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ABSTRACT 

 

As reconfigurable computing devices, such as field programmable gate arrays 

(FPGAs), become a more popular choice for the implementation of custom computing 

systems, the special characteristics of these devices must be investigated and exploited.  

Usually a device’s performance (i.e., speed) is the main design consideration, however 

power consumption is of a growing concern as the logic density and speed of integrated 

circuits increases.  Specifically, the characteristic of being reconfigurable gives FPGAs 

different power dissipation characteristics than traditional ICs. 

This thesis explores the problems of power consumption in field programmable 

gate arrays.  An introduction into power consumption and power prediction techniques is 

presented as well as an overview of the composition of the Xilinx XC4000 Series 

FPGAs.  A probabilistic power simulator, developed under the same research contract as 

this thesis, is discussed as well as the ongoing attempt to calibrate the power simulator for 

Xilinx FPGAs. 

The design of two different sets of inner product co-processors (multiply-

accumulate and multiply-add) for integer and floating-point data is presented.  The 

implementation of these co-processors as well as their performance, sizes, and estimated 

power consumption values are presented and analyzed in this thesis. 
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CHAPTER I 

INTRODUCTION AND MOTIVATION 

 

Reconfigurable computing devices, such as field programmable gate arrays 

(FPGAs), are becoming a popular choice for the implementation of custom computing 

systems.  For special purpose computing environments, reconfigurable devices can offer 

a cost-effective and more flexible alternative than the use of application specific 

integrated circuits (ASICs).  They are especially cost-effective compared to ASICs when 

only a few copies of the chip(s) are needed [7].  A major advantage of FPGAs over 

ASICs is that they can be reconfigured to change their functionality while still resident in 

the system, which allows hardware designs to be changed as easily as software and 

dynamically reconfigured to perform different functions at different times [1].   

Even though digital signal processors (DSPs) are well suited for embedded 

systems and can be re-programmed easily, their architecture is relatively generic, 

meaning that they may have more silicon complexity than needed for any given 

application.  Therefore, ASICs designed for a particular application generally provide 

better performance and/or less complexity than a DSP.  The drawback is that ASICs are 

expensive to develop in small volumes and are not reconfigurable (i.e., once the ASIC 

has been manufactured its functionality cannot be changed; the entire chip must be 

replaced with a different one to change the design).  FPGAs on the other hand are 

reconfigurable; they can implement hardware designs in a similar manner that a DSP can 

execute different software programs [10], and can perform at or near ASIC and DSP 

levels [7].  FPGAs are well-suited for embedded systems in which a stream of input data 

must be processed, and can provide improvements in throughput and speed over DSPs by 

using parallelism and eliminating overhead associated with DSPs (i.e., load operations, 

store operations, branch operations, and instruction decoding).  The increasing popularity 

of reconfigurable systems is consistent with the growing trend of using commercial-off-

the-shelf (COTS) hardware in place of ASICs for custom systems [10]. 

Usually a device’s performance (i.e., speed) is the main design consideration, 

however power consumption is of a growing concern as the logic density and speed of 
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ICs increase.  This is notably true for battery-operated equipment such as cellular phones 

and GPS receivers, and for remote devices housed in satellites and aircraft, where power 

is a premium.  Therefore, the prediction of the power consumption of a device can be an 

important issue.  This is even more important in reconfigurable devices because their 

characteristics introduce timing and power considerations not found in traditional IC 

devices and implementations [7]. 

Some research has been undertaken in the area of power consumption in CMOS 

(complimentary metal-oxide semiconductor) devices.  This work has focused primarily 

on circuit activity and on power consumption in circuits designed using VLSI basic cell 

techniques.  Representative examples of this work are found in [3], [4], and [6].  Besides 

[7], the closest research to power prediction in configurable devices is found in [6], where 

a power prediction tool was developed to predict power consumption in circuits that have 

been designed using VLSI techniques.  This is similar to predicting power consumption 

in FPGAs, but does not account for the actual implementation of VLSI cells as 

techniques for power prediction in FPGAs must account for the implementation of the 

configurable logic blocks (defined in Chapter II) in the device.  Accordingly, because 

there is little information pertaining to the evaluation of power consumption in 

reconfigurable devices, few methodologies (if any) exist for designing low power 

systems using reconfigurable devices.  Also, because the design of systems using FPGAs 

goes down to the logic function level, any methodologies for low power design in FPGAs 

may be of use in designing VLSI circuits for CMOS devices. 

The objectives of the research laid out in this thesis are to utilize the power 

simulator developed in [7] and develop multiply-add and multiply-accumulate inner 

product co-processors for both integer and floating-point data in FPGAs.  The 

implementation of the co-processors provides a basis for an evaluation and comparison of 

data formats in FPGAs and evaluating the power simulator, as well as an exercise in 

which different design methodologies may be used and evaluated on the basis of power 

consumption. 
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CHAPTER II 

OVERVIEW OF THE XILINX XC4000 SERIES PART 

 

2.1  General Description 

The Xilinx XC4000 Series devices are composed of a set of configurable logic 

blocks (CLBs) that are connected by routing resources and surrounded by a set of 

physical pin pads called input/output blocks (IOBs).  The CLBs, routing resources, and 

IOBs are programmable; allowing the part to be configured to implement specified 

designs.  The CLBs consist of function generators (implemented with look-up tables), 

function selection logic (implemented with multiplexers), and D flip-flops.  The routing 

resources can connect CLBs to each other or to IOBs.  This section discusses the major 

elements of the Xilinx XC4000 Series FPGA family.  The reader is also referred to [1], 

from which the material here is summarized.   Because preliminary power measurements 

suggest that the routing interconnect of the XC4000 Series parts consume a significant 

amount of energy, the routing interconnect is overviewed in considerable detail. 

Re-configuration means that a device can be re-programmed an unlimited number 

of times.  The XC4000 Series part is capable of being re-programmed without removing 

it from the system, greatly reducing overhead and making updates to the hardware similar 

to software updates.  Because the FPGAs can be re-programmed an unlimited number of 

times, while still resident in the system, they can be used in dynamic systems where the 

hardware can be adapted to the current needs of the system.  They can also be used for 

testing purposes during the design phase to reduce the overhead of designing a chip or to 

implement self-diagnostics systems. 

The Xilinx XC4000E and XC4000X are capable of running at synchronous 

system clock speeds of up to 80 MHz and can run internally at speeds above 150 MHz.  

This can provide significant advantages over other technologies when comparing certain 

types of operations and their throughput.  For example, an FPGA running at 80 MHz 

performing a floating-point multiply every cycle performs at 80 MFLOPS (Millions of 

Floating-Point Operations Per Second) compared to Analog Devices’ ADSP-21061 DSP 

that runs at 50 MHz and performs at 150 MFLOPS.  However, two floating-point 
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multipliers can be placed onto to one FPGA increasing the throughput to 160 MFLOPS, 

which is comparable to the ADSP-21061. 

 
2.2  Architectural Features 

2.2.1  The Configurable Logic Block 

The Xilinx FPGA consists of two major configurable elements that can provide 

logic and/or registering functionality: configurable logic blocks (CLBs) and input/output 

blocks (IOBs).  CLBs are building blocks that provide the basic elements needed to 

implement logic.  This section focuses on the CLB; the IOB is covered in the next 

section. 

