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Abstract 

The power consumed by a combinational circuit is dictated by the switching activities of all 

signals associated with the circuit. An analytical approach is proposed for calculating signal 

activities for combinational circuits. The approach is based on a Markov chain signal model, and 

directly accounts for correlations present among the signals. The accuracy of the approach is 

verified by comparing signal activity values calculated using the proposed approach with 

corresponding values produced through simulation studies. It is also demonstrated that the proposed 

approach is accurate and computationally efficient. 

Index Terms: Combinational Circuit, Probability, Activity, Markov Chain, Correlation Factor. 

 

1. Introduction 

Power consumption of integrated circuits (ICs) is of growing concern as more electronic devices are 

being deployed in mobile and portable applications, e.g., PDAs, mobile telephones, and other battery-

powered electronic devices.   As the functionality of such devices increases, so does the complexity 

and sophistication of the underlying circuits. More complexity and faster clock rates generally translate 

into higher power consumption for a given hardware implementation technology. Because battery 
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technology has not improved at the same rate as IC technology, there is strong motivation to design 

circuits that are as power efficient as possible to extend battery life for portable devices. 

Improvements in IC technologies (e.g., reduction in feature size) can reduce power requirements of 

a given circuit design. However, functionality and complexity of commercial devices generally increase 

from one generation to the next. So, the next generation device implemented with the next generation 

IC technology will generally have more functionality and complexity than the previous generation, and 

thus the issue of architectural design of the underlying circuits to be power efficient remains important.  

Several similar and related approaches to this problem have been proposed in the past, including 

simulation-based [1] and analytical approaches [2, 3, 4]. A good survey of past approaches can be 

found in [5]. Generally, simulation-based approaches achieve high accuracy but require long execution 

times; in contrast, the analytical approaches are faster but are generally less accurate. In this paper a 

new analytical approach is proposed that achieves fast execution time and accuracy that is comparable 

with simulation-based methods. As explained below, the particular focus is on power consumption of 

circuits implemented in CMOS, but the proposed approach may be applicable for other technologies as 

well. 

Power consumption in a CMOS circuit is primarily due to three types of current flow: leakage 

current, switching transient current, and load capacitance charging current [9]. The leakage current is 

associated with the imperfection of field effect transistors (FETs) that are used in CMOS devices.  This 

type of current flow in CMOS technology is generally very small. 

The switching transient current within CMOS gates is caused by a brief short circuit that can occur 

when the state of the complimentary gates change from on-to-off and off-to-on.  This short circuit 

occurs when the complimentary MOSFETs are concurrently “on” for a brief transient period of time.  
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The power loss due to switching transient current is dependent on the switching activity of the gate 

and is generally greater than leakage current. 

The final type of current flow is load capacitance charging current.   This is the current flow that is 

required to charge the capacitive load that is associated with a transistor gate, and occurs when the 

state of a gate changes.  This is the dominant component of power consumption in CMOS devices, and 

is strongly dependent on signal switching activity. 

Let Φ denote the set of all signals associated with a circuit. For each s ∈  Φ, let C(s) denote the 

capacitive load associated with signal s. Also, let α(s) denote the activity of signal s, which has a value 

between zero and one, and represents the signal’s normalized average frequency relative to the 

frequency of a system clock, f.  Thus, fα(s) gives the average frequency of signal s. Based on these 

assumptions and notation, the average power for a CMOS circuit operating at a voltage level of V can 

be expressed as [4, 5]: 

∑
Φ∈

=
s

ssCfV )()(
2

1
Power 2

avg α .         (1) 

The problem addressed in this report is to determine the activity of all signals of a combinational 

circuit given an appropriate probabilistic model for the primary input signals that drive the circuit.  The 

signal model proposed in this report is based on a Markov chain. The signal activity is easily computed 

from the parameters associated with the proposed signal model. In the proposed approach, signals with 

known Markov chain representations are propagated through a model of the circuit to produce a 

Markov chain representation for the output of each gate in the circuit. Accuracy of the approach is 

verified by comparing signal activities produced by the proposed method with corresponding activities 

produced through simulation studies. When compared with other related approaches, a key aspect of 
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the proposed approach is that correlations present among the signals due to re-convergent fan-out [6] 

are accounted for directly. 

