consumption measurements are taken from an instrumented FPGA using different

configuration and pin input characteristics. Specifically, 2N + 1 distinct measurements

are made and equated to the above equation (Eq. 3.5) using the activity values (i.e., the

As’s) computed by the simulator. The resulting set of equations is then solved to

determine the 2N + 1 unknown capacitance parameter values. This is how the simulator

will be calibrated. For this study, the simulator will be calibrated for a Xilinx 4036

FPGA for which N = 36. The 73 required measurements are performed using six

different configurations (including various types of multipliers, adders, and FIR filters)

with approximately 12 pin files per configuration.

The simulator can then be evaluated by comparing computed average power

consumption from the simulator with corresponding actual measured power consumption

using configurations and pin files not used to calibrate the simulator.

3.3 A Low Power Divider

In [6], a low power divider was developed using power reduction techniques for

basic cell ICs. These methods are discussed in this section. All of the material in this

section is summarized from [6].

Although division is an infrequent operation compared to multiplication and

addition, it dissipates up to 1.4 times the amount of energy than floating-point addition.

This makes division a good candidate for evaluating low power design techniques.

The goal of the work was to reduce the energy consumption while maintaining the

current delay and keeping the increase in the area to a minimal amount. Because the

24

energy dissipation in a cell is proportional to the number of transitions, output load, and

to the square of the operating voltage, the author of [6] reduces the number of transitions,

reduces the load capacitance, and estimates the impact of using dual voltage. The

techniques used include switching off not-active blocks, retiming, using dual voltage, and

equalizing the paths to reduce glitches.

By switching off not-active blocks, parts of the circuit can be used only when

needed by the division algorithm thereby reducing the power dissipation of the block.

This is accomplished by forcing the input signals of the blocks to a constant value of one.

The next technique used was retiming the recurrence part of division. The

position of registers in a sequential system can affect energy dissipation, retiming

involves the repositioning of these registers without modifying their external behavior.

The energy that is dissipated within a cell is dependent on the square of the

voltage supply and reducing the operating voltage of the cells can produce a significant

decrease in the amount of energy dissipation. However, this technique can only be

applied to cells that are not in the critical paths of the circuit because the lower supply

voltage increases the delay through the cell.

Because of different delays throughout the device, the input signals to significant

parts of the circuit can arrive at different times. This has the effect of creating spurious

transitions within the sub-circuit until all signals have arrived. Spurious transitions add to

the energy dissipation in the sub-circuit because energy dissipation is proportional to the

number of transitions. To reduce the number of spurious transitions the author has

equalized the paths within the circuit in certain areas to reduce glitches that cause the

spurious transitions.

By using the techniques outlined in this section, the author of [6] was able to

decrease the power consumption of a radix-4 divider by 40 percent. However, a

fundamental problem with these techniques as applied to FPGAs is that the designer has

no control over how the CLBs in the FPGA are composed, placed, and how the signals

internal to the device are routed. In addition to this, dual voltage cannot be used in the

design of a circuit implemented in a FPGA due to the limitations of the current FPGA

technology.

25

3.4 The Practicality of Floating-Point Arithmetic on FPGAs

Many algorithms require floating-point operations running at the speed of tens or

hundreds of millions of calculations per second. These types of algorithms are candidates

for acceleration using custom computing machines (which includes reconfigurable

computing) [14]. However, in the past the implementation of floating-point operations

on reconfigurable platforms has not been considered seriously because the operations

require an excessive amount of area and do not map onto these devices well. With the

advent of VHDL (Very High Speed Integrated Circuit Hardware Description Language)

and more dense and faster FPGAs computing platforms, this technology may soon be

able to significantly speed up pure floating-point applications [5].

In the two articles discussed in this section, [14] and [5], the authors consider the

practicality of implementing floating-point arithmetic on FPGAs. They consider the size

of the FPGA implementations, speed, and the range of the numbers that can be

represented in the specified floating-point operations.

