

Design and Optimization
of

Legacy Compatible Microprocessors

Technical Report No. CS-TR-02-002

December 2002

Brian F. Veale*, John K. Antonio*, and Monte P. Tull†

*School of Computer Science †School of Electrical and Computer Engineering

University of Oklahoma
Norman, OK 73019

Tel: 405-325-8446
Fax: 405-325-4044

E-mail: {veale, antonio, tull}@ou.edu

i

Table of Contents

Abstract ...iii
List of Figures..iv
List of Tables..v
1. Introduction ..1

1.1. Static Microprocessors ...1
1.2. Reconfigurable Microprocessors ..3
1.3. Summary..4

2. The IBM DAISY Microprocessor ...5
2.1. Overview ...5
2.2. Re-translation of Binary Machine Code..8
2.3. Optimization of Tree Groups..11
2.4. Special Hardware and Control Mechanisms..14
2.5. Performance Evaluation ...16
2.6. Summary..18

3. The Transmeta Crusoe Microprocessor ...19
3.1. Overview ...19
3.2. Re-Translation of Instructions ..23
3.3. Optimization of Crusoe Instructions ...24

3.3.1. Removing the X86 Segmentation Process..26
3.3.2. Removing Upper Boundary Memory Checks...28
3.3.3. Common Sub-Expression Elimination ...29
3.3.4. Removing Commit Operations ..30
3.3.5. Register Renaming ..30
3.3.6. Code Motion..31
3.3.7. Data Aliasing...31
3.3.8. Copy Propagation ..32
3.3.9. Using Alias Hardware..32

3.4. Special Hardware and Control Mechanisms..32
3.5. Exception Handling..34
3.6. Summary..34

4. Comparison of the DAISY and Crusoe Microprocessors ...35
4.1. Overview ...35
4.2. Difficulties in Comparing the DAISY and Crusoe Microprocessors................................37
4.3. The Architectures of the DAISY and Crusoe Microprocessors..37
4.4. The Re-translation Processes ..38
4.5. Scheduling Re-translated Operations ..39
4.6. Optimization of Re-translated Machine Code ...39
4.7. Handling of Special Situations..40
4.8. Summary..40

5. Proposed Future Research Directions ..41
5.1. Overview ...41
5.2. An Architecture to Support Dynamic Translation with Reconfigurable Computing42
5.3. Instruction Set Analysis..44

5.3.1. Overview...44

 ii

5.3.2. Detecting Instruction Set Partitions with Clustering ...45
5.3.3. Overall Results of the Experiments and Future Work...51

5.4. Summary..52
6. Conclusions ..53
References ..55

 iii

Abstract

Microprocessors can be divided into two main categories: (1) those implemented using static

hardware, and (2) those implemented using reconfigurable hardware. In microprocessors that

use reconfigurable hardware, the instructions supported and the circuitry that performs the

instructions can be changed after fabrication. Before a program is run on a microprocessor, it is

translated into binary machine code for the microprocessor. There are two approaches to the

translation of program code into binary machine code: (1) static and (2) dynamic. In the static

translation approach, the program is translated (i.e., compiled) into binary machine code and then

the microprocessor executes it directly. In the dynamic translation approach, the microprocessor

executes programs that have been initially translated into binary machine code for a different

microprocessor, by re-translating the initial binary machine code at execution time.

At the beginning of this report, a taxonomy of the different types of microprocessors (based

on these classifications) is presented. The focus of this report is the design and implementation

of the IBM DAISY and Transmeta Crusoe microprocessors. Both of these microprocessors use

the dynamic translation process to execute programs originally compiled for the PowerPC and

Intel X86 microprocessors, respectively. This presentation of the DAISY and Crusoe

microprocessors is followed by a comparison of these two microprocessors. Finally, areas for

future research are identified and discussed at the end of this report.

 iv

List of Figures

Figure 1. A taxonomy of microprocessors and the translation processes they use.1
Figure 2. The static translation process for a static microprocessor..2
Figure 3. The dynamic translation process for a static microprocessor...2
Figure 4. The static translation process for reconfigurable microprocessors.................................4
Figure 5. The components of a DAISY microprocessor [6]. ..6
Figure 6. The clustered VLIW processor core of the DAISY microprocessor [10, 6].7
Figure 7. The tree-based instruction flow control model and instruction format [10].7
Figure 8. The DAISY Instruction Pipeline [10]. ..8
Figure 9. The dynamic translation process used by the DAISY microprocessor derived from [4,

6]. ...9
Figure 10. Example PowerPC code and corresponding VLIW instructions and tree group [6]. ..10
Figure 11. Example of Copy Propagation between PowerPC instructions with no real

dependencies [12]. ..12
Figure 12. Example of Load-Store Telescoping optimizing PowerPC code [12].13
Figure 13. Example PowerPC code and the corresponding translated VLIW Code [6]...............14
Figure 14. The components of a Crusoe based system [7]..20
Figure 15. Architecture of the Crusoe microprocessor [7]..20
Figure 16. The gated store buffer used to buffer writes to memory and its associated registers [7].

..21
Figure 17. The dynamic translation process used by the Crusoe microprocessor derived from [7].

..22
Figure 18. Example C program and corresponding assembly-level code [7].24
Figure 19. Example re-translated X86 code (in bold) with Crusoe operations required for each

X86 instruction [7]. ...25
Figure 20. Example re-translated X86 code (in bold) with the Crusoe operations required for

each instruction after removal of the X86 segmentation process [7]...................................27
Figure 21. Example re-translated X86 code (in bold) with the Crusoe operations required for

each instruction after removal of upper boundary memory checks [7]................................29
Figure 22. Example re-translated X86 code (in bold) with the Crusoe operations required for

each instruction after removal of all commit operations except the one at the end of the code
segment [7]. ..31

Figure 23. The segmentation of a simple dynamic translation process in which each segment
represents a different configuration of the same reconfigurable hardware.43

Figure 24. A microprocessor core that includes a reconfigurable execution unit.43
Figure 25. A high level view of a system that uses dynamic translation and reconfigurable

hardware. ..44
Figure 26. The K-Means clustering algorithm derived from [19]. ..46
Figure 27. The image created using POV-Ray for the clustering experiments............................47
Figure 28. Results of the first run of the K-Means clustering algorithm.49
Figure 29. Results of the second run of the K-Means clustering algorithm.................................50
Figure 30. The ten most frequently executed instructions. ...50
Figure 31. The fifty most frequently executed instructions. ...51
Figure 32. Results of the third run of the K-Means clustering algorithm.52

 v

List of Tables

Table 1. VLIW processor core configurations explored for the DAISY microprocessor [6].18
Table 2. A comparison summary of the DAISY and Crusoe microprocessors............................36

 1

1. Introduction

Microprocessor hardware can be divided into two main categories:

1. microprocessors implemented in static hardware; and

2. microprocessor implementations that include reconfigurable hardware.

In a microprocessor implemented in static hardware, the circuitry is fixed and implements the

original set of operations for which it was fabricated. However, in a microprocessor

implemented using reconfigurable hardware, the operations performed by the reconfigurable

circuitry can be changed after fabrication by configuring the reconfigurable hardware. A

microprocessor based on reconfigurable hardware can be partially or completely implemented in

reconfigurable circuitry, e.g., only the circuitry that performs arithmetic operations might be

implemented using reconfigurable circuitry.

The rest of this section presents an overview of a microprocessor taxonomy illustrated in

Figure 1. In addition to categorizing the type of hardware used to implement the microprocessor,

distinction is made in how code is translated, i.e., statically or dynamically.

Figure 1. A taxonomy of microprocessors and the translation processes they use.

1.1. Static Microprocessors

In a static microprocessor, the instruction set that can be executed is fixed and the architecture of

the underlying hardware is fixed. Examples of static microprocessors include the Intel X86

family of microprocessors [1] and the PowerPC microprocessor [2].

The static translation process, which is the typical code development and execution process

for static microprocessors, is shown in Figure 2. The source code is constructed using a high-

level language, e.g., C++. The compilation process takes in source code and produces binary

machine code (commonly referred to as machine code) for the target microprocessor. In the

 2

model of Figure 2, note that the process of translating source code into machine code occurs

before execution begins on the static microprocessor.

Figure 2. The static translation process for a static microprocessor.

In addition to the typical static translation process, there exist static microprocessors that

perform the translation process dynamically at the same time that execution of the machine code

occurs. The generic code development and execution process for a microprocessor that performs

dynamic translation is shown in Figure 3.

Figure 3. The dynamic translation process for a static microprocessor.

In dynamic translation, as shown in Figure 3, the source code is developed as before using a

high-level language. The compilation process takes in the source code and produces machine

code for an initial target microprocessor. This initial target may be associated with an actual

physical microprocessor or it may be associated with a virtual microprocessor. (For example,

Java source code is initially targeted to binary Java Virtual machine (JVM) code [3].) The

machine code for the initial target microprocessor is re-translated into machine code for the final

target microprocessor and optimized. Re-translation refers to the process of translating the

machine code for the initial target microprocessor into machine code for the final target

microprocessor; and optimization refers to techniques used to change and re-order the execution

of instructions contained in machine code in order to speed up execution of the instructions. The

re-translation and optimization step can be performed in software or hardware, as illustrated in

Figure 1.

Two examples of systems that perform the re-translation and optimization step in software

are JVM [3] and Dynamo [4]. When a Java program is executed on a static microprocessor, the

 3

initial machine code, which is called Java byte code, is re-translated into the machine code for

the target microprocessor using the JVM, which is implemented in software [5].

In the Dynamo system, the initial and final targeted microprocessors are actually the same.

However, when the initially compiled code is executed, the Dynamo software dynamically re-

translates and optimizes the initial machine code into machine code with the objective of

producing code that executes faster [4].

The DAISY (Dynamically Architected Instruction Set from Yorktown) [6] and Crusoe [7]

microprocessors are examples of static microprocessors that perform the re-translation and

optimization step of the dynamic translation process in hardware. In these systems, the source

code is not initially compiled for the DAISY or Crusoe microprocessor, but for a different static

microprocessor. When the initial machine code is executed by DAISY or Crusoe, it is re-

translated into machine code for the DAISY or Crusoe microprocessor and then executed by the

microprocessor [6, 7]. This re-translation is performed in hardware. A main focus of this report

is to overview and compare the DAISY and Crusoe systems (Sections 2 and 3).

1.2. Reconfigurable Microprocessors

In contrast to a static microprocessor, the instruction set and the underlying architecture of a

reconfigurable microprocessor can be dynamic. This means that the instruction set and the

circuitry implementing particular instructions or functionality of the microprocessor can be

changed after fabrication of the microprocessor.

An example of a reconfigurable microprocessor is the SPYDER (Reconfigurable Processor

DEvelopment SYstem) microprocessor [8]. In the SPYDER microprocessor, the circuitry

implementing all of the instructions is dynamic. New instructions can be created and the

implementation of current instructions can be changed by providing a hardware description for

the instructions in the form of binary configuration code that specifies how to configure the

reconfigurable hardware [8].

The static translation process, which is the typical code development and execution process

for reconfigurable microprocessors, is shown in Figure 4. The source code is constructed using a

high-level language. The compilation process takes in source code and produces: (1) machine

code for the target microprocessor and (2) a description of instructions to be implemented in the

reconfigurable hardware to support the machine code. After the compilation process is finished,

 4

the synthesis process converts the descriptions of the instructions to be implemented in

reconfigurable hardware into binary configuration code for the reconfigurable hardware. In the

model of Figure 4, note that the process of translating source code into machine code and binary

configuration code occurs before execution begins on a reconfigurable microprocessor.

Unlike the category of static microprocessors, there are no known examples of a

reconfigurable microprocessor that uses a dynamic translation process. At the end of this report,

future work is outlined in the direction of examining reconfigurable microprocessor architectures

capable of dynamic translation.

Figure 4. The static translation process for reconfigurable microprocessors.

1.3. Summary

For the purpose of this study, microprocessors are implemented in either static or reconfigurable

hardware. Two possible translation processes are defined: static and dynamic. In the static

translation approach, the source code is compiled before execution on the microprocessor begins.

In the dynamic translation approach, initial machine code is re-translated and/or optimized

during execution on the microprocessor.

Microprocessors that perform dynamic translation have the advantage that they can execute

machine code that was initially compiled for a different microprocessor. Microprocessors that

perform static translation do not have to perform the re-translation and optimization step found in

dynamic translation and therefore may execute faster than a microprocessor that uses dynamic

translation to execute the same machine code.

Reconfigurable microprocessors have the potential advantage of being able to dynamically

alter their instruction set and the way that instructions are performed. However, current

technology that supports reconfigurable microprocessors is slower than the technology used to

 5

create static microprocessors. The slower execution of reconfigurable hardware is one reason

why reconfigurable technology has not been widely applied to microprocessors in the

commercial market.