The rest of this report is organized as follows. In Section 2, an overview of related approaches is 

provided. The proposed approach, which utilizes a Markov chain signal model, is given in Section 3. 

The transformations and algorithm for applying this approach to a circuit is described and analyzed in 

Section 4. In Section 5, the accuracy of the proposed approach is verified through PSpice circuit 

simulations, followed by conclusions in the final section.  

 

2. Previous Related Approaches 

2.1 Basic Probabilistic Signal Parameter Definitions 

Signals in a combinational logic circuit can be treated in a probabilistic sense [1], i.e., for signal x, 

the probability that x has logic value 1 is defined by )1()( == xPxP . Let x(t), ),( +∞−∞∈t , be a 

stochastic process that takes the values of logical 0 or logical 1, transitioning from one to the other at 

random times. Generally, a stochastic process is said to be strict-sense stationary (SSS) if its statistical 

properties are invariable to a shift of time origin. Based on the assumptions of a SSS 0-1 mean-ergodic 

process x(t), the following definitions are derived from [3]. 

Definition 2.1 (Signal Probability): The probability of a logic signal x(t) is the average fraction of 

time that the signal is high and is given by 

∫
+

−
∞→

=
2

2

)(
1

lim)(

T

T
T

dttx
T

xP . 

Definition 2.2 (Signal Activity): Assume the average number of transitions in a time interval of 

length T is given by n(T). The signal activity of the corresponding signal x(t) is given by 
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∞→

∆
=α . 

 

2.2 Signal Probability Calculation 

In [2], the concept of using probabilistic signal modeling for analysis of combinational circuits was 

first introduced. In this work, each signal is modeled with a single probabilistic parameter, P(x), 

defining the probability of a signal having a logical value of one. The purpose is to calculate the 

probability parameter for all signals, given the probability parameters of the circuit’s primary inputs. 

The motivation for this work originated from the area of pseudorandom testing, in which fault 

coverage and identification is achieved without resorting to exhaustive testing. Instead, by subjecting a 

circuit to a large number of randomly generated input signal vectors, one can deduce faults in the 

circuit by measuring the fraction of time that any given signal has logic value one.  If any of the 

measured signal probabilities do not match calculated signal probabilities, then the possibility of a fault 

is present.  

For signal x, the probability that x has logic value 1 is defined by )1()( == xPxP . Two algorithms 

for calculating signal probabilities are introduced in [2]. These approaches require that a Boolean 

function expression associated with each signal be derived in terms of the primary inputs. Because the 

number of terms in these expressions can grow exponentially with the number of inputs, the 

complexity of these approaches can be prohibitive for practical circuits.   

A computationally efficient algorithm for calculating signal probabilities is introduced in [7], named 

“Algorithm 1,” which operates by propagating probability values through the gates of circuit, thereby 

drastically reducing the size of the Boolean functions that must be evaluated. Specifically, the 

probability of the output of a gate is expressed in terms of the probability values for the inputs to that 
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gate (instead of the primary inputs of the entire circuit, as required by the approach in [2]). This 

algorithm is simple and fast – it has a linear complexity in the number of gates – but is not accurate for 

all classes of circuits.  

 

y4 

y2 

y3 

x1 

x2 

y1 

 

Figure 1. An example combinational circuit used to illustrate signal probability calculations (derived 

from [7]). 

 
To illustrate the inaccuracies of Algorithm 1, assume in Figure 1 that the probabilities of primary 

inputs x1 and x2 are both 0.5. By applying Algorithm 1 of [7], the computed probabilities of the 

circuit’s signals were calculated and are provided in Table 1. 

 
Table 1. Comparison of actual signal probabilities and those calculated  

using Algorithm 1 in [7] for the circuit of Figure 1 with P(x1) = P(x2) = 1/2. 

 P(y1) P(y2) P(y3) P(y4) 
Actual 1/4 1/2 1/2 1/4 
Algorithm 1 in [7]  1/4 5/8 5/8 25/64 

 

The problem with the accuracy of Algorithm 1 arises in circuits in which re-convergent fan-out 

signals are present. Re-convergent fan-out introduces functional dependencies and statistical 

correlations among the signals; however, Algorithm 1 assumes statistical independence among the 

inputs to each gate. For example, signals y2 and y3 in Figure 1 both depend on signal x1 due to re-

convergent fan-out. Thus, applying the algorithm to calculate P(y4) under the assumption that signals 
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y2 and y3 are independent results in an error in the value calculated for P(y4), as shown in Table 1. 