In [14], the authors consider eighteen- and sixteen-bit floating-point adders,

multipliers, and dividers synthesized for a Xilinx 4010 FPGA. The eighteen-bit format

uses a one-bit sign, a 7-bit exponent field (with a bias of 63), and a 10-bit mantissa

yielding a range of ±3.6875×1019 to ±1.626×10-19. The sixteen-bit format has a one-bit

sign, 6-bit exponent (with a bias of 31), and a 9-bit mantissa yielding a range of

±8.5815×109 to ±6.985×10-10. The eighteen-bit floating-point format was used for a 2-D

FFT (2-Dimensional Fast Fourier Transform) and the sixteen-bit floating-point format

was used for a FIR filter. The authors conclude that custom formats derived for

individual applications are more appropriate than the IEEE standard formats [14].

In [5], the authors investigate the implementation of floating-point multiplication

and addition on Xilinx 4000 Series FPGAs. The system uses bit serial, booth recoding,

and digit serial algorithms for the integer multipliers, which are an integral part of

floating-point multiplication. The disadvantage of using a bit serial algorithm is that it

only resolves one bit of the product per cycle causing the system to take several cycles to

perform the multiplication. The digit serial algorithm resolves n bits of the product per

cycle, where n is the digit size [5].

26

The authors develop a floating-point multiplier and adder that is used in the

development of a multiply-and-accumulate circuit used for matrix multiplication. They

present a floating-point adder that fits in a Xilinx 4020E FPGA that performs at 40

MFLOPS (Millions of Floating-Point Operations Per Second). The floating-point

multiplier they developed can perform at a speed of 33 MFLOPS and can also fit into a

Xilinx 4020E. Therefore the multiply-and-accumulate unit developed can run at a peak

performance of 66 MFLOPS. (The authors do not state whether this unit can fit into a

single chip, but indicate that they used multiple FPGAs to implement the unit.) They

contend that with the newer Xilinx parts, that were not available when the study was

performed, they could potentially see a peak performance of 264 MFLOPS and a realized

performance of 195 MFLOPS on a system with four Xilinx 4062XL FPGAs. The

authors conclude that reconfigurable platforms will soon be able to offer a significant

speedup to pure floating-point computation [5].

27

CHAPTER IV

DESCRIPTION OF WORK PERFORMED

The work performed consists of familiarization with VHDL (Very High Speed

Integrated Circuit Hardware Description Language) [13], the Wild-One Reconfigurable

Computing Engine [11], Xilinx FPGAs [1], choosing a method of measuring power

consumption, and the implementation of two inner product co-processors (multiply-

accumulate and multiply-add) for both integer and floating point data. The target

architecture for the work (the Wild-One Reconfigurable Computing Engine from

Annapolis Microsystems) consists of a PCI card with two FPGAs, memory, support

hardware, and software.

The development environment provided by Annapolis includes source templates

and APIs. The APIs allow the designer to write C programs that can communicate with

and configure the on-board FPGAs. The system also has memory and a FIFO that can be

used for data storage.

After becoming familiar with VHDL and the Wild-One, several small designs

were implemented to gain experience with the system. The next accomplishment was to

design and implement a pipelined 12-bit integer multiplier, which is an integral part of

the inner product co-processors that were developed as a part of the work. A method to

measure the power consumed by the FPGAs on the Wild-One system (based on the

measurement of electrical current) was also chosen and evaluated, and this is discussed in

Chapter V. This chapter details the design of a 12-bit integer multiplier, a 16-bit floating-

point multiplier, a 16-bit floating-point adder, integer and floating-point multiply-and-

accumulate inner-product co-processors, and integer and floating-point multiply-and-add

inner-product co-processors.

4.1 An Array-Based Integer Multiplier

The multiplier implemented is a 12-bit array-based integer multiplier [2] and has

been implemented in several versions as a pipeline with one to eight stages. A basic

28

integer multiplier is a crucial part of a floating-point multiplier and needs to be well

defined.

The array-based multiplier, shown in Figure 4.1, was chosen because of the ease

with which it can be pipelined, improving the throughput of the multiplier. The array-

based design is easier to pipeline and has a greater throughput than an iterative

multiplication scheme because each level of computations only have to be performed

once to produce the final result.