CLBs provide most of the logic that is implemented in an FPGA.  A basic 

diagram of the CLB is shown in Figure 2.1, taken from [1].  The three function 

generators shown within each CLB allow it to implement certain functions of up to nine 

variables.  Each CLB also contains two storage elements, which can store function 

generator outputs and can be configured as either flip-flops or latches.  Adding to the 

versatility of the CLB, the storage elements and the function generators can be configured 

to be independent of each other.  For example, the flip-flops can be used to store 

(register) signals from outside the CLB where they reside.  Also, the outputs of the 

function generators need not pass through the flip-flops on the same CLB.  Each CLB has 

thirteen inputs and four outputs providing access to/from the function generators/storage 

elements.  The inputs and outputs of the CLBs are interconnected through the 

programmable routing fabric.  The different elements within the CLB are covered in the 

following sub-sections. 

 

2.2.1.1  Function Generators 

Function generators provide the core logic implementation capabilities of a CLB.  

Three function generators are provided, their outputs are labeled F’, G’, and H’ as shown 

in Figure 2.1.  All three of these function generators are implemented as look up tables 

(LUTs). 
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F’ and G’ are the “primary” function generators.  They are both provided with 

four independent inputs and can implement any arbitrarily defined Boolean function of 

up to four variables.   H’ is the “secondary” function generator and is provided with three 

inputs.  Of these three inputs, one (H1) comes from outside the CLB, and the second can 

come either from G’ or H0, and the third can come either from F’ or H2 (H0, H1, and H2 

come from outside the CLB). 

The outputs of the function generators can exit the CLB on two outputs, X and Y.  

Only F’ or H’ can be connected to X; and only G’ or H’ can be connected to Y.  

Additionally, the outputs of F’, G’, or H’ can be used as inputs to either of the two 

storage elements whose outputs connect to the routing fabric (XQ and YQ). 

 
Figure 2.1 - Simplified block diagram of the XC4000 Series CLB (RAM and carry 

logic functions not shown) [1]. 
 

Given the attributes of the three function generators and their connectivity with 

each other and the rest of the CLB, they can be used to implement any of the following: 
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1.   Any function of up to four variables with a second function of up to four 

unrelated variables and a third function of up to three unrelated variables. 

2.   Any single function of up to five variables. 

3.   Any function of four variables together with some functions of six variables. 

4.   Some functions of up to nine variables. 

 

2.2.1.2  Storage Elements 

The two flip-flops provided in the CLB allow the storage of two signals.  These 

signals can come from internal signals or from outside the CLB.  The outputs of the flip-

flops can be connected to the routing fabric as well.  The flip-flops can be configured as 

either D flip-flops or latches.  As D flip-flops they can be either falling or rising edge-

triggered, and have a common clock (K) and clock enable (EC) inputs.  When they are 

configured as latches they also have the common clock and clock enable inputs. 

 

2.2.1.3  Function Generators as RAM 

Each CLB can be configured to use the LUTs in F’ and G’ as an array of 

read/write memory cells.  There are several RAM (Random Access Memory) modes in 

which each CLB can operate: level-sensitive, edge-triggered, and dual-port edge-

triggered.  Given these modes a CLB can be implemented as a 16×2, 32×1 or 16×1 bit 

RAM array. 

 

2.2.2  The Input/Output Block 

The interface between the actual package pins and the internal logic of the FPGA 

are provided through programmable input/output blocks (IOBs).  Each IOB is connected 

to one physical pin and can provide control of the pin for input, output, or bi-directional 

signals.  For each CLB there exists two IOBs.  Figure 2.2 provides a simplified block 

diagram of the IOB found in the XC4000E and Figure 2.3 shows the IOB for the 

XC4000X.  The IOB of the XC4000X contains special logic, that is not provided in the 

XC4000E IOB, and these differences are shaded in Figure 2.3.   
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There are two paths that an external signal can traverse through the IOB to gain 

entrance into the interconnection fabric in the FPGA; these are labeled I1 and I2 in both 

Figure 2.2 and Figure 2.3.  Either of these paths may contain a direct signal or a 

registered signal, which passes through a register that can be configured as an edge-

triggered D flip-flop or a level-sensitive latch.  The XC4000X IOB also contains an extra 

latch on the input.  This latch is clocked by the output clock and allows for the very fast 

capture of input data, which is then synchronized to the internal clock by passing through 

the IOB flip-flop/latch. 

 

 
Figure 2.2 - Simplified block diagram of the XC4000E IOB [1]. 

 

Signals that are output from the FPGA can be passed directly through the IOB to 

the pad or registered into an edge-triggered flip-flop.  Output signals can also be inverted 

before they reach the pad. 

Included in the XC4000X IOB is an additional multiplexer, which can be 

configured not only as a multiplexer but also a 2-input function generator.  This function 

generator can implement a pass-gate, AND-gate, OR-gate, or XOR-gate with 0, 1, or 2 

inverted inputs.   When configured as a MUX, it allows two output signals to time-share 
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the same output pad, which can effectively double the number of device outputs without 

expanding the physical package size. 

 

2.2.3  Programmable Interconnect 

All of the internal connections within the FPGA are composed of metal segments 

with programmable switching points and switching matrices to implement the desired 

connection of signals within the device.   There are three basic classes of interconnect 

available: CLB routing, IOB routing, and global routing.  We will not discuss global 

routing in this overview; the reader is referred to [1] for information on global routing. 

 

 
Figure 2.3 - Simplified block diagram of the XC4000X IOB (shaded areas indicate 

differences from XC4000E) [1]. 
 

2.2.3.1  CLB Routing 

The CLBs are arranged in a grid array with the IOBs surrounding the grid.  An 

example layout is shown in Figure 2.4.  The programmable interconnect is located 

between CLBs and between the grid and the IOBs.  

Each CLB has a myriad of interconnect resources to which it can connect its 

outputs.  A diagram representing these resources is shown in Figure 2.5.  The five 
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interconnect types are single-length lines, double-length lines, quad and octal lines 

(XC4000X only), and longlines that are distinguished by the relative length of their 

segments.  Table 2.1 shows how much of each interconnect type is accessible to a single 

CLB.  CLB inputs and outputs are distributed on all four sides of the CLB and in general 

are symmetrical and regular.  This makes the device well suited to placement and routing 

algorithms.  An additional feature is that inputs, outputs, and function generators can 

effectively swap positions within a CLB, which can help in avoiding routing congestion. 

 

IOBs

CLBs

 
Figure 2.4- Example layout of an FPGA with 16 CLBs [7]. 
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Figure 2.5 - High-level routing diagram of the XC4000 Series CLB (shaded arrows 

indicate XC4000X only) [1]. 
 

Table 2.1 - Routing per CLB in XC4000 Series devices [1]. 
XC4000E XC4000X

Vertical Horizontal Vertical Horizontal
Singles 8 8 8 8
Doubles 4 4 4 4
Quads 0 0 12 12
Longlines 6 6 10 6
Direct Connects 0 0 2 2
Globals 4 0 8 0
Carry Logic 2 0 1 0
Toal 24 18 45 32  

 

The single and double length lines intersect at Programmable Switch Matrices 

(PSMs), shown in Figure 2.6.  Each of these matrices consist of programmable pass 

transistors, which allow the signals to be routed from one line to selected other lines of 

the same type within the matrix. 

Associated with each CLB are 16 single-length lines (8 vertical and 8 horizontal).  

