
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

SCHEDULING WORKFLOWS ON A CLUSTER OF MEMORY

MANAGED MULTICORE MACHINES

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

HIRA KAJI SHRESTHA
Norman, Oklahoma

2009

SCHEDULING WORKFLOWS ON A CLUSTER OF MEMORY
MANAGED MULTICORE MACHINES

A THESIS APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY

Dr. John K. Antonio - Chair

Dr. Sridhar Radhakrishnan

Dr. Amy McGovern

© Copyright by HIRA KAJI SHRESTHA 2009
All Rights Reserved.

Acknowledgments

I would like to thank my advisor, Dr. John K. Antonio, for his proper guidance and

support throughout my graduate studies. Dr. Antonio not only gave me interesting

research ideas and feedback, but also enriched my knowledge with valuable suggestions

and keen supervision. Dr. Antonio has always been a highly motivating person to

me ever since I have joined this research team.

I would also like to thank the other members of our research team: Tom Stock-

dale, Jeff Muehring, Nicolas Grounds, Jay Sachs, Jason Madden, Matthew Martin,

Carlos Sanchez, Josh Zuech, Kelly Crawford, Brett Marcott, Swathikah Thangaraja

and Zhenbo Xing for their contribution to this thesis. I heartily appreciate all the

discussions, meetings and presentations which are proved to be greatly helpful in this

research work.

I would like to thank my thesis committee members Dr. Sridhar Radhakrishnan

and Dr. Amy McGovern. I appreciate their questions, comments and advice.

I am very grateful to my parents Thulo Babu Shrestha and Hari Maya Shrestha,

my brother Ram Kumar Shrestha, my uncle Tej B. Shrestha and my sister Santoshi

Maya Shrestha for their unconditional love and support.

I am very thankful to all my friends for their support and well wishes. Special

thanks goes to Pushma Bajracharya for her help and support.

I would like to thank faculty members, staff members and students of the computer

science department. Special thanks goes to Barbara Bledsoe, Chyrl Yerdon and Jim

Summers for their help and support during my graduate studies.

iv

Contents

Acknowledgments iv

Abstract xiv

1 Introduction and Motivation 1

1.1 Introduction . 1

1.2 Motivation . 4

1.2.1 Service Level Agreement Penalties 5

1.2.2 Investment in Hardware . 6

1.2.3 Investment in Software Optimizations 8

1.3 Overview of the Thesis . 10

2 Related Work 14

2.1 Machine Modeling and Simulation Environments 14

2.2 Automatic Memory Management . 15

2.3 Scheduling and Load Balancing . 17

2.4 Workflow Structures and Patterns . 17

2.5 Middleware technologies . 19

2.6 SOA Technologies . 20

3 Simulation Environment 22

3.1 Overview . 22

3.2 WFG Generator . 23

3.3 Scheduler . 27

3.3.1 Scheduling Pool . 28

3.3.2 Assigner . 28

3.4 Cluster of Machines . 35

v

3.4.1 Machine Model . 35

3.4.1.1 Machine Efficiency 35

3.4.1.2 Request Executor . 42

3.5 Concluding Remarks . 43

4 Scheduling Policies 44

4.1 Overview . 44

4.2 Request Selection Policies . 44

4.2.1 First Come First Serve . 45

4.2.2 First Come Last Serve . 46

4.2.3 Earliest Deadline First . 51

4.2.4 Least Laxity First . 52

4.2.5 Proportional Least Laxity First 57

4.2.6 Shortest Workflow First . 59

4.2.7 Dynamic Shortest Workflow First 59

4.3 Machine Selection Policies . 61

4.3.1 Best Pre-Mapping . 62

4.3.2 Best Post-Mapping . 64

4.3.3 Best CPU . 66

4.3.4 Best Memory . 67

4.3.5 Least Deadline Missed . 69

4.3.6 Least Work Remaining . 71

4.4 Concluding Remarks . 74

5 Simulation Studies 75

5.1 Experimental Setup . 75

5.1.1 Case Study One . 75

5.1.2 Case Study Two . 77

5.1.3 Case Study Three . 79

5.1.4 Case Study Four . 80

5.2 Results . 81

5.2.1 Threshold Analysis . 84

5.2.2 Scheduling Policies Analysis 85

5.2.2.1 Case Study One . 87

5.2.2.2 Case Study Two . 89

vi

5.2.2.3 Case Study Three 93

5.2.2.4 Case Study Four . 95

5.2.3 Resource Requirement Analysis 97

5.3 Concluding Remarks . 104

6 Conclusions 105

7 Future Work 107

Bibliography 110

A Resource Analysis Table 116

Acronyms 133

vii

List of Tables

3.1 Definitions of CPU and heap memory requirements for request r. . . 25

4.1 WFG Parameters. 46

4.2 Example 1 for PLLF. 58

4.3 Example 2 for PLLF. 58

5.1 Parameter values for Case Study One. 77

5.2 Parameter values for Case Study Two. 79

5.3 Parameter values for Case Study Three. 79

5.4 Parameter values for Case Study Four. 80

5.5 Optimal Threshold Table. 87

5.6 Statistics for simulation of Case Study One. 91

5.7 Statistics for simulation of Case Study Two. 92

5.8 Statistics for simulation of Case Study Three. 96

5.9 Statistics for simulation of Case Study Four. 98

A.1 Statistics for simulation of Case Study One with 16 quad-core machines.117

A.2 Statistics for simulation of Case Study Two with 16 quad-core machines.118

A.3 Statistics for simulation of Case Study Three with 16 quad-core machines.119

A.4 Statistics for simulation of Case Study Four with 16 quad-core machines.120

A.5 Statistics for simulation of Case Study One with 32 quad-core machines.121

A.6 Statistics for simulation of Case Study Two with 32 quad-core machines.122

A.7 Statistics for simulation of Case Study Three with 32 quad-core machines.123

A.8 Statistics for simulation of Case Study Four with 32 quad-core machines.124

A.9 Statistics for simulation of Case Study One with 64 quad-core machines.125

A.10 Statistics for simulation of Case Study Two with 64 quad-core machines.126

A.11 Statistics for simulation of Case Study Three with 64 quad-core machines.127

A.12 Statistics for simulation of Case Study Four with 64 quad-core machines.128

viii

A.13 Statistics for simulation of Case Study One with 128 quad-core machines.129

A.14 Statistics for simulation of Case Study Two with 128 quad-core machines.130

A.15 Statistics for simulation of Case Study Three with 128 quad-core ma-

chines. 131

A.16 Statistics for simulation of Case Study Four with 128 quad-core machines.132

ix

List of Figures

1.1 Example of parallel processing. 2

1.2 Interaction between service consumers and service providers. 3

1.3 Orchestration in SOA. 3

1.4 Organizational costs associated with SLA violation penalties. Dashed

line represents short-term monetary costs; solid line represents long

term cost. 7

1.5 Moore’s Law from 1970 - 2008 [9, 1, 2]. 8

1.6 Organizational cost associated with Hardware complexity. Dashed line

represents short-term monetary costs; solid line represents long term

cost. 9

1.7 Organizational cost associated with investing in software optimization.

Dashed line represents short-term monetary costs; solid line represents

long term cost. 9

1.8 Organizational value in terms of financial capital and intellectual capital. 10

3.1 Major components of the scheduling framework. 23

3.2 Sample WFG with one of five RCs encircled. 24

3.3 Sample WFG (left) and its representation as a sequence of compound

nodes (right). 24

3.4 Components of Scheduling Pool. 28

3.5 State diagram of a request. 29

3.6 Snapshot of Scheduling Pool at the beginning of scheduling instant ti

where the upper part represents WFGs residing in the WFG Pool, the

middle part represents RCs under consideration, and the bottom part

represents ready requests. 30

3.7 Snapshot of Scheduling Pool after assignment is made at scheduling

instant ti. 32

x

3.8 Snapshot of Scheduling Pool at scheduling instant ti+1. 33

3.9 Pseudocode for Assigner. 34

3.10 Illustration of how a machine’s efficiency value affects the time required

to execute a request on the machine. 37

3.11 Ideal and typical curves for ec for quad-core machine. 39

3.12 Number of garbage collection as a function of relative heap size for a

copying garbage collector, derived from [15]. 40

3.13 Typical curves for eh associate with Eq. 9. 41

3.14 Derived machine efficiency surface based on the idealized curve for ec

in Fig. 3.12 and the eh curve for K = 10 in Fig. 3.13. 42

4.1 Snapshot of the Scheduling Pool at scheduling instant ti before assign-

ment. 47

4.2 Snapshot of the Scheduling Pool at scheduling instant ti after assignment. 48

4.3 Snapshot of the Scheduling Pool at scheduling instant ti+1 before as-

signment. 49

4.4 Snapshot of the Scheduling Pool at scheduling instant ti+1 after assign-

ment. 50

4.5 Pseudocode for the FCFS. 51

4.6 Pseudocode for FCLS. 51

4.7 Snapshot of the Scheduling Pool at scheduling instant ti after assignment. 53

4.8 Snapshot of the Scheduling Pool at scheduling instant ti+1 before as-

signment. 54

4.9 Snapshot of the Scheduling Pool at scheduling instant ti+1 after assign-

ment. 55

4.10 Pseudocode for the EDF. 56

4.11 Pseudocode for LLF. 57

4.12 Pseudocode for PLLF. 58

4.13 Snapshot of the Scheduling Pool at time instant ti before assignment. 60

4.14 Snapshot of the Scheduling Pool at time instant ti after assignment. . 61

4.15 Pseudocode for SWF. 61

4.16 Snapshot of the Scheduling Pool at time instant ti after assignment. . 62

4.17 Pseudocode for DSWF. 63

4.18 Pre and Post mapping of a request r on to two quad-core machines. . 64

4.19 Pre and Post mapping of a request r on to two quad-core machines. . 64

xi

4.20 Pseudocode for BPRM. 65

4.21 Pseudocode for BPOM. 66

4.22 Mapping of a request r on to two quad-core machines using BC. . . . 67

4.23 Mapping of a request r on to two quad-core machines using BC. . . . 67

4.24 Pseudocode for BC. 68

4.25 Mapping of a request r on to two quad-core machines using BM. . . . 68

4.26 Pseudocode for BM. 69

4.27 Mapping of a request r on to two quad-core machines using LDM. . . 70

4.28 Pseudocode for LDM. 71

4.29 Mapping of a request r on to two quad-core machines using LWR. . . 72

4.30 Mapping of a request r on to two quad-core machines using LWR. . . 73

4.31 Pseudocode for LWR. 74

5.1 Time-line illustrating the three epochs. 76

5.2 Arrival count realization for Case Study One. 78

5.3 Arrival count realization for Case Study Two. 78

5.4 Arrival count realization for Case Study Four. 81

5.5 The sigmoid cost function. 83

5.6 The quadratic cost function. 83

5.7 The cumulative cost of all WFGs by efficiency threshold for PLLF

assuming sigmoid cost in Case Study One. 85

5.8 Percentage of workflows as a function of normalized tardiness for PLLF

in Case Study One. 85

5.9 The cumulative cost of all WFGs by efficiency threshold for PLLF

assuming sigmoid cost in Case Study Four. 86

5.10 Percentage of workflows as a function of normalized tardiness for PLLF

in Case Study Four . 86

5.11 The cumulative running cost of all WFGs by born time for DSWF,

PLLF and FCFS assuming sigmoid cost in Case Study One. 88

5.12 Percentage of workflows as a function of normalized tardiness for DSWF,

PLLF and FCFS in Case Study One. 89

5.13 The cumulative running cost of all WFGs by born time for DSWF,

PLLF and FCFS assuming sigmoid cost in Case Study Two. 90

5.14 Percentage of workflows as a function of normalized tardiness for DSWF,

PLLF and FCFS in Case Study Two. 90

xii

5.15 The cumulative running cost of all WFGs by born time for DSWF,

PLLF and FCFS assuming sigmoid cost in Case Study Three. 94

5.16 Percentage of workflows as a function of normalized tardiness for DSWF,

PLLF and FCFS in Case Study Three. 94

5.17 The cumulative running cost of all WFGs by born time for DSWF,

PLLF and FCFS assuming sigmoid cost in Case Study Four. 95

5.18 Percentage of workflows as a function of normalized tardiness for DSWF,

PLLF and FCFS in Case Study Four. 97

5.19 The cumulative running cost of all WFGs by born time for FCFS with

multiple cluster size operating on the Case Study One. 99

5.20 Percentage of workflows as a function of normalized tardiness for FCFS

with multiple cluster size operating on the Case Study One. 99

5.21 The cumulative running cost of all WFGs by born time for PLLF with

multiple cluster size operating on the Case Study One. 100

5.22 Percentage of workflows as a function of normalized tardiness for PLLF

with multiple cluster size operating on the Case Study One. 100

5.23 The cumulative running cost of all WFGs by born time for DSWF with

multiple cluster size operating on the Case Study One. 101

5.24 Percentage of workflows as a function of normalized tardiness for DSWF

with multiple cluster size operating on the Case Study One. 101

5.25 Cumulative cost as a function of number of quad-core machines as-

sumed in the cluster for the Case Study One. 102

5.26 Cumulative cost as a function of number of quad-core machines as-

sumed in the cluster for the Case Study Two. 103

5.27 Cumulative cost as a function of number of quad-core machines as-

sumed in the cluster for the Case Study Three. 103

5.28 Cumulative cost as a function of number of quad-core machines as-

sumed in the cluster for the Case Study Four. 104

7.1 Possible states of a Request assigned to a Machine. 108

xiii

Abstract

Workflows are modeled with directed acyclic graphs in which vertices represent com-

putational tasks, referred to as requests, and edges represent precedent constraints

among requests. Associated with each workflow is a deadline that defines the time

by which all computations of a workflow should be complete. Workflows are submit-

ted by numerous clients to a scheduler that assigns workflow requests to a cluster of

memory managed multi-core machines for execution. The objective of the scheduler

is to minimize missed workflow deadlines. The characteristics of workflows are as-

sumed to vary along several dimensions, including: arrival rate, periodicity, degree

of parallelism, and number of requests. For the purpose of this thesis, an overall

scheduling policy is defined by two underlying components: (1) a request selection

policy and (2) a machine selection policy. A total of forty-two scheduling policies

are evaluated, which are defined according to the cross-product of seven underlying

request selection policies and six machine selection policies. The performance of each

policy is determined through extensive simulation studies. All of the machine selec-

tion policies rely on a specified loading threshold. The simulation studies conducted

reveal the existence of an optimal threshold value for each machine selection policy

that results in relatively comparable performance across all machine selection poli-

cies, for the scenarios considered. Of the seven request selection policies evaluated,

three are newly introduced, and the remaining are derived from previously known

policies from the literature. From the studies conducted, it is determined that one of

the newly introduced request selection policies outperforms the others evaluated in

xiv

terms of minimizing a measure of normalized tardiness.

xv

Chapter 1

Introduction and Motivation

1.1 Introduction

The demand of computing power is increasing day by day due to the widespread use

and innovative applications of computer technology. With the increasing demand of

processing capacity, hardware manufacturers are trying to keep pace with Moores’

law [1, 2] by delivering faster processors. To fulfill computational demands, multiple

processors can be integrated into one system. Computer systems having multiple

processors are called parallel systems [3]. Fig. 1.1 illustrates an example of parallel

processing. In the figure there are seven mathematical calculation blocks that are

represented in a graph structure. The edges in the graph define the data dependency

among the blocks. After the execution of the first block, the following five calcu-

lations can be executed in parallel. Fig. 1.1 shows the execution of those parallel

computations using a quad core machine.

Parallel systems can be linked together to provide massive computational resources

called distributed systems [3]. When users send processing requests to these systems,

the allocation of resources to requests becomes very important. The decision making

process that assigns requests to the available resources over time is referred to as

scheduling. When the allocation of requests to resources is determined in advance

1

y1 y2 y3 y4 y5

y

x

Processor 1

y1

Processor 2

y2

Processor 3 Processor 4

y3 y4 y5

x = 10

y1 = e
x

y2 = log x

y3 = sin x + cos x

y4 = 7 * x
2

y5 = x + x
2
 + x

3
 + x

4

y = y1 + y2 + y3 + y4 + y5

mapping
representation

Figure 1.1: Example of parallel processing.

then it is called static scheduling. If the allocation is determined upon the request’s

arrival to the system, it is known as dynamic scheduling [3]. While scheduling,

various parameters need to be considered, and these can be divided into two cate-

gories: request parameters and resource parameters. Request parameters include the

characteristics of a request, such as CPU requirement, memory requirement, data de-

pendency and execution time. On the other hand, resource parameters include CPU

capacity, memory capacity and information about currently running requests. Having

such information is crucial for proper assignment of requests to resources. Finding

the best association between requests and resources is a very complex problem. Gen-

erally, the scheduling problem under such a scenario is known to be NP-complete

[3].

This thesis deals with scheduling in a service oriented architecture (SOA). A SOA

includes a collection of computational services that can be used to support require-

ments for complex and evolving applications. In general, services that compose an

SOA may call one or more other services to perform part of the calling service’s re-

quired computation. An SOA provides a platform for distributed computing where

a service provider and service consumer interact with each other. Fig. 1.2 shows a

block diagram where service consumers interact with service providers by sending ser-

vice requests and in return they receive responses from those service providers. In an

SOA, services can exist over heterogeneous platforms. For instance, services hosted

on both Unix and Windows platforms can communicate by using SOA technology.

2

Service

Consumers

Service

Providers

service request

service response

Figure 1.2: Interaction between service consumers and service providers.

M
id

d
le

w
ar

e

Service 1
S

er
v
ic

e

O
rc

h
es

tr
at

io
n

Service 2

Service N

...

Client 1

Client 2

Client M

...

Figure 1.3: Orchestration in SOA.

Service orchestration is the process of integration, coordination, automation and

management of services in a composite service environment. It plays a vital role in

the automation of web services execution by combining multiple services. The orches-

tration executes services in a particular order, according to the business rules, data

dependency and other constraints. Fig. 1.3 shows a block diagram of an orchestration

setup where orchestration of services is done with the help of middleware technolo-

gies e.g., JMS, COBRA, MQ, AMQP [4, 5]. When clients send a service request, the

service orchestration module designs an execution plan. The orchestration module

then routes the service requests with the help of middleware brokers to the machines

running requested services.

The functionality of services in an SOA can be strongly influenced by business

3

requirements and domain-specific terminology and definitions. As a result, new de-

velopments and revisions of applications regularly occur at the service abstraction

level. The SOA approach provides a foundation upon which enterprise-level appli-

cations can be constructed. This thesis considers an SOA that is supported by an

underlying cluster of memory managed multicore machines.

The SOA architecture described in the this section has some performance chal-

lenges associated with using middleware technology in passing messages between ser-

vice consumers and service providers. The performance of the system can be enhanced

by adding an orchestration layer on top of the middleware technology. The purpose

of adding this layer on top of the existing framework is to provide quality of service

(QoS) by implementing service level agreements (SLA). The focus of this thesis is

on a component of orchestration dealing with the scheduling of service requests to

system resources.

In the following section, further motivation behind this research as well as an

overview of the proposed scheduling framework is discussed.

1.2 Motivation

There are various factors that need to be considered when improving the computa-

tional capabilities and infrastructure of an organization. When serving its clients,

an organization should seek to find an optimal balance between satisfying clients’

requirements and determining the appropriate quantity and complexity of resources

required to do so. This section provides an organizational perspective to analyze

these challenges. To enhance overall performance, an organization has to deal with

questions that compete for limited available investment:

� How much should be invested in hardware?

� How much should be invested in optimizing system software?

4

� How much should be paid in penalties to clients due to violation of service

agreements?

It is generally difficult to properly balance investment in the aforementioned ques-

tions. The following section analyzes these issues in terms of cost, value and risk of

each approach.

1.2.1 Service Level Agreement Penalties

An SLA [6, 7, 8] is a formal negotiated agreement between a service provider and

a service consumer that specifies the level of service. The SLA specifies performance

metrics (like response times, deadlines), and payment penalties for failing to meet the

terms of the agreement. The individual performance metrics are called service level

objectives (SLOs) [7]. For example, an SLO can be expressed in terms of performance

goals like average response time for a set of operation, or can also be expressed in

terms of a deadline by which the operation should be completed.

SLA monitoring issues are described in [6, 7, 8]. In [6], a powerful theory

regarding the SLA penalties is provided that is based in terms of utility, probability,

and cost. The utility not only covers the monetary cost but also the goodwill and

other parameters like renewal of service. Therefore the SLA cost can be non-linear

relative to the monetary values that has to be paid through penalties.

SLA implementation is very important in an SOA to ensure quality of service

(QoS). IBM’s Web Service Level Agreement framework [7] describes the specification

and monitoring of SLAs for Web Services. It enables providers and consumers to

define a wide variety of SLAs and the way they are measured. Similarly, IBM’s

SAM [8] describes the business oriented service level management (SLM). It has an

e-business SLA execution manager which implements an SLA.

An SLA penalty [6] is the cost associated with delayed processing of requests.

5

The delayed processing of request may be either due to inadequate resources or mal-

functioning of resources. In both cases, there exists three courses of action that the

service provider may pursue:

� Bear the cost penalty associated with SLA violation;

� Add hardware;

� Invest in system software optimizations.

Generally, an organization pursues all courses of action at some level. Sometimes

it may be better to choose only the first action, whereas, most of the time, it is more

natural to consider the other two actions. The scenario where the first option might

look favorable is described as follows. Consider a case where the cost due to SLA

violation is very low compared to the other options. In this scenario if the goal of

an organization is to minimize the monetary cost, then bearing cost associated with

SLA violation could be a viable option. However, if there are more frequent and high

volumes of SLA violations then the goodwill cost associated with SLA violation is not

linearly related to the monetary amount that is paid. If the company’s goodwill goes

down, then old clients may not continue to buy the services and new clients may not

join, which would ultimately affect the health of the organization. The cost associated

with the SLA violation is illustrated graphically in Fig. 1.4. The dash line represents

the net cost associated with SLA violation, whereas, the solid line represents the

actual value as a result of cumulative effect of cost due to SLA violation, renewal

rate, and goodwill.

1.2.2 Investment in Hardware

In 1965, Gordon Moore estimated the pace of technology in what is now known as

Moore’s law. According to this law, the processing power of hardware doubles every

6

O
rg

a
n

iz
a
ti
o

n
a

l
C

o
s
t

($
)

SLA Violation Penalties ($)

Figure 1.4: Organizational costs associated with SLA violation penalties. Dashed line
represents short-term monetary costs; solid line represents long term cost.

18 to 24 months [1, 2]. Fig. 1.5 shows that the prediction by Moore has been fairly

accurate.

To increase the performance of a system, adding hardware is often the first action

considered by an organization. The reason for choosing hardware enhancement is

that it can be faster and easier than attempting to optimize software. Having higher

processor speeds results in faster processing of CPU-bound requests. This option

seems to be very reasonable to improve throughput of the system dealing with CPU

bound requests. In terms of cost, getting the latest hardware may not justify the

performance gains. For example, the cost of a quad core machine with 16GB of RAM

is much less than eight-times lower the cost of a 32 core machine with 128GB of RAM.

There are some instances in which the scaling hardware yields no performance gain.

System level issues, network delay and process scheduling may not be addressed by

simply adding hardware.

Fig. 1.6 shows the cost associated with adding hardware. The dashed line shows

the cost in an ideal scenario (following Moore’s law) but the actual cost can increase

7

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

10,000,000,000

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

N
u

m
b

e
r

o
f

Tr
an

si
st

o
rs

Year

Six-Core Xeon 7400

Intel 4004

Pentium II Pentium III

Core 2 Duo

Dual-Core Itanium 2

Figure 1.5: Moore’s Law from 1970 - 2008 [9, 1, 2].

non-linearly due to the overhead of maintenance/support and diminishing return on

performance due to scalability issues.

1.2.3 Investment in Software Optimizations

Software optimization can be challenging and time consuming task. Perhaps due to

these reasons, the rules for when to optimize [10] are set forth as: ”Don’t do it”;

and ”Don’t do it, yet”. These statements are made in the context of performing

code level optimization. Because changing code for small performance improvement

is not worthy due to risk of missing or changing the functionality of the software.

As stated previously, adding more hardware is not always a viable action because

until and unless resources are being efficiently utilized, the resource inefficiencies

remain unresolved. In order to enable scalable platform, software optimization is

often necessary. Fig. 1.7 shows that investing in software optimization can have a

high initial cost, in long run it can actually benefit an organization because of its

expected performance gain and high return on investment (ROI).

8

O
rg

a
n

iz
a

ti
o
n

a
l
C

o
s
t

($
)

Hardware Complexity Investment ($)

Figure 1.6: Organizational cost associated with Hardware complexity. Dashed line
represents short-term monetary costs; solid line represents long term cost.

O
rg

a
n

iz
a
ti
o

n
a

l
C

o
s
t

($
)

Software Optimization Investment ($)

Figure 1.7: Organizational cost associated with investing in software optimization.
Dashed line represents short-term monetary costs; solid line represents long term cost.

9

Organizational

Value

Financial

Capital

Intellectual

Capital

Human

Capital

Structural

Capital

Customer

Capital

Figure 1.8: Organizational value in terms of financial capital and intellectual capital.

Investing in software optimizations results in investing in more people which not

only has direct benefits to an organization but also the indirect benefits in the form

of intangible assets of an organization. In broader view, organizational assets is the

collective sum of human centered assets, intellectual capital assets, infrastructure

assets, and market assets. Fig 1.8 illustrates the organizational value in terms of

tangible and intangible assets [11, 12].

The work in this thesis is motivated by the benefit associated with an organization

choosing to investing in developing system software optimizations as a viable action

in minimizing organizational costs. The particular optimization approach studied is

in the scheduling of computational tasks for a collection of computing resources.

1.3 Overview of the Thesis

An application supported by an SOA is modeled in this thesis as a workflow graph

(WFG), which is a directed and acyclic graph that defines precedence constraints

among service requests required by the application. WFGs can vary greatly in size

and structure. For example, a small WFG may contain just a few requests (i.e.,

vertices) while a large WFG may contain thousands of requests. Regarding structure,

10

at one extreme a WFG may represent a single chain of requests in which no two

requests may be executed in parallel. At another extreme, the structure of a WFG

may contain numerous independent chains of requests in which requests belonging to

distinct chains may be executed in parallel.

In the framework considered here, WFGs are assumed to be submitted by multiple

sources (i.e., clients) to a scheduler. Associated with each submitted WFG is a

deadline that defines the time by which all requests of the WFG should complete

execution. The main objective of the scheduler is to assign requests of submitted

WFGs to machines of the cluster so as to reduce missed deadlines of all WFGs.

The performance of different scheduling polices are evaluated using a simulation

environment that provides the scheduler with state information related to the requests

of the submitted WFGs and performance/loading information related to machines in

the cluster. Four possible states of a request are: blocked; ready; executing; and

completed. When all requests of a WFG reach the completed state, the entire WFG

is defined as completed. The simulation environment models each machine in the

cluster of memory-managed multicore machines. CPU and memory resources are the

two primary factors used to characterize machines.

The scheduler is assumed to have estimates for the CPU and memory require-

ments of each request in a WFG. As request-to-machine assignments are made by the

scheduler, the simulation environment updates and tracks the aggregate CPU and

memory loading of each machine based on the CPU and memory requirements of all

requests currently executing on the machine. The instantaneous relative performance

(i.e., efficiency) of a machine is defined according to a function that maps aggre-

gate CPU and memory loading to an efficiency value for that machine. Assigning

a request to a machine increases the aggregate CPU and/or memory loading on the

machine, which generally decreases the performance of the machine. Likewise, after

a request completes execution, the performance (efficiency) of the machine on which

11

the request was executing generally increases because the aggregate loading on the

machine decreases upon a request’s completion.

In addition to specifying the machine on which each request is assigned for execu-

tion, the scheduler defines when each assigned request begins executing. To illustrate,

consider a situation in which all machines of the cluster are currently loaded to near

their capacities. In such a case, an intelligent scheduler may not choose to imme-

diately assign newly ready requests to any machine because doing so would likely

cause machine overloading thus, extending the completion time of requests currently

executing due to a decrease in machine efficiencies.

Based on the assumed machine model, overloading a machine can cause dramatic

performance degradation. This aspect of the machine model enables the evaluation of

a scheduling policy’s ability to determine the appropriate trade-off between starting

a request on a machine that is relatively loaded versus holding a request until such

a time that the loading of a machine decreases, due to other requests completing

execution. Starting a request on a relatively loaded machine could delay the finish

time of all requests assigned to that machine to unacceptable levels. On the other

hand, delaying the start of requests’ execution too long increases the time required

for requests to finish, which can also produce undesirable results in terms of meeting

overall WFG deadlines.

Three types of WFGs are characterized: Batch, Webservice, and Interactive. The

arrival times of Batch WFGs generally have daily periodicity, which distinguishes

them from the other WFG types. Furthermore, Batch WFGs generally have a larger

number of requests compared to the other two WFG types. The Webservice WFGs

generally have more requests than Interactive WFGs. In addition to differences in

arrival processes and number of requests, the different WFG types have differences

related to their structure and their deadline characteristics.

The approach to scheduling and executing WFGs proposed in this thesis is unified

12

in the sense that one scheduling mechanism is employed to assign requests from multi-

ple WFG types to machines of a single cluster. A unified approach for scheduling and

executing all types of WFGs has advantages over possible alternatives in which sepa-

rate dedicated scheduling mechanisms and/or clusters of machines are used to support

each type of WFG. Having multiple dedicated schedulers/clusters is more difficult to

maintain (compared to a unified approach) because over time each scheduler/clus-

ter would likely evolve unique features and support requirements, thus complicating

the support and operation of the overall infrastructure. Furthermore, as new types

of WFGs (i.e., new applications, products, and services) are developed, previously

specialized schedulers/clusters may become obsolete or less efficient.

The remainder of the thesis is organized in the following manner. Chapter 2

includes an overview of related work. Chapter 3 describes the simulation environ-

ment developed to evaluate different scheduling policies. Chapter 4 describes specific

scheduling policies considered in this thesis. Chapter 5 provides the results of simu-

lation studies, followed by concluding remarks in Chapter 6.

13

Chapter 2

Related Work

Previous related work is reviewed in four broad areas: (1) machine modeling and

simulation environments; (2) automatic memory management; (3) scheduling and

load balancing; (4) workflow structures and patterns; (5) middleware technologies;

and (6) SOA technologies.

2.1 Machine Modeling and Simulation Environ-

ments

Considerable work has been published related to modeling of machines in distributed

environments. Much of the past research in this area has focused on modeling and

predicting CPU performance, e.g., [13, 14]. The machine model described in the

present thesis (refer to Chapter 3) relies on assumed knowledge of the characteristics

of the requests (i.e., computational tasks); it is similar in a sense to the static approach

proposed in [13]. The basic premise of the work in [13] is to predict the availability,

i.e., performance, of a time-shared system under different loading scenarios. Two CPU

availability prediction models are proposed: (1) Static Process Assignment Prediction

(SPAP), which predicts availability based on prior knowledge of task characteristics

14

and the state of system; and (2) Dynamic Process Assignment Prediction (DYPAP),

which predicts availability using a proposed monitoring tool. The DYPAP monitoring

tool does not rely on knowledge of task characteristics, but instead uses real-time

measurements in predicting CPU availability.

Methods for predicting running time of tasks executing in a shared grid envi-

ronment are described in [14]. The approaches described in [14] rely on real-time

dynamic measurements; they do not assume prior knowledge of computational work-

load characteristics. One basic approach proposed in [14] is to employ polynomial

fitting techniques to a machine’s recent past performance values as a means for pre-

dicting future performance. Another approach proposed is based on a technique that

compares a machine’s recent sequence of performance measures to stored past perfor-

mance time series to discover similar patterns, which are then used to predict future

performance.

In contrast to [14], the distributed system modeled in the present thesis is a

dedicated system. Although the WFGs are submitted from a number of different users

(i.e., clients), the execution of the WFGs underlying requests are scheduled by one

scheduler. Furthermore, the WFGs themselves are implemented on top of a common

SOA. In this type of environment, meaningful historical computational characteristics

can be compiled by logging past execution performance of WFGs submitted by each

client.