The bulk of the multiplier is composed of Carry-Save Adders (CSAs) [2], which

are sets of vertically propagating adders. This allows the adders in a certain CSA to

depend only on the adders in the CSA above it in the path of signal propagation instead

of depending on adders located logically to the left and right. This not only simplifies the

adder units but also decreases the propagation delay of the signals through the adder

units.

CSA 9

CSA 8

CSA 7

CSA 6

CSA 5

CSA 4

CSA 3

CSA 2

CSA 1

CSA 0

Propagate Adder

b0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ab10Ab11A

sumcarry

Figure 4.1 – An array-based multiplier.

29

After the operands pass through the CSAs they also must pass through a

propagation adder [2]. This is due to the fact that each CSA produces a sum and a carry

value. The carry value must be used in order to produce a correct product. The structure

of the propagate adder is given in Figure 4.2.

The implemented multiplier has been tested for speed with different levels of

pipelining. The timing results are given in Table 4.1.

Half Adder

Full Adder

Full Adder

Full Adder

Full Adder

Full Adder

Full Adder

Full Adder

Full Adder

Full Adder

Full Adder

Full Adder

sumcarry

sumcarry

upper 13 bits of product

CSA 9

Figure 4.2 – A propagate adder.

As shown in Table 4.1 the multiplier can run at speeds of up to 39 MHz when

implemented in a Xilinx 4028ex FPGA and 50 MHz when implemented in a Xilinx

4036xla FPGA. This is probably due to the increased routing resources found in the

XC4000X series devices and the larger CLB array present in the 4036xla FPGA. The

Wild-One system can run at speeds of up to 50MHz, so testing beyond this speed was not

possible. One interesting aspect of these results is that in the 4036xla FPGA the speed of

the multiplier was limited to 29 MHz until 8 stages are used. We believe that a critical

30

path through the interconnection fabric was finally “broken” (i.e., with a registered stage)

when moving from seven to eight stages.

Table 4.1 – Timing results for the array multiplier.
of stages Maximum Speed(Mhz)

4028ex 4036xla
1 14 28
2 19 25
3 21 N/A
4 22 27
5 29 28
6 39 28
7 22 29
8 33 50

4.2 Inner Product Co-processor Designs

The inner product co-processors implemented are floating-point and integer

versions of two co-processors: multiply-add and multiply-accumulate. High level

diagrams of the multiply-add and multiply-accumulate schemes are given in Figure 4.3

and Figure 4.4. The designs for these co-processors are detailed in the following

sections.

Input Buffer

Pipeline
Multiplier

Pipeline
Multiplier

Pipeline
Adder

Output Buffer

Figure 4.3 - Multiply-add scheme.

31

4.2.1 Floating-Point Co-processors

The major difference between the two co-processors is that one of them has an

accumulator instead of only an adder. The accumulator is an extension of the adder and

therefore both the adder and accumulator based designs consist of the multiplier and

adder which are detailed below.

Input Buffer

Pipeline
Multiplier

Pipeline
Adder

Output Buffer

Figure 4.4 - Multiply-accumulate scheme [9].

The floating point format chosen is a 16-bit floating point format supported by the

ADSP-2106x family of SHARC DSP processors produced by Analog Devices [8]. This

format uses an 11-bit mantissa, a 4-bit exponent, and a one-bit sign. The exponent is

represented in excess-7 notation. This format is shown in Figure 4.5 and has an accuracy

of ±1.5625×10-2 to ±2.559375×102.

Short Word Floating Point Format

010111415

s e3•••e0 1.m10•••m0

Figure 4.5 - SHARC DSP short word floating point format [8].

32

4.2.1.1 Floating-Point Multiplier

The floating-point multiplier is shown in Figure 4.6, which is adapted from [9].

The multiplier consists of sign logic, an excess-7 exponent adder, an array-based

multiplier, and normalization logic. The multiplier is designed to allow for differing

levels of pipelining.