This report focuses on microprocessors based on the dynamic translation approach to source

code compilation. The majority of the material is presented by providing details on the design of

the hardware architectures of the DAISY [6] and Crusoe [7] microprocessors. Copies of [6] and

[7] can be found in Appendices A and B. At the end of this report, a research idea dealing with

the design of instruction sets and machine architectures is discussed. A research idea of how to

combine the dynamic translation process with a reconfigurable microprocessor is also presented.

2. The IBM DAISY Microprocessor

2.1. Overview

The DAISY microprocessor [6] is a static microprocessor that has been developed by IBM,

which uses the dynamic translation process of Figure 3. The goal of the DAISY microprocessor

is to be completely compatible with the binary machine code of an existing commercial

microprocessor and was the first microprocessor developed exclusively for this purpose [6].

For the purpose of this study, the DAISY microprocessor presented is completely compatible

with the machine code of the PowerPC microprocessor. However, the techniques used in the

PowerPC version of the DAISY microprocessor can be applied to a host of different

microprocessors such as the Intel X86 and the IBM System/390, as well as virtual

microprocessors such as the JVM [6].

A high-level component view of the DAISY microprocessor is shown in Figure 5. The

architecture of the DAISY microprocessor is based on a VLIW (Very Long Instruction Word)

processor core and is built on top of the PowerPC memory model and register file [6]. The white

areas of Figure 5 represent PowerPC components of the system, and the black areas represent the

DAISY specific components of the system. Note that there are no PowerPC execution units; all

processing is done in the block labeled VLIW Processor Core.

A microprocessor based on a VLIW processor code (such as the DAISY) packages multiple

independent operations into one “very long” instruction for parallel execution in hardware [9].

Each operation is executed using a hardware circuit called an execution unit, also referred to as

an Arithmetic Logic Unit (ALU), which can perform several different operations. The operation

 6

that is performed at any single point of time by an execution unit is specified using an operation

code that is embedded in the VLIW instruction being executed. Such microprocessors use

multiple execution units that can independently perform operations, allowing them to perform

many operations at the same time. This approach of executing multiple operations in parallel

allows for a high degree of ILP (Instruction Level Parallelism).

Figure 5. The components of a DAISY microprocessor [6].

The execution units in the VLIW processor core used by DAISY are clustered, as shown in

Figure 6. Each of the clusters contains four execution units and two load/store units. A cluster is

the basic building block within DAISY, and the processor core used in this study has four

clusters [6].

The advantages of the clustered design are that: (1) the processor core has a high execution

bandwidth and (2) high clock frequency. One disadvantage to this approach is that if an

operation dependent on another operation that has been scheduled for a different cluster is

encountered, a one-cycle delay occurs in the processing of the dependent operation [6].

In the DAISY microprocessor, instructions are tree-based and implement a multi-way path

selection scheme [6]. The flow control model for a tree-based instruction is given in Figure 7.

The multi-way path selection scheme allows the dynamic translation process to aggressively re-

translate and optimize programs that contain multiple paths of flow and benefit from branch

prediction.

Each DAISY VLIW instruction can specify up to sixteen concurrent operations [6]. In the

model of Figure 7, each path can consist of any subset of the sixteen operations. The condition

codes (ccA, ccB, and ccC) determine the path is taken and what instruction is performed next

[10].

 7

Figure 6. The clustered VLIW processor core of the DAISY microprocessor [10, 6].

Figure 7. The tree-based instruction flow control model and instruction format [10].

The execution process for DAISY VLIW instructions is shown in Figure 8. The process is

implemented in hardware, as a pipeline, and is segmented into sets of tasks, called stages. In the

first stage, called the instruction fetch (IF) stage, a block of four consecutive instructions is read

 8

in from memory and a 4×1 multiplexer chooses the instruction that is to be performed. The next

stage, called the execute (EX) stage, combines three tasks: (1) the fetching of the operands from

the register file; (2) execution of the sixteen operations; and (3) evaluation of the tree form,

which takes place in the branch unit. This stage determines the path of the tree-based instruction

that is taken. In the final stage of the pipeline, the write back (WB) stage, the results of the

operations on the taken path are written back to the register file [10]. Each stage is performed

concurrently, thereby increasing the instruction throughput of the processor core and helping to

increase the overall speed of the microprocessor.

Figure 8. The DAISY Instruction Pipeline [10].

The DAISY microprocessor performs the re-translation and optimization step of Figure 3 by

performing a re-translation of machine code (compiled for a different static microprocessor) into

groups of DAISY instructions (called instruction groups) that are in the form of machine code

for the DAISY microprocessor. As execution of machine code on the DAISY microprocessor

continues, if previously re-translated instruction groups are encountered frequently, then they are

optimized. This process of re-translation and optimization is depicted in Figure 9 [6].

Overviews of the underlying hardware architecture of the DAISY microprocessor and the

dynamic translation process have been presented in this subsection. In the next subsection, a

discussion of how the system performs the re-translation of machine code is provided.

Subsection 2.3 defines the process of optimization, followed by an overview of special hardware

and control mechanisms that are provided in the DAISY system in Subsection 2.4. Finally, a

performance evaluation of the DAISY microprocessor is presented in Subsection 2.5.

2.2. Re-translation of Binary Machine Code

The DAISY microprocessor uses a Virtual Machine Monitor (VMM), shown in Figure 5, to

handle the re-translation process. The VMM also handles control of the microprocessor,

 9

including exception handling, and is transparent to the binary machine code of the initial target

microprocessor [6].

Figure 9. The dynamic translation process used by the DAISY microprocessor derived from [4, 6].

In the DAISY microprocessor, instruction groups take the form of a tree and are called tree

groups. A tree group is a high-level abstraction of a group of VLIW instructions that models the

natural flow of instruction execution (the control path) through a program. This control path

defines the tree properties of a tree group. Control paths can only merge on the boundary

between tree groups (the transition from one tree group to another). Each of the leaves of the

tree corresponds to an exit point in the tree and is called a “tip.” By knowing which of the tips

was used to exit the tree, the system can determine the path taken through the tree [6].

An example segment of PowerPC code and the corresponding PowerPC VLIW instructions

and VLIW tree group is shown in Figure 10. In the figure, the PowerPC code is packed into four

VLIW instructions. The contents of the VLIW instructions are dependent on where branches

occur in this example. Note that a tree group does not necessarily contain only four VLIW

instructions. This particular example shows a group of VLIW instructions, which is independent

of the four paths within a given VLIW instruction (see Figure 7). The resulting instructions and

tree group, shown in the figure, have not been optimized at this point in the execution process.

The first time a segment of machine code is encountered it is re-translated from PowerPC

code into machine code for DAISY and is added to an instruction group, as shown in Figure 9.

Once a stopping point for the group is found that meets certain requirements, the group is

 10

executed by the DAISY microprocessor. The selection of stopping points for tree groups in

DAISY is governed by a set of simple principles. A tree group can end at the target of a

backward branch (which is usually the beginning of a loop), at a subroutine entry, or at a

subroutine exit. Note that subroutine entries and exits can only be determined heuristically by

examining the branch, link, and register-indirect branch instructions of the PowerPC code.

Additionally, tree groups can span processor pages, protection domains, and indirect branches

(which are handled by using runtime information to replace the branch with a set of conditional

branches) [6].

Figure 10. Example PowerPC code and corresponding VLIW instructions and tree group [6].

Finding a stopping point does not mean that the tree group will end at such a point. Either

the desired ILP must have been reached for the tree group or the tree group must reach a certain

“window size” before the tree group is ended. The term “window size” refers to the number of

PowerPC operations found on the path being considered from the root of the tree group. The

condition on the ILP is aimed at attaining maximum performance and the condition on the

“window size” is meant to limit code explosion. Both of these limits are dynamically adjusted

according to the frequency of code execution. This approach also has the benefit of implicitly

performing loop unrolling [6].

 11

Tree groups are used as the unit of translation in the re-translation process. This helps to

simplify the scheduling of speculative operations because any predecessor instruction dominates

all its successors. Additionally, tree groups can have at most one reaching definition [6],

meaning that, if a variable is defined at any point within a tree group, then it cannot be re-defined

within the same tree group [11]. This helps to simplify optimization (and scheduling)

approaches [6].

Originally, processor pages were used as the unit of translation in DAISY. However, tree

groups were adopted later because it was discovered that paths through the program that are not

frequently executed ended up being re-translated. This re-translation of infrequently executed

code led to a large amount of unnecessary code and limited the ILP achieved by the

microprocessor [6].

With the advent of tree groups, when a segment of code is encountered that has already been

re-translated, the system merely branches to the corresponding tree group. In this situation, re-

translation is not necessary. As before, if re-translated code is executed frequently, then it is

optimized [6].

The process of re-translating code a certain number of times before it is optimized is

beneficial to the overall performance of the system. First, the re-translation process acts as a

filter for rarely executed code to keep such code from being optimized. The cost to optimize

such code is wasted and will never be regained because the system will not benefit from faster

execution of the code in the future. Second, the re-translation process can be used to gather data

about how to guide the optimization process. After a tree group has been encountered a set

number of times, it is optimized [6].

2.3. Optimization of Tree Groups

As shown in Figure 9, once a threshold on the number of times to execute an un-optimized

segment of PowerPC code is reached, the associated tree group is optimized. The goal of the

optimization algorithms used in DAISY is to attain a significant level of ILP with a low overhead

cost. The scheduling approaches are adaptive and a function of execution frequency and

behavior. The optimizations used in these approaches include copy propagation and load-store

telescoping [6].

 12

As each operation is optimized, it is examined in-order (i.e., non-speculatively) and

immediately placed into a VLIW instruction. At the same time, DAISY performs global VLIW

scheduling on multiple paths and across loop iterations. If the resulting operations are scheduled

in-order, then the results will be in the correct destination register after the operation is executed.

However, if the operation is scheduled out-of-order (i.e., speculatively), then the result is placed

into a hidden register, that can only be seen by the DAISY microprocessor and not the emulated

PowerPC microprocessor. It is later copied into the correct destination register associated with

the original in-order execution of the program [6].

Tree groups are initially created with moderate ILP and “window size” parameters. If the

time spent on a path in a tree group is above a certain threshold, then the tree group will be

extended and optimized again using a higher ILP goal and a larger “window size.” This allows

the translator to spend more time very aggressively optimizing frequently executed code, while

still optimizing less frequent code at a moderate level [6].

The optimization process used by DAISY performs several optimizations. Two of the

optimizations performed are copy propagation and load-store telescoping [6]. Copy propagation

is a code transformation that first searches for operations following a copy operation that use the

destination register of the copy operation as a source register. When such an operation is found,

the source register of the operation is replaced with the source register of the original copy

operation [11]. In the DAISY system, copy propagation is also used to recognize when

instructions that use the same registers do not have any real dependence between them. For

example, the PowerPC instructions in the code shown in Figure 11(a) use the same registers, but

have no real dependence between them. Because there is actually no dependence between these

instructions, they can be performed in parallel in the single VLIW instruction of Figure 11(b)

[12].

Figure 11. Example of Copy Propagation between PowerPC instructions with no real dependencies [12].

Load-store telescoping is an optimization that looks for load operations that correspond to

previous store operations. When such patterns are found, the dependency of the instructions

 13

involved in the load-store chain can be re-arranged such that no load or store operations need to

be performed. Figure 12 provides an example of using load-store telescoping to optimize

PowerPC code. Assuming that none of the instructions between stw and lwz write to r1 and

that no other store instructions are found between these two instructions that write to 8(r1),

then the code of Figure 12(a) can be re-written as VLIW instructions as shown in Figure 12(b)

[12].

Figure 12. Example of Load-Store Telescoping optimizing PowerPC code [12].

Load-store telescoping has the benefit of being able to remove load and store operations for

values maintained in memory that are used every time the values are needed. This removes these

operations from the critical path of the program allowing programs optimized with this single

technique to approach the performance of fully optimized code [12].

The optimization process also performs re-scheduling of operations in order to increase the

ILP of the optimized code. If a speculatively executed operation results in an incorrect execution

(i.e., not the original in-order behavior) then an exception is raised and the results are corrected.

Each time this happens a counter is incremented and if a tree group has a large number of poorly

scheduled speculative instructions, then the entire tree group will be rescheduled conservatively

with these speculative operations scheduled in-order [6]. This adaptive approach allows the

DAISY system to make mistakes in scheduling due to the aggressiveness of the process and still

gracefully recover from and correct such mistakes.