2.2 Automatic Memory Management

In memory managed systems, the effect of long and/or frequent garbage collec-

tions can lead to undesirable – and difficult to predict – degradations in system

performance. Garbage collection tuning, and predicting the impact of garbage col-

lections on system performance, are important and growing areas of research, e.g.,

15

[15, 16, 17, 18, 19]. To estimate the overhead associated with various garbage collec-

tors, experiments were designed and conducted in [16, 17] to compare the performance

associated with executing an application assuming automatic memory management

versus explicit memory management. The machine model proposed in the present

thesis accounts for the overhead associated with automatic memory management.

In [15], it is empirically shown that the negative effects of garbage collection can

be avoided if the available heap memory is at least seven times the total amount

of required memory, defined as the maximum reachable heap space throughout the

lifetime of a program execution. While this result is interesting and insightful, it

is generally not practical to assume/require an operational system be endowed with

nearly an order of magnitude more memory than is actually required.

Similar to the results reported in [15], it is shown in [16, 17] that automatic

memory management performs comparable to, and sometimes better than, explicit

memory management provided that the heap size is no less than five times the required

memory. Furthermore, [16, 17] includes detailed evaluations and measurements that

quantify the degree of performance degradation observed when the heap size is less

than five times the memory required. It is shown that as extra heap space of a

machine is reduced below a critical value, the machine’s performance can degrade

dramatically, i.e., execution times may increase by an order of magnitude or more if

there is little or no extra heap space. The machine model used in the present thesis

defines the performance of a memory managed machine based on a curve derived

from empirical results reported in [16, 17]. This curve is used to map a measure of

memory loading to a corresponding measure of machine performance.

16

2.3 Scheduling and Load Balancing

Formulations of realistic scheduling problems are typically found to be NP-complete,

hence heuristic scheduling policies are generally employed to provide acceptable schedul-

ing solutions, e.g., refer to [19, 20, 21, 22, 23, 24, 25]. The scheduling evaluations

conducted in the present thesis account for the impact that garbage collection has on

a machine’s performance. Examples of other memory-aware scheduling approaches

are described in [19, 26].

Load balancing involves techniques for allocating workload to available machine(s)

in a distributed system as a means of improving overall system performance. Exam-

ples of both centralized and distributed load balancing approaches are described in

[20]. The scheduling framework developed in the present thesis incorporates aspects

of load balancing in the sense that the scheduler only assigns requests to machines

that have loading factors (for CPU and/or memory) that are below defined thresholds.

In typical load balancing schemes, the load assigned to a given machine is compared

with the overall average load on the entire system. If this comparison reveals that

the given machine is assigned more load than the system average, then excess load

on the machine is assigned to more lightly loaded machines; otherwise the machine

is declared to be available to take more load.

2.4 Workflow Structures and Patterns

Workflow technology is being widely used to model the business process [27, 28, 29,

30, 31, 32]. In recent days, workflows have evolved to model the business requirements

thereby providing some opportunity for reengineering, optimization and automation

[27, 28]. It models the business processes and requirements as workflow specifications

[27] which can be defined in terms of some structure and pattern [29].

17

Workflow specifications can be analyzed in terms of control flow, data represen-

tation, and resource usage [28]. The control flow describes sequence of activities

where activities refer to some volume of work or task. The control flow uses the

data for processing the task defined in workflow specification. The resource is also

a part of workflow specification which include the infrastructure required to process

the business requirements.

Workflows functionality can be described in terms of task sequencing, parallelism,

synchronization and iteration. These functionalities are some of the proven business

process automation building blocks [28]. Based on the business requirements, the

structure and pattern of workflows are defined. There exists multiple categories of

workflow patterns, some of them are: workflow control flow patterns [29]; workflow

data patterns [30]; and workflow resource patterns [31]. The workflow control pat-

terns define the control flow that might be encountered during modeling and analyzing

workflow. Twenty such patterns are defined in [29]. The workflow data patterns in

provide various ways in which data is represented and utilized in workflows. In [30],

thirty-nine data patterns are described. The workflow resource patterns define various

ways in which resources are represented and utilized in workflows. In [31], forty-three

workflow resource patterns are identified, which describe the manner in which work

items are distributed and executed by resources in workflow systems.

Various classifications of scientific workflows for grid system are developed in [32].

In the paper, workflows are defined in terms directed acyclic graphs having multiple

scientific tasks with some dependencies. The paper provides a taxonomy for grid

workflow system which focuses on workflow design, scheduling, fault management

and data movement.

Workflows represented in this thesis are defined as directed acyclic graphs similar

to [32] where the directed edge in the graph represents the precedance constraint that

exist between nodes of the graph. A node in the graph which represents a service

18

request in a Service Oriented Architecture (SOA) [33, 34], posses some amount of

computational work to be done similar to [28]. Three types of workflows are defined,

namely, Interactive, Batch and Webservice. The graph structures for each type of

workflows are different. The degree of parallelism [28] for Batch is higher than

Webservice workflows, whereas, Interactive generally have sequential processing [28].

this same basic workflow model/taxonomy is adopted in the present thesis.

2.5 Middleware technologies

Distributed applications can be spread across various networks and even across mul-

tiple geographic locations. Middleware technologies are being used to make them

work together. The middleware serves as a software layer between those different

applications, thereby providing a common platform for heterogeneous computing en-

vironments. Message Oriented Middleware (MOM) is being used to pass messages

across different applications. Some of the MOM technologies are: Java Message Ser-

vice (JMS) and Advanced Message Queuing Protocol (AMQP) [4, 5, 35].

JMS defines the standard for messaging in enterprise applications. It provides

an interface for communication among enterprise applications through its application

programming interface (API). JMS supports both synchronous and asynchronous

communication between sender and receiver applications [4]. It defines two com-

munication patterns, Point to Point and Publish/Subscribe. A sender application

using point to point messaging uses a queue as a destination where multiple senders

can send messages. Receiver applications can extract messages from the queue. A

single message can only be consumed by a single receiver application. An application

using publish/subscribe communication uses a topic as a destination. Publishers can

publish messages to a topic that get delivered to all the subscribers of that topic.

19

There are various JMS implementations by different vendors for example: Open-

JMS, ActiveMQ, WebsphereMQ, EBA Weblogic, JBossMQ, FioranoMQ, Tibco, Son-

icMQ and SwiftMQ [5, 36]. An analytical model for describing the message through-

put is presented in [36], where message throughput for FioranoMQ, SunMQ and

WebsphereMQ are evaluated. The JMS performance modeling and benchmarking is

done in [37]. It provides detailed performance analysis of EBA Weblogic servers.

The performance improvements of JMS based applications are presented in [38].

AMQP is one of the currently evolving MOM technologies that defines standards

for message publishing, queuing, and routing [35]. The main purpose of AMQP is to

provide interoperability between multiple middleware vendors and implementations.

It defines two protocols: a low level wire protocol and an application level protocol

which enables enterprise application to pass messages across different platforms [35].

The middleware broker has exchanges and message queues. The sender application

sends messages to the exchange which then routes message to the message queues

and finally the consumer application consumes message from those queues [35].

JMS and AMQP are being widely used in a number of areas, for example: financial

applications, health care applications and manufacturing application [5, 39]. AMQP

addresses the interoperability issue of different JMS implementations. The operation

of these middleware guarentees the first in first out (FIFO) message passing [4, 40].

2.6 SOA Technologies

SOAs [33, 34] are widely being used by enterprise business applications. SOA use

services as building blocks for applications where services interact with each other by

sending and receiving messages. Extended Service Oriented Architecture (ESOA) [33]

was introduced to provide advanced functionality for e-business applications which

provides service composition and coordination for grid services. In SOA, service

20

providers publish services on the internet that is can be accessed by service consumer

anytime and anywhere in the world.

A number of standards and products are available that facilitate service devel-

opment and interoperability of an SOA, including WSDL, UDDI and SOAP [33].

WSDL is a standard XML format for describing web services that contain a set of

definitions as follows: types (defines data types); messages (defines messages); port-

Type (defines operations supported); and binding (defines communication protocals).

UDDI uses WSDL for defining interfaces to web services. The UDDI specifica-

tion provides a mechanism for providing and accessing services over the Internet.For

example a new web service can be added to UDDI registry, which can be accessed

programmatically. XML is used to define specification of all APIs in UDDI which is

then wrapped in SOAP envelope and tranported over HTTP.

Middleware technologies are also being used by the SOA approach for the inter-

operability of services running in various platforms [41]. Services can use middleware

message passing interfaces, for example JMS and AMQP, to send and receive mes-

sages. These Message Oriented Middleware (MOM) technologies provide the stan-

dards for storing, queuing and routing various types of messages.

SOA technologies are critical for implementing actual production systems. The

focus of the present thesis, however, is on determining good scheduling approaches

(which would eventually be implemented in a production system). The next chapter

describes the simulator environment that has been developed to aid in the evaluation

of scheduling policies.

21

Chapter 3

Simulation Environment

3.1 Overview

The block diagram of Fig. 3.1 illustrates the three major components of the simulation

environment, which is referred to as scheduling framework. The framework presented

in the figure models a real world environment where clients send their requests in

the form of workflow graphs (WFGs) to the system. The system then executes those

WFGs and sends the results back to clients. The WFG Generator in the figure

models the client’s requests in the form of three categories of WFGs, i.e., Interactive,

Batch and Webservice. WFG Generator generates these three categories of WFGs and

sends them to the Scheduler. The Scheduler maintains those WFGs in the Scheduling

Pool. The Scheduler module selects from two types of scheduling policies: Request

Selection Policy (RSP) and Machine Selection Policy (MSP). The Assigner module

of the Scheduler uses a RSP to select the next request from the Scheduling Pool to

be considered for execution. Examples of RSPs are First Come First Serve (FCFS),

Earliest Deadline First (EDF) and Shortest Workflow First (SWF). Similarly, the

Assigner selects machines from the Cluster of Machines for the purpose of assignment

of requests associated with WFGs using an MSP. Examples of MSPs are Best Pre

22

Machine

Machine

Scheduling Pool

Assigner

Request Selection

Policy

Machine Selection

Policy

WFG

Generator

Interactive

Batch

Webservice

Scheduler
Cluster of

Machines

Machine

...

Figure 3.1: Major components of the scheduling framework.

Mapping (BPRM), Best Post Mapping (BPOM) and Least Work Remaining (LWR).

Each of these main components of the scheduling framework are described in detail

in Sections 3.2 through 3.4.

3.2 WFG Generator

A WFG is a directed acyclic graph that is composed of parallel and sequential combi-

nations of request chains (RCs). An example WFG is shown in Fig. 3.2. The vertices

of the graph represent requests and the directed arcs denote precedence constraints

that exist between requests. This WFG in the figure contains five RCs. A dashed

encircling of one RC is indicated in Fig. 3.2.

A WFG is a hierarchical structure that can be defined in a recursive manner by

introducing the concept of a compound node. A compound node represents parallel

instances of a common RC. The parallel RCs associated with a compound node rep-

resent instances of the same chain of requests that are to be executed with different

input data sets. The right side of Fig. 3.3 represents the WFG using three compound

23

Fig. 2: Sample WFG with one of five sub-WFGs encircled.

1

2

3

4

5

6

4’

5’

6’

4’’

5’’

6’’

7

8

9

Figure 3.2: Sample WFG with one of five RCs encircled.

Fig. 3: Representation of the WFG of Fig. 2 using compound nodes.

1

2

3

4

5

6

4’

5’

6’

4’’

5’’

6’’

7

8

9

1

2

3

Figure 3.3: Sample WFG (left) and its representation as a sequence of compound
nodes (right).

24

Table 3.1: Definitions of CPU and heap memory requirements for request r.

Cr > 0 Cr is the total number of CPU cycles
required to execute r on the fastest
unloaded machine.

Dr ≥ Cr Dr is the ideal execution time duration
of r on the fastest unloaded machine.

Ur = Cr/Dr Ur is the CPU utilization factor of r.
Mr > 0 Hr is the maximum reachable heap

memory requirement of r.
Ar ≥ Hr Ar is the total heap space allocated by r.

Gr = Ar/Hr Gr is the garbage generation factor of r.

nodes. The parallel RCs of a compound node could themselves be sequences of com-

pound nodes, thus enabling the representation of WFGs of greater depth than the

example shown in the figure.

The primary function of the component labeled WFG Generator in Fig. 3.1 is to

provide synthetically generated WFGs to the Scheduler for the purpose of evaluating

scheduling policies. The WFG generation process used in this thesis is probabilis-

tic. Parameters for WFG generation rates, WFG structure, and CPU and memory

requirements of requests that compose a WFG are defined for each WFG type gener-

ated. Table 3.1 summarizes the notation and definitions of basic computational and

memory requirements for request r.

The first two parameters, Cr and Dr, represent the CPU cycle requirement and

duration requirement of r. The CPU utilization factor of r, Ur = Cr/Dr, can be no

greater than unity and no less than zero. A request having a CPU utilization factor

of unity is typically referred to as a CPU-bound request, e.g., refer to [13].

The parameter Hr and Ar are related to heap memory usage of r. The garbage

generation factor of r, Gr = Ar/Hr, is a relative measure of how much garbage is

generated by request r. The smallest possible value of Gr is unity, which corresponds

to the extreme case in which a request does not generate garbage. Large values of Gr

correspond to requests that generate garbage at a relatively high rate. This parameter

25

is defined as the “total allocation to maximum reachable ratio” in [16, 17].

The ideal time required to execute a sequence of requests of an RC is the sum

of the individual requests’ ideal durations (Dr’s) in the RC defined by Eq. 1. To

estimate the time required to execute a compound node containing two or more

parallel RCs, an assumption must be made regarding the degree of parallelism that

will be exploited. The degree of parallelism, also known as parallelization factor pf ,

for a compound node indicates how fast the compound node need to be completed. If

there is no possibility of parallelization then sequential duration is considered. Since

a compound node can have multiple RCs, the expected duration of a compound node

DCN is calculated using Eq. 2. The term “available” in Eq. 2 refers to the number of

parallel RCs in a compound node, whereas, the term “extra” refers to the remainder

RCs that are not included in the parallelization. Finally, all the compound node

duration are summed to get the expected durations of a WFG Dw.

DRC =
∑

r∈RC

Dr. (1)

DCN =
(available− extra)DRC

pf
+ extra > 0?DRC : 0. (2)

where extra = available%pf .

Dw =
∑

CN∈w

DCN . (3)

Each WFG has a deadline that defines the time by which all computations of a

WFG should be complete. An estimate of a WFG deadline is calculated by multi-

plying the expected duration Dw by a deadline factor df ≥ 1. The lower value of

deadline factor indicates the tight deadline and higher being flexible deadline. The

deadline of a WFG, denoted as dw, is defined in Eq. 4.

26

dw = dfDw. (4)

The WFG Generator models the client’s requests in the form of Interactive, Batch

and Webservice WFGs. It then sends them to the Scheduling Pool, which is main-

tained by the Scheduler. An Interactive WFG is a type of WFG that has a relatively

small number of requests, with each one having a short duration. Because clients

demand an immediate response to their interactive requests, the deadlines associated

with interactive WFGs are very tight. A Webservice WFG has relatively more re-

quests with longer durations and a looser deadlines. The arrival times of Batch WFGs

generally have daily periodicity, which distinguishes them from the other WFG types.

Furthermore, Batch WFGs generally have the largest number of requests compared

to the other two WFG types. The requests associated with Batch WFGs have longer

durations and loosest deadlines compared to the other two types of WFGs.

In addition to differences in arrival processes, number of requests and deadline

characteristics, the different WFG types have differences in their structure as well.

Interactive WFGs have less opportunity for parallelization compared to Webservice

and Batch WFGs. Batch WFGs usually have rich WFG structure with higher chances

of parallelization than the other two WFGs.

3.3 Scheduler

The Scheduler component of Fig. 3.1 takes WFGs as input and assigns requests

of the WFGs to machines of the cluster for execution. The Scheduler maintains a

scheduling pool to hold all the incoming WFGs. The Assigner module of the Scheduler

is responsible for selecting requests to be considered for execution. It not only selects

the next request to be considered for execution, but also determines the best machine

for execution. Each of these components are described in detail in the following

27

WFG Pool

Ready Requests

Scheduling Pool

Figure 3.4: Components of Scheduling Pool.

subsections.

3.3.1 Scheduling Pool

The structure of Scheduling Pool has two components: WFG Pool and Ready Re-

quests as shown in Fig. 3.4. The WFG Pool holds all WFGs that have not yet

completed execution. Whereas the Ready Requests contains all the requests of the

WFGs that can be considered for execution.

3.3.2 Assigner

The Assigner component of the Scheduler in Fig. 3.1 selects ready requests of the

WFGs and assigns them to machines of the cluster for execution. In making assign-

ment decisions, the Assigner can make use of computational and memory requirements

assumed to be known and available for each request. Having access to such infor-

mation is realistic in the assumed dedicated environment in which off-line profiling

and/or historical logging can be performed to collect and estimate such data. Asso-

ciated with each WFG is a single timing deadline, and the Assigner can also utilize

this information when making request scheduling decisions.

The compound nodes of each WFG are considered in order and are expanded by

the Assigner to expose one or more parallel RCs. At any point during the execution

of a WFG, the requests associated with one or more RCs are considered by the

28

blocked executingready completed

Figure 3.5: State diagram of a request.

Assigner for assignment to machines. The Assigner tracks the status of each request

(associated with RCs currently under consideration) according to one of the following

state values: blocked, ready, executing, or completed. Whenever a WFG arrives into

the scheduling pool, the first compound node gets exposed. The first request of each

RC in that compound node become available for assignment, changing to a ready

state. The other requests following the ready request in RC are in blocked state.

Once the ready request gets assigned to a machine, its state changes to executing.

When the assigned machine finishes the execution of request, it’s state changes to

completed. Fig. 3.5 shows the state transition diagram of a request.

Fig. 3.6 shows an example of a snapshot of the Scheduling Pool at time instant

ti. In the figure, five WFGs are shown which are at various stages of their process-

ing. WFG 1 has two compound nodes whose first compound node contains only one

request, whereas, its second compound node contains three RCs each having six re-

quests. In WFG 1, there are three RCs under consideration by the Assigner where one

RC has an executing request and the other two have ready requests. Those two ready

requests of WFG 1 can be considered by the Assigner for the purpose of mapping on

to the machines of the cluster. Similarly, WFG 3 has only one compound node with

one RC. It also has one ready request. In case of WFG 5, it has three compound

nodes with the second one having three parallel RCs.

Consider that there are three available machines in the cluster with each one

capable of running only one request at a time. There are five ready requests in

Fig. 3.6. Because there are three machines with each one capable of running only one

29

dc’’

d

h

q’’

m

c’’

d

h

q’’m

blocked

ready

executing

completed

Key:

d hc’’ q’’m

WFG 1 WFG 2 WFG 3 WFG 4 WFG 5

Figure 3.6: Snapshot of Scheduling Pool at the beginning of scheduling instant ti
where the upper part represents WFGs residing in the WFG Pool, the middle part
represents RCs under consideration, and the bottom part represents ready requests.

30

request, only three requests can be assigned to those machines. Fig. 3.7 shows the

snapshot after the assignment where ready requests from WFG 1, WFG 3, and WFG

4 get assigned. Note that in the figure, the status of those requests change from ready

to executing.

Whenever a request finishes execution, the state of that request changes from

executing to completed. Upon completing execution, the request that is the imme-

diate successor of the completed request changes state from blocked to ready. This

is illustrated in Fig. 3.7 and Fig. 3.8. Note that in Fig. 3.7, there are six executing

requests. In scheduling instant ti+1, three requests get completed and the correspond-

ing changes are shown in Fig. 3.8. The Assigner also detects when all RCs associated

with a common compound node complete execution, which triggers the Assigner to

expand the successor compound node in the WFG as shown in Fig. 3.8. When WFG

5 completes the final request of its first compound node, the Assigner expands the

second compound node.

The time instant that the state of a request r transitions from blocked to ready is

defined as the request’s birth time and is denoted by br. The Assigner uses a Request

Selection Policy (RSP) to select the next request to be assigned to a Machine whereas

a Machine Selection Policy (MSP) is used to select the best available machine for

the assignment. When a request is assigned to a machine, the state of the request

transitions from ready to executing. The time instant that the state of a request

transitions from ready to executing is denoted as the request’s start time and is

denoted by sr. The function of the Assigner is to define the machine assignment and

start time (sr) for each request r. The machine assignment of request r is denoted

by Mr, and its value is equal to the identification number of one of the machines in

the cluster.

Fig. 3.9 describes the pseudocode for the Assigner. For scheduling instant ti,

the Assigner uses an RSP to order the collection of ready requests, which is denoted

31

d

h

d

h

blocked

ready

executing

completed

Key:

d h

WFG 1 WFG 2 WFG 3 WFG 4 WFG 5

Figure 3.7: Snapshot of Scheduling Pool after assignment is made at scheduling in-
stant ti.

32

d

h

d

h

blocked

ready

executing

completed

Key:

d h

WFG 1 WFG 2 WFG 3 WFG 4 WFG 5

v v’ v’’

v’’v v’

r

r

n

n

n r v v’ v’’

Figure 3.8: Snapshot of Scheduling Pool at scheduling instant ti+1.

33

as R(ti). In this thesis, seven different RSPs have been implemented. RSP returns

ordered ready requests, which is assigned to rlist (line 2). For each request r in rlist,

the Assigner uses an MSP to find the best available machine to run each request on

the rlist. The Assigner has the knowledge of machines in the cluster. Symbol M is

used to represent the collection of machines in the cluster. A ready request can only

be assigned to a machine that is declared to be available. The availability of a machine

is determined using a defined threshold value associated with the machine’s current

efficiency. Symbol ê is used to represent the machine threshold efficiency. Specifically,

a machine is declared to be available only if it’s CPU and memory efficiency is above

the defined threshold value. Depending on the resource requirements and threshold

values, the MSP may or may not return any available machines. If it does not return

any machines then the Assigner excludes that request for this scheduling instant. It

further considers the requests from rlist that may be appropriate for execution.
7.1 Algorithms

Assigner(R(ti), RSP,MSP)

1 for scheduling instant ti
2 rlist ← RSP (R(ti))
3 for each r ∈ rlist do
4 M ←MSP (r,M, ê)
5 if M �= NULL then
6 assign(r,M)
7 end if
8 end for

FCFS(R(ti))

1 for scheduling instant ti
2 rlist ← sort(R(ti), bw)
3 return rlist

FCLS(R(ti))

1 for scheduling instant ti
2 rlist ← sort(R(ti), bw)
3 return rlist

EDF(R(ti))

1 for scheduling instant ti
2 rlist ← sort(R(ti), dw)
3 return rlist

LLF(R(ti))

1 for scheduling instant ti
2 for each r ∈ R(ti) do
3 L̃w(r) ← dw(r) − f̃w(r)

4 end for
5 rlist ← sort(R(ti), L̃w)
6 return rlist

PLLF(R(ti))

1 for scheduling instant ti
2 for each r ∈ R(ti) do

3 P̃Lw(r) ← L̃w(ti)/(dw(r) − bw(r))
4 end for
5 rlist ← sort(R(ti), P̃Lw)
6 return rlist

JIT(R(ti), cf)

1 for scheduling instant ti

109

Figure 3.9: Pseudocode for Assigner.

The complexity of the Assigner can be defined in terms of the complexities of

a RSP and a MSP being used. The complexities of RSPs and MSPs are presented

in Chapter 4. Depending upon the type of RSP and MSP, the complexity varies.

Thus the complexity of the Assigner can be expressed as Complexity(RSP (R(ti)) +

|R(ti)|Complexity(MSP (R(ti)). An in depth analysis of these RSPs and MSPs is

performed in Chapter 4.

34

3.4 Cluster of Machines

The Cluster of Machines in Fig. 3.1 is modeled as a group of machines each of which

follows an efficiency-based machine model. The following section describes the ma-

chine model in detail.

3.4.1 Machine Model

The machine model takes as input the request-to-machine assignments and associated

start times provided by the Assigner. The machine model tracks and updates an

efficiency-based model for each machine in the cluster. The efficiency value for a

machine depends on the aggregate CPU and memory loading due to all requests

executing on the machine. At each scheduling instant, the machine model provides

the Assigner with updated efficiency values for all machines and also notifies the

Scheduler of any requests that have completed execution.

3.4.1.1 Machine Efficiency

The CPU and memory loading of a given machine changes with time as new requests

are assigned to begin executing on the machine and existing requests complete exe-

cution on the machine. As a result, the instantaneous efficiency of a machine varies

with time. Generally, the efficiency value of a machine decreases when new requests

begin executing on the machine, and it increases when request(s) complete execution

on that machine.

The efficiency of machine M at time instant ti, denoted by e(M, ti), has a value

between zero and unity. The number of CPU cycles remaining to complete execution

of request r at time instant ti is denoted by cr(ti). The value of cr(ti+1) is calculated

based on cr(ti) according to the following equation:

35

cr(ti+1) =





Cr, ti+1 < sr

max {0, cr(t1)− (ti+1 − ti)e(Mr, t)Ur} , ti+1 ≥ sr

(5)

For time instants less than r’s start time, the value of cr(t) remains constant at

Cr (refer to Table 3.1 for definition of Cr) because the request has not yet started

executing. For time instants greater than the request’s start time, the value of cr(t)

decreases according to the difference equation defined by the second case of Eq. 5.

The value deducted from the CPU cycles remaining to complete execution of request

r is proportional to the product of the efficiency of the machine on which the request

is assigned and that request’s CPU utilization factor. Thus, the maximum possible

deduction is ti+1−ti, which corresponds to a situation in which the request is executing

on a machine with an efficiency of unity and the request has a CPU utilization factor

of unity, meaning the request is totally CPU-bound. The application of the max

function in the equation ensures that the number of CPU cycles remaining to complete

execution of request r is non-negative.

Fig. 3.10 illustrates how changes in a machine’s efficiency value affects the time

required to execute a request on that machine. From the figure, notice that request

r starts executing on the assigned machine at t = sr. Near the beginning of the

request’s execution, note that the efficiency of the machine is relatively high, and

the slope of the curve for cr(t) is corresponding steep. This indicates that CPU

cycles are being deducted from the required amount at a relatively high rate, refer to

the term involving e(Mr, ti) in Eq. 5. Throughout the execution of request r, other

requests start executing on the machine (corresponding to decreases in the machine’s

efficiency value) and complete execution on the machine (corresponding to increases

in the machine’s efficiency value). The completion time of r is defined at the point

in time when cr(t) = 0.

The following discussion describes how the value of a machine’s efficiency (e(Mr, t)

36

e(Mr , t)

1

t0

cr(t)

t0

Cr

tsr
0

frti ti+1

Figure 3.10: Illustration of how a machine’s efficiency value affects the time required
to execute a request on the machine.

in Eq. 5) is modeled in the simulation environment. Throughout this discussion, it is

understood that the efficiency value is related to a particular machine for a particular

time instant. Thus, the value of efficiency is often referred to as simply e, instead of

e(m, t), to ease notational burden.

CPU and memory resources are the two primary factors used to characterize

machines. In the machine model, the overall efficiency is defined by the product of

two terms:

e = eceh. (6)

The terms on the right hand side of Eq. 6 are defined as the CPU efficiency and

memory efficiency, respectively. The values of ec and eh represent the relative impact

on a machine’s overall efficiency due to loading of the machine’s CPU and heap

resources, respectively.

The CPU resource of a machine is defined according to two parameters: (1) speed

of the machine’s cores and (2) number of cores in the machine. The maximum possible

37

value of ec for a particular machine is normalized relative to the speed of the machine

in the cluster having the fastest cores. For example, in a cluster where a machine

with the fastest cores are twice the speed of those belonging to the machine with the

slowest cores, then the former machine will have a maximum CPU efficiency of unity,

while the latter machine will have a maximum CPU efficiency of one-half. Thus, in

a cluster of identical machines the maximum value for ec is unity for all machines.

Without loss of generality, the maximum value of ec is assumed to be unity for the

rest of this section.

The loading of a machine’s CPU resources is defined by the summation of the

CPU utilization factors of all requests executing on the machine. Thus, if a machine

is currently executing three requests having utilization factors of 1.0, 0.6, and 0.7, the

total CPU loading on the machine would be defined as 2.3. The particular mathe-

matical or empirical model used to define the value of ec as a function of CPU loading

is not the primary focus of the present thesis. In general, such models represent ec as

a non-increasing function of total CPU loading. The precise features and parameters

of any such model depends on many factors including assumed operating system,

virtual machine implementation, CPU architecture, among others.

An idealized function for ec has a value of unity for all CPU loadings less than

the number of cores present in the machine. For CPU loading values greater than

the number of cores, the idealized function for ec decreases according to the ratio of

the number of cores to the total CPU loading. In reality, overheads associated with

context switching, caching effects, and other complexities that are difficult to model,

would prevent the idealized efficiency curve from being realized in practice. Fig. 3.11

illustrates idealized and typical curves for ec assuming a quad-core machine. The

specific function for ec assumed in the present thesis is given by Eq. 7.

38

1

(total CPU loading)

ec

4
0

8 12

idealized

typical

Figure 3.11: Ideal and typical curves for ec for quad-core machine.

ec =





1, `c < 4

(4/`c), `c ≥ 4
(7)

The CPU efficiency function of Eq. 7 models a quad-core machine with a CPU

loading factor of `c ≥ 0. The value of `c is assumed to equal the sum of the Ur’s

(CPU utilization factors) of all requests executing on the machine.

The memory resource of a machine is defined by two parameters: (1) total heap

memory capacity and (2) average rate at which the machine’s automatic memory

management system can reclaim un-referenced heap space (i.e., garbage). For sim-

plicity of discussion, the second parameter is assumed to be the same for all machines

in the cluster. This assumption approximates a cluster configuration in which all

machines implement the same virtual machine and have identical garbage collection

configuration settings.

In the seminal work of Hertz [16, 17], extensive empirical studies were conducted

to measure how the execution time of an application is affected by the relative size

of the heap memory. The general conclusion drawn from this work is that execution

time is relatively constant provided that available heap space is sufficiently large. As

the relative heap space is reduced, then execution time begins to increase. When

the heap space is critically small, the execution time of an application can increase

significantly.

39

2

Relative Heap Size (H)

2
0

3

1

1

G
ar

b
ag

e
C

o
ll

ec
ti

o
n
s

4

1
H - 1

Figure 3.12: Number of garbage collection as a function of relative heap size for a
copying garbage collector, derived from [15].

In [15], a mathematical analysis is derived for the classic copying garbage collec-

tor. The basic result of the analysis is that the overhead for this garbage collector

grows according to 1
H−1 , where H is the size of the heap normalized by the maximum

reachable heap memory requirement (defined as Hr in the present thesis). This ex-

pression relates to the number of garbage collections required, which clearly increases

rapidly as H approaches unity. The shape of this curve associated with this function

is fundamentally the same as the ones determined through extensive empirical studies

in [16, 17] refer to Fig. 3.12.

To estimate how garbage collections impact the overall execution time, T , of an

application, the following expression is proposed:

T = K +
1

H − 1
. (8)

The value of the parameter K represents the execution time when no garbage col-

lections are performed, i.e., when the heap H is sufficiently large. The value of K

is normalized in terms of the time required to perform a garbage collection. Thus,

K = 1 models the situation in which the time taken to perform a garbage collec-

tion is the same as the time required to execute the application. A large value of K

corresponds to the case where the time required to perform a garbage collection is

40

eh

1.0
K = 100
K = 10
K = 1

0.5
K 1
K = 0.1

Total memory loading ()

0
0 0.2 0.4 0.6 0.8 1.0

Figure 3.13: Typical curves for eh associate with Eq. 9.

relatively small compared to the time required to execute the application.

By dividing the ideal execution time of the application, i.e., K, by the overall

execution time represented by Eq. 8, an expression for eh is derived:

eh =
K

K + 1
H−1

. (9)

It is convenient to express eh in terms of the memory loading on the machine, which

is defined as the reciprocal of H.

eh =
K

K + 1
1
`h
−1
. (10)

For example, a memory loading of `h = 0.5 is equivalent to the system having a heap

size that is twice as large as required by the applications(s), i.e., `h = 0.5 in Eq. 10 is

equivalent to H = 2 in Eq. 9. Fig. 3.13 illustrates eh as a function of total memory

loading for several values of K.