Because the exponents are stored in excess-7 notation, the exponent adder must

add the two excess-7 numbers and then subtract seven from the sum; otherwise it would

produce an “excess-14” sum. If the normalization requires that the exponent be adjusted,

then the exponent will only have to be adjusted by increasing it by a value of one. When

this occurs, the excess-14 sum is decreased by a value of six instead of seven, which

effectively increases the final exponent sum by a value of one. The reasons for this are

discussed below.

In the excess-7 exponent encoding used by the SHARC DSP, a value of zero

indicates that the value of the floating-point number is exactly zero and an exponent

value of fifteen indicates that the value of the floating-point number is infinity. Because

of this, the floating-point multiplier, shown in Figure 4.6, must check the exponents for

these two cases and set the resulting exponent to the appropriate value. Additionally, if

underflow occurs in the exponent addition, then the resulting exponent needs to be set to

zero because the actual resulting exponent is below the range of values that are

representable. Accordingly, if overflow occurs in the exponent addition, then the

resulting exponent needs to be set equal to fifteen, which represents infinity, because the

actual resulting exponent is above the range of values that are representable.

The 12-bit array-based multiplier is the multiplier discussed in Section 4.1. The

multiplier produces a 24-bit product of which only 13 bits are needed to generate the

correct resulting mantissa. The product must be normalized before it is stored in the 16-

bit floating-point format used. The msb of the product indicates which bits are needed

for the resulting mantissa.

Both the multiplicand and the multiplier have the forms of 1.bbb...b with a width

of w. When these two values are multiplied together, the product has a width of 2w and

is of the form of either 01.bb...b or 10.bb...b. Example multiplications (with w = 4)

33

resulting in products with each of these forms are given in Figure 4.7. If the msb of the

product is 1 (Figure 4.7(a)), then the product must be shifted to the right one place

resulting in the exponent needing to be increased by a value of one. (This allows us to

use the msb of the product as the ‘exponent adjust select’ in Figure 4.7.) If the msb of the

product is 0 (Figure 4.7(b)), then the position msb - 1 will always have a value of one, in

which case no normalization or exponent adjustment is needed.

0

12 bit Array-Based
Multiplier

1.m1 1.m2

1 0

1

1

0

1

excess-7 adder

exponent
adjust
select

e1(2)

e2(3)

e2(2)
e1(3)

e1(1)
e2(1)

e1(0)
e2(0)

unf ovf

If the msb = 1 take the
bits msb-1…msb-11

If the msb = 0 take the
bits msb-2…msb-11

exponent

11

upper 13 bits of product

e2e1

mantissa

If underflow = 1, set exponent = 0
If overflow = 1, set exponent = 15

(representing infinity)

If e1 or e2 = 0, set exponent = 0
If e1 or e2 = 15, set exponent = 15

s2s1

mantissaexponentsign
1 bit 4 bits 11 bits

Figure 4.6 - 16-bit floating-point multiplier.

34

4.2.1.2 Floating-Point Adder

The floating-point adder chosen is a pipelined adder [9] and is shown in Figure

4.8. By using subtraction to compare the exponents, it can determine how much the

mantissa of the value with the smaller exponent needs to be adjusted in order to align the

mantissas, while at the same time determining which exponent will be used to compute

the exponent of the result. Because the exponent comparison determines the difference,

the fact that the exponents are stored in excess-7 notation is not relevant. A diagram

showing the comparison of the exponents is given in Figure 4.9. The method of selecting

the exponent to be used for the final result is by using multiplexers to select the exponent,

this is shown in Figure 4.10, and depends only on the sign of the difference obtained in

the comparison of the exponents.

The next task in floating-point addition is to align the mantissas so that the radix

point is lined up in the same position for the two mantissas. The phantom bit (which has

a value of one for non-zero operands) must be appended to the msb of each of the

mantissas before this alignment can occur. The alignment is shown in Figure 4.11. Only

one mantissa needs to be shifted and this is determined by the value of the sign of the

difference obtained in the exponent comparison. The difference obtained in the exponent

comparison determines how many places to the right the selected mantissa must be

shifted.