Similarly, the values calculated for P(y2) and P(y3) are also in error.  

Another algorithm is proposed in [7] called the Weighted Averaging Algorithm (WAA), which 

generally achieves better accuracy than Algorithm 1 and has a comparable time complexity.  However, 

the WAA still does not always produce correct values. 

A method for accounting for signal probability correlations was developed in [6] named the 

correlation coefficient method (CCM). By using this approach, the probability of the output of a two-

input gate can be more accurately calculated, given the probabilities of the two inputs and an 

associated correlation factor associated with the two signals. In this algorithm, the correlation factor 

can also be calculated analytically by means of a set of basic propagation rules. By applying this CCM 

algorithm to the circuit shown in Figure 1, the values of P(y1), P(y2), P(y3), and P(y4) are properly 

calculated and correspond to the actual values shown in Table 1. The time complexity of the CCM 

algorithm is )( 2NO for a circuit with N gates.1   

 

2.3. Signal Activity Calculation 
 

The above-described approaches of [2], [6], and [7] are concerned with determining the 

probabilities of signal values, not the probabilities of signal transitions, i.e., activities, which are 

necessary for estimating power consumption, refer to Eq. 1. An early approach for estimating signal 

activities was developed in [3], in which signals of a circuit are modeled to be mutually independent 

strict-sense-stationary (SSS) mean-ergodic 0-1 processes. Under these assumptions, the activity of a 

signal y from a circuit with n-primary inputs can be expressed as 

                                                
1Sharper time complexity results can be obtained; for example, it can be shown that a circuit with N  levels has a complexity of )( 2/3NO   



9
 

)()(
1

i

n

i i

x
x

y
Py αα ∑

=








∂
∂= ,                                                               (2) 

where 
x

y

∂
∂

 is the Boolean difference of function y with respect to xi and is defined by 
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Intuitively, the Boolean difference 
ix

y

∂
∂

 defines whether a transition of signal xi will cause a 

transition in output signal y. Specifically, if the Boolean difference function evaluates to one, then a 

transition of signal xi causes a transition in y; if the Boolean difference function evaluates to zero, then 

a transition of signal xi does not cause a transition in y. So, the probability of the Boolean difference 

function, 







∂
∂

ix

y
P , defines the probability that a change in y will occur given that there is a change in xi. 

As an example of how to evaluate Eq. 2, consider a simple case of a three-input AND function in 

which 321 xxxy = . 
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Thus,  

)()()()()()()( 321231132 xxxPxxxPxxxPy αααα ++= . 

Because x1, x2, and x3 are mutually independent, we can further simplify the probability terms as 

follows: 

)()()(

)()()()()()()(

321

231132

xxPxP

xxPxPxxPxPy

α
ααα

+
+=

      (8) 

The above expression is readily evaluated using the values of )( ixP  and )( ixα , which are the known 

probabilities and activities of the primary input signals.  

Although the calculation of the probability of the Boolean difference terms, i.e., 







∂
∂

ix

y
P , for the 

above example was relatively straightforward, this calculation can be complicated for large and 

complex circuits. In [3], the calculation of these terms is accomplished by first representing the nodes 

of the circuit with a binary decision diagram (BDD) [3, 5]. In practice, the BDD approach often 

achieves linear or near linear time complexity; however, in the worst case the complexity can grow 

exponentially with the number of gates.  

It is noted in [4] that Eq. 2, i.e., the approach described in [3], fails to consider the effect of 

simultaneous switching of gate inputs. Figure 2 shows an example of how simultaneous switching of 

inputs to a logic gate affects the activity of the output node. As shown in the figure, if the two input 

signals always switch simultaneously, then the output signal of the XOR gate will have an activity of 

zero, even though the probability and activity terms in Eq. 2 are nonzero [4]. This example is an 

extreme case, but is given to illustrate the importance of considering simultaneous switching.  
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Figure 2. Example to illustrate the effect of simultaneous switching (derived from [4]). 