Fig. 3.14 shows a two-dimensional surface plot of e = eceh derived from the ide-

alized curve for ec depicted in Fig. 3.12 and the curve for eh shown in Fig. 3.13 (and

Eq. 10) for K = 10. This is the efficiency function assumed for all the machines in the

cluster for the simulations conducted in Chapter 5. From the figure, observe that if

41

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.71.42.12.83.54.24.95.66.37

7.7

0.9-1

0.8-0.9

0.7-0.8

0.6-0.7

0.5-0.6

0.4-0.5

0.3-0.4

0.2-0.3

0.1-0.2

0-0.1

memory loading

CPU loading

machine efficiency

Figure 3.14: Derived machine efficiency surface based on the idealized curve for ec in
Fig. 3.12 and the eh curve for K = 10 in Fig. 3.13.

total CPU loading of a machine exceeds its number of cores, then the efficiency of the

machine decreases. Likewise, as the total memory loading of a machine increases, the

efficiency of the machine decreases due to overhead associated with increased activity

of the virtual machine’s automatic memory management system. From the figure,

observe that if a machine’s CPU and memory resources are both lightly loaded, then

the efficiency of the machine will be at or near its maximum value.

3.4.1.2 Request Executor

Once a request is assigned to a machine, the Request Executor module handles pro-

cessing of the Request. Because multiple requests can be assigned to the same ma-

chine, the processing of these requests is done by following the machine efficiency

model discussed in the previous section. The assigned requests can be either execut-

ing or completed.

As a machine finishes processing an executing request, then the request is said to

be completed. At this time, the machine removes the completed request and notifies

the Assigner about its completion. It also updates the machine’s CPU and memory

loading and hence the corresponding machine efficiency.

42

3.5 Concluding Remarks

In this chapter, simulation environment for scheduling in distributed system is pre-

sented. The architecture of the presented system has three major components: WFG

Generator, Scheduler and Cluster of Machines. WFG is modeled as the directed

acyclic graph composed of parallel and sequential combinations of RCs. Information

regarding the duration, deadline and other parameters of WFGs are assumed to be

known. Three types of WFGs, Interactive, Webservice and Batch, are generated by

WFG Generator which are then sent to the Scheduler. The Scheduler contains the

Scheduling Pool, Assigner, RSP and MSP. The Scheduling Pool holds all the execut-

ing WFGs and maintains a ready requests. The Assigner uses a RSP to select next

request to be considered for execution from the ready requests and a MSP to select the

best available machine to execute the selected request. The machine model presented

comprehends the effect of CPU and heap memory loading due to requests running on

it. The next chapter presents the detail analysis of RSPs and MSPs considered for

evaluation.

43

Chapter 4

Scheduling Policies

4.1 Overview

The block diagram of the scheduling framework (Fig. 3.1) in Chapter 3 illustrates

two types of policies used for scheduling: the Request Selection Policy (RSP) and the

Machine Selection Policy (MSP). The RSP selects the next request to be considered

to begin execution, whereas the MSP selects the framework machine to run.Multiple

instances of each of these components is described in detail in Subsections 4.2 and

4.3.

4.2 Request Selection Policies

As described in Chapter 3, at each scheduling instant, the Assigner must decide which,

if any, of the ready requests (associated with RCs currently under consideration in

the Scheduling Pool) should be assigned to a machine and begin execution. The

request selection policies considered in this thesis define a prioritization by specifying

the order in which ready requests are considered for assignment and execution on a

limited number of available machines. The seven RSPs considered are: First Come

First Serve (FCFS), First Come Last Serve (FCLS), Earliest Deadline First (EDF),

44

Least Laxity First (LLF), Proportional Least Laxity First (PLLF), Shortest Workflow

First (SWF), and Dynamic Shortest Workflow First (DSWF).

4.2.1 First Come First Serve

The FCFS policy uses the value of the time instant that a WFG arrives at the

scheduler to define the relative priority for all requests associated with the WFG.

This policy assigns the highest priority to the ready requests associated with the

WFG that arrived furthest in the past and lowest priority to the ready requests of

the most recently arrived WFGs. To illustrate, assume that during time instant ti,

five WFGs are in the Scheduling Pool at different stages of processing as shown in

Fig. 4.1. Table 4.1 shows the parameters associated with those WFGs. In this case,

the FCFS policy assigns priority for the ready requests based on the arrival time of

their associated WFGs in the following order: WFG 1, WFG 2, WFG 3, WFG 4 and

WFG 5. Because WFG 1 arrives earlier than the other WFGs, FCFS assigns higher

priority to all the requests associated with WFG 1. Similarly, all the requests of WFG

2 will have higher priority than WFG 2, WFG 3, WFG 4 and WFG 5. Consider that

the cluster can take two requests during this time instant ti. The FCFS selects the

ready request associated with WFG 1 which is illustrated in Fig. 4.2. Further assume

that two executing requests associated with WFG 1 and WFG 5 finishes execution

in time instant ti+1 as shown in Fig. 4.3. Note that in case of WFG 5, three parallel

RCs are exposed resulting in three ready requests. Due to the completion of these

two requests, two more request can be mapped on to the cluster. Fig. 4.4 shows the

mapping effect due to FCFS. Because there is only one ready request in WFG 1, the

Assigner selects the ready request of WFG 2 in addition to WFG 1 for the purpose

of mapping.

Although not illustrated in this example, it is possible for a lower priority request

to be assigned before a higher priority request. This can happen when the resource

45

Table 4.1: WFG Parameters.

WFG Type Arrival Time Duration Deadline
1 Batch 5 1400 2000
2 Webservice 10 300 500
3 Interactive 15 15 20
4 Batch 20 900 1100
5 Webservice 25 225 325

requirements of the high priority request are not available in the cluster, but the

resources needed for the lower priority request are available. Thus, high priority

requests are given first opportunity for assignment, but lower priority requests can

be mapped ahead of higher priority requests if their requirements are better matched

to available resources.

The pseudocode of the FCFS implementation is presented in Fig. 4.5. During

scheduling instant ti, the FCFS sorts ready requests R(ti) according to their parent

WFG born time bw and assigns them to a list denoted as rlist (line 2). The sorted

list rlist (line 3) is then returned to the Assigner module of the Scheduler discussed in

Chapter 3.The Assigner module then maps those requests to the machines of cluster

depending upon their availability. The complexity of the FCFS is O(|R(ti)|log|R(ti)|).

The FCFS [42, 43] policy is the simplest of the policies considered; it can make poor

decisions because it does not consider the deadline of the WFGs in assigning request

priorities. The FCFS policy is included here primarily to serve as a baseline upon

which the other more sophisticated policies are compared.

4.2.2 First Come Last Serve

The FCLS also uses the value of the time instant that a WFG arrives at the scheduler

to define the priority for all requests associated with the WFG. In contrast to the

FCFS, the FCLS policy assigns a higher priority to all requests in WFGs that are

born recently. For the example considered in Fig. 4.1, this policy prioritizes in the

46

c’’

d

h

q’’

m

c’’

d

h

q’’m

blocked

ready

executing

completed

Key:

d hc’’ q’’m

WFG 1 WFG 2 WFG 3 WFG 4 WFG 5

Figure 4.1: Snapshot of the Scheduling Pool at scheduling instant ti before assign-
ment.

47

q’’

m

q’’m

blocked

ready

executing

completed

Key:

q’’m

WFG 1 WFG 2 WFG 3 WFG 4 WFG 5

h

h

h

Figure 4.2: Snapshot of the Scheduling Pool at scheduling instant ti after assignment.

48

q’’

m

q’’m

blocked

ready

executing

completed

Key:

q’’m

WFG 1 WFG 2 WFG 3 WFG 4 WFG 5

h

h

h

v v’ v’’

d’

d’

v v’ v’’

d’ v’’v’v

Figure 4.3: Snapshot of the Scheduling Pool at scheduling instant ti+1 before assign-
ment.

49

q’’

m

q’’m

blocked

ready

executing

completed

Key:

q’’m

WFG 1 WFG 2 WFG 3 WFG 4 WFG 5

v v’ v’’

v v’ v’’

v’’v’v

Figure 4.4: Snapshot of the Scheduling Pool at scheduling instant ti+1 after assign-
ment.

50

7.1 Algorithms

Assigner(R(ti), RSP,MSP)

1 for scheduling instant ti
2 rlist ← RSP (R(ti))
3 for each r ∈ rlist do
4 M ←MSP (r,M, ê)
5 if M �= NULL then
6 assign(r,M)
7 end if
8 end for

FCFS(R(ti))

1 for scheduling instant ti
2 rlist ← sort(R(ti), bw(r))
3 return rlist

FCLS(R(ti))

1 for scheduling instant ti
2 rlist ← sort(R(ti), bw(r))
3 return rlist

EDF(R(ti))

1 for scheduling instant ti
2 rlist ← sort(R(ti), dw(r))
3 return rlist

LLF(R(ti))

1 for scheduling instant ti
2 for each r ∈ R(ti) do
3 L̃w(r) ← dw(r) − f̃w(r)

4 end for
5 rlist ← sort(R(ti), L̃w(r))
6 return rlist

PLLF(R(ti))

1 for scheduling instant ti
2 for each r ∈ R(ti) do

3 P̃Lw(r) ← L̃w(ti)/(dw(r) − bw(r))
4 end for
5 rlist ← sort(R(ti), P̃Lw(r))
6 return rlist

JIT(R(ti), cf)

1 for scheduling instant ti

109

Figure 4.5: Pseudocode for the FCFS.

following order: WFG 5, WFG 4, WFG 3, WFG 2 and WFG 1, which is exactly

opposite to the FCFS prioritization.

7.1 Algorithms

Assigner(R(ti), RSP,MSP)

1 for scheduling instant ti
2 rlist ← RSP (R(ti))
3 for each r ∈ rlist do
4 M ←MSP (r,M, ê)
5 if M �= NULL then
6 assign(r,M)
7 end if
8 end for

FCFS(R(ti))

1 for scheduling instant ti
2 rlist ← sort(R(ti), bw(r))
3 return rlist

FCLS(R(ti))

1 for scheduling instant ti
2 rlist ← sort(R(ti), bw(r))
3 return rlist

EDF(R(ti))

1 for scheduling instant ti
2 rlist ← sort(R(ti), dw(r))
3 return rlist

LLF(R(ti))

1 for scheduling instant ti
2 for each r ∈ R(ti) do
3 L̃w(r) ← dw(r) − f̃w(r)

4 end for
5 rlist ← sort(R(ti), L̃w(r))
6 return rlist

PLLF(R(ti))

1 for scheduling instant ti
2 for each r ∈ R(ti) do

3 P̃Lw(r) ← L̃w(ti)/(dw(r) − bw(r))
4 end for
5 rlist ← sort(R(ti), P̃Lw(r))
6 return rlist

JIT(R(ti), cf)

1 for scheduling instant ti

109

Figure 4.6: Pseudocode for FCLS.

The pseudocode of FCLS implementation is presented in Fig. 4.6. For scheduling

instant ti, FCLS sorts ready requests R(ti) in descending order according to their

parent WFG born time bw and assigns them to rlist (line 2). The sorted list rlist (line

3) is then returned to the Assigner module of the Scheduler. The complexity of FCLS

is O(|R(ti)|log|R(ti)|). Similar to FCFS, this policy is likely to make poor decision as

it does not consider the deadlines of the WFGs in assigning priorities.

4.2.3 Earliest Deadline First

The EDF policy [24] prioritizes all the ready requests of a WFG using the deadline

associated with the WFG. Recall from Chapter 3 that a deadline is associated with

each WFG, and this information is assumed to be known by the scheduler. This

policy prioritizes all the ready requests associated with WFGs based on the nearest

deadline. For the scenario described in the Fig. 4.1 (refer to Table 4.1 for deadlines),

the EDF policy prioritizes the execution the ready requests of the associated WFGs

in the following order: WFG 3, WFG 5, WFG 2, WFG 4 and WFG 1. As in FCFS,

assume that only two requests can be mapped during scheduling instant ti. This

51

policy selects ready request associated with WFG 3 and WFG 2 as shown in Fig. 4.7.

Even though WFG 5 has higher priority than WFG 2, no requests can be selected

because none of them are in a ready state. During the next scheduling instant, two

requests complete execution as shown in Fig. 4.8. During this time instant, EDF

selects two requests associated with WFG 5 as illustrated in Fig. 4.9.

The pseudocode of the EDF implementation is presented in Fig. 4.10. Because

the EDF is a dynamic scheduling policy, the priority of the ready requests associated

with the previously running WFGs changes as new WFGs with nearer deadlines

arrive. This is one of the policies considered when implementing SLA based scheduling

[44, 45, 46] where the terms and conditions of an SLA are modeled in terms of a

deadline for each WFG. Since EDF uses a static deadline parameter, there is no

additional computation compared to FCFS or FCLS. Hence the complexity of EDF

is also the same as FCFS and FCLS, i.e., O(|R(ti)|log|R(ti)|).

4.2.4 Least Laxity First

The LLF policy [24] prioritizes ready requests of a WFG according to their laxity,

which is defined as the difference between the deadline of the WFG and the estimated

finish time of the WFG. The rationale for giving priority to the requests with smaller

values of laxity over larger values is because smaller values of laxity correspond to

WFGs that are more likely to miss their deadlines. Laxity values can be negative

which have priority over positive laxity values because negative laxity is an indication

that the WFG deadline will likely be missed. Unlike the FCFS, FCLS, and EDF

scheduling policies, which assign a static priority value to a WFG, the priority values

assigned by LLF generally vary with time. To estimate the laxity of a WFG at time

instant ti, denoted as L̃w(ti), the estimated finish time of the WFG is subtracted from

the WFG’s deadline as in Eq. 11.

At each scheduling instant, an estimate of each WFG’s finish time, denoted as

52

c’’

d

q’’

c’’

d

q’’

blocked

ready

executing

completed

Key:

d c’’ q’’

WFG 1 WFG 2 WFG 3 WFG 4 WFG 5

Figure 4.7: Snapshot of the Scheduling Pool at scheduling instant ti after assignment.

53

c

d

q

c

d

q

blocked

ready

executing

completed

Key:

d’ c q

WFG 1 WFG 2 WFG 3 WFG 4 WFG 5

v’ v’’v

d’

d’

v v’ v’’

d v v’ v’’

Figure 4.8: Snapshot of the Scheduling Pool at scheduling instant ti+1 before assign-
ment.

54

c’’

d

q’’

c’’

d

q’’

blocked

ready

executing

completed

Key:

d’ c’’ q’’

WFG 1 WFG 2 WFG 3 WFG 4 WFG 5

v’’

d’

d’

v’’

d v’’

Figure 4.9: Snapshot of the Scheduling Pool at scheduling instant ti+1 after assign-
ment.

55

7.1 Algorithms

Assigner(R(ti), RSP,MSP)

1 for scheduling instant ti
2 rlist ← RSP (R(ti))
3 for each r ∈ rlist do
4 M ←MSP (r,M, ê)
5 if M �= NULL then
6 assign(r,M)
7 end if
8 end for

FCFS(R(ti))

1 for scheduling instant ti
2 rlist ← sort(R(ti), bw(r))
3 return rlist

FCLS(R(ti))

1 for scheduling instant ti
2 rlist ← sort(R(ti), bw(r))
3 return rlist

EDF(R(ti))

1 for scheduling instant ti
2 rlist ← sort(R(ti), dw(r))
3 return rlist

LLF(R(ti))

1 for scheduling instant ti
2 for each r ∈ R(ti) do
3 L̃w(r) ← dw(r) − f̃w(r)

4 end for
5 rlist ← sort(R(ti), L̃w(r))
6 return rlist

PLLF(R(ti))

1 for scheduling instant ti
2 for each r ∈ R(ti) do

3 P̃Lw(r) ← L̃w(ti)/(dw(r) − bw(r))
4 end for
5 rlist ← sort(R(ti), P̃Lw(r))
6 return rlist

JIT(R(ti), cf)

1 for scheduling instant ti

109

Figure 4.10: Pseudocode for the EDF.

f̃w(ti), is calculated using Eq. 12. The estimate of the finish time of a WFG w is

based on the rate at which work is being done. Here, the numerator represents the

product of the WFG execution duration (ti− sw) and the amount of work remaining

∑

r∈w

Cr −
∑

r∈w
f̃r<tr

Cr


 , whereas, the term in the denominator



∑

r∈w
fr<ti

Cr


 represents

the amound of work completed for a WFG w. Note that in the equation, if a WFG

w has not started then sw = 0 and the denominator



∑

r∈w
fr<ti

Cr


 is also zero. In this

case, the estimated finish time is obtained by evaluating the expected ideal duration

of the WFG as described in Chapter 3.

L̃w(ti) = dw − f̃w(ti). (11)

f̃w(ti) = ti + (ti − sw)



∑

r∈w

Cr −
∑

r∈w
f̃r<ti

Cr



/

∑

r∈w
fr<ti

Cr


 . (12)

The pseudocode of LLF implementation is presented in Fig. 4.11. Here, for

scheduling instant ti, the laxity value is calculated for all the ready requests’ associated

WFGs (line 2). Based on the laxity value calculated, all the ready requests are sorted

in ascending order according to their laxity value (line 5). The sorted list rlist is then

returned to the Assigner module of the Scheduler (line 6). The complexity of LLF is

O(|R(ti)||Rw(ti)|)+O(|R(ti)|log|R(ti)|), where |Rw(ti)| represents all the requests of a

WFG w. The increase in complexity is due to the additional computation associated

with estimating the finish time of WFGs under consideration.

56

7.1 Algorithms

Assigner(R(ti), RSP,MSP)

1 for scheduling instant ti
2 rlist ← RSP (R(ti))
3 for each r ∈ rlist do
4 M ←MSP (r,M, ê)
5 if M �= NULL then
6 assign(r,M)
7 end if
8 end for

FCFS(R(ti))

1 for scheduling instant ti
2 rlist ← sort(R(ti), bw(r))
3 return rlist

FCLS(R(ti))

1 for scheduling instant ti
2 rlist ← sort(R(ti), bw(r))
3 return rlist

EDF(R(ti))

1 for scheduling instant ti
2 rlist ← sort(R(ti), dw(r))
3 return rlist

LLF(R(ti))

1 for scheduling instant ti
2 for each r ∈ R(ti) do
3 L̃w(r) ← dw(r) − f̃w(r)

4 end for
5 rlist ← sort(R(ti), L̃w(r))
6 return rlist

PLLF(R(ti))

1 for scheduling instant ti
2 for each r ∈ R(ti) do

3 P̃Lw(r) ← L̃w(ti)/(dw(r) − bw(r))
4 end for
5 rlist ← sort(R(ti), P̃Lw(r))
6 return rlist

JIT(R(ti), cf)

1 for scheduling instant ti

109

Figure 4.11: Pseudocode for LLF.

LLF is a dynamic scheduling approach which also considers the deadline infor-

mation of the WFGs like EDF. However, the LLF policy is even more dynamic than

EDF in terms of assigning priorities to requests, because although the deadline value

does not changes over time, but the laxity value changes as time passes.

4.2.5 Proportional Least Laxity First

The PLLF policy is an enhancement of the LLF policy that uses a proportional laxity

value to prioritize ready requests of a WFG. Because the LLF policy is insensitive to

the size of WFGs, this policy can be made to overcome the size problem by imple-

menting the proportional laxity. The proportional laxity value of a WFG, denoted

as P̃Lw, is defined as the laxity value dw − f̃w divided by the ideal execution time

dw − bw of the WFG as follow:

P̃Lw =
L̃w(ti)

dw − bw
=
dw − f̃w
dw − bw

. (13)

Consider the following example to illustrate the underlying rationals for defining

PLLF. When WFGs deadlines are being missed, PLLF assigns higher priority to

the smaller WFGs because the proportional laxity of small WFGs tend to be less

compared to large WFGs. Table 4.2 shows that even though the laxity of WFG P is

less than the laxity of WFG Q, the proportional laxity of WFG Q is less than WFG

P’s. Thus PLLF assigns priority to WFG Q having the smaller proportional laxity

57

value. In cases where no deadlines are being missed, PLLF assigns higher priority to

the larger WFGs than the smaller WFGs. Table 4.3 shows that PLLF assigns higher

priority to WFG R even though its laxity is greater than the laxity of WFG S.

Table 4.2: Example 1 for PLLF.

WFG bw f̃w dw L̃w P̃Lw

P 0 110 100 -10 -1/10
Q 80 105 100 -5 -1/4

Table 4.3: Example 2 for PLLF.

WFG bw f̃w dw L̃w P̃Lw

P 0 110 120 10 1/12
Q 80 105 110 5 1/6

The pseudocode of PLLF is presented in Fig. 4.12. For each scheduling instant ti,

the proportional laxity of each of the ready requests’ R(ti) associated WFG, denoted

as P̃Lw(r), are calculated (line 3). Then the ready requests are sorted based on the

proportional laxity (line 5) and assigned to a list rlist. The sorted list is then returned

to the Assigner module of the Scheduler. The complexity of PLLF is similar to LLF

that is O(|R(ti)||Rw(ti)|) +O(|R(ti)|log|R(ti)|).

7.1 Algorithms

Assigner(R(ti), RSP,MSP)

1 for scheduling instant ti
2 rlist ← RSP (R(ti))
3 for each r ∈ rlist do
4 M ←MSP (r,M, ê)
5 if M �= NULL then
6 assign(r,M)
7 end if
8 end for

FCFS(R(ti))

1 for scheduling instant ti
2 rlist ← sort(R(ti), bw(r))
3 return rlist

FCLS(R(ti))

1 for scheduling instant ti
2 rlist ← sort(R(ti), bw(r))
3 return rlist

EDF(R(ti))

1 for scheduling instant ti
2 rlist ← sort(R(ti), dw(r))
3 return rlist

LLF(R(ti))

1 for scheduling instant ti
2 for each r ∈ R(ti) do
3 L̃w(r) ← dw(r) − f̃w(r)

4 end for
5 rlist ← sort(R(ti), L̃w(r))
6 return rlist

PLLF(R(ti))

1 for scheduling instant ti
2 for each r ∈ R(ti) do

3 P̃Lw(r) ← L̃w(ti)/(dw(r) − bw(r))
4 end for
5 rlist ← sort(R(ti), P̃Lw(r))
6 return rlist

JIT(R(ti), cf)

1 for scheduling instant ti

109

Figure 4.12: Pseudocode for PLLF.

58

4.2.6 Shortest Workflow First

The SWF policy prioritizes ready requests according to the least processing duration

Dw of associated WFGs. This policy attempts to maximize throughput and minimize

average wait time for each request. If small WFGs continue to arrive, the large

WFGs will ultimately suffer from process starvation. Due to the potential for process

starvation, this policy may not be suitable for a realistic environment where different

types and sizes of WFGs need to be handled. Fig. 4.13 shows a snapshot of the

Scheduling Pool where each WFG contains only one RC and assumes that each request

has the same duration. Because SWF orders according to the duration in ascending

order, the scheduling order would be: D, C, E, B, F, A and G. Note that even though

WFG A has only one request remaining, SWF assigns the same priority to A and G.

Because WFGs B, C, D, E and F are shorter than WFGs A and G, SWF prioritizes

them resulting in process starvation for WFGs A and G. If there are machines that

can take two requests then this policy assigns requests associated with WFG D and

either C or E as shown in Fig. 4.14.

The pseudocode of the SWF implementation is presented in Fig. 4.15. For

scheduling instant ti, SWF sorts ready requests R(ti) according to their parent WFG’s

ideal duration Dw (line 2). The complexity of SWF is O(|R(ti)|log|R(ti)|).

4.2.7 Dynamic Shortest Workflow First

The DSWF policy prioritizes the ready requests according to the least estimated finish

time of their parent WFGs. Note that DSWF is a dynamic version of SWF where

the shortest WFG is determined by least estimated time to finish. The DSWF policy

performs a similar function to SWF but it attempts to minimize process starvation

by prioritizing WFGs which have the least remaining work. Consider the example in

Fig. 4.13, DSWF avoids process starvation by ordering WFGs in the following order:

A, D, C, B, E, F and G. Even though WFG A has longer duration than WFG D,

59

blocked

ready

executing

completed

Key:

A

g1

a6

b3 c3 d3

e1 f1

D E F GCB

a6 b3 c3 d3 e1 f1 g1

Figure 4.13: Snapshot of the Scheduling Pool at time instant ti before assignment.

their effective work remaining is the same in both cases. Thus WFG A and D have

the same priority. If there are machines that can take two requests, then this policy

assigns the ready request associated with WFG A and WFG D as shown in Fig. 4.16.

DSWF is an opportunistic approach similar to SRPT [47], trying to minimize the

number of outstanding WFGs. This approach also attempts to minimize the mean

response time, validating Little’s law [48].

The pseudocode of DSWF implementation is presented in Fig. 4.17. For the

scheduling instant ti, DSWF sorts ready requests R(ti) by giving priority to smaller

estimated finish times of the associated WFGs f̃w (line 5). The complexity of DSWF

is O(|R(ti)||Rw(ti)|) + O(|R(ti)|log|R(ti)|) which is slightly more than SWF due to

the additional computation of f̃w.

60

blocked

ready

executing

completed

Key:

A

g1

a6

b3 c3

f1

D E F GCB

a6 b3 c3 f1 g1

Figure 4.14: Snapshot of the Scheduling Pool at time instant ti after assignment.

2 for each r ∈ R(ti) do
3 sw(r) ← (dw(r) − cf ∗ f̃w(r) − ti)
4 if sw(r) ≥ ti then
5 rfilter ← r
6 end if
7 end for
8 rlist ← sort(rfilter, sw(r))
9 return rlist

SWF(R(ti))

1 for scheduling instant ti
2 rlist ← sort(R(ti),Dw(r))
3 return rlist

DSWF(R(ti))

1 for scheduling instant ti
2 for each r ∈ R(ti) do
3 computef̃w(r)
4 end for
5 rlist ← sort(R(ti), f̃w(r))
6 return rlist

BPRM(r,M, ê)

1 result← null
2 max← −∞
3 for each M ∈M do
4 e← e(RM (ti))
5 if e ≥ ê then
6 if e > max then
7 result←M
8 max← e
9 end if

10 end if
11 end for
12 return result

110

Figure 4.15: Pseudocode for SWF.

4.3 Machine Selection Policies

In the scheduling framework presented in Chapter 3, a major consideration is the ma-

chine selection policy. Here, the machine selection policy determines which machine is

appropriate for processing a request. Similar to the request selection policies described

in the previous section, the machine selection policy is also important for the efficient

utilization of resources. There are various machine selection strategies that can be

implemented. In this section, six machine selection heuristics are discussed: Best

Pre-Mapping (BPRM), Best Post-Mapping (BPOM), Best CPU (BC), Best Memory

61

blocked

ready

executing

completed

Key:

A

g1

b3 c3

e1 f1

D E F GCB

g1b3 c3 e1 f1

Figure 4.16: Snapshot of the Scheduling Pool at time instant ti after assignment.

(BM), Least Deadline Missed (LDM) and Least Work Remaining (LWR).

For all policies considered in this thesis, a ready request is only assigned to a

machine that is declared to be available. The availability of a machine is determined

using defined threshold values associated with the machine’s current efficiency due to

CPU and memory loadings. Specifically, a machine is declared to be available only

if its efficiency due to CPU and/or memory loadings is above the specified threshold

value.

4.3.1 Best Pre-Mapping

The BPRM policy selects a machine that has the highest pre-mapping efficiency.

Here, pre-mapping means the current efficiency of a machine that does not include

the effects of the requests that are going to be mapped. Whereas, the post mapping

62

2 for each r ∈ R(ti) do
3 sw(r) ← (dw(r) − cf ∗ f̃w(r) − ti)
4 if sw(r) ≥ ti then
5 rfilter ← r
6 end if
7 end for
8 rlist ← sort(rfilter, sw(r))
9 return rlist

SWF(R(ti))

1 for scheduling instant ti
2 rlist ← sort(R(ti),Dw(r))
3 return rlist

DSWF(R(ti))

1 for scheduling instant ti
2 for each r ∈ R(ti) do
3 computef̃w(r)
4 end for
5 rlist ← sort(R(ti), f̃w(r))
6 return rlist

BPRM(r,M, ê)

1 result← null
2 max← −∞
3 for each M ∈M do
4 e← e(RM (ti))
5 if e ≥ ê then
6 if e > max then
7 result←M
8 max← e
9 end if

10 end if
11 end for
12 return result

110

Figure 4.17: Pseudocode for DSWF.

refers to the pseudo mapping for the purpose of calculating efficiency value. Fig.

4.18 illustrates the effect of pre and post mapping a request r on to two quad core

machines. In the figure Dr, Ur and Hr represent the duration, CPU utilization and

heap memory requirement of r respectively. The value of `c represents the CPU

loading factor, which is the sum of the Ur’s of all requests executing on the machine.

Similarly, the value of `h represents the normalized heap memory loading factor which

is also sum of the Hr’s of all requests executing on that machine, 0 < `h < 1. The

efficiency of a machine e is defined by the CPU and heap memory loading on that

machine using Eq. 2. Before mapping request r on to any of the machines, the

efficiency of Machine 2 is greater than Machine 1. The BPRM selects Machine 2

over Machine 1 because of its higher pre-mapping efficiency. In this case, assume

the threshold value used is 0.70. Fig. 4.19 shows that the BPRM policy selects the

Machine 2 because of its high pre-mapping efficiency.

The pseudocode for the BPRM implementation is presented in Fig. 4.20. In

the figure, r represents the request that is to be mapped on a machine M of cluster

represented asM. As discussed in the examples, each machine in the cluster can only

be considered for mapping which has efficiency higher than the defined threshold value

represented by ê (line5). Here, the threshold value is evaluated before the mapping

of request r so the efficiency of machine can go below the defined threshold value

(refer to of Fig. 4.19) depending upon the the request’s characteristics. Due to this

reason, this policy does not guarantee the machine efficiency values of e ≥ ê after the

63

Machine 1

r

Machine 2

Parameters

e

Pre-mapping

4.50

0.20

0.86

Post-mapping

5.00

0.35

0.75

Parameters

e

Pre-mapping

4.00

0.55

0.89

Post-mapping

4.50

0.70

0.72

Parameters

Dr

Ur

Hr

Value

200.00

0.50

0.15

Figure 4.18: Pre and Post mapping of a request r on to two quad-core machines.

Machine 1

r

Machine 2

Parameters

e

Pre-mapping

4.50

0.20

0.86

Post-mapping

5.25

0.35

0.72

Parameters

e

Pre-mapping

4.00

0.55

0.89

Post-mapping

4.75

0.70

0.68

Parameters

Dr

Ur

Hr

Value

200.00

0.75

0.15

Figure 4.19: Pre and Post mapping of a request r on to two quad-core machines.

mapping is performed. Once the threshold filter is valid, the next step is to select the

machine which has the highest pre-mapping efficiency (line 6 to line 9). Finally, the

best machine in result is returned to the Assigner (line 12) module of the Scheduler

for the assignment. The computational complexity of BPRM is O(|M|).

4.3.2 Best Post-Mapping

The BPOM is a post mapping machine selection policy that selects a machine based

on post mapping analysis. The post mapping analysis refers to the estimation of

64

2 for each r ∈ R(ti) do
3 sw(r) ← (dw(r) − cf ∗ f̃w(r) − ti)
4 if sw(r) ≥ ti then
5 rfilter ← r
6 end if
7 end for
8 rlist ← sort(rfilter, sw)
9 return rlist

SWF(R(ti))

1 for scheduling instant ti
2 rlist ← sort(R(ti),Dw)
3 return rlist

DSWF(R(ti))

1 for scheduling instant ti
2 for each r ∈ R(ti) do
3 computef̃w(r)
4 end for
5 rlist ← sort(R(ti), f̃w)
6 return rlist

BPRM(r,M, ê)

1 result← null
2 max← −∞
3 for each M ∈M do
4 e← e(RM (ti))
5 if e ≥ ê then
6 if e > max then
7 result←M
8 max← e
9 end if

10 end if
11 end for
12 return result

110

Figure 4.20: Pseudocode for BPRM.

the machine’s efficiency due to pseudo (i.e., “what if” mapping of request r on to

machine M . Because this policy requires the request’s CPU and memory utilization,

it can only be applied when the CPU and memory characteristics of requests are

known. For the example in Fig. 4.18, the BPOM selects Machine 1 because it has a

higher post mapping efficiency. In case of the example in Fig. 4.19, this policy filters

Machine 2 because it falls below the threshold value and hence chooses the Machine

1 by default. Due to the post mapping effect, the machine efficiency is guaranteed

not go below the defined threshold values.