× 1.110
 0000
 1101
 1101
 1101
 10.110110

1.101

(a)

× 1.011
 1001
 1001
 0000
 1001
 01.100011

1.001

(b)

Figure 4.7 - Two possible normalization cases in floating point multiplication.

35

difference

pos./neg.

Choose Exponent

Normalize Mantissa and Adjust Exponent

Align Mantissas

Add/Subtract
Mantissas

m1 m2e1 e2 s1 s2

Registers

exponent mantissa sign

Check for Absolute Zero and Infinity and Add Phantom Bit

Registers

Registers

Compare Exponents
by Subtraction

Registers

4 4 11 11

12 12

1 1

4

1

4 111

Figure 4.8 - Pipelined floating-point adder [9].

36

0e1 0e2 1

1

exponent differencepos./neg.

If pos./neg. = 1, choose e2

Else choose e1.

5

5 1

5-Bit Adder

4 3 2 1 0

5

Figure 4.9- Comparing exponents by subtraction.

4 - 2 by 1
Multiplexers

e1e2

1 0

44

pos./neg.

If pos./neg. = 1, choose e2

Else choose e1.exponent

4

1

Figure 4.10 – Choosing of the exponent.

Right Shift Unit
sel

1.m1

Right Shift Unit
sel

1.m2pos./neg. difference

~1.m1 ~1.m2

Figure 4.11 - Align mantissas.

37

The addition/subtraction of the mantissas is shown in Figure 4.12. If one of the

values is negative, it must be converted to 2’s complement in order to perform

subtraction. Additionally, if the resulting sum is negative, it must be converted back to

sign-magnitude form. If both of the values are negative, then regular addition can be

performed because the sign logic accounts for this case. Because addition will result in a

sum (at most) twice as big as the largest operand, an extra bit must be used in the

addition. Therefore, the addition requires a 13-bit adder because our operands are 12 bits

in size. Another adder is required to convert the sum back into sign-magnitude form (if

the sum is negative). The sign bit is used to determine the resulting sign of the sum value

and to determine if conversion from 2’s complement representation to sign-magnitude

representation is necessary.

Figure 4.12 - Add/Subtract mantissas.

38

The final step in floating point addition is to normalize the mantissa and adjust the

exponent, which is shown in Figure 4.13. There are three possible cases to deal with in

normalization:

1. If bit 12 of the sum has a value of one, then the mantissa is shifted one place

to the right and the exponent is incremented by a value of one. An example of

this is shown in Figure 4.14(b).

2. If bit 12 of the sum has a value of zero and bit 11 has a value of one, then the

mantissa is already normalized and no exponent adjustment is necessary. An

example of this is shown in Figure 4.14(a).

3. Otherwise, we do not know where the leftmost bit with a value of one occurs

in the sum. In the worst case it is the lsb, in which case we must shift the

mantissa eleven places to the left and decrement the exponent by a value of

eleven. An example of this is shown in Figure 4.14(c). The actual

implementation of this selects the bits from the mantissa being shifted and

does not actually shift the mantissa.

After the mantissa has been normalized and the exponent has been adjusted, we

have the final answer represented in the 16-bit floating-point format.

4.2.2 Integer Co-processors

The integer co-processors are composed of an integer multiplier and an integer

adder with the necessary control to perform multiply-add and multiply-accumulate

operations. The high level designs for these co-processors is presented in Section 4.2 and

is the same as for the floating-point co-processors. The data format chosen for the integer

co-processors is unsigned 16-bit integer. The data format has a range of 0 to 65535.

 The multiplier is an expanded 16-bit version of the 12-bit array-based multiplier

presented in Section 4.1. The adder is a basic 16-bit carry-propagate adder similar to the

ones used for the adding and subtracting operations found within the floating point adder

discussed in Section 4.2.1.2.

39

Exponent (4 bits) Mantissa (13 bits)

If Mantissa(12) = 1 then take bits 11 downto 1
and add one to the exponent.

Else if Mantissa(11) = 1 then take the bits 10 downto 0
and do nothing to the exponent.

 Else take the bits 10 downto 0
and shift the bits to the left until the msb = 1

subtracting 1 from the exponent every time a shift occurs.
Then take the upper 11 bits.