These lines offer the most flexibility and provide fast routing capability between adjacent 

CLBs.  They connect with PSMs located at every intersection of the rows and columns of 

the CLB interconnect, this is shown in Figure 2.7.  Signals on single-length lines are 
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delayed every time they go through a PSM, so they are generally not efficient for routing 

signals for long distances.  They are usually used to connect signals within a localized 

area and provide branching for output signals with a fan-out (of greater than one). 

Double-length lines are twice as long as single-length lines and they run past two 

CLBs before entering a PSM, as shown below in Figure 2.7.  These lines are grouped into 

pairs with the PSMs staggered so that each line goes through a PSM at every other row or 

column.  There are four double-length lines associated with each CLB providing faster 

routing over intermediate distances, while still retaining reasonable routing flexibility. 

Associated with each CLB row and column in the XC4000X series devices are 24 

(12 vertical and 12 horizontal) quad lines, which are four times as long as single-length 

lines.  These lines pass through buffered switch matrices and run past four CLBs before 

doing so.  

Each buffered switch matrix consists of one buffer and six pass transistors and 

resembles a PSM, but only switches signals routed on quad lines.  The matrix accepts up 

to two independent inputs and provides up to two independent outputs.  However, only 

one of the independent inputs can be buffered.  The Xilinx place and route software can 

automatically decide whether or not a line should be buffered, given the timing 

requirements of the signal.  Buffered switch matrices make the quad lines very fast and in 

fact quad lines are the fastest resource for routing heavily loaded signals long distances 

across the FPGA. 

 

 
Figure 2.6 - Programmable Switch Matrix (PSM) [1]. 
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Longlines run the entire length or width of the CLB array and are used for high 

fan-out, time-critical nets, or nets that span long distances.  Two longlines per CLB can 

be driven by 3-state drivers or open-drain drivers allowing them to implement 

unidirectional buses, bi-directional buses, wide multiplexers, or wired-AND functions. 

Each longline in the in the XC4000E series device has a programmable switch at 

its center.  In addition, each longline driven by an open-drain driver in the XC4000X 

series device also has a programmable switch at its center.  This programmable switch 

can separate the longline into two independent lines, each spanning half the length or 

width of the CLB array. 

Every longline in the XC4000X series devices that is not driven by an open-drain 

driver has a buffered programmable switch at the ¼, ½, and ¾ points of the CLB array.  

This buffering keeps the performance of longlines from deteriorating with larger CLB 

array sizes.  If the programmable switch splits the longline, then each of the resulting 

partial longlines are independent of each other. 

In the XC4000X series device, quad lines are preferred over longlines when 

implementing time-critical nets.  The quad lines are faster for high fan-out nets due to the 

buffered switch matrices that they pass through. 

 

 
Figure 2.7 - Single- and double-length lines, with Programmable Switch 

Matrices (PSMs) [1]. 
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There are two direct connections between adjacent CLBs in the XC4000X 

devices.  These signals experience minimal interconnect delay and use no general routing 

resources.  This direct interconnect is also available between CLBs and adjacent IOBs as 

shown in Figure 2.8. 

 

2.2.3.2  I/O Routing (VersaRing) 

The XC4000 Series devices also include extra routing around the IOB ring, which 

is called a VersaRing and facilitates pin swapping and re-design without affecting board 

layout.  There are eight double-length lines spanning four IOBs (two CLBs), and four 

longlines.  Also included are global long lines and wide edge decoders, which are not 

discussed here.  For information on global long lines and wide edge decoders, the reader 

is referred to [1].  The XC4000X has eight additional octal lines.  A high level view of 

the VersaRing is given in Figure 2.9. 

 

 
Figure 2.8 - XC4000X direct interconnect [1]. 

 
In-between the XC4000X CLB array and the VersaRing there are eight 

interconnection tracks (called Octals) that can be broken every eight CLBs by a 

programmable buffer that can also function as a splitter switch.  The buffers are staggered 

so that each line goes through one every eight CLBs around the device edge. 

When the octal lines bend around the corners of the device, the lines cross at the 

corner so that the segment most recently buffered has the farthest distance to go until it is 
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buffered again.  A diagram showing the bending of octals around corners is given in 

Figure 2.10.  IOB inputs and outputs connect to the octal lines via single-length lines, 

which can also be used to communicate between the octals and double-length, quads and 

longlines within the CLB array. 

 

 
WED = Wide Edge Decoder (dark shaded areas indicate XC4000X only) 

Figure 2.9 - High-level routing diagram of the XC4000 Series VersaRing (left edge) [1] 
 

2.2.4  Power Distribution 

The power distribution in the Xilinx XC4000 Series part is achieved through a 

grid, in order to provide high noise immunity and isolation between logic and I/O.  A 

dedicated Vcc and Ground ring surrounds the logic array providing power to the I/O 

drivers, while an independent matrix of Vcc and Ground lines provide power to the 

interior logic of the device.  A diagram showing this distribution method is shown in 

Figure 2.11. 
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Figure 2.10 - XC4000X octal I/O routing [1]. 

  

 

 
Figure 2.11 - XC4000 Series power distribution [1]. 
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CHAPTER III 

BACKGROUND AND RELATED WORK 

 

3.1  Basic Concepts of Power Consumption 

This material is summarized from [7], which was developed under the same 

research contract that supported the work of this thesis. 

In order to predict the power consumption in a CMOS device, three types of 

current flow need to be considered: leakage current, switching transient current, and load 

capacitance charging current.  The leakage current is related to the imperfection of field 

effect transistors (FETs) that are used in CMOS devices.  This type of current flow in 

CMOS technology is very small and usually ignored when evaluating power 

consumption. 

CMOS gates consist of pairs of complimentary MOSFETs (metal-oxide 

semiconductor field effect transistors).  The switching transient current within CMOS 

gates is caused by a brief short circuit that can occur when the state of the complimentary 

gates change from on-to-off and off-to-on.  This short circuit occurs when the 

complimentary MOSFETs are concurrently “on” for a brief transient period of time.  The 

power loss due to switching transient current is dependent on the switching frequency of 

the gate and is more considerable than leakage current. 

The final type of current flow is load capacitance charging current.   This is the 

current flow that is required to charge the capacitance that is associated with a transistor 

gate, and occurs when the state of a gate changes.  This is the dominant type of power 

consumption in CMOS devices, and is the only component of power consumption 

considered in the remainder of this thesis. 

 

3.1.1  Capacitance Charging Power Consumption 

Two assumptions about CMOS transistors must be made in order to derive the 

power consumption associated with capacitance charging.  First, there is a non-zero 

resistance in the electrical connection to the gate of each transistor.  Second, the rate of 

the switching of the transistor must be sufficiently slow for the capacitance to completely 
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charge or discharge.  Figure 3.1 shows an equivalent model for the switching of a 

transistor.  The source voltage is V, the resistance in the connection to the gate is R, and 

the capacitance of the gate is C.  

Let τ represent the time that the switch remains at V before moving to ground.  

Then, according to the derivations given in [7], the average power dissipated through the 

transistor is (assuming that τ ≥ 4RC): 

 
2

2
1 CVPavg τ=

. (3.1) 

Provided that there is non-zero resistance and the transistor fully changes state, 

then all of the energy stored in the capacitor (C) is dissipated through the resistor during 

the time interval τ.  However, the amount of power dissipated when the transistor 

changes state is dependent only on the amount of capacitance related to the gate (i.e., it is 

independent of the value R).  If the value of τ is decreased, indicating that the transistor is 

changing states more frequently, then the power consumption will increase.  This 

indicates that the faster that a CMOS circuit runs, the greater the power consumption 

related to the circuits operation. 