 

Each Boolean difference term associated with Eq. 2 describes an input-switching event in which 

exactly one of the inputs makes a transition. Thus, Eq. 2 does not account for events involving 

simultaneous switching of two or more of the input signals.  The concept of the generalized Boolean 

difference was introduced in [4] to account for simultaneous switching, and is denoted as follows: 
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where k is a positive integer, 
jix , kj ,...,2,1= , are distinct mutually independent primary inputs of y, 

and 
jib are binary values of 0 or 1. Note that if the generalized Boolean difference evaluates to one, 

then the simultaneous transitions of signals ),...,,(
21 kiii xxx  from ),...,,(

21 kiii bbb  to ),...,,(
21 kiii bbb  or 

from ),...,,(
21 kiii bbb  to ),...,,(

21 kiii bbb  will cause a transition at y.  

Eq. 2 is adapted in [4] using the generalized Boolean difference concept to account for simultaneous 

switching, resulting in: 
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where 
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1...01| are conditional probabilities of the generalized 

Boolean differences under the condition that only the indicated inputs simultaneously switch, and the 

rest do not. Details on how to calculate these conditional probabilities can be found in [4].  

Applying Eq. 10 to the same three-input AND function 321 xxxy =  used earlier results in the 

following: 
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Observe that all of the terms of Eq. 8 also appear as terms in Eq. 11. The rest of the terms in Eq. 11 

arise due to the generalized Boolean difference factors that account for simultaneous switching.  In 

general, the approach of Eq. 10 yields more accurate results than Eq. 2. However, the overall 

complexity associated with evaluating Eq. 10 is generally much larger than that of Eq. 2. This high 

complexity is due to a potentially large number of terms (exponential in the number of inputs) and the 

complexity associated with evaluating the conditional probabilities. For more discussion about the 

complexity and techniques for calculating the conditional probabilities, refer to [4].  

 

2.4. Summary of Previous Related Approaches 

The signal model for the approaches overviewed in Subsection 2.2 is based on a single probability 

parameter [2, 6, 7]. Although this probability parameter is not directly used in calculating a circuit’s 

power consumption, refer to Eq. 1, it is a necessary component for the signal model common to the 
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approaches of Subsection 2.3, which utilize both signal probability and signal activity parameters [3, 

4]. 

The approaches of [2], [3], and [4] can have high computational complexities because the number of 

terms in the underlying equations/transformations can grow exponentially with the number of primary 

inputs to the circuit. In [7], a trade-off between computational complexity and resulting accuracy is 

illustrated in the context of the underlying equations/transformations introduced in [2]. In particular, an 

approximate approach is defined in [7] in which the transformations of [2] are applied in a “gate-by-

gate” fashion. Thus, instead of deriving the transformation for a signal’s probability parameter in terms 

of the circuit’s primary inputs, it is derived in terms of the immediate inputs to the logic gate associated 

with the signal. This approach greatly reduces the computational complexity, but introduces error in 

the calculated probability parameters for circuits with re-convergent fan-out.  

Similar trade-offs between computational complexity and accuracy are possible relative to the 

evaluation of Eq. 2 and Eq. 10 (associated with [3] and [4], respectively). Instead of deriving a signal’s 

logic function in terms of the circuit’s primary inputs, the parameters to the immediate inputs the 

signal’s logic gate can be used. Again, this type of “gate-by-gate” technique will generally introduce 

error because it does not account for correlations present among the internal signals that drive the 

gates within the circuit.  

The approach of [6] is a fast and accurate “gate-by-gate” technique for calculating a signal’s 

probability parameter. It introduces the concept of a correlation factor to account for and appropriately 

adjust the transformation for correlated inputs to a gate.   

 

3. Markov Chain Signal Model 
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 3.1. Preliminaries 

In this section we introduce a signal model that is based on a Markov chain having three event 

parameters. It is shown that the proposed Markov chain model is equivalent to the two-parameter 

probability/activity signal model of [3] and [4]. The advantage of modeling signals with Markov chains 

is that it makes it possible to compute correlations between signals related to both probability and 

activity.  

The approach derived here can be viewed as a generalization of the approach in [6].  Instead of 

tracking a correlation factor for the single probability parameter model, transformations for correlation 

factors associated with the three parameters of the Markov model are derived.  This ultimately leads to 

a fast and accurate “gate-by-gate” algorithm for calculating signal probabilities and activities. 