Normalized Answer

(Exponent and Mantissa)

Figure 4.13 - Normalize mantissa and adjust exponent.

001.001
000.010
001.011

+
001.001
001.000
010.001

+
001.011
001.000
000.011

-

(a)
No normalization
needed.

(b)
Shift one place
to the right.

(c)
Shift left two
places.

Figure 4.14 - Examples of normalization.

40

CHAPTER V

RESULTS AND IMPLEMENTATION ISSUES

The proposal for this master’s thesis outlined five objectives for the master’s

thesis work to accomplish. These objectives are:

1. More fully understand power modeling techniques and past research in this

area.

2. Implement and compare the floating-point and integer inner product co-

processors.

3. Understand why inserting more stages does not always increase the maximum

speed of a pipelined circuit.

4. Understand the power consumption reduction seen by using more pipeline

staging registers.

5. Calibrate the power simulator developed previously in [7].

Each of these objectives and their outcome is discussed in this chapter along with

implementation issues encountered during the implementation of the inner product co-

processors.

5.1 Problems with Measuring Real Power Consumption

The first objective outlined in the proposal was to more fully understand power

modeling techniques and past research in this area. This objective goes along with the

last objective outlined in the proposal, which was to calibrate the power simulator

developed previously in [7]. While there was a literature review performed on past

research in this area we were not able to calibrate the power simulator. After some

investigation into how to calibrate the power simulator we realized that it was a more

monumental task than believed at first and was not a reasonable goal for the time allotted

to finish this work.

The main problem we ran into in trying to calibrate the simulator is with the

accurate measurement of real power consumption. We obtained an FPGA board for

which current for the entire FPGA board can be measured. However, after taking

41

measurements for long periods of time it was discovered that the values would drift

slowly up and down significantly. Because the power measurements taken initially may

not be accurate, the fourth objective (which was to understand the power consumption

reduction seen by using more pipeline staging registers) could not be accomplished. It

was not possible to perform real power measurement tests on differently staged pipelines

with the given apparatus.

5.2 Performance and Comparison of the Co-processors

The original intent was to pipeline the co-processors enough to get every co-

processor running at 50 MHz. However, due to a lack of time this was not accomplished.

Instead the co-processors were tested for speed and estimated power consumption using

the latest version of the power simulator.

The only implementation issue had to do with the multiply-and-add circuits.

These circuits required that four operands be fed into the two multipliers at the same

time. Because the memories on the Wild-One are only 32-bits wide and the operands are

16-bits in size, this required a scheme of clocking two operands into the circuit every

clock cycle and running the circuit at half of that clock speed. So effectively the circuits

produce answers at half of the rate the whole system is running. In both the integer and

floating-point versions of this circuit, answers intermittently come back wrong. Because

the circuits also produced correct answers for the same data as wrong answers, it is likely

that the multiplier and adders work correctly and that the intermittent failure has to do

with something on the system level. This may be due to a poor job of placing and routing

the circuits into the FPGAs by the Xilinx tools used. However, the exact cause for these

intermittent failures was not determined. It is suspected that this problem has to do with

the scheme of introducing a secondary clock signal, which clocks the multipliers and

adders at half the speed of the system clock. The Xilinx tools and/or FPGA may not be

able to effectively distribute this second clock signal.

The timing measurements, resource utilization, and estimated power consumption

for each co-processor is given in Table 5.1.

42

The integer co-processors are able to run faster than the floating-point co-

processors. This is a trade-off in that the integer co-processors have a different input

range (0 to 65535) than the floating-point co-processors (±1.5625×10-2 to

±2.559375×102). Another trade-off is that the integer co-processors also take more space

in the FPGA than their counterpart floating-point co-processors, which make a difference

in power consumption and how many of the co-processors could potentially be fit into

one chip.