0=t

C

R

V

 
Figure 3.1 - Equivalent gate model for a CMOS transistor [7]. 

 

3.2  Basic Concepts of Power Modeling 

3.2.1  Time-Domain Techniques 

Because the primary source of power consumption in CMOS ICs is due to the 

current that is required to charge the capacitance associated with each transistor during 

state transitions, the time-domain representation of all signals is therefore sufficient to 
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predict power consumption.  This approach requires the simulation of time-domain data 

signals throughout the device over the entire interval corresponding to the input data 

stream [7]. 

For example, consider the logic function 321 xxxy =  whose transistor level 

implementation is shown in Figure 3.2.  The input signals to the logical gates correspond 

to the voltage levels for the gates of the transistors.  In the time-domain approach, this 

function requires that the voltages associated with each transistor be modeled, which is 

illustrated in Figure 3.3.  

 

x3

x2

x1

y

x3

x2

x1
y

 
Figure 3.2 – Illustration of a CMOS implementation for the Boolean function  

321 xxxy =  [7] . 
 

 
Figure 3.3 – Illustration of time-domain modeling of CMOS circuit signals [7]. 

 
After the voltage signals for each transistor being modeled are known, the average 

power is computed for each gate g based on the number of transitions (Ng) the gate 
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experiences over the time interval T.  Average power consumed by the gate g is then 

given by : 

 
gNCV

T
2

2
1

.   (3.2) 

Therefore average power consumed by all gates in a device is given by: 

  
∑

∈ gates all

2
2
1

g

g
T

N
CV

.   (3.3) 

In addition to this, the activity of the signal at gate g, relative to the gate frequency f, is 

given by ( )
f

T
N g

and will be denoted as Ag.  Therefore the value of Ag is normalized 

between zero and one.  A value of 0.25 corresponds to a signal that transitions every 

fourth clock cycle, on average, and a value of unity indicates that the signal transitions at 

every clock cycle.  Calculating Ag is straightforward when the time-domain signals 

driving each gate g are known.  The problem is that the determination of the exact time-

domain signals is computationally expensive for the number of signals present in a 

realistic design. 

A power simulator called PET (Power Evaluation Tool) has been developed at the 

University of California, Irvine that uses time-domain power modeling techniques [12].  

This simulator models IC circuits developed using basic cell techniques.  By estimating 

power for each basic cell in a manner similar to estimating power for transistor gates, the 

simulator can sum the power estimates for all cells to derive power consumption for the 

entire device.  This method of power estimation requires that the device be simulated and 

that the simulator is given characteristic data about every type of cell used in the device.  

This simulator is presented in [12] and is also used in order to estimate the power 

consumption of a low-power divider developed in [6]. 

 

3.2.2  Probabilistic  Techniques 

Under the same contract as this thesis work, a probabilistic simulator has been 

implemented and is covered in detail in [7].  A discussion of the current work being done 

on this simulator is given in Section 3.2.2.1.  Probabilistic techniques were used in order 
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to obtain acceptable results within a reasonable amount of computation time.  The basic 

notion behind this approach is to distill important probability-domain information from 

the time-domain input.  The probability-domain information can then be used in place of 

the actual time-domain signal values in estimating average power and thereby removing 

the dimension of time from the calculations, which reduces the complexity of the power 

calculations considerably [7]. 

Two probabilistic parameters: signal probability and signal activity, are used in 

[7].  The signal probability, denoted as p(s) for signal s, represents the percentage of time 

that a signal has a logical value of one, while the signal activity, denoted as A(s) for the 

signal s, is a normalized fraction of the signal’s activity divided by the device’s clock 

frequency.  The activity of a signal refers to the amount of times the signal changes state 

from on-to-off and off-to-on during the period of interest.  Illustrations of signal value 

probability and signal activity measures are given in Figures 3.4 and 3.5, respectively. 
 

( ) 88.01 =xp

( ) 50.0=clockp ( ) 29.02 =xp

( ) 69.03 =xp

Figure 3.4 – Illustration of signal probability measures associated with various time-
domain signal data [7]. 

 

( ) 10.01 =xA

( ) 0.1=clockA ( ) 17.02 =xA

( ) 27.03 =xA

Figure 3.5– Illustration of signal activity measures associated with various time-domain 
signal data [7]. 

 

In the paper by Parker and McCluskey [15] a symbolic method that relates 

operations on Boolean data to corresponding operations on probabilistic data is 

introduced.  This allows a digital circuit simulation algorithm to operate on probabilistic 

information; a detailed summary is given in [7].  Signal activities are “transformed” as 
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they pass through logic gates.  This transformation is more complicated than probability 

transformations.  Signal probabilities must be known before the activity values are 

calculated.  These activity values are then used to model signal frequencies at the gates of 

transistors and provide a straightforward way to estimate consumed power at the 

transistor level.  Then, the average power for each gate in the device can be calculated 

and summed yielding the device’s power consumption.  This method of estimating power 

consumption is the basis of the power simulator presented in [7] and is briefly discussed 

in Section 3.2.2.1.  This power simulator estimates power at the CLB level of FPGAs 

whereas the PET simulator [12] discussed in Section 3.2.1 simulates the device on the 

basic cell level of ICs. 

 

3.2.2.1  A Probabilistic Power Prediction Simulator 

This section discusses the simulator that was developed in [7] and is currently 

being calibrated.  A brief discussion of how the simulator works and how it is being 

calibrated is given here. 

The simulator, which is implemented in Java, takes as input two files: (1) a 

configuration file associated with an FPGA design and (2) a pin file that characterizes the 

signal activities of the input data pins to the FPGA.  The configuration file defines how 

each CLB (configurable logic block) is programmed and defines signal connections 

among the programmed CLBs.  The configuration file is an ASCII file that is generated 

using a Xilinx M1 Foundation Series utility called ncdread.  The pin file is also an 

ASCII file, but is generated directly by the user.  It contains a simple listing of pins that 

are used to input data into the configured FPGA circuit.  For each pin number listed, the 

probabilistic parameters of signal activity (As) and signal value (p(s)) are provided which 

characterize the data signal for that pin.  

Based on the two input files, the simulator propagates the probabilistic 

information associated with the pins through a model of the FPGA configuration and 

calculates the activity of every internal signal associated with the configuration.  The 

activity of an internal signal s, denoted As, is a value between zero and one and represents 
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the signal’s relative frequency with respect to the frequency of the system clock, f.  Thus, 

Asf gives the average frequency of signal s. 

Computing the activities of the internal signals represents the bulk of 

computations performed by the simulator.  Given the probabilistic parameters for all 

input signals of a configured CLB, the probabilistic parameters (including the activity) of 

that CLB’s output signals are determined using a well-defined mathematical 

transformation.  Thus, the probabilistic information for the pin signals is transformed as it 

passes through the configured logic defined by the configuration file.  However, the 

probabilistic parameters of some CLB inputs may not be initially known because they are 

not directly connected to pin signals, but instead are connected to the output of another 

CLB for which the output probabilistic parameters have not yet been computed (i.e., there 

is a feedback loop).  For this reason, the simulator applies an iterative approach to update 

the values for unknown signal parameters.  The iteration process continues until 

convergence is reached, which means that the determined signal parameters are 

consistent based on the mathematical transformation that relates input and output signal 

parameter values, for every CLB.  