The scheduling approaches also support re-arranging the order of load instructions

optimistically and must handle incorrectly scheduled loads appropriately. An exception is raised

on a load operation whose target memory location has been altered between the point when the

load is executed and when the result is committed. When an exception of this type is caught, the

system takes corrective actions to ensure the load occurs correctly [6].

In Figure 13, the re-translated VLIW code for the PowerPC code segment of Figure 10 is

shown. This example shows how the xor operation can be performed in the first VLIW

 14

instruction and the four VLIW instructions of Figure 10 can be compressed into two VLIW

instructions. The movement of the xor operation shows how the DAISY re-translation process

performs operations as early as possible, with the result placed in a re-named register (r63 in

Figure 13) if the operation is moved to an earlier VLIW instruction. Then the results of the

moved instruction are placed into the correct PowerPC register (r4 in Figure 13) at the correct

place in the re-translated code as seen with the r4 = r63 operation. This mechanism allows

the microprocessor to perform precise exception handling [6].

Figure 13. Example PowerPC code and the corresponding translated VLIW Code [6].

As a result of the optimization process, programs that are flat and do not have comparatively

highly executed code fragments will not be optimized aggressively. This helps to preserve cache

resources and reduce translation overhead [6].

2.4. Special Hardware and Control Mechanisms

There are several areas in which special support is provided to make the DAISY microprocessor

completely compatible with the binary machine code of the PowerPC microprocessor without

encountering performance degradation. Among these areas are exception handling and context

switching mechanisms, support for handling register-indirect branches, and being able to detect

and handle self-modifying and self-referential program code.

An exception is an event that requires special processing that changes the normal flow of

execution, e.g., division by zero [13]. An important feature of DAISY is its precise exception

handling mechanism.

When an exception is encountered while executing program code, the VMM determines the

PowerPC instruction that was being performed when the exception occurred. Next, the actions

that would be required by the PowerPC are performed. Finally, the microprocessor branches to

 15

the operating system code that handles the exception. However, if the instruction that caused the

exception was being speculatively performed, special processing of the exception must be

performed [6].

If a speculative operation causes an exception, then the register it writes to is tagged by

setting an “exception tag” bit included in the register. This tag bit tells the VMM that the result

in the associated register is incorrect. Then, if a non-speculative operation uses a tagged register,

an exception is raised and the VMM handles the exception appropriately. This approach allows

the optimization process to aggressively schedule instructions without affecting the exception

behavior of the initial PowerPC machine code [6].

A context switch occurs when the microprocessor switches from executing one program to

another; saving the context of the current program to memory and loading the context of the new

program in from memory [13]. The DAISY supports this mechanism by only using non-

PowerPC registers as destination registers for speculative operations. As speculative operations

write to registers, non-PowerPC registers are used and their values are copied to the correct

PowerPC register at the point in time that the operation would have written to the register if the

PowerPC code was being executed in-order. This feature combined with the precise exception

handling mechanism removes the need to save or restore non-PowerPC registers when a context

switch occurs [6]. This means that DAISY does not have to do any special processing when a

context switch occurs and such an event is handled solely by the operating system.

Another area in which DAISY provides a specialized control mechanism is in the handling of

register-indirect branches. A register-indirect branch is a branch in which the target of the

branch is specified in a register. When this type of branch is encountered, the system uses the

data in the specified register to determine the target location within the machine code of the

branch.

When scheduling a register-indirect branch, the microprocessor does not know the branch

target until the branch is executed. This can cause the optimization process to schedule such

operations exclusively in-order (such that the branch is the only operation being performed) [9]

which significantly impedes performance [6]. To avoid such serializations, the DAISY converts

register-indirect branches into a series of conditional branches followed by a register-indirect

branch to ensure that the branch occurs correctly if the target is not provided by one of the

 16

conditional branches. If additional branch targets are discovered in the future, then the series of

conditional branches is updated to test for the additional targets [6].

Self-referential and self-modifying program code can cause problems in emulated

microprocessors because the code is re-translated from one binary machine format to another and

the self-referential or self-modifying code is not aware of the changes made. Examples of self-

referential code include code that performs a checksum on itself, has constants intermixed within

it, and relative branches. The handling of such code in the DAISY microprocessor is

straightforward because the PowerPC code can only refer to itself through the PowerPC

registers; and in DAISY these registers contain the values they would if the program code was

running on the microprocessor for which it was initially compiled [6].

The handling of self-modifying code is more complicated than self-referential code. The

DAISY microprocessor handles this situation through the use of a “read-only” bit included in

every unit of memory allocated to the PowerPC microprocessor. This “read-only” bit is hidden

from the PowerPC microprocessor being emulated and tells the VMM when the tree group(s)

associated with the unit of memory should be invalidated [6].

When machine code in memory is re-translated, the “read-only” bit for the unit of memory

holding the code is set. Then, if a store operation occurs within a unit of memory whose “read-

only” bit is set as the destination of the store, the store is committed and the execution of the re-

translated code is interrupted. Next, the VMM invalidates the tree group(s) associated with the

modified memory (the destination memory of the store). Finally, the PowerPC code resumes

execution with the instruction immediately following the store instruction, resuming the re-

translation-optimization-execution cycle; and when the modified code is to be executed in the

future, it will be re-translated again with the modifications in place [6].

With special support for exception handling and context switching, indirect branches, self-

modifying, and self-referential code, the DAISY microprocessor can overcome potential

problems that would otherwise degrade performance. Without the mechanisms provided for

such situations, the DAISY microprocessor would most likely perform at an unacceptable level.

2.5. Performance Evaluation

This subsection presents some of the aspects of the DAISY microprocessor that affect

performance of the binary machine code running on the microprocessor. The aspects of DAISY

 17

studied include the re-translation of machine code, the optimization process, and the underlying

hardware architecture.

In the studies performed in [6], re-translation of code was used to filter out portions of code

that are not frequently executed from the translation cache (this process was not used to gather

program profiling information to help guide tree group formation and optimization in these

studies). However, filtering of infrequently executed code was not found to result in better cache

performance, as might be expected. The result of filtering is larger segments of machine code

for the regions of the initial machine code that were ultimately re-translated. This increase in

code segment sizes make the performance of the instruction cache a more important factor in the

performance of the system than when filtering of code is not performed negating the savings in

time from filtering out infrequently executed code [6].

The studies also discovered that where the tree groups are terminated has an effect on the

dynamic path length of the tree groups. The dynamic path length is the average number of

PowerPC instructions between the root and leaves of a tree group. This measure is important

because longer paths give the translator more opportunity to speculatively schedule VLIW

instructions [6] and increase the ILP achieved. However, these speculative operations are only

useful if they lie on the path taken at execution time. Additionally, incorrectly predicted

speculative instructions can reduce the dynamic path length. This can occur when the number of

paths through the program code exceeds what can be covered by tree groups [6]. Thus, the

selection of good stopping points for tree groups is directly correlated with performance of the

system.

Several different configurations of the VLIW processor core were studied for the DAISY

project. The different configurations considered are listed in Table 1 and range from 4-issue

processor cores to 16-issue processor cores. All of the execution units have support for

arithmetic and logic operations, and one or two units per cluster can perform memory operations

[6].

As might be expected, the wider configurations of the VLIW processor core were found to

provide a significant improvement over competing microprocessors in terms of high clock

frequency. However, the interesting result is that the narrower configurations also performed

well. This result is due to the lower translation overhead of narrower configurations. Because of

the lower translation overhead, these configurations have a very good CPI (CPI stands for clock

 18

Cycles Per Instruction and is a measure of the average time needed to perform an instruction [9])

compared to current superscalar microprocessors [6]. (Superscalar microprocessors execute a

varying numbers of instructions at the same time that are statically scheduled at compile time or

dynamically scheduled by the microprocessor at execution time, while VLIW-based

microprocessors attempt to execute a fixed number of instructions at the same time that are

typically statically scheduled at compile time [9].) Additionally, the simplistic hardware of the

narrower configurations, if implemented in silicon, should result in a higher frequency

microprocessor than the implementation of the wider configurations [6].

Table 1. VLIW processor core configurations explored for the DAISY microprocessor [6].

 Configurations
Number of Clusters 1 1 2 2 4 4
Number of ALUs/Cluster 4 4 4 4 4 4
Number of L/S Units/Cluster 1 2 1 2 1 2
Number of Branch Units 1 1 2 2 3 3
I-Cache Size 8K 8K 16K 16K 32K 32K

The performance studies of DAISY, presented in [6], indicate that the filtering out of

infrequently executed machine code before it is optimized does not necessarily improve system

performance; and that the optimization of DAISY machine code is expensive. Also, it was found

that the ILP achieved is directly affected by how tree groups are formed. Experiments

simulating different configurations of the DAISY microprocessor have also shown that both the

wide and narrow configurations, of Table 1, perform well. These studies have shown that most

of the approaches used in the DAISY microprocessor are useful while the filtering of machine

code may not always be beneficial to the overall performance of the system.

2.6. Summary

The DAISY microprocessor uses the dynamic translation process of Figure 3 solely for the

purpose of executing binary machine code compiled for a different microprocessor [6]. As a

result of the approach taken to dynamic translation in the DAISY microprocessor, the processes

used to re-translate and execute machine code are transparent to the machine code of the initial

microprocessor and the resulting microprocessor is completely compatible with the initial

microprocessor.

 19

The keys to the success of the approaches used in DAISY are that the system performs ILP

extraction at execution time [6] and run-time profiling of program code. This results in a high

level of performance due to the ability of the microprocessor to dynamically adapt the re-

translated instruction code. This is a major improvement over the heuristic and profile-based

approaches that static VLIW compilers use, that result in trade-offs being considered to improve

performance [6].

The DAISY project is innovative in its combination of a clustered VLIW processor core,

tree-based VLIW instructions, tree groups as a unit of translation, and its scheduling and

exception handling mechanisms. This work represents a new direction in which legacy-

compatible microprocessor design may go in the future. In fact, Transmeta Corporation has

already taken this general approach in producing a commercial line of Intel X86 compatible

microprocessors [7] and is the topic of the next section.

3. The Transmeta Crusoe Microprocessor

3.1. Overview

The Crusoe microprocessor [7], developed and marketed by Transmeta Corporation, is in the

same class of microprocessors as DAISY, i.e., it is a static microprocessor that performs the re-

translation and optimization step of the dynamic translation process in hardware. This

microprocessor is associated with the same high-level translation process as DAISY, which is

illustrated in Figure 3. The goals of the Crusoe microprocessor are to be completely compatible

with the machine code of the Intel X86 family of microprocessors [1] and to directly compete

with these microprocessors in the marketplace. The Crusoe microprocessor achieves these goals

with a unique hardware architecture, which includes enhanced support for re-translating X86

machine code into Crusoe machine code and executing the resulting machine code [7].

A high-level view of a Crusoe based system is shown in Figure 14. Similar to the DAISY,

the Crusoe microprocessor is based on a VLIW processor core and is built on top of the X86

register file and memory model. A Crusoe based system can be divided into four parts: (1) the

target application which was initially compiled for an X86 microprocessor; (2) the target

operating system (also initially compiled for an X86 microprocessor); (3) the Code Morphing

process which handles the re-translation and optimization of machine code, the maintenance of

 20

re-translated machine code in a translation buffer located in memory, and system control; (4) and

the Morph host which is the VLIW processor core of the microprocessor [7].

Figure 14. The components of a Crusoe based system [7].

The registers in the Crusoe consist of the same registers as the Intel X86, called official

registers, and a set of working registers, some of which duplicate (or shadow) the official

registers, as seen in Figure 15. As the Crusoe performs operations, it uses the working registers

and preserves the previous state (i.e., the official state) of the emulated X86 microprocessor in

the official registers. When a code segment boundary (e.g., a subroutine entry or exit) in the X86

machine code is encountered, the official state of the emulated X86 microprocessor is updated by

copying the values of the working registers to the official registers. This mechanism is supported

by an extra stage in the instruction pipeline of the microprocessor to avoid slowing down

operation of the microprocessor [7]. This approach to execution of re-translated machine code is

different from the DAISY in that the Crusoe does not work directly on the registers containing

the official state of the microprocessor (making rollback of operations performed on registers

trivial) and the DAISY only uses extra registers for the speculative execution of operations.

Figure 15. Architecture of the Crusoe microprocessor [7].

Another important component of the Crusoe is the gated store buffer, shown in Figure 15,

which buffers writes to memory by holding the address and data for each store to memory. This

queue of memory stores temporarily holds memory state changes before they are committed to

 21

the official memory state of the emulated X86 microprocessor, as illustrated in Figure 16. This

mechanism ensures that the state of the emulated microprocessor is correct at the time of

interrupts and exceptions. The stores between the head of the queue and the gate pointer have

already been committed to memory and those between the gate pointer and the tail of the queue

are those that have not been committed [7].