In order to estimate power consumption of the co-processors, each co-processor

was run through the power simulator developed in [7] (discussed in Section 3.2.2.1) using

two different input data files. (The simulator did not converge for the integer multiply-

accumulate co-processor for some reason; it would eventually reach a point where it

would run for over 12 hours with no progress.) These files contain probabilities and

activity factors for each input signal into the circuit. One of the two files had random

probability and activity factors in it while the other one had the values increasing and

decreasing across the input signals, similar to a periodic waveform. While the

capacitance associated with each of the different 73 signal distances across the FPGA is

not known at this time, the simulator computes the activity values for each different

signal distance and returns these values. The equation, which is adapted from Eq. 3.5,

used for calculating estimated power is:

 ()

+++⋅⋅⋅++ ∑∑∑∑

∈∈∈∈ − NN Ss
s

Ss
s

Ss
s

Ss
s ANANAA

21210

12221 . (5.1)

While this does not give an accurate power consumption estimate it gives some idea of

what the power consumption of the device will be assuming that the capacitance

associated with the signals in S0 is less than the capacitance associated with signals in S1

to S2N. Instead, this gives a weighted sum that can be used to estimate the power

consumption value the simulator will return for the design when it is calibrated. Figure

5.1 shows a comparison of activity values for each different signal length for the floating-

point versions of the Multiply-Accumulate and Multiply-Add co-processors. The two

activity value sums for interconnection lengths 30 and 31 are caused by the feedback for

the accumulation part of the multiply-accumulate circuit. These two values alone make

43

up the difference of 60 between the two co-processors. From this result we can conclude

that non-regular signals (such as these) which go against the direction of data flow in the

circuit cause increased power consumption. This is because these signals have to be

routed long distances around a subset of CLBs in order to be input signals to this subset

of CLBs.

Table 5.1 – Speed, Resource Utilization, and Estimated Power Consumption of
the Co-processors.

Speed # of # of # of # of Equivalent Estimated Power
Co-Processor (MHz) CLBs Flip-Flops 3-Input LUTs 4-Input LUTs Gate Count Consumption
Integer Multiply-Accumalate 50 622 720 180 794 10076 N/A
Integer Multiply-Add 43 1013 1148 423 1421 16809 415
F.P. Multiply-Accumalate 38 437 414 154 742 8072 454
F.P. Multiply-Add 34 716 654 254 1082 11766 390

Multiply-Add vs. Multiply-Accumulate
Linearly Weighted Activity Values

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

Interconnection Length

Li
ne

ar
ly

 W
ei

gh
te

d
Ac

tiv
ity

 V
al

ue
s

Multiply and Add
Multiply and Accumulate

Figure 5.1 – Linearly weighted activity values for multiply-add and multiply-accumulate.

44

5.3 A Phenomenon Observed with Pipelining

The fourth objective of this thesis was to understand why inserting more stages

does not always increase the maximum speed of a pipelined circuit. Since the co-

processors were not pipelined with varying numbers of pipeline stages, this was not

investigated much at all. This phenomenon is observed with the array-based multiplier

discussed in Section 4.1.

The reason this is believed to happen is because the 4028ex FPGA has less CLBs

and routing resources than the 4036xla FPGA. This has caused the Xilinx tools to place

and route the design into the 4028ex in such a way that signal connections and/or CLBs

are placed so that one or more signals travel a long distance. In order for a given CLB to

run at a certain speed, all of the input signals to that CLB must originate within a certain

distance, given the type of interconnection that is used to route the signal, as to delay the

signal no more than the threshold of delay for running the CLB at the given speed. This

is what has happened with the multiplier implemented in the 4028ex part; either signals

or CLBs were routed in a poor fashion.

45

CHAPTER VI

CONCLUSIONS AND FURTHER RESEARCH

This study has demonstrated that inner-product co-processors for both integer and

floating-point data can fit into today’s FPGA technology and achieve a significant speed

and throughput. The results of this implementation shows that it is feasible and

beneficial under certain circumstances to implement floating-point and integer operations

in FPGAs (i.e., such as when a custom data format can be used, as with the SHARC DSP

which can convert back and forth between IEEE 32-Bit floating point and the SHARC

DSP 16-bit floating point formats).