The average power dissipation due to a signal s is modeled by ½ Cd(s)V2Asf, where 

d(s) is the Manhattan distance the signal s spans across the array of CLBs, Cd(s) is the 

equivalent capacitance seen by the signal s, and V is the voltage level of the FPGA 

device.  The overall power consumption of the configured device is the sum of the power 

dissipated by all signals.  For an N x N array of CLBs, signal distances can range from 0 

to 2N.  Therefore, the values of 2N + 1 equivalent capacitances must be known to 

calculate the overall power consumption.  Letting S denote the set of all internal signals 

for a given configuration, the overall power consumption of the FPGA is given by:  
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The values of the activities (i.e., the As’s) are dependent upon the parameter 

values of the pin signals defined in the pin file.  Thus, although a given configuration file 
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defines the set S of internal signals present, the parameter values in the pin file impact the 

activity values of these internal signals.  

Let Si denote the set of signals of length i, i.e., Si = {s ∈ S | d(s) = i}.  So, the set 

of signals S can be partitioned into 2N + 1 subsets based on the length associated with 

each signal.  Using this partitioning, Eq. 3.4 can be expressed as follows: 
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To determine the values of the simulator’s capacitance parameters, actual power 

consumption measurements are taken from an instrumented FPGA using different 

configuration and pin input characteristics.  Specifically, 2N + 1 distinct measurements 

are made and equated to the above equation (Eq. 3.5) using the activity values (i.e., the 

As’s) computed by the simulator.  The resulting set of equations is then solved to 

determine the 2N + 1 unknown capacitance parameter values.  This is how the simulator 

will be calibrated.  For this study, the simulator will be calibrated for a Xilinx 4036 

FPGA for which N = 36.  The 73 required measurements are performed using six 

different configurations (including various types of multipliers, adders, and FIR filters) 

with approximately 12 pin files per configuration. 

The simulator can then be evaluated by comparing computed average power 

consumption from the simulator with corresponding actual measured power consumption 

using configurations and pin files not used to calibrate the simulator. 

 

3.3  A Low Power Divider 

In [6], a low power divider was developed using power reduction techniques for 

basic cell ICs.  These methods are discussed in this section.  All of the material in this 

section is summarized from [6]. 

Although division is an infrequent operation compared to multiplication and 

addition, it dissipates up to 1.4 times the amount of energy than floating-point addition.  

This makes division a good candidate for evaluating low power design techniques. 

The goal of the work was to reduce the energy consumption while maintaining the 

current delay and keeping the increase in the area to a minimal amount.  Because the 
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energy dissipation in a cell is proportional to the number of transitions, output load, and 

to the square of the operating voltage, the author of [6] reduces the number of transitions, 

reduces the load capacitance, and estimates the impact of using dual voltage.  The 

techniques used include switching off not-active blocks, retiming, using dual voltage, and 

equalizing the paths to reduce glitches. 

By switching off not-active blocks, parts of the circuit can be used only when 

needed by the division algorithm thereby reducing the power dissipation of the block.  

This is accomplished by forcing the input signals of the blocks to a constant value of one.   

The next technique used was retiming the recurrence part of division.  The 

position of registers in a sequential system can affect energy dissipation, retiming 

involves the repositioning of these registers without modifying their external behavior.  

The energy that is dissipated within a cell is dependent on the square of the 

voltage supply and reducing the operating voltage of the cells can produce a significant 

decrease in the amount of energy dissipation.  However, this technique can only be 

applied to cells that are not in the critical paths of the circuit because the lower supply 

voltage increases the delay through the cell. 

Because of different delays throughout the device, the input signals to significant 

parts of the circuit can arrive at different times.  This has the effect of creating spurious 

transitions within the sub-circuit until all signals have arrived.  Spurious transitions add to 

the energy dissipation in the sub-circuit because energy dissipation is proportional to the 

number of transitions.  To reduce the number of spurious transitions the author has 

equalized the paths within the circuit in certain areas to reduce glitches that cause the 

spurious transitions. 

By using the techniques outlined in this section, the author of [6] was able to 

decrease the power consumption of a radix-4 divider by 40 percent.  However, a 

fundamental problem with these techniques as applied to FPGAs is that the designer has 

no control over how the CLBs in the FPGA are composed, placed, and how the signals 

internal to the device are routed.  In addition to this, dual voltage cannot be used in the 

design of a circuit implemented in a FPGA due to the limitations of the current FPGA 

technology. 
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3.4  The Practicality of Floating-Point Arithmetic on FPGAs 

Many algorithms require floating-point operations running at the speed of tens or 

hundreds of millions of calculations per second.  These types of algorithms are candidates 

for acceleration using custom computing machines (which includes reconfigurable 

computing) [14].  However, in the past the implementation of floating-point operations 

on reconfigurable platforms has not been considered seriously because the operations 

require an excessive amount of area and do not map onto these devices well.  With the 

advent of VHDL (Very High Speed Integrated Circuit Hardware Description Language) 

and more dense and faster FPGAs computing platforms, this technology may soon be 

able to significantly speed up pure floating-point applications [5]. 

In the two articles discussed in this section, [14] and [5], the authors consider the 

practicality of implementing floating-point arithmetic on FPGAs.  They consider the size 

of the FPGA implementations, speed, and the range of the numbers that can be 

represented in the specified floating-point operations. 

In [14], the authors consider eighteen- and sixteen-bit floating-point adders, 

multipliers, and dividers synthesized for a Xilinx 4010 FPGA.  The eighteen-bit format 

uses a one-bit sign, a 7-bit exponent field (with a bias of 63), and a 10-bit mantissa 

yielding a range of ±3.6875×1019 to ±1.626×10-19.  The sixteen-bit format has a one-bit 

sign, 6-bit exponent (with a bias of 31), and a 9-bit mantissa yielding a range of 

±8.5815×109 to ±6.985×10-10.  The eighteen-bit floating-point format was used for a 2-D 

FFT (2-Dimensional Fast Fourier Transform) and the sixteen-bit floating-point format 

was used for a FIR filter.  The authors conclude that custom formats derived for 

individual applications are more appropriate than the IEEE standard formats [14]. 

In [5], the authors investigate the implementation of floating-point multiplication 

and addition on Xilinx 4000 Series FPGAs.  The system uses bit serial, booth recoding, 

and digit serial algorithms for the integer multipliers, which are an integral part of 

floating-point multiplication. The disadvantage of using a bit serial algorithm is that it 

only resolves one bit of the product per cycle causing the system to take several cycles to 

perform the multiplication.  The digit serial algorithm resolves n bits of the product per 

cycle, where n is the digit size [5]. 
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The authors develop a floating-point multiplier and adder that is used in the 

development of a multiply-and-accumulate circuit used for matrix multiplication.  They 

present a floating-point adder that fits in a Xilinx 4020E FPGA that performs at 40 

MFLOPS (Millions of Floating-Point Operations Per Second).  The floating-point 

multiplier they developed can perform at a speed of 33 MFLOPS and can also fit into a 

Xilinx 4020E.  Therefore the multiply-and-accumulate unit developed can run at a peak 

performance of 66 MFLOPS.  (The authors do not state whether this unit can fit into a 

single chip, but indicate that they used multiple FPGAs to implement the unit.)  They 

contend that with the newer Xilinx parts, that were not available when the study was 

performed, they could potentially see a peak performance of 264 MFLOPS and a realized 

performance of 195 MFLOPS on a system with four Xilinx 4062XL FPGAs.  The 

authors conclude that reconfigurable platforms will soon be able to offer a significant 

speedup to pure floating-point computation [5]. 
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CHAPTER IV 

DESCRIPTION OF WORK PERFORMED 

 

The work performed consists of familiarization with VHDL (Very High Speed 

Integrated Circuit Hardware Description Language) [13], the Wild-One Reconfigurable 

Computing Engine [11], Xilinx FPGAs [1], choosing a method of measuring power 

consumption, and the implementation of two inner product co-processors (multiply-

accumulate and multiply-add) for both integer and floating point data.  The target 

architecture for the work (the Wild-One Reconfigurable Computing Engine from 

Annapolis Microsystems) consists of a PCI card with two FPGAs, memory, support 

hardware, and software.   