Figure 16. The gated store buffer used to buffer writes to memory and its associated registers [7].

Commit operations occur on code segment boundaries. When a commit operation occurs,

the uncommitted stores are committed to memory and the gate pointer is moved to the tail of the

queue. If a rollback operation is needed, e.g., for processing an exception, then the uncommitted

stores are removed from the queue and the tail pointer is moved to the position of the gate

pointer [7]. In contrast, the DAISY microprocessor does not provide a mechanism similar to the

gated store buffer and must manually rollback any writes to memory whereas the Crusoe only

has to change the value contained in one register.

The Code Morphing process of the Crusoe microprocessor maintains a translation buffer, as

shown in Figure 15, which stores completed re-translations of each X86 instruction. Once

instructions are successfully re-translated and segments of instructions are optimized, the

 22

resulting machine code is stored in the translation buffer. The resulting machine code (in the

translation buffer) is executed by the VLIW processor core. When a previously re-translated

instruction is encountered again, the microprocessor can recall the corresponding operation(s)

from the buffer and execute them without further re-translation [7].

The use of a translation buffer approach greatly improves the speed of the microprocessor

because it does not have to fetch, decode, re-translate, optimize, re-order, and schedule

operations every time they are executed [7]. This mechanism is similar to and serves the same

purpose as the instruction cache found in the DAISY. The structure used for the translation

buffer may be implemented in hardware (e.g., as an instruction cache) or in software (e.g., as a

data structure residing in memory).

As X86 machine code is executed on the Crusoe microprocessor, if the instruction being

executed at any given time has not been re-translated (and does not exist in the translation

buffer), then it is re-translated into machine code for the Crusoe microprocessor and optimized.

This process is the re-translation step of Figure 3 and is shown in Figure 17 for the Crusoe [7].

Figure 17. The dynamic translation process used by the Crusoe microprocessor derived from [7].

The performance of the Crusoe microprocessor comes from the reduction in the amount

hardware in the microprocessor (compared to the Intel X86 microprocessor) and the caching of

re-translated machine code. This results in a possible speed up of the execution of program code

and a reduction in the power consumption of the microprocessor [14].

Transmeta has not made conclusive performance benchmark results for the Crusoe

microprocessor readily available. Instead of proclaiming a faster execution time for applications

and operating systems, Transmeta focuses on proclaiming the lower power consumption rate of

the Crusoe microprocessor compared to state of the art compatible microprocessors. According

 23

to Transmeta, the Crusoe microprocessor consumes 60%-70% less power than other

conventional microprocessors. Due to this reduction in power consumption, Transmeta focuses

their efforts on the lightweight mobile computer and handheld markets [14].

An overview of the dynamic translation process and the underlying hardware architecture of

the Crusoe microprocessor have been presented in this subsection. In the next two subsections, a

discussion of how the system performs re-translation (Subsection 3.2) and optimization

(Subsection 3.3) is provided. In Subsection 3.4, special control mechanisms and support is

presented, followed by a discussion of exception handling in Subsection 3.5.

3.2. Re-Translation of Instructions

The Crusoe microprocessor uses the Code Morphing process, shown in Figure 14, to perform the

re-translation process. The Code Morphing process also optimizes the resulting machine code

and handles control of the system, including exception handling [7]. Just as with the DAISY

VMM, this process is transparent to the X86 machine code being executed on the Crusoe.

The first time an X86 instruction is encountered it is re-translated into a sequence of Crusoe

operations, as shown in Figure 17. As instructions are re-translated the different segments of

Crusoe machine code that are generated are linked together so that they do not branch back to the

Code Morphing process if the next segment to be executed has already been re-translated. This

helps to eliminate most of the branches back to the Code Morphing process and serves to

enhance the speed of the emulated X86 microprocessor. Once the system has reached a steady

state, it is estimated that a re-translation will only be necessary for one in every million X86

instructions executed over the life of a running program [7].

An example C program and the corresponding Intel X86 assembly code are shown in Figure

18. As the code is executed by the Crusoe microprocessor, each X86 instruction is re-translated

into a series of Crusoe operations. These operations perform the X86 segmentation process,

memory bound checking, and the operations required to create the results specified by the X86

instruction [7]. Figure 19 shows each X86 instruction followed by the necessary Crusoe

operations.

Unlike DAISY, the Crusoe does not use tree groups as the unit of translation, but instead uses

X86 instructions. Additionally, although the instruction format used is by the Crusoe is not

 24

specified in [7], there is no indication that the Crusoe uses an instruction format similar to the

tree-based instructions of DAISY.

Figure 18. Example C program and corresponding assembly-level code [7].

In addition to re-translating X86 machine code into Crusoe operations, the Code Morphing

process also optimizes the operations in an attempt to speed up the execution of instructions as

much as possible. The optimization process is presented in the next subsection.

3.3. Optimization of Crusoe Instructions

The Code Morphing process not only re-translates X86 instructions into Crusoe operations, it

also optimizes the operations using several techniques including common sub-expression

elimination, speculative removal of commit operations, and copy elimination. Such

optimizations are performed on a re-translation only if the re-translation is executed frequently,

because the time needed to re-translate and optimize infrequently executed instructions is greater

than the time required to re-translate and execute the instructions without optimization.

Although [7] does not specify in detail how the Crusoe microprocessor determines which re-

translations should be optimized, the following three criteria are discussed in [7]. First, a count

of how many times a re-translation is executed is kept. If this count reaches some threshold, then

an exception can be raised and the re-translation can be optimized at that time. This mechanism

can be embedded into the re-translations as software. Second, the Code Morphing process can

interrupt the execution of re-translations at a specified frequency and optimize the re-translation

running at the time the system is interrupted if it has not already been optimized. Finally, the

Code Morphing process can simply optimize certain types of operations or sequences of

operations (e.g., loops) [7].

 25

Figure 19. Example re-translated X86 code (in bold) with Crusoe operations required for each X86 instruction [7].

 26

The rest of this subsection presents each of the different optimizations that are specifically

addressed in [7]. These optimizations are: speculatively removing the X86 segmentation

process, speculatively removing upper boundary memory checks, common sub-expression

elimination, speculatively removing commit operations, register renaming, code motion, data

aliasing, copy elimination, and the use of alias hardware [7]. Note that the Crusoe optimization

process may perform more optimization on code than what is described in [7].

3.3.1. Removing the X86 Segmentation Process
In a segmented memory model, the memory allocated to an application is segmented into a group

of independent sections of memory, called segments. In the segmented memory model used by

the X86 microprocessor, the code, data, and stacks are assigned to separate segments. In

contrast, in a flat memory model the memory is presented to the application as a single section of

memory, called a linear address space, in which all of the code, data, and stacks are contained.

The segmentation of memory increases the reliability of applications because it prevents the

program from overwriting memory that has not been allocated to the program. When a program

using the segmented memory model accesses memory, the microprocessor must translate the

address appropriately and ensure the correct segment is present in main memory. This process of

translation and the mechanisms required to maintain the segments are transparent to an

application running on an X86 microprocessor [1].

The Crusoe microprocessor does not include support for transparently translating logical

addresses into addresses for a segmented address space or the mechanisms to transparently

maintain a segmented memory space. Therefore, the Crusoe inserts appropriate operations to

perform these tasks as X86 machine code is initially re-translated. This optimization removes

these operations by performing a speculative mapping of all segments of the code segment to the

same address space. Note that the speculative removal of these operations requires the

assumption that the program currently being optimized is written for a flat memory model,

removing the need for the segmentation process.

The example code in Figure 19 (which is the re-translated code resulting from the re-

translation process being performed on the X86 code of Figure 18) includes the operations

necessary to support a segmented memory model. Assuming this code uses a flat memory

model, the optimization process removes these extra operations resulting in the code segment

 27

shown in Figure 20 [7]. As seen in these figures, the removal of these operations removes up to

three Crusoe operations per X86 instruction.

Figure 20. Example re-translated X86 code (in bold) with the Crusoe operations required for each instruction after

removal of the X86 segmentation process [7].

If the speculation that the application being optimized uses a flat memory model is wrong,

then the execution of the optimized code will fail. When this happens, the Code Morphing

 28

process will rollback the state of the emulated microprocessor and the operations that support the

segmented memory model (that were removed) are re-inserted into the code segment. Finally,

the code will be re-executed with the newly inserted code in place [7].

3.3.2. Removing Upper Boundary Memory Checks
Pages are virtual units of memory that allow the memory space of the microprocessor to be

extended beyond that provided by the semiconductor-based memory devices used to support the

main memory. When a page is needed, it is loaded into memory from a secondary memory

device (e.g., a hard drive) and when it is no longer needed, it is stored back out to secondary

storage [9]. It may be the case that a data unit does not completely fit in one page and is split

among multiple pages. If such a splitting occurs, then the data is said to be unaligned; and when

the associated data is referenced, all corresponding pages must be present in main memory.

The operations included in the re-translated X86 code include an operation that checks the

logical address created by the code against the upper boundary of the address space for the

memory segment being used. These memory checks are not removed as part of the optimization

that performs the removal of the X86 segmentation process because the memory reference may

refer to unaligned memory, in which case the microprocessor must ensure that the correct virtual

memory pages are present in main memory [7].

Under the assumption that the instructions and data of the application being optimized are

correctly aligned and assuming the application uses a flat memory model, the operations that

perform the upper memory boundary checks (the operation chku) can be removed [7]. These

operations are shown in the example code of Figure 20, which is the re-translated code

corresponding to the X86 code of Figure 18 after the removal of the segmentation process. The

further optimized code without the upper boundary memory checks is shown in Figure 21. This

optimization removes one Crusoe operation per Intel X86 instruction.

If the speculation that the instruction and data of the application are correctly aligned is

wrong (or if the assumption that the application uses a flat memory model is wrong), then the

execution of the optimized code will fail. When this happens, the state of the emulated X86

microprocessor will be rolled-back and the operations removed during the optimization process

will be re-inserted into the code. Finally, the code will be re-executed with the upper boundary

memory checks included in the code [7].

 29

Figure 21. Example re-translated X86 code (in bold) with the Crusoe operations required for each instruction after

removal of upper boundary memory checks [7].

3.3.3. Common Sub-Expression Elimination
The third optimization presented is common sub-expression elimination [7]. This optimization

reduces the number of operations in a sequence by removing unnecessary re-computation of the

same expressions [11]. This removal of common sub-expressions is performed on the re-

translated machine code in order to further optimize the Crusoe machine code. Common sub-

expression elimination does not require any assumptions about the nature of the application

being re-translated and the resulting re-translation will always execute correctly [7].

 30

3.3.4. Removing Commit Operations
The fourth optimization used by the Crusoe microprocessor is the speculative removal of commit

operations from the re-translated Crusoe machine code. This optimization assumes that the

associated machine code segment will not cause an exception. This allows the removal of the

commit operations that update the state of the official registers and move uncommitted memory

stores, in the gated store buffer, to memory [7].

The removal of commit operations is possible because the state of the emulated X86

microprocessor only needs to be correct when the operating system accesses the state of

microprocessor due to the occurrence of an exception. Thus, the commit operation only needs to

occur at the end of a sequence of X86 instructions instead of after each instruction. This

removes one Crusoe operation for every re-translated X86 instruction and replaces them with

only a single commit operation at the end of the sequence of re-translated X86 instructions [7].

These commit operations (commit) are shown in the code listing of Figure 21 and the resulting

optimized code without these commit operations is shown in Figure 22.

When an exception does occur, the microprocessor will invalidate the uncommitted state of

the emulated microprocessor and re-translate the machine code executed since the last commit.

In the new re-translation, a commit operation is performed after every sequence of Crusoe

operations corresponding to each X86 instruction. Then, when the exception is encountered, the

state of the microprocessor is correct and the exception can be properly handled [7].

3.3.5. Register Renaming
The fifth optimization used by the Crusoe microprocessor is the process of register renaming [7].

This optimization relies upon name dependencies between operations that occur when multiple

operations utilize the same register(s) and the operations are not dependent on the data computed

by the other operations involved [9]. When this occurs, the registers used by such operations can

be renamed, removing any hardware dependencies between the operations and allowing them to

be executed in parallel utilizing different execution units [7, 9]. This optimization can have a

significant impact on the level of ILP depending on how many registers are available for register

renaming [9]. DAISY also performs the same type of optimization by using copy propagation to

detect name dependencies and register renaming to remove the dependencies so that operations

can be performed in parallel.