As illustrated in Figure 3, the proposed Markov chain signal model has three event parameters for 

signal A. The event denoted by A represents the signal being in state 1, and A1 and A2 represent the 

events that there is a transition from state 0 to 1 and from state 1 to 0, respectively. Note that the 

probability of event A is denoted by P(A), and is equivalent to the signal probability defined in the 

previous section.  

 
Figure 3. Proposed Markov chain signal model. 

 

For notational convenience and clarity, we will denote the value of P(A) as pA (for the value of the 

probability of signal A) and the value of the activity α(A) as αA (for the value of the activity of signal 

A 
1 0 

A1 

A2 
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A) throughout the rest of the paper. Using these notations and applying basic properties of Markov 

chains along with the definition of signal activity, the following expressions can be derived for P(A), 

P(A1) and P(A2): 

  ApAP =)( ,       (12) 

)1(2
)( 1

A

A

p
AP

−
= α ,      (13) 

A

A

p
AP

2
)( 2

α= .      (14) 

Thus, if the values of both the probability and activity parameters of a signal are known (i.e., pA and 

αA), then the probabilities of the three events associated with the proposed Markov model for the 

signal are completely determined. Likewise, knowing the probability values of the three parameters of 

the Markov model fully determines the probability and activity parameters of the signal. 

In order to define correlations between two signals modeled with Markov chains, some basic 

definitions are needed. Let A and B denote two events and let P(AB) denote the probability of both A 

and B occurring.  From basic probability theory [8], P(AB) = P(A/B)P(B), where P(A/B) represents the 

probability of A given B. Also, the correlation coefficient of two events A and B is defined as 

 
BA

AB
AB σσ

σρ = ,               (15)  

where ABσ  is the covariance and Aσ  and Bσ  are the positive square roots of the variances of A and B.  

It can be shown that 

))(1)(())(1)((

)()()(

BPBPAPAP

BPAPABP
AB −−

−=ρ .     (16) 

In order to simplify later derivations, it is convenient to define the correlation factor CAB of two events 

A and B as  
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By applying Eq. 17 to Eq. 16, the following relationship can be derived: 

( )1
))(1)((

)(

))(1)((

)( −
−−

= ABAB C
BPBP

BP

APAP

APρ .    (18) 

Thus, CAB is related to ρAB through scaling and shifting. The value of ρAB, by definition [8], is a real 

number in the interval [-1, 1]; therefore, according to Eq. 18, CAB takes on real non-negative values. 

Also, ρAB = 0 corresponds to CAB =1, and indicates that the events A and B are mutually independent. 

Similarly, ρAB < 0 (i.e., A and B are negatively correlated) corresponds to 0 ≤ CAB < 1, and ρAB > 0 (i.e., 

A and B are positively correlated) corresponds to CAB > 1.  

 

3.2. Markov Chain Model for Basic Logic Gates 

The focus in this subsection is on deriving the Markov chain model for the output of a basic logic 

gate in which the Markov chain models of the input signals are known. The simple case of a NOT gate 

is considered first followed by the analysis of two-input basic logic gates.  

For a NOT gate with input A, the Boolean output function is given by AY = . From Figure 3, it is 

clear that the Markov model for Y is given by  

)()(  ),()(   ),(1)( 1221 APYPAPYPAPYP ==−= .           (19) 

Consider now the case of a two-input basic logic gate, as shown in Figure 4. Assuming the Markov 

chain models of A and B are known, the objective is to derive the Markov chain model for output 

signal Y.  
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Figure 4. Generic two-input logic gate. 

 

A key to deriving the Markov chain model for signal Y of Figure 4 is to represent the state transition 

diagram associated with the gate’s two inputs, as shown in Figure 5. The four states in the figure 

correspond to the four input combinations for the two inputs. The first digit of each state label 

corresponds to the value of A, and the second to the value of B, e.g., the state labeled “01” 

corresponds to A = 0 and B = 1. Although not labeled on the figure, the directed edges represent 

transition events. To illustrate the notation to label transition events, “00 10” will be used to 

represent the event that input signal A transitions from 0 to 1 and signal B stays in state 0.  

 

Figure 5. State transition diagram for inputs A and B of Figure 4. 