The development environment provided by Annapolis includes source templates 

and APIs.  The APIs allow the designer to write C programs that can communicate with 

and configure the on-board FPGAs.  The system also has memory and a FIFO that can be 

used for data storage.   

After becoming familiar with VHDL and the Wild-One, several small designs 

were implemented to gain experience with the system.  The next accomplishment was to 

design and implement a pipelined 12-bit integer multiplier, which is an integral part of 

the inner product co-processors that were developed as a part of the work.  A method to 

measure the power consumed by the FPGAs on the Wild-One system (based on the 

measurement of electrical current) was also chosen and evaluated, and this is discussed in 

Chapter V.  This chapter details the design of a 12-bit integer multiplier, a 16-bit floating-

point multiplier, a 16-bit floating-point adder, integer and floating-point multiply-and-

accumulate inner-product co-processors, and integer and floating-point multiply-and-add 

inner-product co-processors. 

 
4.1  An Array-Based Integer Multiplier 

The multiplier implemented is a 12-bit array-based integer multiplier [2] and has 

been implemented in several versions as a pipeline with one to eight stages.  A basic 
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integer multiplier is a crucial part of a floating-point multiplier and needs to be well 

defined. 

The array-based multiplier, shown in Figure 4.1, was chosen because of the ease 

with which it can be pipelined, improving the throughput of the multiplier.  The array-

based design is easier to pipeline and has a greater throughput than an iterative 

multiplication scheme because each level of computations only have to be performed 

once to produce the final result. 

The bulk of the multiplier is composed of Carry-Save Adders (CSAs) [2], which 

are sets of vertically propagating adders.  This allows the adders in a certain CSA to 

depend only on the adders in the CSA above it in the path of signal propagation instead 

of depending on adders located logically to the left and right.  This not only simplifies the 

adder units but also decreases the propagation delay of the signals through the adder 

units. 

CSA 9

CSA 8 

CSA 7

CSA 6

CSA 5

CSA 4

CSA 3

CSA 2

CSA 1

CSA 0

Propagate Adder

b0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ab10Ab11A

sumcarry

 
Figure 4.1 – An array-based multiplier. 
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After the operands pass through the CSAs they also must pass through a 

propagation adder [2].  This is due to the fact that each CSA produces a sum and a carry 

value.  The carry value must be used in order to produce a correct product.  The structure 

of the propagate adder is given in Figure 4.2. 

The implemented multiplier has been tested for speed with different levels of 

pipelining.  The timing results are given in Table 4.1.  

Half Adder

Full Adder

Full Adder

Full Adder

Full Adder

Full Adder

Full Adder

Full Adder

Full Adder

Full Adder

Full Adder

Full Adder

sumcarry

sumcarry

upper 13 bits of product

CSA 9

 
Figure 4.2 – A propagate adder. 

 
As shown in Table 4.1 the multiplier can run at speeds of up to 39 MHz when 

implemented in a Xilinx 4028ex FPGA and 50 MHz when implemented in a Xilinx 

4036xla FPGA.  This is probably due to the increased routing resources found in the 

XC4000X series devices and the larger CLB array present in the 4036xla FPGA.  The 

Wild-One system can run at speeds of up to 50MHz, so testing beyond this speed was not 

possible.  One interesting aspect of these results is that in the 4036xla FPGA the speed of 

the multiplier was limited to 29 MHz until 8 stages are used.  We believe that a critical 
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path through the interconnection fabric was finally “broken” (i.e., with a registered stage) 

when moving from seven to eight stages. 

Table 4.1 – Timing results for the array multiplier. 
# of stages Maximum Speed(Mhz)

4028ex 4036xla
1 14 28
2 19 25
3 21 N/A
4 22 27
5 29 28
6 39 28
7 22 29
8 33 50  

 

4.2  Inner Product Co-processor Designs 

The inner product co-processors implemented are floating-point and integer 

versions of two co-processors: multiply-add and multiply-accumulate.  High level 

diagrams of the multiply-add and multiply-accumulate schemes are given in Figure 4.3 

and Figure 4.4.  The designs for these co-processors are detailed in the following 

sections. 

Input Buffer

Pipeline 
Multiplier

Pipeline 
Multiplier

Pipeline 
Adder

Output Buffer
 

Figure 4.3 - Multiply-add scheme. 
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4.2.1  Floating-Point Co-processors 

The major difference between the two co-processors is that one of them has an 

accumulator instead of only an adder.  The accumulator is an extension of the adder and 

therefore both the adder and accumulator based designs consist of the multiplier and 

adder which are detailed below. 

 

Input Buffer

Pipeline 
Multiplier

Pipeline 
Adder

Output Buffer
 

Figure 4.4 - Multiply-accumulate scheme [9]. 
 

The floating point format chosen is a 16-bit floating point format supported by the 

ADSP-2106x family of SHARC DSP processors produced by Analog Devices [8].  This 

format uses an 11-bit mantissa, a 4-bit exponent, and a one-bit sign.  The exponent is 

represented in excess-7 notation.  This format is shown in Figure 4.5 and has an accuracy 

of ±1.5625×10-2 to ±2.559375×102. 

Short Word Floating Point Format

010111415

s e3•••e0 1.m10•••m0

 
Figure 4.5 - SHARC DSP short word floating point format [8]. 
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4.2.1.1  Floating-Point Multiplier 

The floating-point multiplier is shown in Figure 4.6, which is adapted from [9].  

The multiplier consists of sign logic, an excess-7 exponent adder, an array-based 

multiplier, and normalization logic.  The multiplier is designed to allow for differing 

levels of pipelining. 

Because the exponents are stored in excess-7 notation, the exponent adder must 

add the two excess-7 numbers and then subtract seven from the sum; otherwise it would 

produce an “excess-14” sum.  If the normalization requires that the exponent be adjusted, 

then the exponent will only have to be adjusted by increasing it by a value of one.  When 

this occurs, the excess-14 sum is decreased by a value of six instead of seven, which 

effectively increases the final exponent sum by a value of one.  The reasons for this are 

discussed below. 

In the excess-7 exponent encoding used by the SHARC DSP, a value of zero 

indicates that the value of the floating-point number is exactly zero and an exponent 

value of fifteen indicates that the value of the floating-point number is infinity.  Because 

of this, the floating-point multiplier, shown in Figure 4.6, must check the exponents for 

these two cases and set the resulting exponent to the appropriate value.  Additionally, if 

underflow occurs in the exponent addition, then the resulting exponent needs to be set to 

zero because the actual resulting exponent is below the range of values that are 

representable.  Accordingly, if overflow occurs in the exponent addition, then the 

resulting exponent needs to be set equal to fifteen, which represents infinity, because the 

actual resulting exponent is above the range of values that are representable. 