The pseudocode of BPOM implementation is presented in Fig. 4.21. For a give

request r, this policy selects the best available machine from the cluster of machines

M. This policy considers threshold as the post mapping efficiency (line 4 and line

5). If a machine passes a threshold value then it’s efficiency is compared with already

known best machine (line 6) and the machine with the highest efficiency is selected

(line 7). In the post mapping there is additional computation associated with com-

puting the pseudo mapping efficiency that is e(RM(ti)∪{r}). Thus the computational

complexity of BPOM is O(|M||e(RM(ti) ∪ {r})|).

65

BPOM(r,M, ê)

1 result← null
2 max← −∞
3 for each M ∈M do
4 e← e(RM (ti) ∪ {r})
5 if e ≥ ê then
6 if e > max then
7 result←M
8 max← e
9 end if

10 end if
11 end for
12 return result

BC(r,M, ê)

1 result← null
2 max← −∞
3 for each M ∈M do
4 e← e(RM (ti) ∪ {r})
5 if e ≥ ê then
6 ec ← ec(RM (ti) ∪ {r})
7 if ec > max then
8 result←M
9 max← ec

10 end if
11 end if
12 end for
13 return result

BM(r,M, ê)

1 result← null
2 max← −∞
3 for each M ∈M do
4 e← e(RM (ti) ∪ {r})
5 if e ≥ ê then
6 eh ← eh(RM (ti) ∪ {r})
7 if eh > max then
8 result←M
9 max← eh

10 end if
11 end if
12 end for
13 return result

111

Figure 4.21: Pseudocode for BPOM.

4.3.3 Best CPU

The BC policy is a type of post mapping that selects a machine with the highest

CPU efficiency value. In cases where requests are CPU bound it would be better to

choose a machine which has a high CPU efficiency. Examples of CPU bound tasks

are encoding, compression, sorting and searching. Fig. 4.22 illustrates the effect

of mapping a request r on to two quad core machines using BC. Note that in the

figure, both machines have the same pre-mapping CPU efficiency, but Machine 2

has a higher post mapping CPU efficiency. Since BC selects the machine with the

highest CPU efficiency, Machine 2 is selected. If the memory intensive requests are

being executed on Machine 2, selecting the machine results in poor performance even

though it has high CPU efficiency. In Fig. 4.23 Machine 2 has CPU intensive requests

being executed and it’s overall efficiency is lower than Machine 1. Hence, in this case

BC does not produces a good result.

The pseudocode for the BC implementation is presented in Fig. 4.24. For a

give request r, this policy searches all the machines M in cluster for the purpose

of mapping (line3). The post mapping threshold is analyzed (line 4 and line 4)

and depending on the availability of machines, the machine with the highest CPU

66

Machine 1

r

Machine 2

Parameters

e

ec

Pre-mapping

4.00

0.20

0.97

1.00

Post-mapping

5.00

0.25

0.77

0.80

Parameters

Dr

Ur

Hr

Value

200.00

1.00

0.05

Parameters

e

ec

Pre-mapping

3.00

0.20

0.97

1.00

Post-mapping

4.00

0.25

0.96

1.00

Figure 4.22: Mapping of a request r on to two quad-core machines using BC.

Machine 1

r

Machine 2

Parameters

e

ec

Pre-mapping

4.00

0.20

0.97

1.00

Post-mapping

5.00

0.25

0.77

0.80

Parameters

Dr

Ur

Hr

Value

200.00

1.00

0.05

Parameters

e

ec

Pre-mapping

3.00

0.75

0.77

1.00

Post-mapping

4.00

0.80

0.71

1.00

Figure 4.23: Mapping of a request r on to two quad-core machines using BC.

efficiency is selected (line 5 to 7). The computational complexity of BC is equivalent

to the complexity of the post mapping policy that is O(|M||e(RM(ti) ∪ {r})|).

4.3.4 Best Memory

Some applications need large a amount of memory. For example, huge scientific

simulations, graphics application, database application and so forth require a large

amount of memory. When clients send their processing requests for these applications,

the amount of memory required depends on the request’s memory characteristics. In

67

12 return result

BC(r,M, ê)

1 result← null
2 max← −∞
3 for each M ∈M do
4 e← e(RM (ti) ∪ {r})
5 if e ≥ ê then
6 ec ← ec(RM (ti) ∪ {r})
7 if ec > max then
8 result←M
9 max← ec

10 end if
11 end if
12 end for
13 return result

BM(r,M, ê)

1 result← null
2 max← −∞
3 for each M ∈M do
4 e← e(RM (ti) ∪ {r})
5 if e ≥ ê then
6 eh ← eh(RM (ti) ∪ {r})
7 if eh > max then
8 result←M
9 max← eh

10 end if
11 end if
12 end for
13 return result

111

Figure 4.24: Pseudocode for BC.

such cases, it would be better to choose a machine which has the highest free memory.

The BM policy is also a type of BPOM which performs the post mapping analysis

of the heap memory and selects a machine which has the highest memory efficiency.

Fig. 4.25 illustrates the effect of mapping a request r on two quad core machines

using BM. In the figure both pre and post mapping memory efficiency of Machine 1

is higher than Machine 2. Therefore this policy selects Machine 1 even though it’s

pre mapping overall efficiency is lower than the overall efficiency of Machine 2.

Machine 1

r

Machine 2

Parameters

e

eh

Pre-mapping

4.50

0.20

0.86

0.97

Post-mapping

5.00

0.35

0.76

0.94

Parameters

Dr

Ur

Hr

Value

200.00

0.50

0.15

Parameters

e

eh

Pre-mapping

4.00

0.50

0.90

0.90

Post-mapping

4.50

0.65

0.74

0.84

Figure 4.25: Mapping of a request r on to two quad-core machines using BM.

68

The pseudocode for the BM implementation is presented in Fig. 4.26. For a give

request r, this policy searches all the machines M in the cluster for the purpose of

mapping (line3). The post mapping threshold is analyzed (line 4 and line 5) and

depending on the availability of machines, the machine with the highest memory effi-

ciency is selected (line 5 to 7).The computational complexity of BM is also equivalent

to the complexity of the post mapping policy that is O(|M||e(RM(ti) ∪ {r})|).

12 return result

BC(r,M, ê)

1 result← null
2 max← −∞
3 for each M ∈M do
4 e← e(RM (ti) ∪ {r})
5 if e ≥ ê then
6 ec ← ec(RM (ti) ∪ {r})
7 if ec > max then
8 result←M
9 max← ec

10 end if
11 end if
12 end for
13 return result

BM(r,M, ê)

1 result← null
2 max← −∞
3 for each M ∈M do
4 e← e(RM (ti) ∪ {r})
5 if e ≥ ê then
6 eh ← eh(RM (ti) ∪ {r})
7 if eh > max then
8 result←M
9 max← eh

10 end if
11 end if
12 end for
13 return result

111

Figure 4.26: Pseudocode for BM.

4.3.5 Least Deadline Missed

When mapping a request to a machine, it is not only important to meet the deadline of

the request that is going to be mapped but also the deadline of all executing requests

on that machine. The LDM policy performs post mapping analysis of the deadlines

associated with each request and selects a machine that has the least average tardiness

considering only tardy requests defined by Eq. 14. Because there is a deadline

associated with each WFG, the deadline of each request is obtained by distributing

the WFG deadline proportionally to the request level.

69

τ̄RM (ti) =

∑

r∈RM (ti)

f̃r>dr

(
f̃r − dr

)

|Rtardy
M (ti)|

. (14)

where Rtardy
M (ti) =

{
r|r ∈ RM(ti)&f̃r > dr

}

f̃r(ti) = ti +

{
Cr

Ur

1

ē

}
. (15)

where, ē is the cluster efficiency calculated as follow:

ē =

∑

M∈M

e

|M| . (16)

Fig. 4.27 illustrates the effect of mapping a request r on to two quad core machines

using LDM. Though Machine 1 and Machine 2 in the figure have equal pre and post

mapping efficiencies, the least average tardiness considering only tardy requests in

Machine 2 is less than in Machine 1. Hence this policy selects Machine 2.

Machine 1

r

Machine 2

Parameters

e

Mean Deadline Miss

Pre-mapping

4.50

0.20

0.86

16.27

Post-mapping

5.00

0.35

0.75

33.33

Parameters

Dr

Ur

Hr

Value

200.00

0.50

0.15

Parameters

e

Mean Deadline Miss

Pre-mapping

4.50

0.20

0.86

6.27

Post-mapping

5.00

0.35

0.75

23.33

Figure 4.27: Mapping of a request r on to two quad-core machines using LDM.

The pseudocode for the LWR implementation is presented in Fig. 4.28. This

policy iterates through all the machines in cluster M (line 2) and considers only

those machines that pass the defined threshold value (line 3 and line 4). In the figure,

70

RM(ti) represents all the requests running on the machine M at time instant ti. The

average tardiness considering only tardy requests is calculated (line 7 to line 16) and

then the machine with the least average tardiness is selected (line 17 to 20). Finally

the machine is returned to the Assigner for the purpose of mapping. As there are

|RM(ti)| running requests in the machine M , the computational complexity of LDM

is O(|M||RM(ti)|).

LDM(r,M, ê)

1 result← NULL, min← −∞
2 for each M ∈M do
3 e← e(RM (ti) ∪ {r})
4 if e ≥ ê then
5 meanDeadlineMiss← 0.0
6 missedDeadlineCount← 0
7 for each r ∈ RM (ti) do
8 τr ← f̃r − dr
9 if τw(r) > 0 then

10 meanDeadlineMiss+← τr
11 missedDeadlineCount+← 1
12 end if
13 end for
14 if missedDeadlineCount > 0 then
15 meanDeadlineMiss← meanDeadlineMiss/missedDeadlineCount
16 end if
17 if meanDeadlineMiss < min then
18 min← meanDeadlineMiss
19 result←M
20 end if
21 end if
22 end for
23 return result

LWR(r,M, ê)

1 result← NULL, min←∞
2 for each M ∈M do
3 e← e(RM (ti) ∪ {r})
4 if e ≥ ê then
5 estimatedF inishT ime← 0
6 for each r ∈ RM (ti) do
7 estimatedF inishT ime+← f̃r(ti)
8 end for
9 meanEstimatedF inishT ime← estimatedF inishT ime/|RM (ti)|

10 if meanEstimatedF inishT ime < min then
11 min← meanEstimatedF inishT ime
12 result←M
13 end if
14 end if
15 end for
16 return result

112

Figure 4.28: Pseudocode for LDM.

4.3.6 Least Work Remaining

In some situations, the loading or efficiency information of the machines is not suf-

ficient for selecting the best available machines. The LWR policy maps a request to

a machine which has the least average work remaining. The average work remaining

71

can be defined by Eq. 17 where, RM(ti) represents all the requests running on the

machine M at time instant ti and f̃r(ti) represents the estimated finish time of request

r on that machine which is calculated by using Eq. 12. The right hand side of Eq. 17

provides the average estimated finish time of all executing requests for machine M ,

which corresponds to the average work remaining on that machine.

¯̃fRM (ti) =

∑

r∈RM (ti)

f̃r(ti)

|RM(ti)|
. (17)

Consider a scenario as in Fig. 4.29 where a request r needs to be mapped on any

one of the two quad core machines. Machine 1 has long requests running which is

shown by average work remaining of 1030.92 and 1105.26 for pre and post mapping

respectively. In contrast, Machine 2 has short requests running and the average work

remaining for pre and post mapping are 51.54 and 82.47 respectively. In the case

that the request to be mapped has a longer duration than those executing, whenever

those executing requests finish, the efficiency of the machine would increase, thereby

executing the mapped request more efficiently. Hence this policy maps the request r

to Machine 2 in Fig. 4.29. Fig. 4.30 shows that even though Machine 2 has lower

efficiency than Machine 1, LWR policy maps the request r to Machine 2.

Machine 1

r

Machine 2

Parameters

e

meanEstimatedFinishTime

Pre-mapping

4.00

0.20

0.97

1030.92

Post-mapping

5.00

0.35

0.76

1105.26

Parameters

Dr

Ur

Hr

Value

200.00

1.0

0.15

Parameters

e

meanEstimatedFinishTime

Pre-mapping

4.00

0.20

0.97

51.54

Post-mapping

5.00

0.35

0.76

82.47

Machine 1: (4*1000)/(4*0.97)= in e=0.86 and (1*200+4*1000)/(5*0.76)=

Machine 1: (4*50)/(4*0.97)= in e=0.86 and (1*200+5*1000)/(6*0.76)=

Figure 4.29: Mapping of a request r on to two quad-core machines using LWR.

72

Machine 1

r

Machine 2

Parameters

e

meanEstimatedFinishTime

Pre-mapping

4.00

0.20

0.97

1030.92

Post-mapping

5.00

0.35

0.76

1105.26

Parameters

Dr

Ur

Hr

Value

200.00

1.0

0.15

Parameters

e

meanEstimatedFinishTime

Pre-mapping

4.00

0.40

0.93

53.76

Post-mapping

5.50

0.45

0.71

112.67

Machine 1: (4*1000)/(4*0.97)= in e=0.86 and (1*200+4*1000)/(5*0.76)=

Machine 2: (4*50)/(4*0.93)= in e=0.86 and (1*200+4*50)/(5*0.71)=

Figure 4.30: Mapping of a request r on to two quad-core machines using LWR.

The pseudocode for the LWR implementation is presented in Fig. 4.31. Similar to

LDM policy, this policy also iterates through all the machines in cluster M (line 2)

and considers only those machines that has post mapping efficiency e(RM(ti) ∪ {r})

greater than the defined threshold value ê (line 3 and line 4). In the figure, RM(ti)

represents all the requests running on the machine M at time instant ti. The average

estimated finish time of all the requests running on machine M is calculated (line 6 to

line 9) and then the machine with the least average estimated finish time is selected

(line 10 to 11). Finally the machine is returned to the Assigner for the purpose of

mapping.As there are |RM(ti)| running requests in the machine M , the computational

complexity of LWR is O(|M||RM(ti)|).

73

LDM(r,M, ê)

1 result← NULL, min← −∞
2 for each M ∈M do
3 e← e(RM (ti) ∪ {r})
4 if e ≥ ê then
5 meanDeadlineMiss← 0.0
6 missedDeadlineCount← 0
7 for each r ∈ RM (ti) do
8 τr ← f̃r − dr
9 if τw(r) > 0 then

10 meanDeadlineMiss+← τr
11 missedDeadlineCount+← 1
12 end if
13 end for
14 if missedDeadlineCount > 0 then
15 meanDeadlineMiss← meanDeadlineMiss/missedDeadlineCount
16 end if
17 if meanDeadlineMiss < min then
18 min← meanDeadlineMiss
19 result←M
20 end if
21 end if
22 end for
23 return result

LWR(r,M, ê)

1 result← NULL, min←∞
2 for each M ∈M do
3 e← e(RM (ti) ∪ {r})
4 if e ≥ ê then
5 estimatedF inishT ime← 0
6 for each r ∈ RM (ti) do
7 estimatedF inishT ime+← f̃r(ti)
8 end for
9 meanEstimatedF inishT ime← estimatedF inishT ime/|RM (ti)|

10 if meanEstimatedF inishT ime < min then
11 min← meanEstimatedF inishT ime
12 result←M
13 end if
14 end if
15 end for
16 return result

112

Figure 4.31: Pseudocode for LWR.

4.4 Concluding Remarks

In this chapter presented and analyzed in depth the seven RSPs and six MSPs. It

started with defining each policies with example followed by complexity analysis. Out

of seven RSPs, three new RSP are introduced, namely, PLLF, SWF and DSWF. Six

new machine selection heuristics are also presented. The performance analysis of each

of these policies are performed in Chapter 5.

74

Chapter 5

Simulation Studies

In this chapter, the performance of the forty-two combinations of Request Selection

Policies (RSPs) and Machine Selection Policies (MSPs) are evaluated. The following

sections describe the experimental setup followed by the results.

5.1 Experimental Setup

In this thesis, four WFG generation scenarios are considered, each representing a one

day period. The experimental setup for these four different cases are described in

following sections.

5.1.1 Case Study One

In Case Study One, a single day period is divided into three consecutive epochs.

These three epochs are associated with WFG generation characteristics for a typical

operational business day. The first epoch is from time = 0 to time = 11 hours; the

second epoch is from time = 11 to time = 12 hours; and the third epoch is from time

= 12 to time = 24 hours (refer to Fig. 5.1). During the first and third epochs, only

Interactive and Webservice WFGs are generated. During the second epoch, all three

75

Figure 5.1: Time-line illustrating the three epochs.

types of WFGs are generated. The first and third epochs represent periods of time

before and after a relatively short epoch in which Batch WFGs arrive. The start

and end times of the second epoch are defined by terms of service-level agreements

(SLAs) [12] related to timing of Batch WFG submission and execution. Typical terms

of SLAs specify that daily Batch WFGs submitted within a specified time period will

be completed by an agreed upon deadline.

Although Batch WFGs only arrive during the second epoch (between hour 11 and

hour 12), a typical Batch WFG can take several hours to complete execution. Thus,

an important milestone that is measured in the simulation studies is the point in time

at which all Batch WFGs have completed execution, which is defined as the Batch

Completion Time (BCT). Fig. 5.1 illustrates the three time epochs and the BCT on

a time-line.

The parameter value ranges and distributions associated with the simulation stud-

ies are summarized in Table 5.1. The table defines parameters related to the structural

characteristics for each type of WFG, which are all assumed to be two-levels deep.

Also provided in the table are CPU and memory characteristics of the requests as-

sociated with each WFG type. The parallelization factor is needed in determining a

base deadline for each generated WFG; it defines the degree of parallelism assumed

for executing parallel RCs associated with a common compound node. Once a base

deadline is determined for a WFG, it is multiplied by the Deadline Factor (last row

in the table) to define the actual deadline for the WFG.

76

Table 5.1: Parameter values for Case Study One.

Parameter Interactive Webservice Batch
WFG WFG WFG

∗Avg. Inter-Arrival Time (secs) 60 120 60
+Compound Nodes [1, 1] [1, 3] [3, 5]
+Parallel RCs [1, 2] [2, 3] [5, 20]
+Requests in RCs [5, 8] [5, 8] [3, 8]
+Request Ideal Duration (secs), Dr [1.0, 2.5] [10.0, 50.0] [50.0, 175.0]
+Request CPU Utilization, Ur [0.5, 1.0] [0.5, 1.0] [0.5, 1.0]
+Request Heap Memory, Hr [0.05, 0.15] [0.05, 0.10] [0.05, 0.10]

Parallelization Factor 2 2 2
+WFG Deadline Factor [1.1, 1.2] [1.3, 1.5] [1.3, 1.5]
∗Poisson process. +Uniform distribution [Min, Max].

Interarrival times of the Interactive and Webservice WFGs in Case Study One are

60 seconds and 120 seconds respectively. The interarrival time of the Batch WFGs

is assumed to be 60 seconds during the second time epoch from hour 11 to hour 12;

Batch WFGs do not arrive outside this one-hour interval. An example arrival count

realization of the arrivals of WFGs into the system are shown in Fig 5.2.

5.1.2 Case Study Two

The request arrival rate in Case Study Two is faster than in Case Study One. Here, the

Interactive and Webservice requests arrival rate are six time faster than in Case Study

One. The parameter value ranges and distributions associated with the simulation

studies are summarized in Table 5.2.

Interarrival times of the Interactive and Webservice WFGs in Case Study Two are

10 seconds and 20 seconds respectively. The interarrival time of the Batch WFGs is

the same as in Case Study One. An example arrival count realization of the arrivals

of WFGs into the system is shown in the Fig 5.3.

77

 0

 10

 20

 30

 40

 50

 60

 70

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

W
or

kf
lo

w
 B

or
n

C
ou

nt

Time (hour)

Workflow Arrival Rate Results

UI
Batch

Webservice

Figure 5.2: Arrival count realization for Case Study One.

 0

 50

 100

 150

 200

 250

 300

 350

 400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

W
or

kf
lo

w
 B

or
n

C
ou

nt

Time (hour)

Workflow Arrival Rate Results

UI
Batch

Webservice

Figure 5.3: Arrival count realization for Case Study Two.

78

Table 5.2: Parameter values for Case Study Two.

Parameter Interactive Webservice Batch
WFG WFG WFG

∗Avg. Inter-Arrival Time (secs) 10 20 60
+Compound Nodes [1, 1] [1, 3] [3, 5]
+Parallel RCs [1, 2] [2, 3] [5, 20]
+Requests in RCs [5, 8] [5, 8] [3, 8]
+Request Ideal Duration (secs), Dr [1.0, 2.5] [10.0, 50.0] [50.0, 175.0]
+Request CPU Utilization, Ur [0.5, 1.0] [0.5, 1.0] [0.5, 1.0]
+Request Heap Memory, Hr [0.05, 0.15] [0.05, 0.10] [0.05, 0.10]

Parallelization Factor 2 2 2
+WFG Deadline Factor [1.1, 1.2] [1.3, 1.5] [1.3, 1.5]
∗Poisson process. +Uniform distribution [Min, Max].

5.1.3 Case Study Three

The request arrival pattern in Case Study Three is similar to Case Study Two but

the parallelization factor is increased for Batch WFGs and decreased for Interactive

WFGs. The parameter value ranges and distributions associated with the simulation

studies are summarized in Table 5.3.

Table 5.3: Parameter values for Case Study Three.

Parameter Interactive Webservice Batch
WFG WFG WFG

∗Avg. Inter-Arrival Time (secs) 10 20 60
+Compound Nodes [1, 1] [1, 3] [3, 5]
+Parallel RCs [1, 2] [2, 3] [5, 20]
+Requests in RCs [5, 8] [5, 8] [3, 8]
+Request Ideal Duration (secs), Dr [1.0, 2.5] [10.0, 50.0] [50.0, 175.0]
+Request CPU Utilization, Ur [0.5, 1.0] [0.5, 1.0] [0.5, 1.0]
+Request Heap Memory, Hr [0.05, 0.15] [0.05, 0.10] [0.05, 0.10]

Parallelization Factor 1 2 5
+WFG Deadline Factor [1.1, 1.2] [1.3, 1.5] [1.3, 1.5]
∗Poisson process. +Uniform distribution [Min, Max].

79

5.1.4 Case Study Four

In Case Study Four, the arrival pattern is more realistic where Interactive and Web-

service WFGs have variable arrival rates, whereas Batch WFGs has an exponentially

decaying arrival rate. An example arrival count realization of the arrivals of WFGs

into the system is shown in the Fig 5.4. The parameter value ranges and distributions

associated with Case Study Four are summarized in Table 5.4.

Table 5.4: Parameter values for Case Study Four.

Parameter Interactive Webservice Batch
WFG WFG WFG

+Compound Nodes [1, 1] [1, 3] [3, 5]
+Parallel RCs [1, 2] [2, 3] [5, 20]
+Requests in RCs [5, 8] [5, 8] [3, 8]
+Request Ideal Duration (secs), Dr [1.0, 2.5] [10.0, 50.0] [50.0, 175.0]
+Request CPU Utilization, Ur [0.5, 1.0] [0.5, 1.0] [0.5, 1.0]
+Request Heap Memory, Hr [0.05, 0.15] [0.05, 0.10] [0.05, 0.10]

Parallelization Factor 1 2 5
+WFG Deadline Factor [1.1, 1.2] [1.3, 1.5] [1.3, 1.5]
∗Poisson process. +Uniform distribution [Min, Max].

80

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

W
or

kf
lo

w
 B

or
n

C
ou

nt

Time (hour)

Workflow Arrival Rate Results

UI
Batch

Webservice

Figure 5.4: Arrival count realization for Case Study Four.

5.2 Results

A total of forty-two combinations of scheduling approaches are considered for the

four case studies described in the previous section. For the purpose of evaluating

scheduling policies, two cost functions are used, namely, sigmoid cost function and

quadratic. Fig. 5.5 and Fig. 5.6 show the reference sigmoid and quadratic cost

functions. Let W be the set of all WFGs and the cost for each WFG w is based on

a normalized measure of tardiness τw to a cost value. The total cost of the system,

denoted by Fw(τw), is defined by summing the costs of all WFGs in Eq. 18.

F(τ) =
∑

w∈W

Fw(τw). (18)

where τ = [τw]w∈W .

81

The normalized tardiness of a WFG w is defined by the following equation:

τw =
fw − dw
dw − bw

. (19)

The numerator of the expression fw − dw represents the actual tardiness of w. The

denominator of the expression, dw − bw, represents the maximum desired amount of

time allocated for executing w, and is by definition positive. The numerator can be

either positive or negative. Thus, tw ≤ 0 indicates that w is not tardy and tw > 0

indicates w is tardy.

Because τw is normalized, it is straightforward to compare the relative tardiness

values of WFGs of different sizes and/or expected durations. For instance, an actual

tardiness of fw − dw = 10 seconds is relatively insignificant if the overall allocated

duration is dw − bw = 1 hour, i.e., τw = 10
3600

= 0.0028. However, a tardiness of 10

seconds could be quite significant if the overall allocated duration is defined to be 40

seconds, i.e., τw = 10
40

= 0.25.

Fig. 5.5 shows the sigmoid function used in this thesis. In the figure, for the

normalized tardiness in the range of −1 ≤ τw < 0, there is relatively low cost that is

shown in Fig. 5.5 as ε. The cost in the range of 0 < τw ≤ α and α < τw ≤ β increase

according to the quadratic function and after this point the cost increases very slowly

up to the value of γ.

In case of the quadratic cost function, the cost increases as the normalized tardi-

ness increases. The maximum quadratic cost is not bounded as shown in Fig. 5.6.

The following subsection provides the results of the threshold analysis, scheduling

policies’ performances and resource analysis.

82

R
e

fe
re

n
c
e

 C
o

s
t
F

u
n

c
ti
o

n
 V

a
lu

e

Normalized Tardiness

Sigmoid Cost

-0.5 0 0.5 1

1

2

3

-1

γ

βαε

Figure 5.5: The sigmoid cost function.

R
e

fe
re

n
c
e

 C
o

s
t
F

u
n

c
ti
o

n
 V

a
lu

e

Normalized Tardiness

Quadratic Cost

-0.5 0 0.5 1 1.5 2

1

2

3

4

5

6

7

-1

8

9

Figure 5.6: The quadratic cost function.

83

5.2.1 Threshold Analysis

Every machine in the assumed cluster has four cores and automatic memory manage-

ment. Each machine can process multiple requests at a time but as the loading of a

machine increases, efficiency of machine decreases. Given a scenario with request char-

acteristics, there exists an optimal machine efficiency referred to as machine threshold

and denoted as ê. Since the machine can process requests according to its capacity,

the concept of thresholding a machine is very important. Depending upon the defined

threshold values, a machine is available if the machine efficiency is greater than or

equal to ê. Two possible ways of thresholding a machine are: pre-mapping threshold

and post-mapping threshold. In the case of a pre-mapping threshold the machines

are considered to be available if the efficiency of machine is greater than or equal

to the ê before mapping. In contrast, in the case of a post-mapping threshold, the

machines are considered to be available if the efficiency of machine is greater than or

equal to the ê after (“what if”) mapping.

Defining a good threshold value is dependent on various parameters, including:

scheduling policy, requests arrival pattern, and requests characteristics. Due to these

reasons, threshold analysis of each combinations are performed. An iterative ap-

proach is used to define a good threshold value for each policies. For each policy,

experiments are performed for an efficiency threshold value of 0.05 to 0.95 and an

optimal efficiency value is identified. Fig. 5.7 shows the cumulative sigmoid cost for

efficiency values of 0.30 to 0.95. It shows that the efficiency value of 0.90 results in

the lowest cost compared with other efficiency values for PLLF in Case Study One.

The corresponding percentage of tardy workflows based on the normalized tardiness

is shown in Fig. 5.8. The percentage of tardy workflows is minimized for the efficiency

threshold of 0.90. Similarly, Fig. 5.9 and Fig. 5.10 shows the cumulative sigmoid cost

and percentage of tardy workflows for PLLF in Case Study Four. Table 5.5 shows

the optimal threshold results of all the combinations of RSPs and MSPs.

84

 450

 500

 550

 600

 650

 700

 750

 800

 850

 900

 950

0.5 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

C
um

ul
at

iv
e

C
os

t

Threshold Efficiency

PLLF/BPRM

Figure 5.7: The cumulative cost of all WFGs by efficiency threshold for PLLF as-
suming sigmoid cost in Case Study One.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-1 -0.5 0 0.5 1 1.5 2

Pe
rc

en
ta

ge
 o

f W
or

kf
lo

w
s

Normalized Tardiness

PLLF/BPRM/0.95
PLLF/BPRM/0.9
PLLF/BPRM/0.85
PLLF/BPRM/0.8
PLLF/BPRM/0.75

Figure 5.8: Percentage of workflows as a function of normalized tardiness for PLLF
in Case Study One.

5.2.2 Scheduling Policies Analysis

In this section, performance analysis of all the RSPs and MSPs are performed based

on the threshold values obtained from the previous subsection. There are various

measures that can be used for the analysis of each scheduling policy. Performance

85

 3000

 3100

 3200

 3300

 3400

 3500

 3600

 3700

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.5 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

C
um

ul
at

iv
e

C
os

t

Threshold Efficiency

PLLF/LWR

Figure 5.9: The cumulative cost of all WFGs by efficiency threshold for PLLF as-
suming sigmoid cost in Case Study Four.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-1 -0.5 0 0.5 1 1.5 2 2.5 3

Pe
rc

en
ta

ge
 o

f W
or

kf
lo

w
s

Normalized Tardiness

PLLF/LWR/0.95
PLLF/LWR/0.9
PLLF/LWR/0.85
PLLF/LWR/0.8
PLLF/LWR/0.75

Figure 5.10: Percentage of workflows as a function of normalized tardiness for PLLF
in Case Study Four .

analysis of these scheduling policies is based on Batch Completion Time (BCT),

sigmoid and quadratic cumulative cost, normalized tardiness, and percentage of late

workflows. Note that the results obtained in the following section are the average of

multiple runs with different seed values.

86

Table 5.5: Optimal Threshold Table.

Cases Policies BPRM BPOM BC BM LDM LWR

FCFS 0.9 0.75 0.75 0.75 0.8 0.75

FCLS 0.95 0.9 0.9 0.9 0.9 0.9

EDF 0.95 0.9 0.9 0.9 0.9 0.9

LLF 0.9 0.9 0.9 0.9 0.9 0.9

PLLF 0.9 0.9 0.9 0.9 0.9 0.9

SWF 0.95 0.9 0.9 0.9 0.9 0.9

DSWF 0.95 0.9 0.9 0.9 0.9 0.9

FCFS 0.65 0.8 0.8 0.8 0.8 0.8

FCLS 0.95 0.9 0.9 0.9 0.9 0.9

EDF 0.9 0.9 0.9 0.9 0.9 0.9

LLF 0.9 0.8 0.8 0.8 0.8 0.8

PLLF 0.9 0.85 0.8 0.85 0.85 0.85

SWF 0.95 0.95 0.95 0.95 0.95 0.95

DSWF 0.95 0.95 0.95 0.95 0.95 0.95

FCFS 0.6 0.8 0.8 0.8 0.8 0.8

FCLS 0.95 0.9 0.9 0.9 0.9 0.9

EDF 0.9 0.8 0.8 0.8 0.8 0.8

LLF 0.9 0.75 0.8 0.75 0.75 0.75

PLLF 0.85 0.75 0.75 0.8 0.8 0.75

SWF 0.95 0.95 0.95 0.95 0.95 0.9

DSWF 0.95 0.95 0.95 0.95 0.95 0.95

FCFS 0.9 0.75 0.8 0.75 0.75 0.75

FCLS 0.95 0.8 0.8 0.8 0.8 0.8

EDF 0.9 0.8 0.8 0.8 0.8 0.8

LLF 0.9 0.8 0.8 0.8 0.9 0.8

PLLF 0.9 0.8 0.8 0.8 0.8 0.8

SWF 0.95 0.8 0.8 0.8 0.8 0.8

DSWF 0.95 0.8 0.8 0.8 0.8 0.8

Case 1

Case 2

Case 3

Case 4

5.2.2.1 Case Study One

The results for the simulation study of Case Study One are summarized in Table

5.6. The table shows the cross product of RSPs and MSPs. For each combination,

the optimum threshold value is used from the threshold analysis (refer to Table 5.5).