 

The known parameters of the Markov chain models for signals A and B are given by P(A), P(A1), 

P(A2), P(B), P(B1), and P(B2). Also assumed to be known are the correlation factors for pairs of 

B 

Y 

A 

Two-Input  
Logic Gate 

00 

11 

01 

10 
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events associated with the Markov chain models for the inputs.2  From Eq. 17 note that P(AB) = 

P(A)P(B)CAB, where CAB is the correlation factor associated with events A and B. Similarly, the 

correlation factor 
21BAC  enables the calculation of P(A1B2) using the fact that 

21
)()()( 2121 BACBPAPBAP = .  Recall from Eq. 18 that independent events correspond to a correlation 

factor of unity.  

Given the Markov chain models for signals A and B (and the corresponding correlation factors) it is 

possible to derive the probability associated with every event shown in the state transition diagram of 

Figure 5. To illustrate, consider the probability of event 00 01: 

[ ]
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                            (20) 

Expressions for the probabilities of all events associated with the state transition diagram of Figure 5 

can be derived similarly; a complete tabulation of these expressions are given in Table 2. 

Table 2. Probabilities of events associated with Figure 5. 
Event Probability 

state 00 ABBABA CppppP +−−=1)00(  

state 01 ABBAB CpppP −=)01(  

state 10 ABBAA CpppP −=)10(  

state 11 ABBA CppP =)11(  
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2 Deriving transformations to determine correlations factors associated with pairs of signals will be discussed in 
Subsection 3.3; for purposes of the present subsection they are assumed to be known. 
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Deriving a Markov chain model for Y of Figure 4 depends on the particular function of the gate. To 

illustrate how to determine the Markov chain model for Y, consider the specific example of an AND 

gate, i.e., Y = AB.  For an AND gate, the output takes on logic value 1 if and only if both inputs are 1. 

Thus, 
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ABBA CppPYP == )11()( .                   (21) 

The event Y1 is associated with three events from Figure 5, namely: 00→11, 01→11, and 10→11. 

Thus, equality can be established as follows: 

 

)1100()01(

)1100()01()1100()00()()( 1

→+
→+→=

PP

PPPPYPYP
       (22) 

Solving Eq. 22 for )( 1YP  and using Eqs. 12 through 14 results in the following expression: 
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Derivation for P(Y2) follows in a similar fashion and can be expressed as  
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Derivations of P(Y), P(Y1), and P(Y2) for two-input OR and XOR gates, i.e. Y=A+B and 

BAY ⊕= respectively, are similar to the above derivation for the AND gate and the results are shown 

in Table 3. To reduce the notational burden, the formulas in Table 3 are expressed in terms of signal 

probabilities and activities instead of the Markov chain parameters (i.e., Eqs. 12 to 14 were applied).  

 
Table 3. Formulas for computing Markov chain parameters for the output of basic gates. 

                   
Gate P(Y) P(Y1)  P(Y2) 
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Applying Eqs. 12 to 14, and using the parameter results listed in Table 3, the probability and activity 

values of the output signal Y of these two-input AND, OR and XOR gates and the NOT gate can be 

derived and the results are shown in Table 4. 

 
Table 4.  Probability and activity values of output signals of basic gates. 

                   
Gate Yp  Yα  

NOT 
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AND 
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3.3. Calculation of Correlation Factors 

The purpose of this subsection is to provide methods for calculating/propagating correlation factors 

through basic elements of a circuit.  For two signals A and B, there are two kinds of correlations that 

need to be established: probability correlation factor donated as ABC  (corresponding to correlation 

factor between event A and event B) and transition correlation donated as 
ji BAC  (corresponding to 

correlation factor between event Ai and event Bj), where }2,1{, ∈ji and Ai and Bj are transition events 

corresponding to signal A and signal B respectively as shown in Figure 3.   

The first rule to be established is the fan-out rule associated with the circuit diagram in Figure 6.  

 
Figure 6. The circuit diagram associated with the fan-out rule. 
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The second rule is named AND rule and is associated with the circuit diagram in Figure 7.  
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Figure 7. The circuit diagram associated with the AND rule. 

 
Given correlation factors between input signals i, j and k, the correlation factors between output 

signals l and m can be derived by follows: 
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Solving Eg. (32) by applying Eqs. 30 and 31,  
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Other correlation factors (i.e., 
21mlC , 

12mlC , and 
22mlC ) can be obtained similarly: 
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Derivations of correlation factors for OR and XOR gates follow in a similar fashion.  
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Figure 8. The circuit diagram associated with the OR rule. 