The 12-bit array-based multiplier is the multiplier discussed in Section 4.1.  The 

multiplier produces a 24-bit product of which only 13 bits are needed to generate the 

correct resulting mantissa.  The product must be normalized before it is stored in the 16-

bit floating-point format used.  The msb of the product indicates which bits are needed 

for the resulting mantissa. 

Both the multiplicand and the multiplier have the forms of 1.bbb...b with a width 

of w.  When these two values are multiplied together, the product has a width of 2w and 

is of the form of either 01.bb...b or 10.bb...b.  Example multiplications (with w = 4) 
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resulting in products with each of these forms are given in Figure 4.7.  If the msb of the 

product is 1 (Figure 4.7(a)), then the product must be shifted to the right one place 

resulting in the exponent needing to be increased by a value of one.  (This allows us to 

use the msb of the product as the ‘exponent adjust select’ in Figure 4.7.)  If the msb of the 

product is 0 (Figure 4.7(b)), then the position msb - 1 will always have a value of one, in 

which case no normalization or exponent adjustment is needed. 
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Figure 4.6 - 16-bit floating-point multiplier. 
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4.2.1.2  Floating-Point Adder 

The floating-point adder chosen is a pipelined adder [9] and is shown in Figure 

4.8.  By using subtraction to compare the exponents, it can determine how much the 

mantissa of the value with the smaller exponent needs to be adjusted in order to align the 

mantissas, while at the same time determining which exponent will be used to compute 

the exponent of the result.  Because the exponent comparison determines the difference, 

the fact that the exponents are stored in excess-7 notation is not relevant.  A diagram 

showing the comparison of the exponents is given in Figure 4.9.  The method of selecting 

the exponent to be used for the final result is by using multiplexers to select the exponent, 

this is shown in Figure 4.10, and depends only on the sign of the difference obtained in 

the comparison of the exponents. 

The next task in floating-point addition is to align the mantissas so that the radix 

point is lined up in the same position for the two mantissas.  The phantom bit (which has 

a value of one for non-zero operands) must be appended to the msb of each of the 

mantissas before this alignment can occur.  The alignment is shown in Figure 4.11.  Only 

one mantissa needs to be shifted and this is determined by the value of the sign of the 

difference obtained in the exponent comparison.  The difference obtained in the exponent 

comparison determines how many places to the right the selected mantissa must be 

shifted. 
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Figure 4.7 - Two possible normalization cases in floating point multiplication. 
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Figure 4.8 - Pipelined floating-point adder [9]. 
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Figure 4.9- Comparing exponents by subtraction. 
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Figure 4.10 – Choosing of the exponent. 
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Figure 4.11 - Align mantissas. 
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The addition/subtraction of the mantissas is shown in Figure 4.12.  If one of the 

values is negative, it must be converted to 2’s complement in order to perform 

subtraction.  Additionally, if the resulting sum is negative, it must be converted back to 

sign-magnitude form.  If both of the values are negative, then regular addition can be 

performed because the sign logic accounts for this case.  Because addition will result in a 

sum (at most) twice as big as the largest operand, an extra bit must be used in the 

addition. Therefore, the addition requires a 13-bit adder because our operands are 12 bits 

in size.  Another adder is required to convert the sum back into sign-magnitude form (if 

the sum is negative).  The sign bit is used to determine the resulting sign of the sum value 

and to determine if conversion from 2’s complement representation to sign-magnitude 

representation is necessary. 

 

 
Figure 4.12 - Add/Subtract mantissas. 
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The final step in floating point addition is to normalize the mantissa and adjust the 

exponent, which is shown in Figure 4.13.  There are three possible cases to deal with in 

normalization: 

1.   If bit 12 of the sum has a value of one, then the mantissa is shifted one place 

to the right and the exponent is incremented by a value of one.  An example of 

this is shown in Figure 4.14(b).  

2.   If bit 12 of the sum has a value of zero and bit 11 has a value of one, then the 

mantissa is already normalized and no exponent adjustment is necessary.  An 

example of this is shown in Figure 4.14(a). 

3.   Otherwise, we do not know where the leftmost bit with a value of one occurs 

in the sum.  In the worst case it is the lsb, in which case we must shift the 

mantissa eleven places to the left and decrement the exponent by a value of 

eleven.  An example of this is shown in Figure 4.14(c).  The actual 

implementation of this selects the bits from the mantissa being shifted and 

does not actually shift the mantissa. 

After the mantissa has been normalized and the exponent has been adjusted, we 

have the final answer represented in the 16-bit floating-point format. 

 

4.2.2  Integer Co-processors 

The integer co-processors are composed of an integer multiplier and an integer 

adder with the necessary control to perform multiply-add and multiply-accumulate 

operations.  The high level designs for these co-processors is presented in Section 4.2 and 

is the same as for the floating-point co-processors.  The data format chosen for the integer 

co-processors is unsigned 16-bit integer.  The data format has a range of 0 to 65535. 

 The multiplier is an expanded 16-bit version of the 12-bit array-based multiplier 

presented in Section 4.1.  The adder is a basic 16-bit carry-propagate adder similar to the 

ones used for the adding and subtracting operations found within the floating point adder 

discussed in Section 4.2.1.2. 
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Exponent (4 bits) Mantissa (13 bits)

If Mantissa(12) = 1 then take bits 11 downto 1
and add one to the exponent.

Else if Mantissa(11) = 1 then take the bits 10 downto 0 
and do nothing to the exponent.

 Else take the bits 10 downto 0
and shift the bits to the left until the msb = 1 

subtracting 1 from the exponent every time a shift occurs. 
Then take the upper 11 bits.

Normalized Answer

(Exponent and Mantissa)

 
Figure 4.13 - Normalize mantissa and adjust exponent. 
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+
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(b)
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to the right.

(c)
Shift left two
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Figure 4.14 - Examples of normalization. 
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CHAPTER V 

RESULTS AND IMPLEMENTATION ISSUES 

 

The proposal for this master’s thesis outlined five objectives for the master’s 

thesis work to accomplish.  These objectives are: 

1.   More fully understand power modeling techniques and past research in this 

area. 

2.   Implement and compare the floating-point and integer inner product co-

processors. 

3.   Understand why inserting more stages does not always increase the maximum 

speed of a pipelined circuit. 

4.   Understand the power consumption reduction seen by using more pipeline 

staging registers. 

5.   Calibrate the power simulator developed previously in [7]. 

Each of these objectives and their outcome is discussed in this chapter along with 

implementation issues encountered during the implementation of the inner product co-

processors. 

 

5.1   Problems with Measuring Real Power Consumption 

The first objective outlined in the proposal was to more fully understand power 

modeling techniques and past research in this area.  This objective goes along with the 

last objective outlined in the proposal, which was to calibrate the power simulator 

developed previously in [7].  While there was a literature review performed on past 

research in this area we were not able to calibrate the power simulator.  After some 

investigation into how to calibrate the power simulator we realized that it was a more 

monumental task than believed at first and was not a reasonable goal for the time allotted 

to finish this work.  