BCT is measured in hours. Cumulative and Max normalized tardiness values are

listed in the Table 5.6 along with 50th percentile, 95th percentile and 99th percentile

normalized tardiness. Positive values of the tardiness correspond to deadlines being

missed by that amount; negative values represent deadlines being met. The Cumula-

tive normalized tardiness in the table is the sum of tardiness for both tardy and non

tardy WFGs. Based on the normalized tardiness values, two cost analysis approaches

are considered: sigmoid cost and quadratic cost.

87

 0

 100

 200

 300

 400

 500

 600

 700

 800

0 2 4 6 8 10 12 14 16 18 20 22 24

C
um

ul
at

iv
e

C
os

t

Born Time (hours)

83.27

392.54

771.25
DSWF/LWR/0.9
PLLF/LWR/0.9
FCFS/LWR/0.75

Figure 5.11: The cumulative running cost of all WFGs by born time for DSWF, PLLF
and FCFS assuming sigmoid cost in Case Study One.

In Case Study One the performance of DSWF, EDF and SWF are very close to

each other. They are approximately six times better than FCFS and three times

better than LLF and PLLF. Fig. 5.11 shows that the DSWF significantly minimizes

the sigmoid cost compared to PLLF and FCFS. The cost associated with DSWF

is approximately six times less than FCFS and three times less than PLLF. The

corresponding tardiness graph is shown in Fig. 5.12. Note that in the figure, PLLF

minimizes the maximum tardiness.

From Table 5.6, it is evident that post-mapping policies (BPOM, BC, BM, LDM,

and LWR) perform better than pre-mapping policies for FCLS, EDF, PLLF, SWF

and DSWF. Whereas, the performance of FCFS remains the same for all MSPs.

In contrast to all the other RSPs, LLF has smaller sigmoid cost for the pre-mapping

policy BPRM, but the percent of late workflow increases compared to the other MSPs.

The performance of MSP algorithms depend on the corresponding RSP as well as the

threshold. Since Case Study One does not have high traffic, the following section

analyzes the high load scenarios.

88

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-1 -0.5 0 0.5 1 1.5 2

Pe
rc

en
ta

ge
 o

f W
or

kf
lo

w
s

Normalized Tardiness

DSWF/LWR/0.9
PLLF/LWR/0.9
FCFS/LWR/0.75

Figure 5.12: Percentage of workflows as a function of normalized tardiness for DSWF,
PLLF and FCFS in Case Study One.

5.2.2.2 Case Study Two

The results for the simulation study of Case Study Two are summarized in Table

5.7. Case Study Two is more loaded than Case Study One where Interactive and

Webservice WFGs have approximately six times faster arrival rates.

Fig. 5.13 shows that the DSWF significantly minimizes the Sigmoid cost compared

to PLLF and FCFS. The cost associated with DSWF is approximately nine times less

than FCFS and PLLF. The corresponding tardiness graph is shown in Fig. 5.18. Note

that in Fig. 5.18, PLLF performs better than the other policies in terms of minimizing

the maximum tardiness, but it makes lots of WFGs tardy there by resulting in high

cumulative sigmoid cost.

In Case Study Two, the performance of post-mapping MSPs are always better

than pre-mapping MSPs for all RSPs. In case of SWF and DSWF, post mapping

MSPs are approximately two times better than pre-mapping policy BPRM. Where

as, in case of FCFS, EDF, LLF and PLLF the post mapping policies are only slightly

better than pre-mapping policy. In case of FCLS, post mapping policies are about

89

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

0 4 8 12 16 20 24

C
um

ul
at

iv
e

C
os

t

Born Time (hours)

1326.86

12420.70

12713.70
DSWF/LWR/0.95
PLLF/LWR/0.85
FCFS/LWR/0.8

Figure 5.13: The cumulative running cost of all WFGs by born time for DSWF, PLLF
and FCFS assuming sigmoid cost in Case Study Two.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14

Pe
rc

en
ta

ge
 o

f W
or

kf
lo

w
s

Normalized Tardiness

DSWF/LWR/0.95
PLLF/LWR/0.85
FCFS/LWR/0.8

Figure 5.14: Percentage of workflows as a function of normalized tardiness for DSWF,
PLLF and FCFS in Case Study Two.

90

Table 5.6: Statistics for simulation of Case Study One.Simulation Results
Case1

RSP MSP Cumulative Max 95th % 99th % Total UI Batch WS

FCFS BPRM 0.90 20.71 902 9.54E+08 5.94E+05 2187.3 1443.8 1876.0 41 42 16 41
FCFS BPOM 0.75 20.67 902 9.72E+08 5.93E+05 2183.5 1442.3 1875.4 41 42 16 41
FCFS BC 0.75 20.70 905 9.68E+08 5.94E+05 2184.1 1443.4 1877.7 46 50 16 41
FCFS BM 0.75 20.70 901 9.67E+08 5.93E+05 2180.3 1438.9 1877.9 41 42 16 41
FCFS LDM 0.80 20.68 906 9.68E+08 5.95E+05 2175.2 1444.6 1874.7 47 51 15 41
FCFS LWR 0.75 20.67 902 9.56E+08 5.93E+05 2176.5 1441.4 1874.5 41 42 16 41
FCLS BPRM 0.95 23.10 234 6.10E+04 5.14E+02 108.3 0.5 8.7 23 33 36 4
FCLS BPOM 0.90 22.32 212 4.13E+04 3.80E+02 97.1 0.5 5.7 20 28 31 4
FCLS BC 0.90 22.36 204 4.11E+04 4.08E+02 97.5 0.4 6.2 21 29 32 4
FCLS BM 0.90 22.32 207 4.05E+04 3.54E+02 96.8 0.5 5.9 21 29 32 4
FCLS LDM 0.90 22.33 213 4.09E+04 3.78E+02 98.5 0.5 5.8 21 29 31 4
FCLS LWR 0.90 22.31 210 3.70E+04 3.19E+02 96.9 0.4 4.6 21 29 31 4
EDF BPRM 0.95 23.29 184 1.58E+04 8.27E+01 17.3 0.5 8.4 21 31 6 2
EDF BPOM 0.90 22.44 135 1.70E+03 -3.82E+02 1.7 0.3 0.6 18 27 0 0
EDF BC 0.90 22.53 141 1.78E+03 -3.40E+02 2.0 0.3 0.6 17 27 0 0
EDF BM 0.90 22.42 134 1.68E+03 -3.84E+02 1.9 0.3 0.6 17 26 0 0
EDF LDM 0.90 22.50 135 1.74E+03 -3.66E+02 1.5 0.3 0.6 18 27 0 0
EDF LWR 0.90 22.46 141 1.72E+03 -3.73E+02 1.7 0.3 0.6 18 27 0 0
LLF BPRM 0.90 21.52 473 4.37E+06 2.45E+04 149.1 92.2 132.5 32 41 50 15
LLF BPOM 0.90 22.17 509 6.80E+06 3.50E+04 197.7 128.9 176.7 31 36 58 18
LLF BC 0.90 22.14 516 6.99E+06 3.61E+04 201.8 131.5 180.1 31 36 58 19
LLF BM 0.90 22.14 509 6.86E+06 3.51E+04 198.0 129.4 177.6 31 36 58 18
LLF LDM 0.90 22.13 508 6.91E+06 3.54E+04 198.9 129.8 178.1 31 36 58 18
LLF LWR 0.90 22.10 512 6.87E+06 3.55E+04 199.2 129.7 177.6 31 36 58 18
PLLF BPRM 0.90 21.54 473 2.44E+03 -4.90E+01 2.8 0.6 1.0 36 41 56 23
PLLF BPOM 0.90 22.10 442 2.48E+03 -4.50E+01 3.1 0.6 1.0 37 40 59 27
PLLF BC 0.90 22.15 436 2.51E+03 8.28E+00 4.4 0.6 1.2 36 40 60 26
PLLF BM 0.90 22.15 429 2.57E+03 -4.63E+01 3.7 0.6 1.1 36 40 60 26
PLLF LDM 0.90 22.13 433 2.52E+03 -2.48E+01 3.5 0.6 1.1 37 41 60 27
PLLF LWR 0.90 22.16 432 2.47E+03 -3.31E+01 4.6 0.6 1.1 36 40 60 27
SWF BPRM 0.95 23.20 152 1.74E+03 -3.60E+02 1.5 0.3 0.6 20 31 9 0
SWF BPOM 0.90 22.37 134 1.70E+03 -3.81E+02 2.0 0.3 0.6 17 26 8 0
SWF BC 0.90 22.43 126 1.75E+03 -3.47E+02 1.6 0.2 0.6 18 27 8 0
SWF BM 0.90 22.37 137 1.70E+03 -3.79E+02 2.0 0.3 0.6 18 27 8 0
SWF LDM 0.90 22.41 139 1.73E+03 -3.63E+02 1.6 0.3 0.6 18 27 8 0
SWF LWR 0.90 22.38 133 1.71E+03 -3.78E+02 1.9 0.3 0.6 18 27 8 0
DSWF BPRM 0.95 23.23 148 1.74E+03 -3.57E+02 1.7 0.3 0.6 20 31 11 0
DSWF BPOM 0.90 22.44 136 1.71E+03 -3.75E+02 1.6 0.2 0.6 18 27 7 0
DSWF BC 0.90 22.35 134 1.77E+03 -3.37E+02 1.9 0.3 0.6 18 27 7 0
DSWF BM 0.90 22.43 135 1.71E+03 -3.75E+02 1.6 0.2 0.6 18 27 9 0
DSWF LDM 0.90 22.31 133 1.73E+03 -3.61E+02 1.3 0.3 0.6 18 27 4 0
DSWF LWR 0.90 22.37 135 1.71E+03 -3.73E+02 1.6 0.3 0.6 18 27 6 0

Policies

Th
re

sh
ol

d

BC
T

C
um

ul
at

iv
e

C
os

t
(S

ig
m

oi
d)

C
um

ul
at

iv
e

C
os

t
(Q

ua
dr

at
ic

)

Normalized Tardiness % of Late Workflows

Page 1

91

one and half times better than BPRM in terms of sigmoid cost.

Table 5.7: Statistics for simulation of Case Study Two.Simulation Results
Case2

RSP MSP Cumulative Max 95th % 99th % Total UI Batch WS

FCFS BPRM 0.65 24.50 8440 2.58E+10 1.01E+07 3317.9 2747.4 3106.4 66 67 33 65
FCFS BPOM 0.80 23.31 8375 2.27E+10 9.11E+06 3083.8 2511.7 2865.7 65 66 26 64
FCFS BC 0.80 23.34 8438 2.27E+10 9.10E+06 3082.4 2511.0 2864.4 75 81 26 64
FCFS BM 0.80 23.31 8376 2.27E+10 9.11E+06 3084.6 2512.0 2865.3 65 66 26 64
FCFS LDM 0.80 23.30 8420 2.27E+10 9.10E+06 3084.4 2510.6 2864.7 70 74 26 64
FCFS LWR 0.80 23.31 8393 2.27E+10 9.11E+06 3080.0 2512.0 2865.6 71 75 26 64
FCLS BPRM 0.95 34.67 2745 1.17E+08 7.52E+04 3364.5 19.5 65.0 43 55 80 19
FCLS BPOM 0.90 33.30 1766 2.88E+07 4.50E+04 1766.4 19.3 56.0 30 35 75 18
FCLS BC 0.90 33.35 1810 3.27E+07 4.72E+04 1921.8 19.4 56.3 31 38 75 18
FCLS BM 0.90 33.29 1751 2.21E+07 4.40E+04 1560.0 19.4 55.9 30 36 75 18
FCLS LDM 0.90 33.30 1761 1.40E+07 4.17E+04 1566.6 19.3 55.8 31 38 75 18
FCLS LWR 0.90 33.28 1801 2.14E+07 4.43E+04 1429.2 19.3 55.8 31 38 75 18
EDF BPRM 0.90 32.29 4705 3.06E+09 2.25E+06 1292.3 826.4 1091.2 54 64 60 34
EDF BPOM 0.90 33.58 4630 3.78E+09 2.57E+06 1462.1 922.8 1237.8 43 47 72 36
EDF BC 0.90 33.57 4635 3.76E+09 2.55E+06 1454.0 919.2 1231.9 44 49 72 36
EDF BM 0.90 33.51 4629 3.77E+09 2.56E+06 1458.4 921.0 1235.4 43 47 72 36
EDF LDM 0.90 33.55 4616 3.76E+09 2.55E+06 1453.0 918.7 1232.4 44 48 72 36
EDF LWR 0.90 33.52 4628 3.75E+09 2.55E+06 1452.1 917.9 1229.0 44 48 72 36
LLF BPRM 0.90 31.86 7342 9.55E+09 4.70E+06 2134.7 1593.6 1942.8 63 66 94 56
LLF BPOM 0.80 31.90 7184 1.04E+10 4.77E+06 2145.3 1602.1 1952.0 61 64 90 55
LLF BC 0.80 31.94 7190 1.04E+10 4.77E+06 2142.4 1600.7 1950.8 71 79 90 55
LLF BM 0.80 31.89 7184 1.04E+10 4.77E+06 2146.2 1602.9 1953.4 62 65 91 55
LLF LDM 0.80 31.96 7206 1.04E+10 4.77E+06 2146.6 1603.1 1953.5 67 73 90 55
LLF LWR 0.80 31.89 7204 1.04E+10 4.77E+06 2146.7 1604.1 1955.0 67 73 91 55
PLLF BPRM 0.90 32.62 7351 2.26E+05 2.28E+04 4.4 3.8 4.0 65 67 94 62
PLLF BPOM 0.85 32.87 7011 2.52E+05 2.37E+04 4.7 4.0 4.2 65 67 94 61
PLLF BC 0.80 32.68 7170 2.52E+05 2.41E+04 4.7 4.0 4.3 74 81 90 61
PLLF BM 0.85 32.88 7110 2.51E+05 2.37E+04 4.6 4.0 4.3 65 67 94 62
PLLF LDM 0.85 32.92 7111 2.52E+05 2.38E+04 4.7 4.0 4.3 68 70 94 62
PLLF LWR 0.85 32.88 7142 2.52E+05 2.39E+04 4.6 4.0 4.3 67 70 94 62
SWF BPRM 0.95 35.78 1502 1.63E+05 3.20E+03 21.1 2.6 9.6 34 48 80 6
SWF BPOM 0.95 43.17 730 7.77E+05 1.44E+04 49.5 9.6 27.4 13 13 93 13
SWF BC 0.95 43.18 735 7.78E+05 1.44E+04 49.5 9.7 27.4 14 13 93 13
SWF BM 0.95 43.17 730 7.77E+05 1.44E+04 49.5 9.6 27.4 13 13 93 13
SWF LDM 0.95 43.15 736 7.77E+05 1.44E+04 49.5 9.7 27.4 14 14 93 13
SWF LWR 0.95 43.15 729 7.77E+05 1.44E+04 49.5 9.7 27.4 13 13 93 13
DSWF BPRM 0.95 35.57 1551 2.77E+05 4.44E+03 37.9 1.1 12.5 34 48 87 5
DSWF BPOM 0.95 42.96 719 1.51E+06 2.08E+04 88.2 14.4 39.4 13 13 92 12
DSWF BC 0.95 42.92 728 1.65E+06 2.25E+04 97.3 15.8 40.5 13 14 93 12
DSWF BM 0.95 42.96 719 1.51E+06 2.08E+04 88.2 14.4 39.4 13 13 92 12
DSWF LDM 0.95 42.95 715 1.78E+06 2.31E+04 113.7 17.1 41.9 13 13 93 12
DSWF LWR 0.95 42.86 716 1.54E+06 2.10E+04 111.0 14.7 39.5 13 13 91 12

Normalized Tardiness % of Late WorkflowsPolicies

Th
re

sh
ol

d

BC
T

C
um

ul
at

iv
e

C
os

t
(S

ig
m

oi
d)

C
um

ul
at

iv
e

C
os

t
(Q

ua
dr

at
ic

)

Page 2

92

5.2.2.3 Case Study Three

The results for the simulation study of Case Study Three are summarized in Table 5.8.

In this case, the expected parallelization factor for Batch WFGs is higher than in Case

Study Two resulting in much tighter deadlines. Whereas, the parallelization factor

for Interactive WFGs is lower than in Case Study Two resulting in loose deadline.

Here, FCFS and FCLS perform slightly better than in Case Study Two. Since

FCFS and FCLS are static scheduling approaches, they still schedule WFGs in the

same order as in Case Study Two. As there are more Interactive WFGs than Batch

WFGs, the loose deadline for Interactive WFGs gives a performance gain, while Batch

WFGs suffer from the tight deadline.

Since EDF, LLF and PLLF are dynamic policies, changing the deadline character-

istics directly influences the performance of these policies. These policies favor Batch

WFGs over Interactive and Webservice because Batch WFGs’ deadlines are made

tighter. As the Batch WFG’s deadlines are unrealistic, it causes Interactive and

Webservice to suffer. Hence, there is degradation in performance of those policies.

DSWF and SWF perform slightly better than in Case Study Two because these

two policies schedule WFGs based on their duration rather than deadline. Hence,

these policies make scheduling decisions similar to Case Study Two. Since the deadline

of Interactive WFGs are made looser, they would not be tardy as in Case Study Two.

As there are a fewer number of Batch WFGs compared to Interactive WFGs, the

missed deadline cost in Batch WFGs is relatively less than the rewards obtained from

Interactive WFGs.

Fig. 5.15 shows that the DSWF significantly minimizes the Sigmoid cost compared

to PLLF and FCFS. The cost associated with DSWF is approximately nine times less

than FCFS and PLLF. The corresponding tardiness graph is shown in Fig. 5.16. It

also shows that PLLF minimizes the maximum tardiness but makes lots of WFGs

tardy thereby resulting in high cumulative sigmoid cost.

93

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

0 4 8 12 16 20 24

C
um

ul
at

iv
e

C
os

t

Born Time (hours)

1308.73

12457.90

12742.00
DSWF/LWR/0.95
PLLF/LWR/0.75
FCFS/LWR/0.8

Figure 5.15: The cumulative running cost of all WFGs by born time for DSWF, PLLF
and FCFS assuming sigmoid cost in Case Study Three.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14

Pe
rc

en
ta

ge
 o

f W
or

kf
lo

w
s

Normalized Tardiness

DSWF/LWR/0.95
PLLF/LWR/0.75
FCFS/LWR/0.8

Figure 5.16: Percentage of workflows as a function of normalized tardiness for DSWF,
PLLF and FCFS in Case Study Three.

94

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

0 3 6 9 12 15 18 21 24

C
um

ul
at

iv
e

C
os

t

Born Time (hours)

194.42

3163.12

3563.26
DSWF/LWR/0.8
PLLF/LWR/0.8
FCFS/LWR/0.75

Figure 5.17: The cumulative running cost of all WFGs by born time for DSWF, PLLF
and FCFS assuming sigmoid cost in Case Study Four.

As in the previous case studies, post mapping policies perform better than pre-

mapping policies which is shown in Table 5.8.

5.2.2.4 Case Study Four

The results for the simulation study of Case Study Four are summarized in Table 5.9.

This case study is different than the previous three case studies in terms of arrival

rate of WFGs.

Fig.5.13 shows that the DSWF significantly minimizes the Sigmoid cost compared

to PLLF and FCFS. The cost associated with DSWF is approximately eighteen times

less than FCFS and sixteen times less than PLLF. The corresponding tardiness graph

is shown in Fig. 5.18 where PLLF minimizes the maximum tardiness but it makes

most of WFGs tardy there by resulting in high cumulative sigmoid cost.

Table 5.9 provides performance of all MSPs which shows that post mapping poli-

cies perform better than pre-mapping policy. The performance of MSPs in this case

study is consistent to MSPs in the previous three cases.

95

Table 5.8: Statistics for simulation of Case Study Three.Simulation Results
Case3

RSP MSP Cumulative Max 95th % 99th % Total UI Batch WS

FCFS BPRM 0.60 25.07 8446 1.85E+10 8.08E+06 3472.4 2539.1 3132.3 66 66 75 65
FCFS BPOM 0.80 23.31 8385 1.43E+10 6.87E+06 3074.2 2204.5 2743.7 65 65 66 64
FCFS BC 0.80 23.34 8412 1.43E+10 6.87E+06 3070.2 2203.5 2743.0 68 71 65 64
FCFS BM 0.80 23.31 8386 1.43E+10 6.87E+06 3073.1 2205.0 2745.5 65 65 66 64
FCFS LDM 0.80 23.31 8405 1.43E+10 6.87E+06 3068.0 2203.8 2743.0 67 68 65 64
FCFS LWR 0.80 23.31 8391 1.43E+10 6.87E+06 3070.4 2204.3 2743.0 66 68 65 64
FCLS BPRM 0.95 34.67 1916 6.06E+07 6.22E+04 3154.0 19.4 65.0 24 26 93 19
FCLS BPOM 0.90 33.30 1289 1.41E+07 4.07E+04 1336.5 19.3 56.3 17 16 93 18
FCLS BC 0.90 33.35 1315 1.64E+07 4.25E+04 1579.5 19.3 56.6 18 18 93 18
FCLS BM 0.90 33.29 1283 1.41E+07 4.05E+04 1560.0 19.3 56.2 18 17 93 18
FCLS LDM 0.90 33.28 1285 1.22E+07 3.95E+04 1569.2 19.2 56.2 18 17 93 18
FCLS LWR 0.90 33.28 1306 1.07E+07 4.03E+04 1084.5 19.2 56.0 18 17 93 18
EDF BPRM 0.90 29.11 6765 6.85E+09 3.82E+06 2506.4 1540.4 2166.7 56 58 87 53
EDF BPOM 0.80 29.03 6671 7.38E+09 3.87E+06 2515.1 1546.4 2174.4 55 56 87 52
EDF BC 0.80 29.07 6684 7.38E+09 3.87E+06 2514.2 1547.1 2173.7 58 61 87 52
EDF BM 0.80 29.07 6673 7.38E+09 3.87E+06 2511.9 1546.7 2174.8 55 56 86 52
EDF LDM 0.80 29.08 6678 7.38E+09 3.87E+06 2509.6 1546.1 2173.4 56 58 87 52
EDF LWR 0.80 29.05 6676 7.38E+09 3.87E+06 2515.7 1547.3 2174.6 56 58 86 52
LLF BPRM 0.90 28.14 7972 1.03E+10 5.47E+06 2699.6 1931.2 2479.3 63 63 100 62
LLF BPOM 0.75 27.91 7928 1.01E+10 5.33E+06 2639.2 1891.7 2423.5 63 63 100 61
LLF BC 0.80 28.09 7903 1.09E+10 5.48E+06 2699.7 1929.8 2475.7 66 68 100 61
LLF BM 0.75 27.94 7927 1.01E+10 5.33E+06 2637.5 1890.5 2423.4 63 63 100 61
LLF LDM 0.75 27.90 7946 1.02E+10 5.34E+06 2641.7 1894.0 2425.2 67 69 100 61
LLF LWR 0.75 27.91 7937 1.01E+10 5.34E+06 2639.6 1891.2 2424.0 65 67 100 61
PLLF BPRM 0.85 32.53 7934 2.47E+05 2.64E+04 5.6 4.9 5.2 64 64 100 63
PLLF BPOM 0.75 32.46 7870 2.45E+05 2.62E+04 5.5 4.8 5.2 64 64 100 63
PLLF BC 0.75 32.57 7849 2.47E+05 2.65E+04 5.7 4.8 5.2 67 69 100 63
PLLF BM 0.80 32.68 7843 2.74E+05 2.75E+04 5.9 5.0 5.4 64 64 100 63
PLLF LDM 0.80 32.75 7804 2.75E+05 2.77E+04 5.8 5.0 5.4 65 66 100 63
PLLF LWR 0.75 32.48 7871 2.46E+05 2.63E+04 5.6 4.8 5.2 66 68 100 63
SWF BPRM 0.95 35.78 993 1.61E+05 1.09E+03 22.8 2.5 9.6 17 22 93 6
SWF BPOM 0.95 43.17 652 7.76E+05 1.25E+04 51.9 9.6 27.4 8 5 96 13
SWF BC 0.95 43.18 651 7.76E+05 1.26E+04 51.9 9.6 27.4 8 5 96 13
SWF BM 0.95 43.17 652 7.76E+05 1.25E+04 51.9 9.6 27.4 8 5 96 13
SWF LDM 0.95 43.15 652 7.76E+05 1.26E+04 51.9 9.6 27.4 8 5 96 13
SWF LWR 0.90 34.32 449 1.64E+05 7.31E+02 22.1 2.6 9.6 9 10 90 5
DSWF BPRM 0.95 35.64 972 2.58E+05 2.01E+03 37.7 1.5 12.2 16 21 94 5
DSWF BPOM 0.95 43.01 616 1.35E+06 1.74E+04 84.1 11.5 37.4 7 4 97 12
DSWF BC 0.95 42.95 620 1.40E+06 1.81E+04 85.7 11.5 38.5 7 4 96 12
DSWF BM 0.95 43.01 616 1.35E+06 1.74E+04 84.1 11.5 37.4 7 4 97 12
DSWF LDM 0.95 42.88 620 1.40E+06 1.81E+04 103.0 12.3 37.7 7 4 96 12
DSWF LWR 0.95 42.91 617 1.34E+06 1.73E+04 99.3 11.1 37.4 7 4 96 12

C
um

ul
at

iv
e

C
os

t
(Q

ua
dr

at
ic

)

Normalized Tardiness % of Late WorkflowsPolicies

Th
re

sh
ol

d

BC
T

C
um

ul
at

iv
e

C
os

t
(S

ig
m

oi
d)

Page 3

96

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-1 0 1 2 3 4 5

Pe
rc

en
ta

ge
 o

f W
or

kf
lo

w
s

Normalized Tardiness

DSWF/LWR/0.8
PLLF/LWR/0.8
FCFS/LWR/0.75

Figure 5.18: Percentage of workflows as a function of normalized tardiness for DSWF,
PLLF and FCFS in Case Study Four.

5.2.3 Resource Requirement Analysis

This section analyzes the performance of various policies in terms of number of ma-

chines required for the four cases considered to perform with ideal performance. The

required number of machines is identified by using a binary search method, where the

cluster size of 16 machines is assumed, and more machines (multiple of 16) are added

to find the approximate number of the required machines for each policy.

Fig. 5.19 shows the effect of adding machines for FCFS operating on Case Study

One. In the figure, it shows that the cumulative cost for FCFS decreases gradually.

For example, the percentage of reduction in cost due to adding 16, 32, 48, 64 machines

on the cluster of size 16 are 58.22%, 76.26%, 84.74% and 96.57% respectively. Fig.

5.19 shows the corresponding percentage of workflows whose normalized tardiness is

at or below the given value of normalized tardiness.

Fig. 5.21 shows the effect of adding machines for PLLF operating on Case Study

One. In the figure, it shows that the cumulative cost for PLLF decreases sharply.

For example, the percentage of reduction in cost due to adding 16, 32 machines on

97

Table 5.9: Statistics for simulation of Case Study Four.Simulation Results
Case4

RSP MSP Cumulative Max 95th % 99th % Total UI Batch WS

FCFS BPRM 0.90 31.26 3553 6.71E+09 3.19E+06 3397.0 2608.9 3204.1 74 78 76 70
FCFS BPOM 0.75 31.28 3554 6.73E+09 3.20E+06 3405.7 2613.5 3210.8 74 78 76 70
FCFS BC 0.80 31.38 3557 6.73E+09 3.19E+06 3398.7 2611.1 3207.9 76 82 76 70
FCFS BM 0.75 31.28 3553 6.74E+09 3.20E+06 3407.0 2615.5 3208.6 74 78 76 70
FCFS LDM 0.75 31.35 3554 6.75E+09 3.20E+06 3413.0 2617.2 3215.8 75 79 76 70
FCFS LWR 0.75 31.30 3554 6.75E+09 3.20E+06 3413.0 2618.6 3213.1 74 78 76 70
FCLS BPRM 0.95 34.18 494 6.60E+05 6.87E+03 179.6 2.0 53.5 19 27 81 6
FCLS BPOM 0.80 30.98 436 3.51E+05 4.14E+03 125.7 0.7 41.6 24 37 78 5
FCLS BC 0.80 31.11 444 3.45E+05 4.15E+03 112.5 0.7 41.9 26 41 78 5
FCLS BM 0.80 31.00 442 3.46E+05 4.11E+03 123.3 0.8 41.8 24 37 78 5
FCLS LDM 0.80 31.10 447 3.54E+05 4.22E+03 112.4 0.8 41.9 25 39 78 5
FCLS LWR 0.80 31.01 446 3.41E+05 4.10E+03 111.3 0.8 41.8 24 37 78 5
EDF BPRM 0.90 31.44 2676 2.02E+09 1.37E+06 2391.6 1538.0 2090.8 60 66 80 51
EDF BPOM 0.80 31.42 2643 2.03E+09 1.37E+06 2398.7 1540.7 2092.0 60 66 80 51
EDF BC 0.80 31.66 2650 2.03E+09 1.37E+06 2393.9 1539.3 2090.2 62 70 79 51
EDF BM 0.80 31.42 2639 2.03E+09 1.37E+06 2397.4 1538.4 2093.6 60 66 80 51
EDF LDM 0.80 31.51 2648 2.03E+09 1.37E+06 2392.7 1537.6 2092.1 61 68 79 51
EDF LWR 0.80 31.44 2644 2.03E+09 1.37E+06 2397.2 1538.8 2091.5 60 66 80 51
LLF BPRM 0.90 31.54 3283 4.21E+09 2.32E+06 2865.0 2144.5 2694.6 70 74 99 64
LLF BPOM 0.80 31.48 3276 4.20E+09 2.31E+06 2858.9 2140.1 2687.7 70 74 98 64
LLF BC 0.80 31.72 3279 4.20E+09 2.31E+06 2859.4 2141.6 2691.1 72 78 99 64
LLF BM 0.80 31.48 3281 4.20E+09 2.31E+06 2857.9 2140.6 2688.7 70 74 98 64
LLF LDM 0.90 32.86 3288 5.49E+09 2.65E+06 3241.5 2436.1 3055.0 70 73 99 64
LLF LWR 0.80 31.51 3266 4.20E+09 2.31E+06 2859.5 2138.7 2689.6 70 73 98 64
PLLF BPRM 0.90 31.38 3214 2.25E+04 4.29E+03 3.2 2.3 2.5 72 76 98 66
PLLF BPOM 0.80 31.30 3169 2.19E+04 4.16E+03 3.0 2.3 2.5 72 75 98 66
PLLF BC 0.80 31.54 3165 2.20E+04 4.22E+03 3.1 2.3 2.5 74 79 98 66
PLLF BM 0.80 31.26 3179 2.20E+04 4.18E+03 3.0 2.3 2.5 72 75 98 66
PLLF LDM 0.80 31.36 3186 2.21E+04 4.21E+03 3.1 2.3 2.5 73 78 98 66
PLLF LWR 0.80 31.25 3171 2.19E+04 4.18E+03 3.0 2.3 2.5 72 75 98 66
SWF BPRM 0.95 34.39 247 3.63E+03 -1.29E+03 5.7 0.2 2.0 14 23 69 0
SWF BPOM 0.80 31.23 211 3.38E+03 -1.27E+03 4.8 0.2 1.5 20 35 61 0
SWF BC 0.80 31.46 221 3.49E+03 -1.20E+03 4.8 0.2 1.6 22 40 62 0
SWF BM 0.80 31.22 210 3.38E+03 -1.27E+03 4.8 0.2 1.5 20 35 62 0
SWF LDM 0.80 31.32 217 3.44E+03 -1.23E+03 4.8 0.2 1.6 22 38 62 0
SWF LWR 0.80 31.25 224 3.42E+03 -1.25E+03 4.8 0.2 1.6 20 36 62 0
DSWF BPRM 0.95 34.48 222 4.59E+03 -1.22E+03 13.8 0.2 3.0 13 23 61 0
DSWF BPOM 0.80 31.19 194 4.10E+03 -1.21E+03 14.0 0.2 2.4 20 36 55 0
DSWF BC 0.80 31.40 200 4.31E+03 -1.12E+03 13.0 0.2 2.5 22 39 56 0
DSWF BM 0.80 31.12 197 4.19E+03 -1.19E+03 12.5 0.2 2.5 20 36 55 0
DSWF LDM 0.80 31.22 205 4.64E+03 -1.15E+03 11.9 0.2 2.4 21 38 54 0
DSWF LWR 0.80 31.09 197 4.30E+03 -1.19E+03 18.1 0.2 2.3 20 36 54 0

Policies

Th
re

sh
ol

d

BC
T

C
um

ul
at

iv
e

C
os

t
(S

ig
m

oi
d)

C
um

ul
at

iv
e

C
os

t
(Q

ua
dr

at
ic

)

Normalized Tardiness % of Late Workflows

Page 4

98

 0

 100

 200

 300

 400

 500

 600

 700

 800

0 2 4 6 8 10 12 14 16 18 20 22 24

C
um

ul
at

iv
e

C
os

t

Born Time (hours)

771.25

322.20

183.07

117.67

26.45

FCFS(16)/LWR/0.75
FCFS(32)/LWR/0.75
FCFS(48)/LWR/0.75
FCFS(64)/LWR/0.75
FCFS(80)/LWR/0.75

Figure 5.19: The cumulative running cost of all WFGs by born time for FCFS with
multiple cluster size operating on the Case Study One.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-1 -0.5 0 0.5 1

Pe
rc

en
ta

ge
 o

f W
or

kf
lo

w
s

Normalized Tardiness

FCFS(16)/LWR/0.75
FCFS(32)/LWR/0.75
FCFS(48)/LWR/0.75
FCFS(64)/LWR/0.75
FCFS(80)/LWR/0.75

Figure 5.20: Percentage of workflows as a function of normalized tardiness for FCFS
with multiple cluster size operating on the Case Study One.

the cluster of size 16 are 91.95%, and 96.68% respectively. Fig. 5.21 shows the

corresponding percentage of workflows whose normalized tardiness is at or below the

given value of normalized tardiness.