 31

3.3.6. Code Motion
Code motion is the sixth optimization used by the Crusoe microprocessor [7]. This is a loop

optimization that targets expressions (operations) found in the body of the loop that yield the

same result in each iteration of the loop. By moving such expressions outside the loop body, the

number of operations executed to complete the loop is reduced [11].

Figure 22. Example re-translated X86 code (in bold) with the Crusoe operations required for each instruction after

removal of all commit operations except the one at the end of the code segment [7].

3.3.7. Data Aliasing
The seventh optimization used by the Crusoe microprocessor is data aliasing. This optimization

recognizes when several operations access the same locations in memory. When such a situation

occurs, the Code Morphing process will load the values at the referenced addresses into a

register. Then only a register-to-register copy needs to be performed for each operation that

references any of the associated memory addresses. The copies of data from memory, residing

 32

in the registers, are marked as aliased, and when a change is detected, an exception will occur.

This optimization is beneficial because every load operation that involves moving data from the

affected memory addresses is changed to a simple register-to-register copy that executes much

faster than a load from memory [7].

3.3.8. Copy Propagation
The eighth optimization performed is copy propagation. For copy propagation, the Code

Morphing process removes unnecessary register-to-register copies by using the register in which

the data originally existed whenever copies of that register are used. (Note that once this has

been done, the original copy operation is removed if it is no longer needed using an optimization

called dead code elimination [11].) This effectively reduces the number of cycles required to

execute a segment of code [7].

3.3.9. Using Alias Hardware
The final optimization, considered in [7], is the use of alias hardware to remove store operations

from loops. This optimization is similar to that of data aliasing, except here the aliased registers

are used to hold data to be stored into memory. This allows the store operations within the loop

body to be replaced with register-to-register copies or register references instead of memory

stores. Additionally, the actual stores to memory are moved such that they occur immediately

after the end of the loop. This optimization speeds up the processing of loops by either replacing

memory stores with register transfers or eliminating the store operations from the body of the

loop altogether [7]. The optimization is similar to the load-store telescoping optimization used

by the DAISY microprocessor [12].

3.4. Special Hardware and Control Mechanisms

The Crusoe microprocessor includes special hardware and control mechanisms for several

different types of X86 program support. These areas include support for rollback operations,

memory mapped I/O (Input/Output), and self-modifying program code. The Crusoe supports

rollback operations through the use of shadow registers and the gated store buffer, both presented

in Subsection 3.1. The present subsection presents the support that the Crusoe provides for

memory mapped I/O and self-modifying code.

Memory mapped I/O refers to the way that memory mapped I/O devices are attached to the

microprocessor. An I/O device can be mapped to a memory address so that the programmer can

 33

access it using typical memory stores and writes [9]. Due to the nature of memory mapped I/O,

it is impossible to distinguish memory instructions from memory mapped I/O instructions [7].

Because memory mapped I/O operations often must be performed in the precise order

specified in the X86 machine code, a system normally must treat all memory operations with

conservative assumptions so as minimize the affect memory on mapped I/O. In order to allow

optimization for true memory operations, an A/N (Abnormal/Normal) protection bit is included

in every address translation in the Translation Look-aside Buffer (TLB). This protection bit

specifies if the memory accesses used for the associated memory address is abnormal (i.e., an

access to memory mapped I/O) or normal (i.e., an access to regular memory). This mechanism

allows true memory accesses to be speculatively re-translated [7].

When an access to memory is re-translated, the Code Morphing process initially treats it as a

regular access to memory, which can be speculatively scheduled. Then after the re-translation

executes, the memory access type of the operation is compared against the A/N bit. If the access

type used in the re-translation and the A/N bit disagree, then a memory mapped I/O operation

was performed and an exception occurs. When this happens, the Code Morphing process takes

the necessary actions to correct the access type of the re-translation and a rollback of any

operations performed. Then, the correct re-translation is performed, scheduling the memory

access operations in-order [7].

In contrast to the Crusoe, the DAISY microprocessor attempts to detect and schedule all

memory mapped I/O operations in-order. If an operation is not detected correctly, then the

DAISY detects the operation when it is executed and correctly re-translates the affected

operations again [4].

In addition to the A/N bit, another type of protection bit, called a T-bit, is provided in every

address translation in the TLB. The T-bit helps to guard against the affects of self-modifying

code by specifying for which memory pages a translation exists. If self-modifying code is

encountered, then the corresponding translation(s) must be invalidated and the new code re-

translated prior to the code segment being executed again [7].

If a memory write occurs on a memory page for which the corresponding T-bit in the TLB is

set, then an exception occurs and the microprocessor invalidates the translation(s). When the

corresponding Intel X86 code segment is to be executed again, the translator will be called and

the code segment will be re-translated. This mechanism can also be used to specify which

 34

memory pages the re-translations depend upon not being accessed by write operations [7]. The

DAISY microprocessor supports self-modifying code by including a special “read-only” bit in

every unit of memory [4].

3.5. Exception Handling

When an X86 exception is detected, the Crusoe microprocessor must ensure that the state of the

emulated X86 microprocessor is exactly the same as it would be in the Intel X86 microprocessor.

This is accomplished by rolling back the state of the working registers by copying the values

located in the official registers into the working registers if needed and removing any

uncommitted stores from the gated store buffer. Once the uncommitted stores are removed from

the gated store buffer, the value in the register holding the tail pointer of the buffer is replaced

with the value stored in the gate pointer of the buffer [7].

After the state of the working-values and the gated store buffer are successfully rolled-back,

the state of the emulated microprocessor is the same as it would be in the Intel X86

microprocessor at the beginning of the code segment which caused the exception. Next, the

Code Morphing process re-translates, re-executes, and commits the results of re-translation of

each X86 instruction (in-order) until the exception occurs again. Once the exception occurs, the

official state of the microprocessor is correct and the exception can be properly handled [7].

At the end of this process, the resulting re-translations can be stored into the translation

buffer because they correctly handle the exception. Then, if the exception occurs in the future,

the system will correctly handle the exception without having to re-translate the associated X86

code again [7].

3.6. Summary

The Transmeta Crusoe microprocessor is a successful commercial product. It has gained a share

of the Intel X86-compatible microprocessor market. Transmeta has been successful in marketing

the Crusoe microprocessor for use in laptop computers and handheld devices.

Transmeta has successfully used dynamic translation and execution of programs to reduce

the power requirements of the Crusoe microprocessor by 60%-70% over compatible

microprocessors [14]. This has been accomplished by reducing the complexity of the underlying

hardware architecture of the microprocessor [7].

 35

The Crusoe is innovative in its combination of simplistic hardware and the dynamic

translation process to create a system capable of emulating another microprocessor. This

innovative approach is a new direction in microprocessor design that may allow designers to

create more sophisticated microprocessors that are compatible with legacy microprocessors.

4. Comparison of the DAISY and Crusoe Microprocessors

4.1. Overview

Both the DAISY and Crusoe microprocessors are static microprocessors that are completely

compatible with the binary machine code of other microprocessors. These two microprocessors

utilize the dynamic translation process of Figure 3 to re-translate program code compiled for

different microprocessors into machine code for their own VLIW processor core. In both

microprocessors, if a re-translated portion of machine code is frequently executed, it is optimized

[6, 7].

Although the DAISY and Crusoe appear to be similar from a high-level viewpoint, their

detailed implementations are quite different, as shown in Table 2.

• The DAISY has been developed for research purposes [6], while the Crusoe has been

developed as a commercial product [7].

• They use different approaches to re-translation and optimization of machine code.

• The DAISY microprocessor uses optimizations that center around branch analysis [6].

• The Crusoe microprocessor performs specialized optimizations only valid on Intel X86

machine code [7].

Because the DAISY and Crusoe are designed to be compatible with different

microprocessors, comparison of the two is nor as straightforward as it would have been

otherwise. An overview of some similarities and differences between the two microprocessors

has been presented in this subsection. In the next subsection, the difficulty encountered in

making direct comparisons of certain aspects of these two microprocessors is presented.

Subsection 4.3 presents a comparison between the architecture of the two microprocessors,

followed by a comparison of how they re-translate machine code in Subsection 4.4. After this,

the differences in the approach taken to scheduling by the two microprocessors are presented in

Subsection 4.5, followed by a look at the different optimizations utilized by the microprocessors

 36

in Subsection 4.6. Finally, the different ways in which the microprocessors handle special

situations (e.g., self-modifying code) is presented in Subsection 4.7.

Table 2. A comparison summary of the DAISY and Crusoe microprocessors.

 DAISY Crusoe

Objective: Research Based Commercial Based

Goal: Completely compatible with an existing
microprocessor

Completely Compatible with the Intel X86
Less expensive

Architecture: VLIW Based VLIW Based

 Clustered Hardware and Software Based

 Official PowerPC Registers Official X86 Registers

 Clustered Cache “Gated Store Buffer”

 Support for profiling Specialized TLB

 Tree-based Instructions

Translation: Goal: High ILP with low overhead cost due
to compilation

Performs re-translation on first occurrence of
an X86 instruction

 Performs an initial re-translation on the first
occurrence of a PowerPC instruction

Further retranslates code with less speculation
and optimization if necessary

 Further re-translates and optimizes code
with moderate and aggressive approaches if
necessary

 Performs code profiling

 Uses tree groups as unit of translation

Scheduling: Speculative load operations Speculative Memory Operations

 Memory Mapped I/O not speculatively
scheduled

Optimization: Copy Propagation Removes X86 Segmentation Process

 Load Store Telescoping Removes memory boundary checks

 Branch Analysis Sub-expression elimination

 Removal of commit operations

 Register Renaming

 Code Motion

 Data Aliasing

 Copy Elimination

 Use of alias hardware

Provides for: Exception Handling Exception Handling

 Self-Modifying Code Self-Modifying Code

 Self-Referential Code

 37

4.2. Difficulties in Comparing the DAISY and Crusoe Microprocessors

Comparing the performance of the DAISY and Crusoe microprocessors is difficult because they

are targeted at emulating different microprocessors. The DAISY system emulates the RISC-like

PowerPC microprocessor [6] and the Crusoe microprocessor emulates the CISC-like Intel X86

microprocessor [7].

Adding to the difficulties in comparing these two microprocessors is the lack of information

on the performance of the Crusoe microprocessor. This is due to Transmeta’s objective of

marketing their microprocessor based on power consumption rates as opposed to performance in

terms of speed. Even if a computer system based on the Crusoe was purchased and

benchmarked, there is no computer system based on the DAISY to compare it against because

the DAISY has never been fabricated [6]. Additionally, if a DAISY microprocessor was

available, other factors would impede a true comparison, e.g., peripheral hardware support.

In light of the difficulties discussed in this subsection, it is interesting to see how the DAISY

works compared to the Crusoe. The designers of the DAISY have a research focus and are

interested in furthering the state of microprocessor emulation and exploring novel techniques [6],

while the Crusoe was designed from the beginning to be a commercial product [7]. By analyzing

the design of the Crusoe, it is informative to note the techniques the designers chose as opposed

to those chosen by the designers of the DAISY.

4.3. The Architectures of the DAISY and Crusoe Microprocessors

The VLIW processor core found in the DAISY is clustered and supports tree-based instructions.

This type of processor core relies heavily on branch analysis and works well with programs in

which there are several different paths for the flow of control to follow [6]. Thus, the

microprocessor may be well suited for decision-based applications (e.g., artificial intelligence

applications), but perhaps less suited for computationally intense applications (e.g., matrix

multiplication). The DAISY microprocessor is designed not only for emulating the PowerPC

microprocessor, but also as a base microprocessor that can be modified and extended to emulate

any conventional microprocessor [6]. In contrast to this, the Crusoe microprocessor is designed

only with the intent of emulating the Intel X86 microprocessor [7].

Transmeta has not released information that specifies the level of sophistication of the VLIW

processor core of the Crusoe. Instead, they have provided information explaining the gated store

 38

buffer, TLB (which serves the same purpose as the instruction cache used by DAISY), and

translation buffer found in the microprocessor. The gated store buffer represents a novel

hardware approach to updating the state of the emulated microprocessor. This approach

preserves the official state of the system and allows an automatic rollback of the unofficial state

to the official state when needed [7], whereas the DAISY must manually rollback any writes to

memory.

Additionally, the Crusoe provides shadow registers for the official X86 registers simplifying

the rollback of the registers. In contrast, the DAISY uses extra registers to store changes to the

state of the emulated microprocessor and copies the values to the official registers in the order

that the instructions were to be executed in the original machine code making the rollback of the

registers more complex.

Because Transmeta has not released much information detailing the architectural aspects of

the Crusoe, it is difficult to determine the precise level of difference between its architecture and

that of DAISY. Because the Crusoe is designed specifically to emulate the Intel X86

microprocessor, it might be expected that the VLIW core of the Crusoe resembles the processor

core of the X86 microprocessor.