Figure 8 shows the circuit diagram associated with the OR rule, and the correlation cofactors of the 

OR rule can be derived as follows:  
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Figure 9 shows the Circuit diagram associated with the XOR rule, followed by the derivation of the 

correlation factors. 
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Figure 9. The circuit diagram associated with the XOR rule. 
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Finally, Figure 10 is the Circuit diagram associated with the NOT rule, followed by the correlation 

factor derivation. 
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Figure 10. The circuit diagram associated with the NOT rule. 
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2122 kiml CC =         (50) 

2221 kiml CC =         (51) 

The results of these basic rules used to propagate correlation factors from the inputs to the output 

are listed in Table 5. These basic rules along with the transformations for determining the Markov 

chain parameters for the output of a logic function (Table 3) are the foundational components for the 

algorithm developed in the next section. 

Table 5. Set of basic rules used to calculate the output correlation factors. 
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4. Markov Chain Propagation Algorithm 

This section describes a proposed Markov Chain Propagation (MCP) algorithm for determining the 

Markov chain models for all signals of a given combinational circuit. The Markov chain signal model 

of Section 3 is employed, and it is assumed that the parameters of the model are known for the 

circuit’s primary inputs. The overall   approach   is   to   propagate signal information associated with 

the Markov chain model through the circuit in a “gate-by-gate” fashion. Recall that once the Markov  

chain  model  is  determined   for  all  signals, the signal activities and circuit power estimate are 

determined using Eq. 13 and Eq. 1, respectively. It is assumed that the given circuit is specified at the 

level of basic logic gates.  
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MCP Algorithm 

Step 1: Represent the given combinational circuit as a directed acyclic graph (DAG).  

Vertices of the DAG correspond to basic gates and edges represent signals. Two extra vertices 

(a source and a sink) are included in the DAG to accommodate the primary inputs and 

outputs of the circuit. An example of how to represent a circuit with the DAG model is 

illustrated by Figures 11(a) and 11(b).  

Step 2: Perform a topological sort [10] on the DAG to obtain an ordering of the gates.  

See Figure 11(c). 

Step 3: Transformation to two-input basic logic gates. As shown in Figure 11(d), replace all basic 

gates having more than two inputs with an equivalent sequence of two-input basic gates. 

Step 4 Partition the circuit into levels.  

 As shown in Figure 11(e), levels are defined at the input and output of each basic gate. Note 

that there is at most one gate between any two consecutive levels. 

Step 5: Successively apply propagation rules at each level.  

 Apply the propagation rules from Tables 3 and 5 for calculating the parameters of the 

Markov model for the basic gate outputs and the associated correlation factors. 
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Figure 11. Illustration of the basic steps of the MCP Algorithm. 
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In deriving the time complexity of the MCP algorithm, let N denote the number of basic gates, M be 

the number of fan-outs, and S the number of physical signals. Fan-out is associated with a signal that is 

broadcast (i.e., duplicated). To illustrate, for the circuit of Figure 11(e), N=7, M=7, S=17. Because 

two levels are associated with each gate (one is placed before the gate and the other after), there are 

2N levels for a circuit with N gates, which is 14 levels for the example shown in Figure 11(e). 

Constructing the DAG (Step 1) from the given circuit requires O(N+S) operations and it is shown in 

[10] that topological sort (Step 2) also requires O(N+S) operations. Step 3 can be finished with no 

more than S operations and at most 2N operations are needed for Step 4.  

For Step 5, there are two cases: from level Li to level Li+1 and from level Li+1 to level Li+2,where i = 

1, 3, …, 2N-1. For the first case, because there is only one gate (e.g., gate 1 when i = 5 as shown in 

Figure 11(e)) between level Li and level Li+1, the calculation needed is to propagate the inputs of the 

single gate to the output of that gate. As shown in Figure 11(e), when i=5, the three parameters of the 

output signal of gate 1 can be obtained in a constant number of operations, denoted by C1. The 

correlation factors between this output signal and other signals need to be calculated and inserted to 

the correlation factor table during this step. Because of the following three facts, it follows that the 

number of operations needed for this case of Step 5 can be expressed as 21 2SCC + :  

(i) only those signals having correlations with the input signals of the gate will have correlations 

with the output signal of the gate need to be calculated;  

(ii) the maximum length of the correlation table of every entry is no more than S; and 

(iii) the correlation factors between two signals can be done in a constant number of operations 

(assumed to be C2) using basic rules shown in Table 5.  
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For the other case there isn’t a gate between level Li+1 to level Li+2 (e.g., as shown in Figure 11(e), 

when i = 5, this corresponds to L6 to L7). The only calculation needed in this case is to calculate the 

correlation factors due to recovergent fan-outs. Assume there are ki fan-outs from level Li+1 to level 

Li+2. The needed number of operations is bounded by kiC2. 