Fig. 5.23 shows the effect of adding machines for DSWF operating on Case Study

99

 0

 50

 100

 150

 200

 250

 300

 350

 400

0 2 4 6 8 10 12 14 16 18 20 22 24

C
um

ul
at

iv
e

C
os

t

Born Time (hours)

392.54

31.57

PLLF(16)/LWR/0.9
PLLF(32)/LWR/0.9

Figure 5.21: The cumulative running cost of all WFGs by born time for PLLF with
multiple cluster size operating on the Case Study One.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-1 -0.5 0 0.5 1

Pe
rc

en
ta

ge
 o

f W
or

kf
lo

w
s

Normalized Tardiness

PLLF(16)/LWR/0.9
PLLF(32)/LWR/0.9

Figure 5.22: Percentage of workflows as a function of normalized tardiness for PLLF
with multiple cluster size operating on the Case Study One.

One. In the figure, it shows that the cumulative cost for DSWF decreases as the ma-

chines are added to the cluster. For example, the percentage of reduction in cost due

to adding 16, 32 machines on the cluster of size 16 are 68.80%, and 76.64% respec-

tively. Fig. 5.21 shows the corresponding percentage of workflows whose normalized

100

tardiness is at or below the given value of normalized tardiness.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

0 2 4 6 8 10 12 14 16 18 20 22 24

C
um

ul
at

iv
e

C
os

t

Born Time (hours)

83.27

25.98

DSWF(16)/LWR/0.9
DSWF(32)/LWR/0.9

Figure 5.23: The cumulative running cost of all WFGs by born time for DSWF with
multiple cluster size operating on the Case Study One.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-1 -0.5 0 0.5 1

Pe
rc

en
ta

ge
 o

f W
or

kf
lo

w
s

Normalized Tardiness

DSWF(16)/LWR/0.9
DSWF(32)/LWR/0.9

Figure 5.24: Percentage of workflows as a function of normalized tardiness for DSWF
with multiple cluster size operating on the Case Study One.

For the purpose of comparing the performances of different policies’ resource re-

quirements, three policies are compared for all the cases (refer to Appendix A for all

policies). Fig. 5.25 through Fig. 5.28 illustrate how the cumulative cost decreases as

101

 0

 100

 200

 300

 400

 500

 600

 700

 800

0 16 32 48 64 80 96 128 256

C
um

ul
at

iv
e

C
os

t

Number of Machines

DSWF
PLLF
FCFS

Figure 5.25: Cumulative cost as a function of number of quad-core machines assumed
in the cluster for the Case Study One.

more machines are added to the cluster for all the four cases considered before. In

Fig. 5.25, the number of machines required for PLLF is about 32, whereas, FCFS

requires approximately three to four times more machines to get the similar perfor-

mance. DSWF requires 32 machines for Case Study One, Case Study Two and Case

Study Three which are shown in Fig. 5.25, Fig. 5.26 and Fig. 5.27 respectively.

Whereas, PLLF requires 64 machines for Case Study Two and Case Study Three

which is double the size than Case Study One. In case of FCFS, more than 128 ma-

chines are needed to achieve the similar performance as DSWF and PLLF policies.

Fig. 5.28 shows the similar trend in the Case Study Four.

102

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

0 16 32 48 64 80 96 128 256

C
um

ul
at

iv
e

C
os

t

Number of Machines

DSWF
PLLF
FCFS

Figure 5.26: Cumulative cost as a function of number of quad-core machines assumed
in the cluster for the Case Study Two.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

0 16 32 48 64 80 96 128 256

C
um

ul
at

iv
e

C
os

t

Number of Machines

DSWF
PLLF
FCFS

Figure 5.27: Cumulative cost as a function of number of quad-core machines assumed
in the cluster for the Case Study Three.

103

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

0 16 32 48 64 80 96 128 256

C
um

ul
at

iv
e

C
os

t

Number of Machines

DSWF
PLLF
FCFS

Figure 5.28: Cumulative cost as a function of number of quad-core machines assumed
in the cluster for the Case Study Four.

5.3 Concluding Remarks

Simulation studies are conducted for evaluating performances of seven RSPs and

six MSPs. Four case studies are analyzed that varied in terms of arrival pattern

and request characteristics. Two cost functions, sigmoid and quadratic, are used

for comparing the performance of these policies. First, extensive threshold analysis

is performed to obtain a good threshold values for each policies in different case

studies. Based on the threshold values obtained, performance of RSPs and MSPs

are analyzed. It is shown that the performance of DSWF is superior to all the

other policies considered in terms of minimizing sigmoid cost. On the other hand,

PLLF policy is better in terms of minimizing the maximum tardiness. The resource

requirements of DSWF is three to four times less than the FCFS policy considered

for four case studies.

104

Chapter 6

Conclusions

A new simulation environment is introduced for modeling the execution of workflows

(WFGs) on a cluster of memory-managed multicore machines. There are three major

components of the considered environment, referred to as a scheduling framework:

WFG Generator, Scheduler and Cluster of Machines. The WFG Generator models

the client’s WFGs generation in terms of Interactive, Webservice, and Batch. The

Scheduler component of the framework is responsible for scheduling clients’ WFGs

to the Cluster of Machines using two types of heuristics: Request Selection Policy

(RSP) and Machine Selection Policy (MSP). The RSP is responsible for selecting

ready requests of WFGs to be considered for execution; the MSP is used to select

the best available machine for executing those requests. A cluster of Machines is

modeled, each of them following an efficiency based machine model. The machine

model proposed comprehends the reality that the efficiencies of memory-managed

machines are impacted by the loading of their heap memories as well as the loading

of their CPU resources.

Seven RSPs and six MSPs are implemented for the purpose of evaluating these

scheduling policies. Forty-two combinations of these RSPs and MSPs are evaluated.

105

The results of the simulation studies indicate that the newly proposed DSWF schedul-

ing policy outperforms the other evaluated in terms of minimizing sigmoid cost and

normalized tardiness. Simulation studies showed that DSWF has high throughput

and hence a lower sigmoid cost than all the other policies considered. Another pro-

posed scheduling policy PLLF performed better than LLF and FCFS in minimizing

sigmoid cost. In terms of minimizing the normalized tardiness, the PLLF performed

better than all the other policies. Two major categories of MSPs are evaluated,

namely, pre-mapping and post mapping policies. A new concept of thresholding a

machine is introduced. Each of the MSPs considered follow the thresholding of the

machines in a cluster. Simulation studies reveal that there exists an optimal threshold

value for each MSP. In almost all the cases considered in this thesis, the post mapping

policies performed better than the pre-mapping policy.

In the different case studies conducted, it is shown that using intelligent scheduling

policies makes a lot of difference in terms of performance and resource requirements.

This study showed that the policy DSWF significantly reduces the number of ma-

chines required for a given environment. The number of machines required by the

DSWF is three to four times less than the FCFS policy. This raises a serious concern

over the scheduling policies that are working underneath the system as a black box.

This research work suggests that using a good scheduling policy for a given scenario

can not only improves the overall system performance, but can also minimize resource

requirements. This provides avenues for an organization to move into the direction

of better performance as well as lower infrastructure cost.

106

Chapter 7

Future Work

The following are some of the plans for future work: operational implementation of the

scheduling framework; scheduling using planning; robust scheduling; and autonomic

scheduling.

To make the scheduling framework operate in a real operational setting, it needs

to provide robustness, security and management of client requests. To cope with

these necessities and challenges, there can be multiple actions that can be taken.

One such action is to provide additional request states. When a request is executing

on a machine of the cluster, there can be four new states in addition to the request’s

state discussed in Chapter 3: migrated, paused, failed, or cancelled. The migrated

state refers to the effect of load balancing operations [25] at the machine level.

Whenever a machine has a higher load than the other machines in the cluster, then

some requests running on that machine could be migrated to the other machines with

a lower load. Similarly, pausing an executing request is another important feature

which could be useful for debugging purposes. The state associated with pausing an

executing request is referred as paused. Sometimes during execution, some requests

may fail due to system or application failure. This can be modeled as failed state.

The cancelled state refers to the intentional cancellation of an executing request. The

107

blocked executingready completed

migrated

paused

failed

cancelled

Figure 7.1: Possible states of a Request assigned to a Machine.

dotted lines in Fig 3.15 represent those states that are not yet implemented and are

considered for future work.

If the information about the scheduling domain (request arrival rate and duration)

are known in advance, planning can help in making scheduling decisions. Generally,

it is known that Batch WFGs have daily periodicity. Using this information helps

schedule those jobs without interrupting other jobs, like Webservice and Interactive.

If there is no information known in advance, then dealing with such cases refers

to robust scheduling. In some real systems the information about the arrival and

duration is unknown. This is a very challenging area of scheduling research which

deals with uncertainty.

In recent days, there has been some advancement toward making a self-aware soft-

ware system, referred to as autonomic computing [49, 50]. Such a system can adjust

itself to handle unpredictable situations. It is very complex and challenging to design

a system that can dynamically manage changes in the system. The Autonomic com-

puting can be applied to the scheduling field by making a system have an autonomous

scheduler. The term autonomous scheduler is a dynamic scheduler that keeps track

of the user’s requirements as well as the knowledge of the system, and performs to

maximize the overall gain of the system. Machine learning technologies can be used

108

to address such tasks. Preliminary studies were conducted for the Self Managed Sys-

tems (SMS) using reinforcement learning. In the study conducted, a reinforcement

learning agent (RLA) was developed which selects a request selection policy among

the FCFS, EDF and LLF. A fixed post mapping machine selection policy is used for

this purpose. Because the performance of scheduling policies depend on the scenario

under consideration and changing the scheduling policies would change the overall

performance of the system. The RLA assigns a reward to the scheduling policy be-

ing used based on the resulting tardiness of the scheduled WFGs. The preliminarily

results showed that the performance of reinforcement learning based scheduling ap-

proach was promising in terms of minimizing the tardiness compared to the FCFS

policy.

109

Bibliography

[1] G. E. Moore. Cramming more components onto integrated circuits. Electonics,

38(8):114–17, 1965.

[2] S. Hamilton. Taking moore’s law into the next century. Computer, 32(1):43–48,

January 1999.

[3] O. Sinnen. Task scheduling for parallel systems. 2007.

[4] R. Sharma J. Fialli M. Hapner, R. Burridge and K. Hasse. Java message service

api tutorial and reference: Messaging for the j2ee platform. 2002.

[5] G. Hohpe and B. Woolf. Enterprise integration patterns: Designing, building,

and deploying messaging solutions. 2004.

[6] C. Overton. On the theory and practice of internet slas. Computer Measurement

Group, Journal of Computer Resource Measurement, 106:32–45, April 2002.

[7] A. Keller and H. Ludwig. The wsla framework - specifying and monitoring service

level agreements for web services. Journal of Network and System Management,

11(1), 2003.

[8] B. M. et al. Managing of ebusiness on demand sla contracts in business terms

using the cross-sla execution manager sam. IBM, IEEE ISADS, 2003.

[9] R. R. Schaller. Moores law: Past, present, and future. IEEE Spectrum, 34:52–59,

1997.

110

[10] J. Bentley. Programming Pearls. ACM Press & Addison Wesley, New York, NY,

2000.

[11] N. Bontis. Intellectual capital: an exploratory study that develops measures and

models. Management Decision, pages 63–76, 1998.

[12] N. Bontis. Assessing knowledge assets: a review of the models used to measure in-

tellectual capital. International Journal of Management Reviews, 3:41–60, 2001.

[13] M. Beltrán, A. Guzmán, and J. L. Bosque. A new cpu availability prediction

model for time-shared systems. IEEE Transactions on Computers, 57(7):865–

875, July 2008.

[14] Y. Zhang, W. Sun, and Y. Inoguchi. Predicting running time of grid tasks on cpu

load predictions. Proceedings of the 7th IEEE/ACM International Conference on

Grid Computing, pages 286–292, September 2006.

[15] A. W. Appel. Garbage collection can be faster than stack allocation. Information

Processing Letters, 25(4):275–279, June 1987.

[16] M. Hertz. Quantifying and Improving the Performance of Garbage Collection.

Ph.D. Dissertation, University of Massachusetts, Amherst, 2006.

[17] M. Hertz and E. D. Berger. Quantifying the performance of garbage collection vs.

explicit memory management. Proceedings of the Object-Oriented Programming

Systems, Languages and Applications (OOPSLA 2005), October 2005.

[18] R. Jones and R. Lins. Garbage Collection: Algorithms for Automatic Dynamic

Memory Management. John Wiley & Sons, New York, NY, 1996.

[19] H. Koide and Y. Oie. A new task scheduling method for distributed programs

that require memory management. Concurrency and Computation: Practice and

Experience, 18:941–945, 2006.

111

[20] S. Dhakal, M. M. Hayat, J. E. Pezoa, C. Yang, and D. A. Bader. Dynamic load

balancing in distributed systems in the presence of delays: A regeneration-theory

approach. IEEE Transactions on Parallel & Distributed Systems, 18(4):485–497,

April 2007.

[21] D. Dyachuk and R. Deters. Using sla context to ensure quality of service for

composite services. IEEE Transactions on Computers, 57(7):865–875, July 2008.

[22] J. K. Kim, S. Shivle, H. J. Siegel, A. A. Maciejewski, T. Braun, M. Schnei-

der, S. Tideman, R. Chitta, R. B. Dilmaghani, R. Joshi, A. Kaul, A. Sharma,

S. Sripada, P. Vangari, and S. Sankar Yellampalli. Dynamic mapping in a het-

erogeneous environment with tasks having priorities and multiple deadlines. 12th

Heterogeneous Computing Workshop (HCW 2003), in Proceedings of the 17th In-

ternational Parallel and Distributed Processing Symposium (IPDPS 2003), April

2003.

[23] S. H. Oh and S. M. Yang. A modified least-laxity-first scheduling algorithm for

real-time tasks. Proceedings of the 5th International Workshop on Real-Time

Computing Systems and Applications (RTCSA ’98), pages 31–36, October 1998.

[24] V. Salmani, M. Naghibzadeh, A. Habibi, and H. Deldari. Quantitative com-

parison of job-level dynamic scheduling policies in parallel real-time systems.

Proceedings TENCON, 2006 IEEE Region 10 Conference, November 2006.

[25] C. Kim H. Kameda, J. Li and Y. Zhang. Optimal load balancing in distributed

computer systems. 1997.

[26] Y. Feizabadi and G. Back. Garbage collection-aware utility accrual scheduling.

Real-Time Systems, 36(1-2):3–22, July 2007.

112

[27] M. Hornick D. Georgakopoulos and A. Sheth. An overview of workflow manage-

ment: from process modeling to workflow automation infrastructure. Distributed

and Parallel Databases, 3:119153, 1995.

[28] B. Kiepuszewski W.M.P. van der Aalst, A.H.M. ter Hofstede and A.P. Barros.

Advanced workflow patterns. 7th International Conference on Cooperative In-

formation Systems (CoopIS 2000), O. Etzion and P. Scheuermann (Eds.), 1901,

2000.

[29] B. Kiepuszewski A.P. Barros W.M.P. van der Aalst, A.H.M. ter Hofstede. Work-

flow patterns. Distributed Parallel Databases, 14(1):5–51, 2003.

[30] D. Edmond N. Russell, A.H.M. ter Hofstede and W.M.P. van der Aalst. Work-

flow data patterns. Technical Report QUT Technical Report FIT-TR-2004-01,

Queensland University of Technology, Brisbane, 2004.

[31] D. Edmond N. Russell, A.H.M. ter Hofstede and W.M.P. van der Aalst. Workflow

resource patterns. BETA Working Paper Series, WP 127, Eindhoven University

of Technology, Eindhoven, 2004.

[32] J. Yu and R. Buyya. A taxonomy of scientific workflow systems for grid com-

puting. SIGMOD Record, 34(3), 2005.

[33] P. M. Papazoglou. Service -oriented computing: Concepts, characteristics and

directions. International Conference on Web Information Systems Engineering

(WISE’03), 4, 2003.

[34] R. Khalaf W. Nagy N. Mukhi F. Curbera, M. Duftler and S. Weerawarana.

Unraveling the web services web: An introduction to soap, wsdl, and uddi. IEEE

Internet Computing, 6(2):86–93, March 2002.

[35] J. OHara. Toward a commodity enterprise middleware. Queue, 5(4):4855, 2007.

113

[36] M. Menth et al. Throughput performance of popular jms servers. Joint inter-

national conference on Measurement and modeling of computer systems, pages

367–368, 2006.

[37] J. Bacon K. Sachs, S. Kounev and A. Buchmann. Performance evaluation of

message-oriented middleware using the specjms2007 benchmark. Performance

Evaluation, 66(8):410–434, 2009.

[38] C. Taton and N. De Palma. Improving the performances of jms-based applica-

tions. Autonomic Computing, 1(1):81 – 102, 2009.

[39] S. Narravula P. Lai H. Subramoni, G. Marsh and D. Panda. Design and evalu-

ation of benchmarks for financial applications using advanced message queuing

protocol (amqp) over infiniband. WHPCF, page 18, Nov. 2008.

[40] A. Kupsys and R. Ekwall. Architectural issues of jms compliant group commu-

nication. IEEE NCA, 7:139–148, 2005.

[41] M. Stal. Using architectural patterns and blueprints for service-oriented archi-

tecture. IEEE Software, 23(2), Mar./Apr. 2006.

[42] T. I. Seidman. First come first serve can be unstable. IEEE Transactions on

Automattic Control, 39:2166–2171, 1994.

[43] M. Bramson. Instability of fifo queueing networks. Annals of Applied Probability,

4:414–431, 1994.

[44] V. Yarmolenko and R. Sakellariou. An evaluation of heuristics for sla based paral-

lel job scheduling. High Performance Grid Computing Workshop (in conjunction

with IPDPS 2006), IEEE Computer Society, 2006.

114

[45] R. Sakellariou and V. Yarmolenko. Job scheduling on the grid: Towards sla-based

scheduling. High Performance Computing and Grids in Action, page 207222,

2008.

[46] K.T. Krishnakumar J. Garibaldi J. MacLaren, R. Sakellariou and D. Ouelhadj.

Towards service level agreement based scheduling on the grid. Workshop on

Planning and Scheduling for Web and Grid Services (in conjunction with ICAPS-

04), 2004.

[47] M. Agrawal M. H Balter, B. Schroeder and N. Bansal. Size-based scheduling to

improve web performance. ACM Transaction on Computer System, 21, 2003.

[48] J. Little. A proof of the theorem l =lambda w. Operations Research, 9, 1961.

[49] I. Whalley D. Chess S. White, J. Hanson and J. Kephart. An architectural

approach to autonomic computing. ICAC, pages 2–9, 2004.

[50] J. O. Kephart. Research challenges of autonomic computing. Intl. Conf. Software

Eng., ACM, 27:15–22, 2005.

115

Appendix A

Resource Analysis Table

116

Table A.1: Statistics for simulation of Case Study One with 16 quad-core machines.

Simulation Results
Cluster Size 16
Case1

RSP MSP Cumulative Max 95th % 99th % Total UI Batch WS

FCFS BPRM 0.90 18.73 774.1 2.68E+08 3.22E+05 1493.2 910.5 1304.8 35.1 35.8 19.4 35.0
FCFS BPOM 0.75 18.70 771.2 2.65E+08 3.19E+05 1484.8 908.3 1309.2 34.9 35.7 19.4 34.7
FCFS BC 0.75 18.73 782.7 2.65E+08 3.20E+05 1492.8 909.3 1310.5 50.2 59.2 17.7 34.9
FCFS BM 0.75 18.76 771.4 2.64E+08 3.19E+05 1493.9 903.7 1305.4 34.9 35.7 19.4 34.7
FCFS LDM 0.80 18.71 786.2 2.62E+08 3.18E+05 1484.6 902.0 1301.2 57.0 69.8 16.1 34.7
FCFS LWR 0.75 18.74 771.3 2.64E+08 3.19E+05 1484.4 907.4 1296.9 34.9 35.7 19.4 34.7
FCLS BPRM 0.95 21.92 199.1 1.50E+04 2.03E+02 51.7 0.4 10.9 20.9 27.9 46.8 4.4
FCLS BPOM 0.90 20.02 138.8 1.02E+04 3.61E+01 41.7 0.3 8.8 15.6 20.3 35.5 4.4
FCLS BC 0.90 20.02 132.9 1.00E+04 5.72E+01 41.6 0.3 8.8 16.2 21.2 35.5 4.4
FCLS BM 0.90 19.98 139.8 9.47E+03 9.21E+00 41.7 0.3 7.0 15.8 20.6 35.5 4.3
FCLS LDM 0.90 20.03 140.4 9.47E+03 2.11E+01 41.7 0.3 7.0 15.7 20.6 35.5 4.3
FCLS LWR 0.90 20.01 143.5 9.47E+03 1.32E+01 41.6 0.3 7.0 16.6 21.9 35.5 4.3
EDF BPRM 0.95 22.31 257.6 5.76E+04 1.38E+03 63.8 1.0 31.5 21.7 27.9 25.8 8.9
EDF BPOM 0.90 20.06 81.4 1.59E+03 -4.29E+02 0.8 0.2 0.4 13.7 21.0 0.0 0.0
EDF BC 0.90 20.15 84.9 1.64E+03 -3.95E+02 0.8 0.2 0.4 13.6 21.0 0.0 0.0
EDF BM 0.90 20.01 79.1 1.58E+03 -4.32E+02 0.9 0.1 0.4 13.1 20.2 0.0 0.0
EDF LDM 0.90 20.11 66.7 1.60E+03 -4.20E+02 0.9 0.1 0.4 13.4 20.7 0.0 0.0
EDF LWR 0.90 20.06 79.9 1.59E+03 -4.28E+02 0.8 0.1 0.4 13.5 20.8 0.0 0.0
LLF BPRM 0.90 19.99 623.4 1.06E+07 5.48E+04 300.9 198.2 273.9 33.7 35.3 88.7 25.6
LLF BPOM 0.90 19.96 544.3 9.19E+06 4.99E+04 282.7 185.3 257.4 29.5 30.1 88.7 23.2
LLF BC 0.90 20.02 562.5 9.84E+06 5.24E+04 291.5 191.8 264.5 30.4 30.8 88.7 24.6
LLF BM 0.90 19.96 546.3 9.42E+06 5.07E+04 288.8 188.2 260.0 29.7 30.2 88.7 23.7
LLF LDM 0.90 19.99 560.0 9.74E+06 5.18E+04 287.3 191.6 263.3 30.2 30.7 88.7 24.1
LLF LWR 0.90 19.98 553.4 9.54E+06 5.13E+04 287.4 189.2 259.8 30.2 30.7 88.7 24.2
PLLF BPRM 0.90 20.12 543.9 2.46E+03 -3.34E+01 2.1 0.6 0.9 34.6 35.2 91.9 28.4
PLLF BPOM 0.90 20.08 390.0 2.23E+03 -1.23E+02 2.0 0.5 0.8 32.7 32.8 88.7 27.7
PLLF BC 0.90 20.13 406.8 2.34E+03 -7.24E+01 1.7 0.6 1.0 32.5 32.6 87.1 27.5
PLLF BM 0.90 20.09 405.8 2.25E+03 -1.14E+02 2.0 0.5 0.9 33.1 33.4 88.7 27.8
PLLF LDM 0.90 20.10 385.8 2.23E+03 -1.12E+02 1.3 0.5 0.9 32.8 33.0 88.7 27.5
PLLF LWR 0.90 20.09 392.5 2.22E+03 -1.23E+02 1.9 0.5 0.8 32.8 32.9 88.7 27.9
SWF BPRM 0.95 22.32 123.0 1.68E+03 -3.87E+02 1.2 0.2 0.5 18.2 26.9 27.4 0.0
SWF BPOM 0.90 20.30 79.8 1.59E+03 -4.28E+02 1.4 0.1 0.5 13.3 19.9 14.5 0.0
SWF BC 0.90 20.37 71.6 1.64E+03 -3.97E+02 1.2 0.1 0.4 14.0 21.0 14.5 0.0
SWF BM 0.90 20.25 83.4 1.59E+03 -4.26E+02 1.1 0.2 0.4 14.2 21.3 14.5 0.0
SWF LDM 0.90 20.34 74.2 1.61E+03 -4.15E+02 0.9 0.1 0.4 13.2 19.8 14.5 0.0
SWF LWR 0.90 20.31 73.8 1.59E+03 -4.30E+02 1.5 0.1 0.4 12.8 19.2 14.5 0.0
DSWF BPRM 0.95 22.17 105.2 1.67E+03 -3.91E+02 1.6 0.2 0.5 17.2 25.2 25.8 0.3
DSWF BPOM 0.90 20.16 80.4 1.60E+03 -4.22E+02 1.2 0.1 0.4 13.6 20.4 11.3 0.1
DSWF BC 0.90 20.06 82.9 1.66E+03 -3.83E+02 1.5 0.2 0.4 14.2 21.4 11.3 0.1
DSWF BM 0.90 20.09 75.8 1.60E+03 -4.21E+02 1.5 0.1 0.4 14.1 20.8 21.0 0.1
DSWF LDM 0.90 20.18 77.6 1.62E+03 -4.07E+02 1.1 0.2 0.4 13.3 20.3 4.8 0.0
DSWF LWR 0.90 20.04 83.3 1.61E+03 -4.19E+02 1.4 0.1 0.5 13.0 19.5 11.3 0.0

BC
T

C
um

ul
at

iv
e

C
os

t
(S

ig
m

oi
d)

C
um

ul
at

iv
e

C
os

t
(Q

ua
dr

at
ic

)

Normalized Tardiness % of Late WorkflowsPolicies

Th
re

sh
ol

d

Page 1

117

Table A.2: Statistics for simulation of Case Study Two with 16 quad-core machines.

Simulation Results

Case2

RSP MSP Cumulative Max 95th % 99th % Total UI Batch WS

FCFS BPRM 0.65 30.09 12717.5 6.43E+10 1.82E+07 5356.3 4621.4 5022.8 98.6 99.4 68.3 97.5
FCFS BPOM 0.80 29.47 12713.2 6.23E+10 1.79E+07 5252.0 4549.1 4936.8 98.4 99.4 60.0 97.0
FCFS BC 0.80 29.53 12714.3 6.23E+10 1.79E+07 5251.9 4549.0 4937.1 98.4 99.4 60.0 97.0
FCFS BM 0.80 29.44 12713.4 6.23E+10 1.79E+07 5252.0 4548.6 4936.7 98.4 99.4 60.0 97.0
FCFS LDM 0.80 29.46 12714.4 6.23E+10 1.79E+07 5251.8 4549.0 4937.3 98.4 99.4 60.0 97.0
FCFS LWR 0.80 29.42 12713.7 6.23E+10 1.79E+07 5251.7 4548.8 4937.1 98.4 99.4 60.0 97.0
FCLS BPRM 0.95 41.52 7531.3 2.72E+08 1.90E+05 5546.6 77.0 137.3 84.5 99.4 100.0 54.5
FCLS BPOM 0.90 41.59 5083.1 1.12E+08 1.52E+05 6358.4 76.9 136.0 60.1 62.5 100.0 54.7
FCLS BC 0.90 41.60 5092.6 1.22E+08 1.57E+05 4987.3 76.9 136.0 60.6 63.3 100.0 54.7
FCLS BM 0.90 41.60 4959.3 8.50E+07 1.47E+05 5496.9 76.9 135.4 60.5 63.0 100.0 54.9
FCLS LDM 0.90 41.59 4937.2 5.26E+07 1.39E+05 5535.4 76.6 135.2 60.4 63.0 100.0 54.7
FCLS LWR 0.90 41.54 5087.3 8.19E+07 1.48E+05 4995.0 76.6 135.7 60.6 63.3 100.0 54.6
EDF BPRM 0.90 43.52 12345.6 9.65E+09 6.41E+06 3648.7 2148.5 2959.7 98.1 99.4 100.0 95.5
EDF BPOM 0.90 44.54 12201.9 1.13E+10 7.05E+06 3896.3 2302.9 3172.3 95.9 96.1 100.0 95.4
EDF BC 0.90 44.57 12219.8 1.13E+10 7.06E+06 3893.8 2303.7 3174.2 95.8 96.0 100.0 95.4
EDF BM 0.90 44.49 12205.1 1.13E+10 7.05E+06 3893.9 2304.0 3171.8 95.8 95.9 100.0 95.4
EDF LDM 0.90 44.57 12221.6 1.13E+10 7.06E+06 3892.5 2302.8 3174.5 95.9 96.1 100.0 95.4
EDF LWR 0.90 44.65 12225.9 1.13E+10 7.05E+06 3893.7 2302.2 3168.1 95.8 96.0 100.0 95.4
LLF BPRM 0.90 43.31 12553.9 3.11E+10 1.16E+07 4867.7 3655.8 4442.6 98.5 99.4 100.0 96.8
LLF BPOM 0.80 44.30 12473.1 3.46E+10 1.23E+07 5117.8 3848.8 4671.0 97.4 97.6 100.0 96.9
LLF BC 0.80 44.31 12479.8 3.46E+10 1.23E+07 5116.8 3846.8 4671.1 97.6 97.8 100.0 97.0
LLF BM 0.80 44.27 12467.2 3.46E+10 1.23E+07 5119.5 3847.5 4671.3 97.3 97.4 100.0 96.9
LLF LDM 0.80 44.31 12485.1 3.46E+10 1.23E+07 5117.8 3848.2 4672.4 97.4 97.6 100.0 96.9
LLF LWR 0.80 44.30 12461.2 3.46E+10 1.23E+07 5117.6 3845.4 4671.5 97.3 97.5 100.0 97.0
PLLF BPRM 0.90 43.59 12552.4 8.20E+05 7.91E+04 12.6 11.6 12.2 98.6 99.4 100.0 97.2
PLLF BPOM 0.85 44.53 12418.4 9.27E+05 8.43E+04 13.5 12.6 13.3 97.7 98.0 100.0 97.0
PLLF BC 0.80 44.56 12432.3 9.28E+05 8.43E+04 13.5 12.5 13.3 97.8 98.1 100.0 97.0
PLLF BM 0.85 44.52 12421.6 9.26E+05 8.42E+04 13.5 12.5 13.3 97.7 98.0 100.0 97.1
PLLF LDM 0.85 44.55 12451.8 9.27E+05 8.43E+04 13.5 12.5 13.3 97.7 98.0 100.0 97.0
PLLF LWR 0.85 44.61 12420.7 9.27E+05 8.43E+04 13.5 12.5 13.3 97.8 98.2 100.0 97.0
SWF BPRM 0.95 44.51 4785.0 6.23E+05 1.89E+04 71.8 10.0 37.3 72.6 99.4 100.0 18.8
SWF BPOM 0.95 57.17 1360.6 1.90E+06 3.96E+04 93.4 31.0 56.6 10.3 0.0 100.0 29.7
SWF BC 0.95 57.20 1360.6 1.90E+06 3.96E+04 93.4 31.0 56.6 10.3 0.0 100.0 29.7
SWF BM 0.95 57.17 1360.6 1.90E+06 3.96E+04 93.4 31.0 56.6 10.3 0.0 100.0 29.7
SWF LDM 0.95 57.17 1361.1 1.90E+06 3.96E+04 93.4 31.0 56.6 10.3 0.0 100.0 29.7
SWF LWR 0.95 57.17 1361.6 1.90E+06 3.96E+04 93.4 31.0 56.6 10.3 0.0 100.0 29.7
DSWF BPRM 0.95 44.45 4925.6 1.06E+06 2.31E+04 108.7 4.1 48.9 72.0 99.4 100.0 16.9
DSWF BPOM 0.95 56.87 1329.4 2.88E+06 4.79E+04 134.4 36.5 73.9 10.0 0.0 100.0 28.7
DSWF BC 0.95 56.88 1341.9 3.46E+06 5.47E+04 150.7 41.9 78.9 10.1 0.0 98.3 29.1
DSWF BM 0.95 56.87 1329.4 2.88E+06 4.79E+04 134.4 36.5 73.9 10.0 0.0 100.0 28.7
DSWF LDM 0.95 56.89 1347.2 3.25E+06 5.23E+04 196.5 40.4 76.6 10.1 0.0 100.0 29.1
DSWF LWR 0.95 56.89 1326.9 2.90E+06 4.81E+04 187.8 37.6 73.2 10.0 0.0 100.0 28.6

% of Late WorkflowsPolicies

Th
re

sh
ol

d

BC
T

C
um

ul
at

iv
e

C
os

t
(S

ig
m

oi
d)

C
um

ul
at

iv
e

C
os

t
(Q

ua
dr

at
ic

)

Normalized Tardiness

Page 2

118

Table A.3: Statistics for simulation of Case Study Three with 16 quad-core machines.