4.4. The Re-translation Processes

The basic approach taken to re-translation in the DAISY and Crusoe microprocessors is similar.

They both convert machine code compiled for the emulated microprocessor into machine code

for a VLIW-based processor core. When a segment of code is re-translated, they both

immediately convert the code into the appropriate operations and store them for optimization at a

later time. In both of the microprocessors, this process is transparent to the machine code being

executed on the emulated microprocessor.

Although both of the microprocessors re-translate code the first time it is encountered, they

approach the process differently. The DAISY not only re-translates machine code, but it also

builds tree groups and collects profiling information on the machine code to help guide

optimization at a later time [6]. In contrast, instead of using tree groups, the Crusoe re-translates

machine code one instruction at a time and performs optimizations on straight-line segments of

code [7] and there is no indication that it uses an instruction format similar to the tree-based

instructions of DAISY.

 39

As both microprocessors re-translate code, they link the translations together to remove calls

to the re-translation process as much as possible. This helps to speed up the execution of re-

translated code. Once re-translation has occurred on a segment of code, both of the

microprocessors optimize the segment after it has been determined as a frequently executed

segment of code [6, 7].

The DAISY has more steps in the re-translation process of code and it employs a more

sophisticated approach to re-translating code by using tree groups as the unit of translation [6].

Even though the re-translation process of the DAISY system is more complex than that of the

Crusoe microprocessor, the Crusoe has shown that such sophistication is not mandatory in

implementing a commercially viable microprocessor that employs dynamic translation.

4.5. Scheduling Re-translated Operations

Both the DAISY and Crusoe microprocessors perform speculative scheduling of certain types of

operations. The main difference in their approaches is that the Crusoe speculatively schedules

all memory operations [7], while the DAISY only speculatively schedules memory stores that do

not affect memory mapped I/O devices [6]. The DAISY detects most memory mapped I/O

operations at re-translation time and schedules them in-order [6], whereas the Crusoe detects

such operations at run-time and then re-translates the affected code, scheduling the memory

mapped I/O operations in-order [7].

4.6. Optimization of Re-translated Machine Code

The optimizations used in the DAISY and Crusoe microprocessors vary greatly. The

optimizations that DAISY performs (as specified in [6]) are copy propagation and load-store

telescoping [6]. These optimizations are fairly generic in that they can be applied to sequences

of DAISY operations no matter what microprocessor the DAISY system is targeted to emulate.

The optimizations performed by the Crusoe contain generic and system specific

optimizations. Among the generic optimizations are sub-expression elimination, removal of

commit operations, register renaming, code motion, data aliasing, copy elimination, and aliasing

of hardware [7]. In DAISY, copy propagation is used to perform the same optimization as

register renaming; and load-store telescoping is similar to the Crusoe’s use of alias hardware.

The generic optimizations performed by the Crusoe give it an edge over DAISY in regards to

the efficiency of compiled code. However, the branch analysis approach of DAISY may negate

 40

the potential performance advantages that the Crusoe has over DAISY due to these

optimizations.

The Crusoe also performs optimizations that are specific to the Intel X86 machine code.

These optimizations are the removal of the X86 segmentation process and the removal of upper

boundary memory checks [7]. These optimizations help the Crusoe to compete with the Intel

X86 microprocessor, but if the Crusoe was to be re-targeted to emulate a different

microprocessor, some of these may become invalid.

4.7. Handling of Special Situations

The DAISY and Crusoe microprocessors both provide facilities for handling special situations,

e.g., self-modifying code. The microprocessors both handle PowerPC (DAISY) and Intel X86

(Crusoe) exceptions by ensuring the state of the emulated microprocessor is correct, performing

any required actions, and then allowing the operating system to handle the exceptions as needed.

If the exceptions are DAISY or Crusoe specific, then they are handled internally [6, 7].

The DAISY provides facilities for dealing with both self-modifying code and self-referential

code [6], while (according to [7]) the Crusoe microprocessor only addresses self-modifying code.

The mechanism used for handling such code is similar in both microprocessors.

The DAISY handles self-modifying code by adding a “read-only” bit to every memory unit

allocated to the emulated PowerPC microprocessor. This “read-only” bit tells the DAISY VMM

if the memory location should be invalidated due to a store to the memory location it occupies

[6]. Similarly, the Crusoe handles self-modifying code by adding a T-bit to every address in the

TLB. Then, if an address with its T-bit set is written to by the system, the Crusoe can handle the

situation accordingly [7].

4.8. Summary

The designers of the Crusoe microprocessor started out with a basic VLIW processor core (that

possibly resembles the core of the Intel X86 microprocessor’s multiple-issue execution unit) and

added only the most necessary hardware components to this core to make the microprocessor run

as fast and as power aware as possible [7]. On the other hand, the architects of the DAISY

microprocessor chose to build their design on a sophisticated clustered tree-based VLIW

processor core, to which they added a clustered cache system [6]. Although this design works

 41

well on programs that benefit from branch analysis, it is complex and may require more

hardware to implement compared to the Crusoe microprocessor.

5. Proposed Future Research Directions

5.1. Overview

Several research projects have attempted to harness and capitalize on the flexibility of

reconfigurable hardware, often realizing significant performance improvements for many target

applications such as DNA matching, target recognition, pattern searching and

encryption/decryption [15, 16, 17]. However, even as impressive as these performance

improvements are, computing using reconfigurable hardware (often referred to as configurable or

reconfigurable computing) has only become a custom solution to a relatively small set of

problems and has yet to make a significant impact in the general purpose computing community

[17]. This has led to an effort to merge general-purpose computing and reconfigurable hardware.

This section presents two research ideas that merge general-purpose microprocessors and

reconfigurable hardware. The first idea presented is an architectural approach to use

reconfigurable hardware in a microprocessor that performs dynamic translation (i.e., a DAISY-

like microprocessor).

 The second research idea is to analyze the instruction set of a current microprocessor. The

goal of this analysis is to develop an analytical approach to designing microprocessors that

employ reconfigurable hardware. In this work, instruction set analysis is performed using

instruction set partitioning. Instruction set partitioning classifies instructions based on how

frequently and how closely they are executed with respect to other instructions. If partitions

exist, then it is conceivable to provide configurations for reconfigurable hardware that best match

the characteristics of the instructions in each partition.

In the next subsection, an overview of the research idea of combining a DAISY-like

microprocessor and reconfigurable hardware is presented. Subsection 5.3 presents an approach

to instruction set partitioning, an overview of a microprocessor that could make use of

instruction set partitions, and preliminary research that has been performed in this area.

 42

5.2. An Architecture to Support Dynamic Translation with Reconfigurable Computing

In order for a microprocessor to be marketable and able to compete with current

microprocessors, it must be compatible with a successful microprocessor in today’s

microprocessor market [7]. This is the motivation behind the Crusoe and DAISY

microprocessors.

The DAISY and Crusoe microprocessors have made breakthroughs in emulating

microprocessors at a hardware level using a dynamic translation process that is transparent to the

applications running on the microprocessor. However, they must re-translate program code

compiled for the emulated microprocessor. The goal of the optimizations and scheduling

approaches used in the translation process is to execute the re-translated machine code fast

enough to negate the effects of having to re-translate the initial machine code. It may be possible

to further speed up the re-translation process by implementing the algorithms used in these

processes and the resulting machine code (in certain circumstances) in reconfigurable hardware.

This concept follows closely to what has been done in the DISC (Dynamic Instruction Set

Computer) microprocessor [18]. In DISC, each instruction is implemented as a stand-alone

circuit module. Then, as the instructions are executed, the circuit for the current instruction is

configured into the reconfigurable hardware and executed [18]. A similar approach can be taken

to implementing the re-translation processes in reconfigurable hardware. The re-translation

process can be synthesized into circuits and then partitioned into segments that can be

implemented in reconfigurable hardware. When a segment is finished and control needs to pass

to the next segment of the process, the reconfigurable hardware is re-configured to implement

the new segment. To illustrate, the segmentation of a simple dynamic translation process is

shown in Figure 23.

Another improvement, which may be beneficial to a microprocessor that uses dynamic

translation to emulate an already existing microprocessor, is to add a reconfigurable execution

unit to the core of the microprocessor, as shown in Figure 24. In this approach, the algorithm

that controls the re-translation, optimization, and execution of the program code can determine to

optimize an instruction or set of instructions by synthesizing them into circuits and implementing

them in the reconfigurable execution unit. With an arrangement of execution units similar to that

shown in Figure 24, the microprocessor can implement instructions in both static hardware and

reconfigurable hardware.

 43

Figure 23. The segmentation of a simple dynamic translation process in which each segment represents a different

configuration of the same reconfigurable hardware.

Several mechanisms can be used to determine if an instruction or set of instructions should

be synthesized and targeted for reconfigurable hardware. A simple mechanism for making this

determination is an analysis of how often the instruction(s) are executed and how much time the

microprocessor spends in the associated segments of program code. However, the time taken to

synthesize the instructions into circuits and the time required to re-configure the reconfigurable

execution unit must be considered in such a determination.

Figure 24. A microprocessor core that includes a reconfigurable execution unit.

A system that uses the concepts of implementing the re-translation process in reconfigurable

hardware and/or synthesizing certain instructions or groups of instructions into reconfigurable

hardware may perform better than microprocessors such as the DAISY or Crusoe that rely only

on static hardware. The determination of this performance is likely to be associated with the

time required to reconfigure the reconfigurable logic in the microprocessor and the time required

to synthesize instructions into hardware.

 44

With the modifications presented in this subsection, the system architecture of the resulting

microprocessor would resemble Figure 25. These approaches may prove infeasible with current

technology, due to the reconfiguration times of existing reconfigurable technology. However,

reconfigurable technology continues to increase in logic capacity and decrease in reconfiguration

time. Due to these ongoing improvements, the future may provide opportunities to implement

such a system for general-purpose computing.

Figure 25. A high-level view of a system that uses dynamic translation and reconfigurable hardware.

5.3. Instruction Set Analysis

5.3.1. Overview
The research idea presented in this section is in the area of instruction set analysis and

partitioning. The motivation behind instruction set analysis is to develop a formal approach to

microprocessor design that is soundly based in a mathematical context. This presentation of

instruction set partitioning is based on how closely instructions are executed with respect to each

other.

The existence of instruction set partitions in existing instruction set architectures may be

useful in the design of new microprocessors (based on reconfigurable hardware) or

reconfigurable execution units for use within a microprocessor (e.g., Figure 24). A

microprocessor (or execution unit) designed around instruction set partitions implements one

partition of the instruction set in circuitry at a time. Instructions that are encountered that are

outside of the partition that is currently supported can be emulated using the instructions found in

the current partition. Or, when the control process of the microprocessor determines that the

configurable hardware needs to be changed (i.e., because the partition that the majority of the

instructions being executed by the current program are found in has changed), then the

microprocessor re-configures to implement the appropriate partition in circuitry.

 45

The drawback of using instruction set partitions (where only one partition is supported in

hardware at a time) is that the execution of instructions that are not implemented in the current

partition (that are executed using emulation) may be inefficient. However, the use of emulation

allows any instruction (in the instruction set) to be performed without reconfiguring to

implement the correct partition, bringing a sense of completeness to each partition if it can be

used to emulate any instruction in the instruction set that it does not directly support in hardware.

Instruction set partitions may prove to be a very powerful tool in designing new instruction

sets if instruction set partitions can be discovered and ways of analyzing them can be developed.

Before the use and design of techniques to create instruction set partitions are explored in detail,

an initial study has been performed to determine if instruction set partitions exist in the

instruction sets of today’s microprocessors. This section presents an initial study of an existing

instruction set to see if instruction set partitions exist. The next subsection presents a discussion

of a technique that may be able to detect such partitions in existing instruction sets along with

preliminary experiments performed to verify this technique. Finally, the overall results of these

experiments and areas for future work are presented in Subsection 5.3.3.

5.3.2. Detecting Instruction Set Partitions with Clustering

5.3.2.1. Overview
In this initial study, clustering was used to detect instruction set partitions for the Intel IA-32

instruction set [1]. Clustering is used because such techniques can determine if a set of data is

weakly or strongly differentiated indicating if one or multiple classifications for the data exists

[19]. This discovery of classifications of data (in our case instructions) is the purpose of this

initial study.