So the total number of operations in Step 5 is thereby 

)(2)2( 212212
1

12 NSONSCNCMCSCCCk
N

j
j =++=++∑

=
−  

Combining the derived complexity results of Step 1 to Step 5, the time complexity of this MCP 

Algorithm is O(NS).  

 

5. Experimental Results 

 
The MCP Algorithm has been implemented and evaluated using several test circuits. To verify the 

accuracy of the results produced by the MCP algorithm, PSpice circuit simulations were performed 

on the same test circuits. In the simulation studies, time-series realizations from the assumed Markov 

chain model for each primary input were used to drive the circuit simulation. Estimates of signal 

probabilities were derived from the simulations by counting the fraction of time each signal took on a 

value of unity. Estimates of signal activities were derived from the simulations by counting signal 

transitions.  

Figure 12 shows a six-gate circuit used for initial testing and evaluation. The comparison between 

probability and activity values produced by the MCP Algorithm and those produced through 

simulation are provided in Table 6.   
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Figure 12. A simple test circuit. 

Table 6. Results from MCP Algorithm and Simulation Studies for the circuit of Figure 12. 

Signal Probability Signal Activity Signal 
No. MCP Simulation MCP Simulation 

8 0.750 0.749 0.180 0.178 
9 0.750 0.747 0.180 0.182 
12 0.625 0.626 0.222 0.224 
15 0.625 0.630 0.222 0.223 
16 0.563 0.556 0.247 0.249 
17 0.563 0.560 0.254 0.255 

 

The MCP Algorithm was also evaluated using a circuit named C432 from the ISCAS-85 Benchmark 

Set. For this circuit there are a total of 145 distinct signals, not including the primary inputs. (Note that 

there are a total of 432 physical signals, which includes fan-out signals.) Table 7 show the distribution 

of absolute differences between activity values computed by the MCP Algorithm and those derived 

through simulation.  These results indicate that the MCP Algorithm produces very accurate predictions 

of signal activities. 

 
Table 7. Results from MCP Algorithm and Simulation Studies  

for Circuit C432 from the ISCAS-85 Benchmark Set. 

Range of 
Difference in 

Activity Values 

Number of 
Signals 

[0, 0.01] 70 
(0.01, 0.02] 35 
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(0.02, 0.03] 19 
(0.03, 0.04] 10 
(0.04, 0.05] 10 
(0.05, 0.06] 1 

(0.06, 1] 0 
 

6. Summary and Future Work 

The problem of determining the activities of all signals of a combinational circuit is addressed in this 

paper.  A new signal model is proposed based on a Markov chain. Signal activity is easily computed 

from the parameters associated with the proposed signal model. In the proposed approach, signals with 

known Markov chain representations are propagated through the circuit to produce a Markov chain 

representation for the output of each gate in the circuit. Accuracy of the approach is verified by 

comparing signal activities produced by the proposed method with corresponding activities produced 

through simulation studies. These initial testing results will be extended in future work by testing more 

and larger circuits. 

The current circuit model assumes zero propagation delay through each gate. In reality, gates have 

non-zero delays, which results in “signal glitching.” To illustrate how non-zero delays cause glitches, 

consider an example circuit as shown in Figure 13(a).  Under the assumption of zero delay, the sample 

input signals x1, x2 and x3 result in the output signals y1 and y2 as shown in Figure 13(b). Notice that 

output signal y2 experiences no transitions. For non-zero delays (assume the delay of each gate is d) 

the output signal y2 for the same inputs is derived and shown in Figure 13(c), which has several 

“glitching” transitions. Power consumption is impacted by these signal glitches; thus, future work is 

underway to extend the work presented in this report to consider the effect of glitches due to non-zero 

propagation delays. 
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Figure 13. An example used to show how non-zero delays cause glitches. 
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