Simulation Results

Case3

RSP MSP Cumulative Max 95th % 99th % Total UI Batch WS

FCFS BPRM 0.60 31.53 12727.6 4.84E+10 1.51E+07 5846.0 4513.0 5370.8 98.4 98.7 96.7 97.9
FCFS BPOM 0.80 29.47 12741.7 3.94E+10 1.36E+07 5218.9 4056.7 4825.3 98.5 99.4 90.0 97.0
FCFS BC 0.80 29.53 12742.7 3.94E+10 1.36E+07 5219.6 4056.5 4825.4 98.5 99.4 90.0 97.0
FCFS BM 0.80 29.44 12741.7 3.94E+10 1.35E+07 5218.9 4056.4 4825.2 98.5 99.4 90.0 97.0
FCFS LDM 0.80 29.46 12742.2 3.94E+10 1.36E+07 5219.5 4056.7 4825.6 98.5 99.4 90.0 97.0
FCFS LWR 0.80 29.42 12742.0 3.94E+10 1.35E+07 5218.9 4057.1 4825.5 98.5 99.4 90.0 97.0
FCLS BPRM 0.95 41.52 5455.3 1.34E+08 1.66E+05 5546.6 77.0 137.3 53.5 52.7 100.0 54.5
FCLS BPOM 0.90 41.59 3740.9 5.33E+07 1.41E+05 4639.1 76.9 136.0 39.4 31.4 100.0 54.7
FCLS BC 0.90 41.60 3774.0 5.71E+07 1.45E+05 3618.3 76.9 136.0 39.8 31.9 100.0 54.7
FCLS BM 0.90 41.60 3671.2 5.31E+07 1.39E+05 5496.9 76.9 135.4 39.8 31.8 100.0 54.9
FCLS LDM 0.90 41.59 3668.4 4.52E+07 1.35E+05 5535.4 76.6 135.2 39.3 31.2 100.0 54.7
FCLS LWR 0.90 41.54 3766.2 3.94E+07 1.38E+05 3615.9 76.6 135.7 39.8 32.0 100.0 54.6
EDF BPRM 0.90 37.23 12128.0 2.14E+10 8.77E+06 4821.0 3280.2 4445.7 95.6 95.7 100.0 95.4
EDF BPOM 0.80 37.77 12157.5 2.38E+10 9.35E+06 5076.1 3447.1 4669.6 94.2 93.6 100.0 95.4
EDF BC 0.80 37.78 12167.0 2.38E+10 9.36E+06 5076.2 3449.2 4670.4 94.3 93.8 100.0 95.4
EDF BM 0.80 37.82 12160.0 2.38E+10 9.35E+06 5076.2 3448.3 4670.4 94.2 93.6 100.0 95.4
EDF LDM 0.80 37.80 12173.2 2.38E+10 9.35E+06 5076.6 3448.7 4670.2 94.3 93.7 100.0 95.4
EDF LWR 0.80 37.80 12162.1 2.38E+10 9.35E+06 5076.3 3448.7 4670.2 94.3 93.6 100.0 95.4
LLF BPRM 0.90 36.37 12460.3 2.94E+10 1.11E+07 4906.0 3667.3 4552.0 97.1 97.3 100.0 96.7
LLF BPOM 0.75 36.37 12461.0 2.94E+10 1.11E+07 4906.1 3668.3 4551.1 97.2 97.3 100.0 96.8
LLF BC 0.80 37.14 12451.0 3.24E+10 1.17E+07 5155.5 3838.5 4772.8 96.3 96.0 100.0 97.0
LLF BM 0.75 36.30 12460.1 2.94E+10 1.11E+07 4905.2 3667.2 4553.1 97.2 97.3 100.0 96.8
LLF LDM 0.75 36.35 12484.7 2.95E+10 1.11E+07 4909.1 3669.6 4555.5 97.4 97.6 100.0 96.9
LLF LWR 0.75 36.31 12469.3 2.94E+10 1.11E+07 4906.0 3667.0 4551.6 97.3 97.5 100.0 96.8
PLLF BPRM 0.85 43.26 12432.0 7.98E+05 7.76E+04 12.6 11.5 12.2 97.4 97.5 100.0 97.2
PLLF BPOM 0.75 43.39 12431.0 7.99E+05 7.77E+04 12.6 11.5 12.2 97.4 97.5 100.0 97.1
PLLF BC 0.75 43.56 12452.9 8.05E+05 7.81E+04 13.3 11.6 12.2 97.8 98.1 100.0 97.3
PLLF BM 0.80 44.39 12412.6 9.20E+05 8.39E+04 13.6 12.5 13.3 97.0 97.0 100.0 97.0
PLLF LDM 0.80 44.47 12401.7 9.21E+05 8.40E+04 13.6 12.5 13.3 97.0 96.9 100.0 97.0
PLLF LWR 0.75 43.40 12457.9 7.99E+05 7.77E+04 13.2 11.5 12.2 97.7 98.0 100.0 97.2
SWF BPRM 0.95 44.51 3233.0 6.20E+05 1.65E+04 71.8 10.0 37.3 40.3 50.6 100.0 18.8
SWF BPOM 0.95 57.17 1347.3 1.90E+06 3.80E+04 93.4 31.0 56.6 10.3 0.0 100.0 29.7
SWF BC 0.95 57.20 1347.3 1.90E+06 3.80E+04 93.4 31.0 56.6 10.3 0.0 100.0 29.7
SWF BM 0.95 57.17 1347.3 1.90E+06 3.80E+04 93.4 31.0 56.6 10.3 0.0 100.0 29.7
SWF LDM 0.95 57.17 1347.8 1.90E+06 3.80E+04 93.4 31.0 56.6 10.3 0.0 100.0 29.7
SWF LWR 0.90 44.60 1390.2 6.33E+05 1.55E+04 72.1 10.4 37.8 20.2 20.3 100.0 18.8
DSWF BPRM 0.95 44.82 3179.2 1.00E+06 1.99E+04 109.3 5.6 47.9 39.6 50.6 100.0 16.7
DSWF BPOM 0.95 56.85 1316.8 2.90E+06 4.66E+04 134.5 37.0 74.0 10.0 0.0 100.0 28.6
DSWF BC 0.95 56.91 1331.7 3.15E+06 4.97E+04 144.7 39.0 76.0 10.1 0.0 100.0 28.9
DSWF BM 0.95 56.85 1316.8 2.90E+06 4.66E+04 134.5 37.0 74.0 10.0 0.0 100.0 28.6
DSWF LDM 0.95 56.89 1337.7 3.07E+06 4.87E+04 192.9 38.8 75.0 10.2 0.0 100.0 29.2
DSWF LWR 0.95 56.90 1308.7 2.87E+06 4.60E+04 186.8 36.9 73.1 9.9 0.0 100.0 28.5

% of Late WorkflowsPolicies

Th
re

sh
ol

d

BC
T

C
um

ul
at

iv
e

C
os

t
(S

ig
m

oi
d)

C
um

ul
at

iv
e

C
os

t
(Q

ua
dr

at
ic

)

Normalized Tardiness

Page 3

119

Table A.4: Statistics for simulation of Case Study Four with 16 quad-core machines.

Simulation Results

Case4

RSP MSP Cumulative Max 95th % 99th % Total UI Batch WS

FCFS BPRM 0.90 38.15 3562.3 1.20E+10 4.47E+06 4572.1 3621.3 4389.3 74.2 78.1 75.4 69.6
FCFS BPOM 0.75 38.22 3562.5 1.21E+10 4.48E+06 4593.5 3634.0 4397.4 74.2 78.1 75.4 69.6
FCFS BC 0.80 38.51 3575.5 1.21E+10 4.48E+06 4569.6 3628.8 4394.2 79.6 88.4 75.4 69.6
FCFS BM 0.75 38.24 3562.9 1.21E+10 4.49E+06 4601.4 3639.0 4404.1 74.2 78.1 75.4 69.6
FCFS LDM 0.75 38.27 3566.0 1.22E+10 4.49E+06 4605.5 3642.3 4410.9 75.9 81.4 75.4 69.6
FCFS LWR 0.75 38.25 3563.3 1.22E+10 4.49E+06 4604.7 3645.8 4405.4 74.5 78.7 75.4 69.6
FCLS BPRM 0.95 39.76 608.3 8.02E+05 9.09E+03 219.5 2.0 66.7 20.9 29.0 86.4 7.8
FCLS BPOM 0.80 37.05 495.3 5.92E+05 7.30E+03 192.7 1.2 58.3 24.4 35.9 84.8 7.7
FCLS BC 0.80 37.21 506.1 5.57E+05 7.20E+03 182.7 1.2 59.4 29.9 46.6 84.8 7.5
FCLS BM 0.80 37.11 485.5 5.89E+05 7.45E+03 182.9 1.4 59.7 24.5 36.0 84.8 7.8
FCLS LDM 0.80 37.29 503.0 5.67E+05 7.24E+03 182.5 1.3 58.3 28.8 44.5 84.8 7.4
FCLS LWR 0.80 37.06 498.7 5.53E+05 7.08E+03 182.5 1.2 58.5 24.6 36.5 84.8 7.5
EDF BPRM 0.90 38.17 2478.8 2.62E+09 1.49E+06 3601.0 1977.3 2969.8 56.6 63.5 83.1 47.1
EDF BPOM 0.80 38.15 2427.0 2.62E+09 1.49E+06 3595.0 1976.2 2972.0 55.8 61.8 83.1 47.2
EDF BC 0.80 38.60 2447.5 2.63E+09 1.50E+06 3601.9 1981.5 2973.5 61.3 72.4 83.1 47.2
EDF BM 0.80 38.20 2419.0 2.64E+09 1.50E+06 3605.6 1979.6 2981.1 55.8 61.9 83.9 47.2
EDF LDM 0.80 38.30 2438.2 2.63E+09 1.50E+06 3599.9 1977.3 2978.3 60.3 70.6 83.1 47.1
EDF LWR 0.80 38.22 2423.9 2.63E+09 1.50E+06 3602.4 1979.0 2972.2 55.8 61.8 83.9 47.2
LLF BPRM 0.90 38.47 3246.7 7.10E+09 3.11E+06 4133.8 2981.4 3824.3 69.5 73.3 99.2 63.5
LLF BPOM 0.80 38.43 3260.3 7.07E+09 3.11E+06 4126.3 2974.0 3819.4 69.8 73.3 99.2 64.1
LLF BC 0.80 38.89 3235.5 7.08E+09 3.11E+06 4126.1 2972.0 3819.9 74.7 83.2 99.2 63.5
LLF BM 0.80 38.43 3255.6 7.07E+09 3.11E+06 4128.2 2969.7 3814.9 69.8 73.3 99.2 64.1
LLF LDM 0.90 39.72 3247.1 8.33E+09 3.37E+06 4483.4 3199.8 4161.7 68.4 70.9 99.2 63.8
LLF LWR 0.80 38.42 3216.4 7.07E+09 3.11E+06 4123.8 2967.4 3822.4 69.1 72.8 99.2 63.2
PLLF BPRM 0.90 38.25 3231.0 2.04E+04 4.00E+03 3.2 2.2 2.4 72.7 76.4 99.2 66.9
PLLF BPOM 0.80 38.28 3183.6 1.99E+04 3.89E+03 3.0 2.2 2.4 72.5 75.8 99.2 67.1
PLLF BC 0.80 38.77 3159.4 1.96E+04 3.88E+03 2.7 2.2 2.3 77.3 85.7 99.2 66.4
PLLF BM 0.80 38.17 3199.0 1.99E+04 3.89E+03 3.0 2.2 2.4 72.4 76.0 99.2 66.9
PLLF LDM 0.80 38.16 3215.2 2.01E+04 3.97E+03 2.6 2.2 2.3 76.9 84.4 99.2 66.9
PLLF LWR 0.80 38.17 3163.1 1.98E+04 3.88E+03 3.0 2.2 2.3 72.2 75.7 99.2 66.5
SWF BPRM 0.95 40.14 311.1 3.63E+03 -1.26E+03 5.7 0.3 2.1 15.6 25.9 77.1 0.1
SWF BPOM 0.80 37.82 198.9 3.48E+03 -1.22E+03 5.4 0.2 1.9 19.6 33.6 72.9 0.4
SWF BC 0.80 38.16 220.1 3.62E+03 -1.13E+03 5.4 0.2 1.9 25.2 44.1 72.9 0.4
SWF BM 0.80 37.75 186.0 3.45E+03 -1.24E+03 5.4 0.1 1.9 19.6 33.4 72.9 0.5
SWF LDM 0.80 37.99 200.2 3.57E+03 -1.16E+03 5.4 0.1 1.9 24.0 41.8 72.9 0.5
SWF LWR 0.80 37.82 202.4 3.51E+03 -1.20E+03 5.4 0.1 1.9 20.1 34.5 72.9 0.4
DSWF BPRM 0.95 40.20 276.2 4.71E+03 -1.19E+03 18.8 0.2 2.9 15.5 25.9 69.5 0.3
DSWF BPOM 0.80 37.53 186.8 4.58E+03 -1.14E+03 26.3 0.1 2.4 19.5 33.6 66.1 0.6
DSWF BC 0.80 38.12 207.6 4.81E+03 -1.03E+03 20.6 0.1 2.6 25.3 44.4 69.5 0.5
DSWF BM 0.80 37.38 182.1 4.95E+03 -1.12E+03 25.7 0.1 2.4 19.6 33.6 67.8 0.7
DSWF LDM 0.80 37.52 201.4 7.00E+03 -9.84E+02 29.1 0.1 2.5 24.0 42.0 66.1 0.7
DSWF LWR 0.80 37.51 194.4 5.10E+03 -1.09E+03 32.3 0.1 2.5 19.9 34.4 66.1 0.4

% of Late WorkflowsPolicies

Th
re

sh
ol

d

BC
T

C
um

ul
at

iv
e

C
os

t
(S

ig
m

oi
d)

C
um

ul
at

iv
e

C
os

t
(Q

ua
dr

at
ic

)

Normalized Tardiness

Page 4

120

Table A.5: Statistics for simulation of Case Study One with 32 quad-core machines.

Simulation Results
Cluster Size 32
Case1

RSP MSP Cumulative Max 95th % 99th % Total UI Batch WS

FCFS BPRM 0.90 15.20 323.6 1.70E+07 5.21E+04 583.2 243.3 443.0 14.5 15.4 0.0 14.1
FCFS BPOM 0.75 15.20 321.0 1.68E+07 5.16E+04 572.3 241.1 444.8 14.3 15.1 0.0 13.8
FCFS BC 0.75 15.32 335.0 1.70E+07 5.22E+04 570.3 243.2 438.6 35.4 47.5 0.0 14.3
FCFS BM 0.75 15.19 321.3 1.69E+07 5.18E+04 577.6 239.2 444.8 14.3 15.1 0.0 13.8
FCFS LDM 0.80 15.24 340.2 1.72E+07 5.23E+04 590.1 245.4 440.0 43.2 59.6 0.0 14.0
FCFS LWR 0.75 15.21 322.2 1.68E+07 5.17E+04 573.4 239.5 445.6 14.8 15.9 0.0 13.8
FCLS BPRM 0.95 16.15 74.3 3.31E+03 -3.23E+02 21.8 0.1 2.0 7.4 9.5 6.5 3.5
FCLS BPOM 0.90 15.26 52.5 2.07E+03 -4.18E+02 10.0 0.0 1.0 6.0 7.7 3.2 2.6
FCLS BC 0.90 15.32 50.7 2.14E+03 -3.75E+02 10.4 0.0 0.9 5.5 7.0 3.2 2.6
FCLS BM 0.90 15.28 54.0 2.08E+03 -4.19E+02 10.6 0.0 0.9 5.6 7.2 3.2 2.6
FCLS LDM 0.90 15.32 50.6 2.10E+03 -3.97E+02 10.2 0.0 0.8 5.7 7.2 3.2 2.8
FCLS LWR 0.90 15.25 53.2 2.06E+03 -4.18E+02 10.0 0.0 1.0 5.9 7.6 3.2 2.6
EDF BPRM 0.95 16.13 38.6 1.44E+03 -5.10E+02 1.0 0.0 0.3 6.3 9.7 0.0 0.0
EDF BPOM 0.90 15.39 28.2 1.42E+03 -5.23E+02 0.8 0.0 0.2 4.5 6.9 0.0 0.0
EDF BC 0.90 15.45 21.5 1.49E+03 -4.79E+02 0.6 0.0 0.2 4.5 6.9 0.0 0.0
EDF BM 0.90 15.39 33.5 1.43E+03 -5.20E+02 0.9 0.0 0.3 4.9 7.5 0.0 0.0
EDF LDM 0.90 15.47 21.9 1.45E+03 -5.04E+02 0.4 0.0 0.2 3.9 6.1 0.0 0.0
EDF LWR 0.90 15.40 31.1 1.42E+03 -5.21E+02 0.7 0.0 0.2 4.5 7.0 0.0 0.0
LLF BPRM 0.90 15.28 71.8 1.51E+03 -4.72E+02 0.6 0.2 0.3 9.9 14.9 0.0 0.7
LLF BPOM 0.90 15.21 33.4 1.43E+03 -5.11E+02 0.8 0.0 0.3 4.8 7.4 0.0 0.0
LLF BC 0.90 15.29 34.0 1.51E+03 -4.64E+02 0.8 0.0 0.3 4.7 7.2 0.0 0.0
LLF BM 0.90 15.26 31.8 1.43E+03 -5.11E+02 0.9 0.0 0.2 5.5 8.4 0.0 0.0
LLF LDM 0.90 15.29 25.4 1.46E+03 -4.92E+02 0.9 0.0 0.2 4.4 6.8 0.0 0.0
LLF LWR 0.90 15.25 39.8 1.45E+03 -5.06E+02 1.1 0.0 0.3 4.8 7.4 0.0 0.0
PLLF BPRM 0.90 15.20 76.9 1.52E+03 -4.62E+02 0.5 0.2 0.3 10.1 15.2 0.0 0.8
PLLF BPOM 0.90 15.11 30.8 1.44E+03 -5.04E+02 0.8 0.0 0.2 4.9 7.5 0.0 0.0
PLLF BC 0.90 15.16 32.6 1.52E+03 -4.56E+02 0.9 0.0 0.2 4.9 7.6 0.0 0.0
PLLF BM 0.90 15.15 26.5 1.43E+03 -5.06E+02 0.9 0.0 0.2 4.9 7.6 0.0 0.0
PLLF LDM 0.90 15.16 30.5 1.48E+03 -4.79E+02 1.3 0.0 0.2 5.0 7.7 0.0 0.0
PLLF LWR 0.90 15.14 31.6 1.44E+03 -5.03E+02 0.5 0.0 0.2 4.6 7.1 0.0 0.0
SWF BPRM 0.95 16.39 35.7 1.44E+03 -5.12E+02 0.8 0.0 0.3 6.0 9.2 0.0 0.0
SWF BPOM 0.90 15.59 24.8 1.41E+03 -5.25E+02 0.6 0.0 0.2 4.0 6.2 0.0 0.0
SWF BC 0.90 15.67 28.5 1.50E+03 -4.74E+02 1.0 0.0 0.2 4.5 7.0 0.0 0.0
SWF BM 0.90 15.59 32.4 1.43E+03 -5.19E+02 0.9 0.0 0.3 4.7 7.2 0.0 0.0
SWF LDM 0.90 15.67 28.3 1.46E+03 -4.97E+02 0.7 0.0 0.2 4.5 6.9 0.0 0.0
SWF LWR 0.90 15.58 28.2 1.42E+03 -5.20E+02 0.9 0.0 0.2 4.5 7.0 0.0 0.0
DSWF BPRM 0.95 16.33 41.2 1.45E+03 -5.07E+02 0.7 0.0 0.3 5.6 8.6 0.0 0.1
DSWF BPOM 0.90 15.60 20.6 1.41E+03 -5.24E+02 0.7 0.0 0.2 4.2 6.5 0.0 0.0
DSWF BC 0.90 15.58 17.2 1.48E+03 -4.78E+02 0.6 0.0 0.1 4.2 6.5 0.0 0.0
DSWF BM 0.90 15.38 21.8 1.42E+03 -5.23E+02 1.3 0.0 0.1 4.1 6.2 0.0 0.1
DSWF LDM 0.90 15.64 19.9 1.45E+03 -5.01E+02 0.8 0.0 0.1 4.7 7.2 0.0 0.0
DSWF LWR 0.90 15.28 26.0 1.43E+03 -5.19E+02 1.2 0.0 0.2 4.6 7.1 0.0 0.0

% of Late WorkflowsPolicies

Th
re

sh
ol

d

BC
T

C
um

ul
at

iv
e

C
os

t
(S

ig
m

oi
d)

C
um

ul
at

iv
e

C
os

t
(Q

ua
dr

at
ic

)

Normalized Tardiness

Page 5

121

Table A.6: Statistics for simulation of Case Study Two with 32 quad-core machines.

Simulation Results

Case2

RSP MSP Cumulative Max 95th % 99th % Total UI Batch WS

FCFS BPRM 0.65 19.56 6967.1 3.45E+09 3.78E+06 1561.5 1145.4 1439.4 53.6 54.1 1.7 53.5
FCFS BPOM 0.80 19.01 6988.9 3.43E+09 3.76E+06 1595.3 1141.3 1449.5 53.7 54.1 1.7 53.6
FCFS BC 0.80 18.99 6989.7 3.43E+09 3.76E+06 1589.7 1141.0 1454.2 53.7 54.2 1.7 53.6
FCFS BM 0.80 18.97 6989.0 3.43E+09 3.76E+06 1594.3 1141.4 1451.7 53.7 54.1 1.7 53.6
FCFS LDM 0.80 19.00 6989.5 3.43E+09 3.76E+06 1594.0 1141.1 1452.7 53.8 54.3 1.7 53.6
FCFS LWR 0.80 18.95 6990.0 3.43E+09 3.76E+06 1597.0 1140.8 1451.9 54.1 54.7 1.7 53.6
FCLS BPRM 0.95 26.55 2211.2 1.57E+05 2.60E+03 114.2 0.4 7.7 37.3 54.1 51.7 3.5
FCLS BPOM 0.90 26.58 537.3 1.68E+05 1.68E+03 114.4 0.2 7.9 15.6 21.4 51.7 3.5
FCLS BC 0.90 26.62 569.3 1.68E+05 1.78E+03 114.4 0.2 8.0 16.5 22.7 51.7 3.5
FCLS BM 0.90 26.58 549.8 1.68E+05 1.69E+03 114.4 0.1 7.9 15.9 21.8 51.7 3.5
FCLS LDM 0.90 26.58 536.1 1.73E+05 1.79E+03 114.4 0.1 8.0 16.1 22.2 51.7 3.5
FCLS LWR 0.90 26.58 582.6 1.68E+05 1.76E+03 114.3 0.2 8.0 16.3 22.5 51.7 3.5
EDF BPRM 0.90 26.17 1223.8 1.14E+04 -1.31E+03 0.7 0.2 0.4 36.0 54.1 18.3 0.1
EDF BPOM 0.90 26.66 132.0 9.07E+03 -2.50E+03 0.5 0.0 0.2 9.5 14.2 23.3 0.0
EDF BC 0.90 26.78 133.4 9.20E+03 -2.42E+03 0.5 0.0 0.2 9.5 14.2 23.3 0.0
EDF BM 0.90 26.71 123.8 9.05E+03 -2.51E+03 0.4 0.0 0.1 9.0 13.4 23.3 0.0
EDF LDM 0.90 26.83 157.6 9.17E+03 -2.44E+03 0.9 0.0 0.2 9.9 14.7 21.7 0.0
EDF LWR 0.90 26.73 118.6 9.14E+03 -2.46E+03 0.4 0.0 0.1 9.5 14.2 23.3 0.0
LLF BPRM 0.90 26.18 5904.9 2.42E+08 8.52E+05 435.5 335.1 403.7 51.3 54.1 96.7 45.2
LLF BPOM 0.80 26.54 5596.8 3.29E+08 9.87E+05 506.9 392.3 470.7 46.5 47.2 96.7 44.5
LLF BC 0.80 26.53 5629.6 3.35E+08 1.00E+06 508.0 394.5 473.8 46.8 47.6 96.7 44.5
LLF BM 0.80 26.48 5459.9 3.34E+08 9.93E+05 509.7 394.9 473.7 45.3 46.2 96.7 42.9
LLF LDM 0.80 26.45 5714.3 3.29E+08 9.91E+05 504.6 392.3 470.7 47.6 48.4 96.7 45.3
LLF LWR 0.80 26.46 5850.6 3.36E+08 1.01E+06 510.1 394.3 473.0 48.5 49.2 96.7 46.3
PLLF BPRM 0.90 26.36 5588.3 1.91E+04 1.86E+03 1.1 0.7 0.9 52.4 54.1 96.7 48.5
PLLF BPOM 0.85 26.80 4948.6 1.70E+04 1.15E+03 1.4 0.6 0.7 50.3 51.0 96.7 48.4
PLLF BC 0.80 26.90 5251.1 1.74E+04 1.35E+03 1.4 0.5 0.7 50.8 51.3 96.7 49.0
PLLF BM 0.85 26.85 5096.1 1.70E+04 1.17E+03 1.3 0.6 0.7 50.6 51.3 96.7 48.7
PLLF LDM 0.85 26.84 5164.6 1.73E+04 1.27E+03 1.4 0.6 0.8 50.7 51.3 96.7 48.7
PLLF LWR 0.85 26.19 5455.5 1.78E+04 1.47E+03 1.2 0.6 0.8 50.9 51.4 96.7 49.2
SWF BPRM 0.95 26.79 1703.2 1.14E+04 -1.41E+03 0.7 0.3 0.4 36.0 54.1 28.3 0.0
SWF BPOM 0.95 31.16 77.6 8.58E+03 -2.76E+03 1.2 -0.1 0.0 0.4 0.0 78.3 0.1
SWF BC 0.95 31.18 78.0 8.70E+03 -2.69E+03 1.2 0.0 0.0 0.4 0.0 78.3 0.1
SWF BM 0.95 31.16 77.6 8.58E+03 -2.76E+03 1.2 -0.1 0.0 0.4 0.0 78.3 0.1
SWF LDM 0.95 31.22 77.9 8.68E+03 -2.70E+03 1.2 -0.1 0.0 0.4 0.0 78.3 0.1
SWF LWR 0.95 31.22 77.9 8.67E+03 -2.71E+03 1.2 -0.1 0.0 0.4 0.0 78.3 0.1
DSWF BPRM 0.95 26.73 1847.8 1.16E+04 -1.35E+03 0.7 0.3 0.4 36.1 54.1 35.0 0.0
DSWF BPOM 0.95 30.80 90.9 8.68E+03 -2.72E+03 4.5 -0.1 0.0 0.5 0.0 91.7 0.1
DSWF BC 0.95 30.91 92.9 8.80E+03 -2.65E+03 3.9 0.0 0.0 0.5 0.0 88.3 0.2
DSWF BM 0.95 30.80 90.9 8.68E+03 -2.72E+03 4.5 -0.1 0.0 0.5 0.0 91.7 0.1
DSWF LDM 0.95 30.93 92.5 8.79E+03 -2.66E+03 3.8 0.0 0.0 0.5 0.0 85.0 0.2
DSWF LWR 0.95 30.80 92.3 8.74E+03 -2.68E+03 2.9 -0.1 0.0 0.5 0.0 93.3 0.1

Policies

Th
re

sh
ol

d

BC
T

C
um

ul
at

iv
e

C
os

t
(S

ig
m

oi
d)

C
um

ul
at

iv
e

C
os

t
(Q

ua
dr

at
ic

)

Normalized Tardiness % of Late Workflows

Page 6

122

Table A.7: Statistics for simulation of Case Study Three with 32 quad-core machines.