For this study, the K-Means clustering technique was chosen because of its simplicity and

ease of implementation. In the K-Means clustering algorithm (shown in Figure 26) the data is

grouped into a set of mutually exclusive clusters, each of which has a center. Before the first

iteration of the algorithm, the first k data units are chosen as the centers of k clusters (the k

centers can also be randomly chosen). Then in step two, the remaining data is assigned to

clusters dependent on the cluster that the data is closest to (this is determined by the distance

between the data and the center of each cluster). In step three, each cluster is examined to

determine the data point that should be the center of each cluster. Finally, the algorithm iterates

steps two and three until convergence is reached [19]. In this study, convergence is determined

 46

by the distance between the old centers and the new centers. Convergence is reached when this

distance becomes stable or cyclic.

Figure 26. The K-Means clustering algorithm derived from [19].

The Intel IA-32 instruction set [1] was chosen for this study because it is possible to trace the

execution of a program on an Intel IA-32 microprocessor (e.g., Intel Pentium 4) [1] at the

assembly language level one instruction at a time. This is possible using the ptrace system call

[20] that is supported under the Linux operating system (e.g., Red Hat Linux 7.3). This allows a

program to exec (i.e., start) another program to be traced and then attach to the program and

control the execution of the program [20]. As each instruction is executed, it can be read from

memory using the ptrace interface and disassembled into an assembly-level operation. The use

of ptrace allows a finer granularity of control than other methods, such as using debuggers.

The GDB debugger [21] was also studied for this project. However, such debuggers only

trace programs at the system call level and then disassemble large portions of the program at a

time [21]. Therefore, it is impossible to know exactly what instructions in these portions were

executed.

The rest of this section presents a series of three clustering experiments that were performed

on the IA-32 instruction set as part of this study. In the next subsection, a description of the

clustering experiments is presented, followed by a presentation of the results of the three

experiments.

5.3.2.2. Clustering Experiments Performed
These experiments analyze the instructions executed by the POV-Ray (Persistence of Vision

Raytracer) raytracing program [22]. This program was chosen because it uses sophisticated

algorithms and can be successfully traced at the assembly-level using the technique discussed in

Subsection 5.3.2.1. In these experiments POV-Ray was statically compiled for an Intel Pentium

4 system running the Red Hat Linux operating system (version 7.3), and was used to create the

image shown in Figure 27. The input file, simple.pov, used for creating this image comes as part

of the distribution packages of POV-Ray.

 47

Figure 27. The image created using POV-Ray for the clustering experiments.

In order to perform the clustering, a distance metric is required to determine the cluster that

instructions should be assigned to and the instructions that represent the resulting centers. This

distance metric is crucial to the quality of the resulting clusters because it impacts how the

instructions are classified into different clusters. The distance metric developed for these

experiments measures of how close (in time) instructions are to other instructions in the

instruction set for the program being executed.

The closeness of two instructions is based on how many delays (instructions) apart the two

instructions are in the execution trace of the program. This information is collected as the

program is being executed and is stored in a three-dimensional array. The array element

associated with indices (i, j, k) represents the number of times instructions i and j are separated

by a delay of k. A limit is placed on how far apart two instructions can be in the data collected.

This limit serves two purposes: (1) the limit determines how close an instruction must be to the

center of a cluster to be assigned to that cluster; and (2) the limit helps to keep the three-

dimensional array stored in memory from growing large enough that this becomes an inefficient

mechanism for collecting data. This limit is referred to as the window size because it effectively

places a sliding window over the program for data to be collected (for these experiments, the size

of the window is ten delays).

Once the delays for all the instructions executed by the program are calculated, the three-

dimensional array is compressed into two dimensions by summing across the dimension that

represents the different delays used (1-delay to window size-delays) and normalized by dividing

each element of the resulting two-dimensional array by the sum of all of the elements. This

 48

results in a likelihood value that represents the probability of two instructions being encountered

within the window used while executing the program. Finally, the distance between two

instructions is calculated with the following distance metric: (x,y)likelihood1,y)distance(x −= .

Once these values were calculated for an execution of POV-Ray, the K-Means clustering

algorithm (of Figure 26) was run three times to cluster the instructions, with ten clusters

(10=k). The results of the first run are discussed in the next subsection, followed by the results

of the second and third runs. In these experiments, the clustering algorithm was allowed to

iterate until convergence was observed (this occurred in less than 100 iterations for each

experiment).

5.3.2.3. First Clustering
The results of the first run of the clustering algorithm are shown in Figure 28. In these results, a

distance to center value of 1 indicates that the pair of the instruction and the instruction that is

the center of the cluster was never encountered within the window used to collect delay data; and

a distance to center value of -1 indicates that the instruction is the center of the cluster. Thus, a

distance to center value close to 1 indicates that the pair of the instruction and the center of the

cluster are far apart and a distance to center value close to 0 indicates that they are close

together.

In the results reported in Figure 28, the clusters found are not distinct because the instructions

that form each cluster are far away from the center of the cluster. Additionally, the centers of the

clusters that are found have a high execution frequency and are spread throughout the execution

of the program. This indicates that the centers that were found are not true centers of a temporal

portion of executed instructions. This leads to the next run of the clustering algorithm, where the

top ten most frequently executed instructions were removed from consideration in the clustering

process. This was done in an effort to let the clustering algorithm discover different centers that

are more reasonable than those found in the first run of the algorithm.

5.3.2.4. Second Clustering
The results of the second run of the clustering algorithm are shown in Figure 29; and the

instructions removed from consideration in the clustering process are listed in Figure 30. As in

the first run of the algorithm, this run of the algorithm resulted in clusters that are not distinct

(the instructions assigned to each cluster are far away from the center of the cluster). However,

 49

in these results the execution frequency of the centers is lower and closer to the instructions

found in the clusters than in the first run. Due to these results, one more run of the algorithm was

performed where the top fifty most frequently executed instructions were removed from

consideration in the clustering process.

Cluster Center Instruction Distance to Center Frequency Cluster Center Instruction Distance to Center Frequency
0 jnc 0.998507619 558893
1 jns 0.995821084 905932
2 mov adc 0.999997878 455 jnz 0.974842644 7425393

add 0.974808389 6966594 js 0.999424586 162646
and 0.987613055 2810445 jz 0.976439243 6082623
bsf 0.999999951 9 lea 0.978853692 6183661
bsr 0.999995856 695 leave 0.998697305 329086
call 0.986570572 3584263 mov -1 55756233
cdq 0.999998453 230 movsb 0.999996783 841
cld 0.997068666 661674 movsd 0.999997451 560
cmovbe 0.999999785 51 movsx 0.999801194 53906
cmovc 0.999950061 8906 movzx 0.973076156 6549733
cmovg 0.999998122 356 mul 0.999984907 3455
cmovl 0.999987677 2017 neg 0.999707893 66737
cmovle 0.999987115 1794 nop 0.996016973 602617
cmovnc 0.999999963 7 not 0.999998993 248
cmovns 0.999994436 1248 or 0.998469698 274909
cmovnz 0.999971215 4915 pop 0.967416922 10073504
cmovs 0.999999551 93 push 0.931308873 20963662
cmovz 0.999785881 37187 rdtsc 0.999999888 19
cmp 0.962424883 10307302 ret 0.98768832 3584393
cwde 0.999999969 10 sar 0.99981345 104440
dec 0.991280393 1634748 sbb 0.999998562 239
div 0.999930509 8026 scasb 0.999995694 2495
fadd 0.99760333 1258335 seta 0.999999949 20
fiadd 0.999999997 1 setbe 0.999999925 20
fidivr 0.999999994 2 setc 0.999999968 13
fild 0.999674382 167052 setg 0.999999934 10
fimul 0.999253358 153603 setnz 0.999946941 15097
fist 0.999999903 30 setz 0.999958229 7530
fistp 0.995452523 694021 shl 0.995603483 711986
fisub 0.999999933 30 shld 0.999993842 1322
fisubr 0.999827698 76801 shr 0.999781983 61838
fld 0.975498895 10040418 shrd 0.999999904 22
fldcw 0.987746379 1848902 sub 0.977096893 6602932
fldz 0.998925467 754305 test 0.965569166 8884945
frndint 0.998793904 230400 xchg 0.999996983 817
fsin 0.999999252 1000 xor 0.992608943 1520276
fstcw 0.994017138 924451 3
fstp 0.986350166 5693399 4
fsub 0.999555381 224364 5
fsubp 0.999712098 153857 6
fsubr 0.99838611 586078 7 fmul fabs 0.999779415 260260
fucomp 0.999059471 371776 faddp 0.996015073 1522662
fucompp 0.997744508 1418651 fdiv 0.999851326 67423
fxch 0.993831682 5666274 fdivr 0.999999955 10
idiv 0.999999997 1 fdivrp 0.999708228 78853
imul 0.999983845 2371 fidiv 0.999827701 153603
inc 0.978715052 6815934 fld1 0.999420888 722827
int 0.9999868 3306 fmul -1 4780494
ja 0.995510163 696666 fmulp 0.999624724 174073
jbe 0.994732295 1018722 fsqrt 0.999574739 160442
jc 0.997276148 944291 fst 0.998424392 906578
jcxz 0.999993724 3931 fstsw 0.999100411 2511001
jg 0.998095061 489419 fsubrp 0.99991912 158659
jge 0.999353454 127657 fucom 0.999285063 719574
jl 0.998542979 292728 8 cmova cmova -1 60269
jle 0.992674314 1852853 9
jmp 0.993430533 2117456

Figure 28. Results of the first run of the K-Means clustering algorithm.

 50

Cluster Center Instruction Distance to Center Frequency Cluster Center Instruction Distance to Center Frequency
0 rdtsc bsf 1.000000000 9 setnz 0.999992463 15097

cmovc 1.000000000 8906 setz 0.999993145 7530
cmovnc 1.000000000 7 shl 0.999581110 711986
cmovns 1.000000000 1248 shld 0.999999995 1322
cmovs 1.000000000 93 shr 0.999930318 61838
fiadd 1.000000000 1 xor 0.999383735 1520276
fidivr 1.000000000 2 3
fsin 1.000000000 1000 4
idiv 1.000000000 1 5 fxch and 0.998178352 2810445
movsb 1.000000000 841 cld 0.999806572 661674
rdtsc -1.000000000 19 fabs 0.999658740 260260
sbb 0.999999987 239 fadd 0.998431985 1258335
scasb 1.000000000 2495 faddp 0.995373855 1522662
setbe 1.000000000 20 fdiv 0.999827419 67423
setg 1.000000000 10 fdivr 0.999999985 10
shrd 1.000000000 22 fdivrp 0.999878210 78853

1 fidiv 0.999597968 153603
2 movzx adc 0.999999997 455 fild 0.999997048 167052

bsr 0.999999996 695 fist 0.999999933 30
call 0.999663031 3584263 fisub 0.999999933 30
cdq 0.999999997 230 fisubr 0.999827700 76801
cmova 0.999999904 60269 fld1 0.998713842 722827
cmovbe 0.999999952 51 fldz 0.999098082 754305
cmovg 0.999999481 356 fmul 0.990498765 4780494
cmovl 0.999998016 2017 fmulp 0.999746315 174073
cmovle 0.999999762 1794 fsqrt 0.999684537 160442
cmovnz 0.999997732 4915 fst 0.997792166 906578
cmovz 0.999974410 37187 fstp 0.995227629 5693399
cwde 0.999999993 10 fstsw 0.996091204 2511001
dec 0.998154598 1634748 fsub 0.999659803 224364
div 0.999999998 8026 fsubp 0.999712786 153857
imul 0.999996971 2371 fsubr 0.998871646 586078
int 0.999999995 3306 fsubrp 0.999600079 158659
ja 0.999380050 696666 fucom 0.998189202 719574
jbe 0.998355982 1018722 fucomp 0.999754748 371776
jc 0.998317459 944291 fucompp 0.998088327 1418651
jcxz 0.999987202 3931 fxch -1.000000000 5666274
jg 0.999648894 489419 jge 0.999950691 127657
jle 0.997830772 1852853 jz 0.998933851 6082623
jmp 0.998801977 2117456 leave 0.999963644 329086
jnc 0.998972709 558893 ret 0.999604647 3584393
jns 0.999552024 905932 6
js 0.999993101 162646 7 movsd movsd -1.000000000 560
lea 0.999312506 6183661 xchg 0.999999618 817
movsx 0.999982744 53906 8
movzx -1.000000000 6549733 9 fldcw fimul 0.999655398 153603
mul 0.999996291 3455 fistp 0.998157919 694021
neg 0.999973838 66737 fldcw -1.000000000 1848902
nop 0.999110540 602617 frndint 0.999310802 230400
not 0.999999932 248 fstcw 0.997583543 924451
sar 0.999865645 104440 jl 0.999942746 292728
seta 0.999999996 20 or 0.999540535 274909
setc 0.999999996 13

Figure 29. Results of the second run of the K-Means clustering algorithm.

mov test
push jnz
cmp add
pop inc
fld sub

Figure 30. The ten most frequently executed instructions.