The main problem we ran into in trying to calibrate the simulator is with the 

accurate measurement of real power consumption.  We obtained an FPGA board for 

which current for the entire FPGA board can be measured.  However, after taking 
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measurements for long periods of time it was discovered that the values would drift 

slowly up and down significantly.  Because the power measurements taken initially may 

not be accurate, the fourth objective (which was to understand the power consumption 

reduction seen by using more pipeline staging registers) could not be accomplished.  It 

was not possible to perform real power measurement tests on differently staged pipelines 

with the given apparatus. 

 

5.2  Performance and Comparison of the Co-processors 

The original intent was to pipeline the co-processors enough to get every co-

processor running at 50 MHz.  However, due to a lack of time this was not accomplished.  

Instead the co-processors were tested for speed and estimated power consumption using 

the latest version of the power simulator. 

The only implementation issue had to do with the multiply-and-add circuits.  

These circuits required that four operands be fed into the two multipliers at the same 

time.  Because the memories on the Wild-One are only 32-bits wide and the operands are 

16-bits in size, this required a scheme of clocking two operands into the circuit every 

clock cycle and running the circuit at half of that clock speed.  So effectively the circuits 

produce answers at half of the rate the whole system is running.  In both the integer and 

floating-point versions of this circuit, answers intermittently come back wrong.  Because 

the circuits also produced correct answers for the same data as wrong answers, it is likely 

that the multiplier and adders work correctly and that the intermittent failure has to do 

with something on the system level.  This may be due to a poor job of placing and routing 

the circuits into the FPGAs by the Xilinx tools used.  However, the exact cause for these 

intermittent failures was not determined.  It is suspected that this problem has to do with 

the scheme of introducing a secondary clock signal, which clocks the multipliers and 

adders at half the speed of the system clock.  The Xilinx tools and/or FPGA may not be 

able to effectively distribute this second clock signal. 

The timing measurements, resource utilization, and estimated power consumption 

for each co-processor is given in Table 5.1.  
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The integer co-processors are able to run faster than the floating-point co-

processors.  This is a trade-off in that the integer co-processors have a different input 

range (0 to 65535) than the floating-point co-processors (±1.5625×10-2 to 

±2.559375×102).  Another trade-off is that the integer co-processors also take more space 

in the FPGA than their counterpart floating-point co-processors, which make a difference 

in power consumption and how many of the co-processors could potentially be fit into 

one chip. 

In order to estimate power consumption of the co-processors, each co-processor 

was run through the power simulator developed in [7] (discussed in Section 3.2.2.1) using 

two different input data files.  (The simulator did not converge for the integer multiply-

accumulate co-processor for some reason; it would eventually reach a point where it 

would run for over 12 hours with no progress.)  These files contain probabilities and 

activity factors for each input signal into the circuit.  One of the two files had random 

probability and activity factors in it while the other one had the values increasing and 

decreasing across the input signals, similar to a periodic waveform.  While the 

capacitance associated with each of the different 73 signal distances across the FPGA is 

not known at this time, the simulator computes the activity values for each different 

signal distance and returns these values.  The equation, which is adapted from Eq. 3.5, 

used for calculating estimated power is: 

 ( ) 
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While this does not give an accurate power consumption estimate it gives some idea of 

what the power consumption of the device will be assuming that the capacitance 

associated with the signals in S0 is less than the capacitance associated with signals in S1 

to S2N.  Instead, this gives a weighted sum that can be used to estimate the power 

consumption value the simulator will return for the design when it is calibrated.  Figure 

5.1 shows a comparison of activity values for each different signal length for the floating-

point versions of the Multiply-Accumulate and Multiply-Add co-processors.  The two 

activity value sums for interconnection lengths 30 and 31 are caused by the feedback for 

the accumulation part of the multiply-accumulate circuit.  These two values alone make 
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up the difference of 60 between the two co-processors.  From this result we can conclude 

that non-regular signals (such as these) which go against the direction of data flow in the 

circuit cause increased power consumption.  This is because these signals have to be 

routed long distances around a subset of CLBs in order to be input signals to this subset 

of CLBs. 

Table 5.1 – Speed, Resource Utilization, and Estimated Power Consumption of  
the Co-processors. 

Speed # of # of # of # of Equivalent Estimated Power
Co-Processor (MHz) CLBs Flip-Flops 3-Input LUTs 4-Input LUTs Gate Count Consumption
Integer Multiply-Accumalate 50 622 720 180 794 10076 N/A
Integer Multiply-Add 43 1013 1148 423 1421 16809 415
F.P. Multiply-Accumalate 38 437 414 154 742 8072 454
F.P. Multiply-Add 34 716 654 254 1082 11766 390  
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Figure 5.1 – Linearly weighted activity values for multiply-add and multiply-accumulate. 
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5.3  A Phenomenon Observed with Pipelining 

The fourth objective of this thesis was to understand why inserting more stages 

does not always increase the maximum speed of a pipelined circuit.  Since the co-

processors were not pipelined with varying numbers of pipeline stages, this was not 

investigated much at all.  This phenomenon is observed with the array-based multiplier 

discussed in Section 4.1. 

The reason this is believed to happen is because the 4028ex FPGA has less CLBs 

and routing resources than the 4036xla FPGA.  This has caused the Xilinx tools to place 

and route the design into the 4028ex in such a way that signal connections and/or CLBs 

are placed so that one or more signals travel a long distance.  In order for a given CLB to 

run at a certain speed, all of the input signals to that CLB must originate within a certain 

distance, given the type of interconnection that is used to route the signal, as to delay the 

signal no more than the threshold of delay for running the CLB at the given speed.  This 

is what has happened with the multiplier implemented in the 4028ex part; either signals 

or CLBs were routed in a poor fashion. 
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CHAPTER VI 

CONCLUSIONS AND FURTHER RESEARCH 

 

This study has demonstrated that inner-product co-processors for both integer and 

floating-point data can fit into today’s FPGA technology and achieve a significant speed 

and throughput.  The results of this implementation shows that it is feasible and 

beneficial under certain circumstances to implement floating-point and integer operations 

in FPGAs (i.e., such as when a custom data format can be used, as with the SHARC DSP 

which can convert back and forth between IEEE 32-Bit floating point and the SHARC 

DSP 16-bit floating point formats). 

This study did not calibrate the simulator of [7] nor evaluate the co-processors on 

the basis of real power consumption.  This is due to the problems encountered in 

measuring real power consumption.  This is an area that still needs to be further 

researched and refined.  The successful calibration of the probabilistic power simulator 

will be of a major benefit to the reconfigurable and power-aware communities.  In 

addition to this, the simulator needs to be expanded to handle different brands and models 

of FPGAs. 

The estimation of power consumption in Chapter V has shown that the data flow 

within a design has an impact on power consumption.  When the data flow is non-regular, 

as in the accumulation part of the multiply-accumulate co-processor, the power 

consumption will increase if the design cannot be efficiently placed and routed into the 

FPGA. 

Once the simulator has been calibrated and a method of measuring real power 

accurately has been achieved, then a study into the effects of pipelining on power 

consumption needs to be performed.  The general expectation is that more pipelining will 

cause more power consumption.  A sweet spot should exist between the trade-offs of 

throughput and power consumption for each different application.  This study could also 

attempt to identify methodologies for exploiting the power consumption characteristics of 

FPGAs.  The overview of the Xilinx XC4000 Series FPGA found in Chapter II provides 
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a good foundation for understanding the characteristics of these FPGAs which may 

impact power consumption. 
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