This study did not calibrate the simulator of [7] nor evaluate the co-processors on

the basis of real power consumption. This is due to the problems encountered in

measuring real power consumption. This is an area that still needs to be further

researched and refined. The successful calibration of the probabilistic power simulator

will be of a major benefit to the reconfigurable and power-aware communities. In

addition to this, the simulator needs to be expanded to handle different brands and models

of FPGAs.

The estimation of power consumption in Chapter V has shown that the data flow

within a design has an impact on power consumption. When the data flow is non-regular,

as in the accumulation part of the multiply-accumulate co-processor, the power

consumption will increase if the design cannot be efficiently placed and routed into the

FPGA.

Once the simulator has been calibrated and a method of measuring real power

accurately has been achieved, then a study into the effects of pipelining on power

consumption needs to be performed. The general expectation is that more pipelining will

cause more power consumption. A sweet spot should exist between the trade-offs of

throughput and power consumption for each different application. This study could also

attempt to identify methodologies for exploiting the power consumption characteristics of

FPGAs. The overview of the Xilinx XC4000 Series FPGA found in Chapter II provides

46

a good foundation for understanding the characteristics of these FPGAs which may

impact power consumption.

47

REFERENCES

[1] Xilinx XC4000E and XC4000X Series Field Programmable Gate Arrays, Product

Specification, Xilinx Inc., v1.5, [online]
http://www.xilinx.com/partinfo/databook.htm#xc4000, 1999.

[2] J.L. Hennessy, Computer Architecture: A Quantitative Approach, Second Edition,

Morgan Kaufmann Publishers Inc., San Francisco, California, 1996.

[3] K. Roy and S. Prasad, “Circuit Activity Based Logic Synthesis for Low Power

Reliable Operations,” IEEE Trans. Very Large Scale Integration (VLSI) Systems,
Vol. 1, No. 4, December 1993, pp. 503-513.

[4] T.L. Chou, K. Roy and S. Prasad, “Estimation of Circuit Activity Considering

Signal Correlations and Simultaneous Switching,” Proc. IEEE International
Conference on Computer-Aided Design, pp. 300-303, Nov. 1994.

[5] W.B. Ligon III, et al., “A Re-evaluation of the Practicality of Floating-Point

Operations on FPGAs,” IEEE Symposium on FPGAs for Custom Computing
Machines, April 1998, pp 206-215.

[6] A. Nannarelli and T. Lang, “Low-Power Divider,” IEEE Trans. Computers, Vol.

48, No. 1, January 1999, pp. 2-14.

[7] T. Osmulski, Implementation and Evaluation of a Power Prediction Model for

Field Programmable Gate Array, Master’s Thesis, Computer Science, Texas
Tech University, 1998.

[8] ADSP-2106x User's Manual, Second Edition, Analog Devices, [online]

http://www.analog.com/publications/documentation/ADSP_2106x_SHARC_User
s_Manual/books.html, 1996.

[9] M.M. Mano, Computer System Architecture, Third Edition, Prentice Hall Inc.,

Englewood Cliffs, New Jersey, 1993.

[10] N. Gupta, Reconfigurable Computing for Space-Time Adaptive Processing,

Master’s Thesis, Computer Science, Texas Tech University, 1998.

[11] Wild-One Reconfigurable Computing Engines: Manual, Revision 3.2, Annapolis

Micro Systems Inc., Annapolis, MD, 1998.

[12] A. Nannarelli, “Power Evaluation Tool: Modeling and Implementation,” Proc.

1996 Compass User’s Group Conference, April 1996.

48

[13] K. Skahill, VHDL for Programmable Logic, Addison-Wesley, Reading,
Massachussetts, 1996.

[14] N. Shirazi, A. Walters and P. Athanas, “Quantitative Analysis of Floating Point

Arithmetic on FPGA Based Custom Computing Machines,” Proc. IEEE
Symposium on FPGAs for Custom Computing Machines, April 1995.

[15] K.P. Parker and E.J. McCluskey, “Probabilistic Treatment of General

Combinatorial Networks,” IEEE Trans. Computers, vol. C-24, pp. 668-670, June
1975.