5.3.2.5. Third Clustering
In the final run of the clustering algorithm, the top fifty most frequently executed instructions

(listed in Figure 31) were removed from consideration in the clustering process. The major

result of this run of the clustering algorithm (as shown in Figure 32) is the same as in the first

 51

and second runs. This result is that the clusters that were found are not distinctive. The

instructions assigned to each cluster are still far away from the centers of the clusters.

Additionally, in this run, the centers of each cluster have execution frequencies that are close to

that of the other instructions in the clusters. This indicates that the instructions that are spread

through out the program (and are executed the most frequently) are those contained in the fifty

instructions removed from consideration in the clustering process.

mov fstp fucompp cld
push fxch fadd nop
cmp fmul jbe fsubr
pop ret jc jnc
fld call fstcw jg
test and fst fucomp
jnz fstsw jns leave
add jmp fldz jl
inc jle fld1 or
sub fldcw fucom fabs
movzx dec shl frdint
lea faddp ja
jz xor fistp

Figure 31. The fifty most frequently executed instructions.

5.3.3. Overall Results of the Experiments and Future Work
The three experiments conducted are inconclusive because the clusters found in all three runs of

the clustering process (as discussed in Subsections 5.3.2.3, 5.3.2.4, and 5.3.2.5) are not

distinctive from each other. There are several possible reasons for why this occurred: (1) using a

clustering technique to discover instruction set partitions may be inappropriate; (2) the K-Means

clustering technique may not be appropriate for this application of cluster analysis; (3) the

distance metric used may be poorly formulated or may need to be revised; and/or (4) the

clustering program used in these experiments may contain error(s). Before more work is done in

this area, these issues will be addressed. Thus, more research into clustering and instruction set

partitioning needs to be performed; and other clustering techniques besides the K-Means

clustering algorithm (Figure 26) need to be investigated. Additionally, the distance metric used

needs to be reviewed and tested; and the correctness of the clustering program needs to be

verified. One possible way to test the distance metric and verify the correctness of clustering

program, is to test them with an assembly language program that can be analyzed by hand to see

if the results match.

 52

Cluster Center Instruction Distance to Center Frequency Cluster Center Instruction Distance to Center Frequency
0 fidiv adc 1.000000000 455 2 bsr bsr -1.000000000 695

cdq 1.000000000 230 3 bsf bsf -1.000000000 9
cmova 1.000000000 60269 div 1.000000000 8026
cmovbe 1.000000000 51 4
cmovc 1.000000000 8906 5 seta seta -1.000000000 20
cmovg 1.000000000 356 setc 0.999999989 13
cmovl 1.000000000 2017 6 shr cmovnz 0.999998157 4915
cmovle 1.000000000 1794 cmovz 0.999999982 37187
cmovnc 1.000000000 7 imul 0.999999788 2371
cmovns 1.000000000 1248 int 0.999999997 3306
cmovs 1.000000000 93 jcxz 0.999999412 3931
cwde 1.000000000 10 jge 0.999999716 127657
fdivr 1.000000000 10 js 0.999999048 162646
fiadd 1.000000000 1 movsb 0.999998744 841
fidiv -1.000000000 153603 movsd 0.999999164 560
fidivr 1.000000000 2 mul 0.999997220 3455
fist 1.000000000 30 neg 0.999999023 66737
fisubr 0.999885134 76801 not 0.999999953 248
fsub 0.999885134 224364 sar 0.999999657 104440
fsubp 0.999885134 153857 setnz 0.999999999 15097
idiv 1.000000000 1 setz 0.999998119 7530
movsx 1.000000000 53906 shr -1.000000000 61838
rdtsc 1.000000000 19 shrd 0.999999991 22
sbb 1.000000000 239 xchg 0.999999541 817
scasb 1.000000000 2495 7 fimul fimul -1.000000000 153603
setbe 1.000000000 20 8 fild fild -1.000000000 167052
setg 1.000000000 10 fsin 0.999999253 1000
shld 1.000000000 1322 9 fisub fisub -1.000000000 30

1 fsqrt fdiv 0.999975346 67423
fdivrp 0.999941033 78853
fmulp 0.999917909 174073
fsqrt -1.000000000 160442
fsubrp 0.999963647 158659

Figure 32. Results of the third run of the K-Means clustering algorithm.

In summary, the results presented in this study are inconclusive and the experiments that

were performed need to be scrutinized. Additionally, more work needs to be performed in the

area of instruction set analysis; and different ways of evaluating instruction sets need to be

formulated.

5.4. Summary

Two ways to improve the design of microprocessors have been presented in this section. The

first deals with combining the dynamic translation process of Figure 3 with reconfigurable

hardware to create a reconfigurable microprocessor that uses dynamic translation to execute

programs. More research needs to be performed on the concept of combining dynamic

translation and reconfigurable hardware. This concept is only in the initial stages of

development and has not been pursued farther than proposing the ideas presented in Subsection

5.2. The second way to improve microprocessors is to analyze the current instruction sets being

used in today’s microprocessors and attempt to develop a methodology of how to evaluate the

design and use of instruction sets.

 53

The initial step in an analysis of current instruction sets using instruction set partitioning has

been presented in this section. This study needs to be expanded further and the methods need to

be reviewed at a deeper level.

6. Conclusions

This report has introduced a microprocessor taxonomy that classifies microprocessors based on

the technology used to implement them (static or reconfigurable), the process that they use to

translate machine code and execute instructions, and whether this process is performed in

software or hardware. The design and operation of two different static microprocessors that

perform dynamic translation of machine code have been presented and compared. At the end of

the report, two possible research directions were introduced: (1) reconfigurable computing

combined with dynamic translation, and (2) instruction set partitioning analysis.

The two microprocessors reviewed in this report are the IBM DAISY and the Transmeta

Crusoe. These microprocessors use dynamic translation to execute machine code initially

compiled for the PowerPC and Intel X86 microprocessors, respectively. The design of these two

microprocessors and how they perform dynamic translation greatly differ. DAISY is based on a

sophisticated VLIW processor core while the Crusoe uses a simplified VLIW processor core that

has extra hardware support added for speeding up the process of rolling back the state of the

emulated microprocessor when an exception occurs. The re-translation, optimization, and

scheduling processes are also different between these two microprocessors. DAISY uses a

generic approach while the Crusoe is Intel X86 specific and performs specialized optimizations

that may only apply to Intel X86 machine code.

The DAISY and Crusoe microprocessors both represent a new direction for microprocessor

design. These microprocessors harness the reality that for a new microprocessor to be successful

in today’s market, it should be compatible with an existing instruction set of a microprocessor

that has been successful. This is due to the vast amount of legacy software and hardware

systems that dominate the market.

At the end of the report, two concepts for improving on today’s microprocessors were

presented. The first one is to combine the dynamic translation process with a reconfigurable

microprocessor. Such a microprocessor may be able to outperform a static counterpart because it

implements the dynamic translation process in hardware and the optimization process has the

 54

option of synthesizing an instruction or segment of code into circuits that can be implemented in

the reconfigurable hardware. This implementation of instruction(s) in hardware could speed up

execution of the associated operations.

The second idea presented at the end of this report is instruction set partitioning. This

presentation discusses an initial study of what properties a good instruction set possesses. The

ideas presented in this part of the report are pursued in hopes of being able to formalize the

design and use of instruction sets and how they are evaluated. However, the results of this study

are inconclusive.

More research needs to be performed in the areas of dynamic translation, reconfigurable

computing, and the design of microprocessors and the instruction sets they implement. These

areas represent vast opportunities in improving the microprocessors that are currently being

developed and produced. As the feature size of the technologies used to implement

microprocessors shrinks, they will become faster enabling more processing of machine code to

be performed with less execution latency. Additionally, reconfigurable technology will be able

to implement larger circuits and reconfigure the circuits implemented in less time as well. This

will continue to open more opportunities for deeper research as these technological

improvements are realized.

 55

References

[1] IA-32 Intel Architecture Software Developer’s Manual, Intel Corporation,
http://developer.intel.com/design/pentium4/manuals/index2.htm, 2002.

[2] PowerPC Microprocessor Family: The Programming Environment for 32-Bit

Microprocessors, International Business Machines Corporation, http://www-
3.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF778525699600719DF2,
2002.

[3] J. Gosling and H. McGilton, “The Java Language Environment: A White Paper”, Sun

Microsystems Inc., Mountain View, California,
ftp://ftp.javasoft.com/docs/papers/langenviron-pdf.zip, May 1996.

[4] E.R. Altman, K. Ebcioğlu, M. Gschwind, and S. Sathaye, “Advances and Future

Challenges in Binary Translation and Optimization,” Proceedings of the IEEE, Vo. 89,
No. 11, November 2001, pp.1710-1722.

[5] The Java HotSpot Virtual Machine Technical White Paper, Sun Microsystems Inc.,

http://wwws.sun.com/software/solaris/java/wp-hotspot/, 2001.

[6] K. Ebcioğlu, E.R. Altman, M. Gschwind, and S. Sathaye, “Dynamic Binary Translation

and Optimization,” IEEE Transactions on Computers, Vol. 50, No. 6, June 2001, pp.
529-548.

[7] R.F. Cmelik, D.R. Ditzel, E.J. Kelly, C.B. Hunter, D.A. Laird, M.J. Wing, and G.B.

Zyner, “Combining Hardware and Software to Provide an Improved Microprocessor,” US
Patent 6,031,992, February 2000.

[8] C. Iseli and E. Sanchez, “Beyond Superscalar Using FPGAs,” Proceedings of the 1993

IEEE International Conference on Computer Design: VLSI in Computers and
Processors, 1993, pp. 486-490.

[9] D.A. Patterson and J.L. Hennessy, Computer Architecture: A Quantitative Approach,

Second Edition, Morgan Kaufmann Publishers Inc., San Francisco, California, 1996.

[10] K. Ebcioğlu, J. Fritts, S. Kosonocky, M. Gschwind, E.R. Altman, K. Kailas, and T.

Bright, “An Eight-Issue Tree-VLIW Processor for Dynamic Binary Translation,”
Proceedings of the International Conference on Computer Design: VLSI in Computers
and Processors, 1998, pp. 488-495.

[11] A.V. Aho, R. Sethi, and J.D. Ullman, Compilers: Principles, Techniques, and Tools,

Addison-Wesley, Reading, Massachusetts, 1988.

[12] K. Ebcioğlu, E.R. Altman, S. Sathaye, and M. Gschwind, “Optimizations and Oracle

Parallelism with Dynamic Translation,” Proceedings of the 32nd Annual International
Symposium on Microarchitecture, 1999, pp. 284-295.

 56

[13] D.A. Patterson and J.L. Hennessy, Computer Organization and Design: The

Hardware/Software Interface, Second Edition, Morgan Kauffman Publishers, Inc., San
Francisco, California, 1998.

[14] A. Klaiber, “The Technology Behind Crusoe Processors: Low-Power X86-Compatible

Processors Implemented with Code Morphing Software,” Transmeta Corporation, Santa
Clara, California, http://www.transmeta.com/about/press/white_papers.html, January
2000.

[15] J.R. Hauser and J. Wawrzynek, “Garp: A MIPS Processor with a Reconfigurable

Coprocessor,” Proceedings of the 5th Annual IEEE Symposium on Field Programmable
Custom Computing Machine, 1997, pp. 12-21.

[16] J.M. Arnold, D.A. Buell, and E.G. Davis, “Splash 2,” Proceedings of the Fourth Annual

ACM Symposium on Parallel Algorithms and Architectures, June 1992, pp. 316-322.

[17] J. Villasenor and B. Hutchings, “The Flexibility of Configurable Computing,” IEEE

Signal Processing Magazine, September 1998, Vo. 15, No. 5 , pp. 67-84.

[18] M.J. Wirthlin and B.L. Hutchings, “A Dynamic Instruction Set Computer”, Proceedings

of the 1995 IEEE Symposium on FPGAs for Custom Computing Machines, 1995, pp. 99-
107.

[19] M.R. Anderberg, Cluster Analysis for Applications, Academic Press, New York, New

York, 1973.

[20] Red Hat Documentation: Linux Programmer's Manual, PTRACE, Red Hat, Inc.,

http://www.europe.redhat.com/documentation/man-pages/man2/ptrace.2.php3, March
2000.

[21] The GNU Project Debugger: Documentation for GDB version 5.2.1, GDB Internals, Free

Software Foundation, Inc,
http://sources.redhat.com/gdb/download/onlinedocs/gdbint.html, April 2002.

[22] POV-Ray 3.5 Documentation, Hallam Oaks Pty. Ltd,

http://www.povray.org/documentation/, April 2002.