Simulation Results

Case3

RSP MSP Cumulative Max 95th % 99th % Total UI Batch WS

FCFS BPRM 0.60 20.14 6965.4 2.65E+09 3.19E+06 1636.7 1072.6 1426.9 53.7 53.8 61.7 53.5
FCFS BPOM 0.80 19.01 6995.9 2.18E+09 2.85E+06 1595.3 989.8 1343.9 53.9 54.1 40.0 53.6
FCFS BC 0.80 18.99 6997.7 2.18E+09 2.85E+06 1589.7 990.0 1340.3 53.9 54.1 40.0 53.6
FCFS BM 0.80 18.97 6996.2 2.18E+09 2.85E+06 1594.3 990.4 1343.7 53.9 54.1 40.0 53.6
FCFS LDM 0.80 19.00 6997.8 2.18E+09 2.85E+06 1589.5 990.4 1337.1 53.9 54.1 40.0 53.6
FCFS LWR 0.80 18.95 6996.6 2.18E+09 2.85E+06 1597.0 990.2 1344.1 53.9 54.2 40.0 53.6
FCLS BPRM 0.95 26.55 1513.9 1.54E+05 4.27E+02 114.2 0.4 7.7 20.1 28.0 76.7 3.5
FCLS BPOM 0.90 26.58 374.8 1.65E+05 -3.02E+02 114.4 0.1 7.9 7.8 9.4 76.7 3.5
FCLS BC 0.90 26.62 385.6 1.65E+05 -2.22E+02 114.4 0.1 8.0 8.4 10.4 76.7 3.5
FCLS BM 0.90 26.58 379.3 1.65E+05 -2.96E+02 114.4 0.1 7.9 8.0 9.8 76.7 3.5
FCLS LDM 0.90 26.59 390.0 1.65E+05 -2.63E+02 114.6 0.1 7.9 8.1 9.8 76.7 3.5
FCLS LWR 0.90 26.58 385.7 1.65E+05 -2.49E+02 114.3 0.1 8.0 8.2 10.0 76.7 3.5
EDF BPRM 0.90 23.36 4756.5 3.78E+08 9.38E+05 759.2 448.5 651.5 41.9 44.6 73.3 36.1
EDF BPOM 0.80 23.35 4608.6 4.88E+08 1.08E+06 852.9 509.0 731.7 36.3 36.2 73.3 36.1
EDF BC 0.80 23.34 4621.8 4.88E+08 1.08E+06 852.4 508.7 731.4 36.4 36.3 73.3 36.2
EDF BM 0.80 23.35 4607.0 4.88E+08 1.08E+06 852.6 508.5 733.0 36.4 36.3 73.3 36.1
EDF LDM 0.80 23.34 4601.1 4.88E+08 1.08E+06 851.5 508.2 731.5 36.3 36.2 73.3 36.1
EDF LWR 0.80 23.35 4587.9 4.89E+08 1.08E+06 853.5 509.2 731.7 36.2 36.1 73.3 36.0
LLF BPRM 0.90 22.30 6588.7 9.89E+08 1.82E+06 1051.4 684.2 944.7 51.9 52.0 100.0 51.0
LLF BPOM 0.75 22.29 6604.7 9.89E+08 1.82E+06 1049.9 685.5 946.4 52.0 52.0 100.0 51.2
LLF BC 0.80 22.57 6579.1 1.15E+09 1.98E+06 1112.0 733.9 1009.5 51.1 50.7 100.0 51.1
LLF BM 0.75 22.36 6591.5 9.89E+08 1.82E+06 1052.1 684.5 944.9 51.9 52.0 100.0 51.0
LLF LDM 0.75 22.32 6662.2 1.00E+09 1.83E+06 1055.1 688.3 949.5 60.2 64.5 100.0 51.0
LLF LWR 0.75 22.31 6629.0 9.93E+08 1.82E+06 1055.5 686.1 947.2 58.9 62.4 100.0 51.2
PLLF BPRM 0.85 26.61 6345.1 3.56E+04 5.47E+03 2.6 1.8 1.9 52.4 52.4 100.0 51.7
PLLF BPOM 0.75 26.54 6352.8 3.53E+04 5.42E+03 2.4 1.7 1.9 52.4 52.4 100.0 51.6
PLLF BC 0.75 26.80 6526.9 3.68E+04 6.30E+03 2.7 1.8 1.9 67.0 74.5 100.0 51.7
PLLF BM 0.80 26.92 6246.6 3.46E+04 5.23E+03 2.6 1.7 1.9 52.0 51.8 100.0 51.7
PLLF LDM 0.80 26.88 6282.8 3.47E+04 5.27E+03 2.5 1.7 1.9 51.9 51.6 100.0 51.9
PLLF LWR 0.75 26.58 6385.6 3.60E+04 5.80E+03 2.5 1.7 1.9 59.3 62.8 100.0 51.8
SWF BPRM 0.95 26.79 1140.8 8.08E+03 -3.57E+03 2.3 0.3 0.4 18.7 27.6 73.3 0.0
SWF BPOM 0.95 31.16 83.1 6.37E+03 -4.59E+03 3.3 -0.1 0.0 0.5 0.0 90.0 0.1
SWF BC 0.95 31.18 83.3 6.46E+03 -4.53E+03 3.3 -0.1 0.0 0.5 0.0 90.0 0.1
SWF BM 0.95 31.16 83.1 6.37E+03 -4.59E+03 3.3 -0.1 0.0 0.5 0.0 90.0 0.1
SWF LDM 0.95 31.17 83.5 6.44E+03 -4.55E+03 3.3 -0.1 0.0 0.5 0.0 90.0 0.1
SWF LWR 0.90 26.85 99.9 6.44E+03 -4.41E+03 2.4 0.0 0.1 3.9 5.4 73.3 0.0
DSWF BPRM 0.95 26.68 1157.2 8.14E+03 -3.53E+03 1.9 0.3 0.4 18.7 27.6 85.0 0.0
DSWF BPOM 0.95 30.96 90.5 6.54E+03 -4.54E+03 3.9 -0.1 0.0 0.5 0.0 93.3 0.2
DSWF BC 0.95 30.79 93.4 6.72E+03 -4.47E+03 4.3 -0.1 0.0 0.5 0.0 93.3 0.2
DSWF BM 0.95 30.96 90.5 6.54E+03 -4.54E+03 3.9 -0.1 0.0 0.5 0.0 93.3 0.2
DSWF LDM 0.95 30.77 92.4 6.58E+03 -4.50E+03 5.0 -0.1 0.0 0.5 0.0 95.0 0.1
DSWF LWR 0.95 30.74 89.9 6.52E+03 -4.52E+03 3.4 -0.1 0.0 0.5 0.0 95.0 0.1

% of Late WorkflowsPolicies

Th
re

sh
ol

d

BC
T

C
um

ul
at

iv
e

C
os

t
(S

ig
m

oi
d)

C
um

ul
at

iv
e

C
os

t
(Q

ua
dr

at
ic

)

Normalized Tardiness

Page 7

123

Table A.8: Statistics for simulation of Case Study Four with 32 quad-core machines.

Simulation Results

Case4

RSP MSP Cumulative Max 95th % 99th % Total UI Batch WS

FCFS BPRM 0.90 25.35 2812.7 4.52E+08 7.72E+05 1138.1 752.9 1016.0 59.0 67.6 14.4 51.3
FCFS BPOM 0.75 25.36 2823.0 4.55E+08 7.76E+05 1147.1 754.5 1016.1 59.2 67.8 14.4 51.5
FCFS BC 0.80 25.80 2835.9 4.62E+08 7.82E+05 1161.0 758.8 1020.1 66.0 80.7 15.3 51.5
FCFS BM 0.75 25.36 2828.3 4.57E+08 7.78E+05 1147.0 756.6 1013.0 59.3 67.9 15.3 51.7
FCFS LDM 0.75 25.83 2834.6 4.63E+08 7.84E+05 1141.8 760.2 1021.7 60.5 70.1 15.3 51.9
FCFS LWR 0.75 25.36 2835.3 4.60E+08 7.82E+05 1139.6 758.9 1017.1 60.2 69.4 16.1 51.9
FCLS BPRM 0.95 25.35 230.3 3.42E+03 -1.44E+03 22.1 0.2 0.9 12.5 21.2 53.4 0.1
FCLS BPOM 0.80 25.36 218.7 2.87E+03 -1.41E+03 3.4 0.2 0.7 17.1 30.2 50.9 0.1
FCLS BC 0.80 25.79 229.2 3.22E+03 -1.25E+03 10.5 0.2 0.7 24.4 44.1 50.0 0.1
FCLS BM 0.80 25.36 216.6 3.01E+03 -1.40E+03 10.5 0.2 0.7 17.4 30.7 50.0 0.2
FCLS LDM 0.80 25.77 228.4 3.03E+03 -1.30E+03 3.5 0.2 0.7 22.6 40.6 50.0 0.0
FCLS LWR 0.80 25.36 223.1 3.05E+03 -1.37E+03 10.4 0.2 0.7 18.6 32.7 50.9 0.2
EDF BPRM 0.90 25.35 234.8 2.73E+03 -1.43E+03 1.3 0.2 0.4 17.4 32.5 11.0 0.0
EDF BPOM 0.80 25.36 76.3 2.49E+03 -1.55E+03 0.5 0.1 0.2 15.0 28.0 11.0 0.0
EDF BC 0.80 25.80 97.2 2.73E+03 -1.39E+03 0.4 0.1 0.2 23.1 43.4 11.0 0.0
EDF BM 0.80 25.36 76.1 2.49E+03 -1.55E+03 1.0 0.1 0.2 15.4 28.9 11.0 0.0
EDF LDM 0.80 25.73 95.8 2.66E+03 -1.43E+03 0.7 0.1 0.2 20.9 39.2 11.9 0.0
EDF LWR 0.80 25.36 83.6 2.54E+03 -1.51E+03 0.6 0.1 0.2 16.4 30.6 11.9 0.0
LLF BPRM 0.90 25.36 1943.8 2.65E+07 1.52E+05 309.1 200.6 284.6 46.1 56.5 77.1 32.2
LLF BPOM 0.80 25.36 1882.9 2.62E+07 1.51E+05 316.4 198.2 281.3 45.4 55.1 76.3 32.3
LLF BC 0.80 25.80 1918.0 2.76E+07 1.56E+05 316.6 204.3 288.9 52.6 68.6 78.0 32.5
LLF BM 0.80 25.36 1882.4 2.60E+07 1.50E+05 306.5 198.2 282.5 45.3 55.1 75.4 32.2
LLF LDM 0.90 25.48 2141.2 5.87E+07 2.39E+05 436.7 291.7 406.5 48.3 55.0 82.2 38.7
LLF LWR 0.80 25.36 1897.0 2.68E+07 1.53E+05 311.9 200.9 283.8 46.4 56.9 77.1 32.4
PLLF BPRM 0.90 25.36 1112.7 4.91E+03 -2.88E+02 1.6 0.5 0.7 47.8 57.5 78.0 34.9
PLLF BPOM 0.80 25.36 949.0 4.60E+03 -4.01E+02 0.9 0.4 0.6 46.9 55.9 78.0 34.7
PLLF BC 0.80 25.81 1019.1 4.91E+03 -2.15E+02 1.0 0.4 0.6 54.9 70.6 79.7 35.3
PLLF BM 0.80 25.36 960.6 4.61E+03 -3.96E+02 1.0 0.4 0.6 47.5 56.5 78.8 35.2
PLLF LDM 0.80 25.74 1019.2 4.82E+03 -2.71E+02 0.9 0.4 0.6 52.4 66.1 79.7 34.8
PLLF LWR 0.80 25.35 1000.3 4.70E+03 -3.46E+02 1.1 0.4 0.6 48.4 58.1 78.0 35.5
SWF BPRM 0.95 25.36 120.9 2.40E+03 -1.64E+03 1.2 0.1 0.4 9.3 16.4 28.8 0.0
SWF BPOM 0.80 25.36 101.5 2.51E+03 -1.55E+03 0.9 0.1 0.3 15.8 28.9 21.2 0.1
SWF BC 0.80 25.79 123.9 2.75E+03 -1.39E+03 0.9 0.1 0.3 22.8 42.3 22.0 0.0
SWF BM 0.80 25.36 96.9 2.50E+03 -1.56E+03 0.9 0.1 0.2 15.3 28.1 21.2 0.0
SWF LDM 0.80 25.74 120.7 2.68E+03 -1.44E+03 0.9 0.1 0.3 21.2 39.2 22.0 0.0
SWF LWR 0.80 25.36 107.3 2.56E+03 -1.51E+03 0.9 0.1 0.3 16.6 30.5 22.0 0.1
DSWF BPRM 0.95 25.36 134.1 2.47E+03 -1.62E+03 1.9 0.1 0.5 9.8 17.0 34.8 0.0
DSWF BPOM 0.80 25.36 112.3 2.60E+03 -1.53E+03 4.4 0.1 0.3 15.4 28.0 28.8 0.1
DSWF BC 0.80 25.81 139.0 2.81E+03 -1.36E+03 1.8 0.1 0.3 23.4 43.1 30.5 0.0
DSWF BM 0.80 25.36 116.3 2.57E+03 -1.53E+03 1.4 0.1 0.3 15.9 28.9 27.1 0.1
DSWF LDM 0.80 25.73 119.9 2.72E+03 -1.42E+03 1.4 0.1 0.3 20.9 38.4 28.0 0.0
DSWF LWR 0.80 25.36 118.3 2.82E+03 -1.47E+03 9.9 0.1 0.3 17.0 30.8 30.5 0.1

Policies

Th
re

sh
ol

d

BC
T

C
um

ul
at

iv
e

C
os

t
(S

ig
m

oi
d)

C
um

ul
at

iv
e

C
os

t
(Q

ua
dr

at
ic

)

Normalized Tardiness % of Late Workflows

Page 8

124

Table A.9: Statistics for simulation of Case Study One with 64 quad-core machines.

Simulation Results
Cluster Size 64
Case1

RSP MSP Cumulative Max 95th % 99th % Total UI Batch WS

FCFS BPRM 0.90 13.47 113.2 3.76E+05 4.24E+03 147.6 0.2 80.9 5.3 5.8 0.0 4.7
FCFS BPOM 0.75 13.46 113.9 3.97E+05 4.44E+03 133.8 0.2 82.0 5.2 5.6 0.0 4.7
FCFS BC 0.75 13.68 132.5 4.80E+05 5.19E+03 153.3 0.2 91.1 29.2 42.8 0.0 4.6
FCFS BM 0.75 13.46 114.9 4.11E+05 4.54E+03 134.3 0.2 84.6 5.2 5.7 0.0 4.7
FCFS LDM 0.80 13.53 141.9 5.00E+05 5.45E+03 154.2 0.4 87.6 37.6 55.5 0.0 5.0
FCFS LWR 0.75 13.46 117.7 4.22E+05 4.61E+03 139.3 0.2 85.8 6.2 7.1 0.0 4.8
FCLS BPRM 0.95 13.76 20.2 1.39E+03 -5.41E+02 1.7 -0.1 0.1 2.1 3.0 1.6 0.4
FCLS BPOM 0.90 13.44 13.0 1.37E+03 -5.52E+02 0.8 -0.1 0.0 1.5 2.3 0.0 0.0
FCLS BC 0.90 13.47 12.6 1.45E+03 -4.99E+02 1.0 0.0 0.1 1.7 2.6 0.0 0.0
FCLS BM 0.90 13.44 13.4 1.37E+03 -5.52E+02 0.9 -0.1 0.0 1.3 2.0 0.0 0.0
FCLS LDM 0.90 13.47 12.4 1.41E+03 -5.26E+02 0.4 -0.1 0.0 1.1 1.7 0.0 0.0
FCLS LWR 0.90 13.43 14.3 1.37E+03 -5.50E+02 0.7 -0.1 0.0 1.5 2.3 0.0 0.0
EDF BPRM 0.95 13.84 19.3 1.38E+03 -5.50E+02 0.7 -0.1 0.2 2.3 3.6 0.0 0.0
EDF BPOM 0.90 13.43 10.2 1.36E+03 -5.59E+02 0.4 -0.1 0.0 0.8 1.2 0.0 0.0
EDF BC 0.90 13.49 7.8 1.44E+03 -5.07E+02 0.2 0.0 0.0 0.9 1.3 0.0 0.0
EDF BM 0.90 13.43 10.5 1.36E+03 -5.58E+02 0.6 -0.1 0.0 1.0 1.5 0.0 0.0
EDF LDM 0.90 13.50 10.2 1.40E+03 -5.31E+02 0.6 -0.1 0.0 1.1 1.7 0.0 0.0
EDF LWR 0.90 13.46 8.8 1.36E+03 -5.58E+02 0.4 -0.1 0.0 1.0 1.5 0.0 0.0
LLF BPRM 0.90 13.44 24.2 1.39E+03 -5.40E+02 0.4 -0.1 0.2 3.7 5.5 0.0 0.4
LLF BPOM 0.90 13.42 11.1 1.36E+03 -5.57E+02 0.5 -0.1 0.0 0.9 1.4 0.0 0.0
LLF BC 0.90 13.52 8.7 1.44E+03 -5.05E+02 0.2 0.0 0.0 1.3 1.9 0.0 0.0
LLF BM 0.90 13.43 11.9 1.36E+03 -5.57E+02 0.6 -0.1 0.0 1.1 1.7 0.0 0.0
LLF LDM 0.90 13.50 9.6 1.40E+03 -5.31E+02 0.4 -0.1 0.0 1.2 1.8 0.0 0.0
LLF LWR 0.90 13.45 8.6 1.36E+03 -5.57E+02 0.3 -0.1 0.0 1.1 1.7 0.0 0.0
PLLF BPRM 0.90 13.32 26.1 1.40E+03 -5.36E+02 0.3 -0.1 0.2 3.9 5.9 0.0 0.3
PLLF BPOM 0.90 13.35 10.6 1.36E+03 -5.54E+02 0.4 -0.1 0.0 1.2 1.9 0.0 0.0
PLLF BC 0.90 13.40 8.4 1.44E+03 -5.03E+02 0.2 0.0 0.0 1.3 2.0 0.0 0.0
PLLF BM 0.90 13.40 12.0 1.36E+03 -5.54E+02 0.6 -0.1 0.0 1.3 2.1 0.0 0.0
PLLF LDM 0.90 13.44 10.7 1.40E+03 -5.28E+02 0.6 -0.1 0.0 1.3 1.9 0.0 0.0
PLLF LWR 0.90 13.33 11.0 1.37E+03 -5.53E+02 0.4 -0.1 0.0 1.3 1.9 0.0 0.0
SWF BPRM 0.95 13.93 19.3 1.38E+03 -5.50E+02 0.5 -0.1 0.1 2.0 3.1 0.0 0.0
SWF BPOM 0.90 13.45 9.9 1.36E+03 -5.59E+02 0.4 -0.1 0.0 0.8 1.2 0.0 0.0
SWF BC 0.90 13.51 7.8 1.44E+03 -5.06E+02 0.1 0.0 0.0 1.1 1.7 0.0 0.0
SWF BM 0.90 13.45 10.6 1.36E+03 -5.58E+02 0.6 -0.1 0.0 1.3 1.9 0.0 0.0
SWF LDM 0.90 13.51 8.5 1.40E+03 -5.33E+02 0.2 -0.1 0.0 1.2 1.8 0.0 0.0
SWF LWR 0.90 13.45 8.3 1.36E+03 -5.57E+02 0.2 -0.1 0.0 0.9 1.5 0.0 0.0
DSWF BPRM 0.95 13.80 14.3 1.37E+03 -5.52E+02 0.6 -0.1 0.1 1.7 2.6 0.0 0.1
DSWF BPOM 0.90 13.40 9.8 1.36E+03 -5.58E+02 0.4 -0.1 0.0 1.2 1.8 0.0 0.0
DSWF BC 0.90 13.51 8.0 1.44E+03 -5.06E+02 0.2 0.0 0.0 1.0 1.5 0.0 0.0
DSWF BM 0.90 13.41 11.8 1.36E+03 -5.56E+02 0.5 -0.1 0.0 1.1 1.7 0.0 0.0
DSWF LDM 0.90 13.49 7.8 1.40E+03 -5.32E+02 0.2 -0.1 0.0 1.0 1.5 0.0 0.0
DSWF LWR 0.90 13.33 8.5 1.36E+03 -5.57E+02 0.4 -0.1 0.0 1.1 1.7 0.0 0.0

% of Late WorkflowsPolicies

Th
re

sh
ol

d

BC
T

C
um

ul
at

iv
e

C
os

t
(S

ig
m

oi
d)

C
um

ul
at

iv
e

C
os

t
(Q

ua
dr

at
ic

)

Normalized Tardiness

Page 13

125

Table A.10: Statistics for simulation of Case Study Two with 64 quad-core machines.

Simulation Results

Case2

RSP MSP Cumulative Max 95th % 99th % Total UI Batch WS

FCFS BPRM 0.65 16.01 2458.4 1.24E+08 3.91E+05 556.5 286.8 430.9 19.2 19.8 0.0 18.3
FCFS BPOM 0.80 15.51 2489.1 1.46E+08 4.30E+05 587.9 308.4 472.5 19.1 19.5 0.0 18.6
FCFS BC 0.80 15.56 2492.1 1.46E+08 4.30E+05 589.8 308.4 470.3 19.2 19.7 0.0 18.6
FCFS BM 0.80 15.51 2488.6 1.46E+08 4.30E+05 592.7 307.6 471.9 19.1 19.5 0.0 18.5
FCFS LDM 0.80 15.52 2490.1 1.47E+08 4.31E+05 593.2 308.4 473.3 19.1 19.6 0.0 18.6
FCFS LWR 0.80 15.52 2502.2 1.45E+08 4.29E+05 590.8 307.4 471.4 25.1 28.5 0.0 18.5
FCLS BPRM 0.95 16.68 644.5 1.05E+04 -2.34E+03 9.1 0.2 0.4 12.1 17.6 0.0 1.1
FCLS BPOM 0.90 16.68 155.1 9.80E+03 -2.68E+03 9.1 0.0 0.2 4.2 5.7 0.0 1.1
FCLS BC 0.90 16.67 162.5 1.03E+04 -2.40E+03 9.2 0.0 0.2 4.3 5.9 0.0 1.1
FCLS BM 0.90 16.67 152.0 9.80E+03 -2.68E+03 9.1 0.0 0.2 4.3 5.9 0.0 1.1
FCLS LDM 0.90 16.70 163.4 9.95E+03 -2.59E+03 9.1 0.0 0.2 4.2 5.8 0.0 1.1
FCLS LWR 0.90 16.67 153.3 1.01E+04 -2.56E+03 9.2 0.0 0.2 3.9 5.3 0.0 1.1
EDF BPRM 0.90 16.32 331.4 8.99E+03 -2.58E+03 0.7 0.1 0.2 11.6 17.5 0.0 0.0
EDF BPOM 0.90 16.67 57.8 8.30E+03 -2.94E+03 0.3 0.0 0.0 2.4 3.6 0.0 0.0
EDF BC 0.90 16.70 61.6 8.73E+03 -2.68E+03 0.4 0.0 0.1 2.3 3.5 0.0 0.0
EDF BM 0.90 16.64 58.4 8.31E+03 -2.94E+03 0.3 0.0 0.1 2.5 3.8 0.0 0.0
EDF LDM 0.90 16.69 57.8 8.43E+03 -2.86E+03 0.3 0.0 0.1 2.3 3.5 0.0 0.0
EDF LWR 0.90 16.69 59.8 8.50E+03 -2.83E+03 0.4 0.0 0.1 2.3 3.5 0.0 0.0
LLF BPRM 0.90 16.21 396.2 9.09E+03 -2.53E+03 0.5 0.2 0.3 12.3 18.6 0.0 0.0
LLF BPOM 0.80 16.51 53.8 8.32E+03 -2.93E+03 0.3 0.0 0.0 2.8 4.2 0.0 0.0
LLF BC 0.80 16.52 59.0 8.76E+03 -2.66E+03 0.3 0.0 0.1 3.1 4.6 0.0 0.0
LLF BM 0.80 16.51 56.6 8.33E+03 -2.93E+03 0.3 0.0 0.1 3.0 4.5 0.0 0.0
LLF LDM 0.80 16.50 55.8 8.45E+03 -2.84E+03 0.3 0.0 0.1 2.9 4.4 0.0 0.0
LLF LWR 0.80 16.52 68.1 8.93E+03 -2.60E+03 0.3 0.0 0.1 8.8 13.2 0.0 0.0
PLLF BPRM 0.90 16.11 408.9 9.11E+03 -2.52E+03 0.6 0.2 0.3 12.6 18.9 0.0 0.0
PLLF BPOM 0.85 16.40 56.6 8.34E+03 -2.91E+03 0.3 0.0 0.1 3.2 4.8 0.0 0.0
PLLF BC 0.80 16.40 57.8 8.78E+03 -2.64E+03 0.3 0.0 0.1 3.2 4.8 0.0 0.0
PLLF BM 0.85 16.32 55.8 8.34E+03 -2.91E+03 0.4 0.0 0.1 3.0 4.5 0.0 0.0
PLLF LDM 0.85 16.42 60.4 8.48E+03 -2.82E+03 0.4 0.0 0.1 3.2 4.8 0.0 0.0
PLLF LWR 0.85 16.29 58.4 8.54E+03 -2.80E+03 0.4 0.0 0.1 3.2 4.8 0.0 0.0
SWF BPRM 0.95 16.82 476.0 8.98E+03 -2.63E+03 0.5 0.2 0.3 11.1 16.7 0.0 0.0
SWF BPOM 0.95 19.16 41.0 8.20E+03 -2.99E+03 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
SWF BC 0.95 19.18 42.9 8.57E+03 -2.77E+03 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
SWF BM 0.95 19.16 41.0 8.20E+03 -2.99E+03 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
SWF LDM 0.95 19.21 42.2 8.45E+03 -2.85E+03 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
SWF LWR 0.95 19.21 41.9 8.38E+03 -2.89E+03 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
DSWF BPRM 0.95 16.56 526.1 9.06E+03 -2.59E+03 0.6 0.2 0.3 11.8 17.9 0.0 0.0
DSWF BPOM 0.95 19.07 41.0 8.21E+03 -2.98E+03 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
DSWF BC 0.95 18.95 42.9 8.58E+03 -2.76E+03 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
DSWF BM 0.95 19.07 41.0 8.21E+03 -2.98E+03 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
DSWF LDM 0.95 19.12 42.3 8.45E+03 -2.84E+03 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
DSWF LWR 0.95 19.07 41.9 8.39E+03 -2.88E+03 0.0 -0.1 0.0 0.0 0.0 0.0 0.0

Policies

Th
re

sh
ol

d

BC
T

C
um

ul
at

iv
e

C
os

t
(S

ig
m

oi
d)

C
um

ul
at

iv
e

C
os

t
(Q

ua
dr

at
ic

)

Normalized Tardiness % of Late Workflows

Page 14

126

Table A.11: Statistics for simulation of Case Study Three with 64 quad-core machines.

Simulation Results

Case3

RSP MSP Cumulative Max 95th % 99th % Total UI Batch WS

FCFS BPRM 0.60 16.39 2562.6 8.38E+07 3.14E+05 508.3 203.8 386.9 20.0 20.4 3.3 19.3
FCFS BPOM 0.80 15.51 2476.6 9.34E+07 3.25E+05 584.4 206.3 413.4 19.1 19.5 1.7 18.6
FCFS BC 0.80 15.56 2479.1 9.33E+07 3.25E+05 589.8 206.3 412.5 19.1 19.5 1.7 18.6
FCFS BM 0.80 15.51 2476.4 9.36E+07 3.25E+05 592.7 206.2 412.5 19.1 19.5 1.7 18.5
FCFS LDM 0.80 15.51 2477.7 9.36E+07 3.25E+05 588.6 205.8 415.4 19.1 19.5 1.7 18.6
FCFS LWR 0.80 15.52 2478.8 9.30E+07 3.24E+05 580.3 206.1 411.1 19.7 20.4 1.7 18.5
FCLS BPRM 0.95 16.68 446.2 7.74E+03 -4.30E+03 9.1 0.2 0.4 6.5 9.1 23.3 1.1
FCLS BPOM 0.90 16.68 107.0 7.20E+03 -4.57E+03 9.1 -0.1 0.1 2.0 2.3 23.3 1.1
FCLS BC 0.90 16.67 117.5 7.58E+03 -4.35E+03 9.2 0.0 0.1 2.3 2.7 23.3 1.1
FCLS BM 0.90 16.67 108.5 7.21E+03 -4.57E+03 9.1 -0.1 0.1 2.1 2.5 23.3 1.1
FCLS LDM 0.90 16.69 109.2 7.33E+03 -4.50E+03 8.9 -0.1 0.1 2.2 2.7 23.3 1.1
FCLS LWR 0.90 16.67 111.9 7.39E+03 -4.49E+03 9.2 -0.1 0.1 2.0 2.2 23.3 1.1
EDF BPRM 0.90 16.50 151.2 6.21E+03 -4.54E+03 0.5 0.1 0.2 6.1 9.2 0.0 0.0
EDF BPOM 0.80 16.69 31.1 5.71E+03 -4.84E+03 0.2 -0.1 0.0 0.6 0.9 0.0 0.0
EDF BC 0.80 16.84 32.9 6.02E+03 -4.62E+03 0.3 -0.1 0.0 0.6 0.9 0.0 0.0
EDF BM 0.80 16.77 32.1 5.72E+03 -4.84E+03 0.3 -0.1 0.0 0.7 1.0 0.0 0.0
EDF LDM 0.80 16.80 30.9 5.79E+03 -4.77E+03 0.2 -0.1 0.0 0.6 0.8 0.0 0.0
EDF LWR 0.80 16.69 32.9 5.99E+03 -4.63E+03 0.2 0.0 0.0 1.1 1.6 0.0 0.0
LLF BPRM 0.90 16.24 185.9 6.30E+03 -4.48E+03 0.7 0.1 0.2 6.5 9.8 0.0 0.0
LLF BPOM 0.75 16.20 175.3 6.28E+03 -4.49E+03 0.4 0.1 0.2 6.4 9.7 0.0 0.0
LLF BC 0.80 16.47 33.9 6.06E+03 -4.58E+03 0.3 -0.1 0.0 0.8 1.2 0.0 0.0
LLF BM 0.75 16.16 174.1 6.28E+03 -4.49E+03 0.4 0.1 0.2 6.4 9.7 0.0 0.0
LLF LDM 0.75 16.35 202.8 6.75E+03 -4.13E+03 0.5 0.1 0.2 8.9 13.4 0.0 0.0
LLF LWR 0.75 16.25 188.3 6.71E+03 -4.18E+03 0.4 0.1 0.2 8.1 12.2 0.0 0.0
PLLF BPRM 0.85 16.15 305.8 6.94E+03 -4.07E+03 0.9 0.1 0.3 8.0 10.2 0.0 3.6
PLLF BPOM 0.75 16.08 308.2 6.94E+03 -4.07E+03 0.6 0.1 0.3 8.0 10.2 0.0 3.6
PLLF BC 0.75 16.24 606.6 9.39E+03 -2.48E+03 0.7 0.2 0.3 34.2 49.7 0.0 3.7
PLLF BM 0.80 16.35 77.8 6.65E+03 -4.20E+03 0.5 0.0 0.1 4.7 6.5 0.0 1.2
PLLF LDM 0.80 16.31 102.8 6.78E+03 -4.11E+03 0.7 0.0 0.1 5.1 7.1 0.0 1.3
PLLF LWR 0.75 16.11 303.3 7.36E+03 -3.77E+03 0.6 0.1 0.2 9.4 12.4 0.0 3.6
SWF BPRM 0.95 16.82 322.8 6.22E+03 -4.58E+03 0.5 0.1 0.3 5.8 8.6 6.7 0.0
SWF BPOM 0.95 19.16 34.7 5.70E+03 -4.85E+03 0.6 -0.1 -0.1 0.1 0.0 28.3 0.0
SWF BC 0.95 19.18 36.0 5.95E+03 -4.68E+03 0.6 -0.1 0.0 0.1 0.0 26.7 0.0
SWF BM 0.95 19.16 34.7 5.70E+03 -4.85E+03 0.6 -0.1 -0.1 0.1 0.0 28.3 0.0
SWF LDM 0.95 19.17 35.5 5.85E+03 -4.75E+03 0.6 -0.1 0.0 0.1 0.0 26.7 0.0
SWF LWR 0.90 16.79 33.4 5.84E+03 -4.75E+03 0.3 -0.1 0.0 0.8 1.2 6.7 0.0
DSWF BPRM 0.95 16.66 332.5 6.26E+03 -4.55E+03 0.6 0.1 0.3 6.0 9.1 0.0 0.0
DSWF BPOM 0.95 19.03 34.5 5.71E+03 -4.84E+03 0.5 -0.1 -0.1 0.2 0.0 41.7 0.0
DSWF BC 0.95 18.97 35.0 5.96E+03 -4.67E+03 0.4 -0.1 0.0 0.2 0.0 35.0 0.0
DSWF BM 0.95 19.03 34.5 5.71E+03 -4.84E+03 0.5 -0.1 -0.1 0.2 0.0 41.7 0.0
DSWF LDM 0.95 19.05 37.2 5.86E+03 -4.73E+03 0.4 -0.1 0.0 0.2 0.0 48.3 0.0
DSWF LWR 0.95 19.14 35.4 5.81E+03 -4.77E+03 0.4 -0.1 -0.1 0.2 0.0 36.7 0.0

% of Late WorkflowsPolicies

Th
re

sh
ol

d

BC
T

C
um

ul
at

iv
e

C
os

t
(S

ig
m

oi
d)

C
um

ul
at

iv
e

C
os

t
(Q

ua
dr

at
ic

)

Normalized Tardiness

Page 15

127

Table A.12: Statistics for simulation of Case Study Four with 64 quad-core machines.

Simulation Results

Case4

RSP MSP Cumulative Max 95th % 99th % Total UI Batch WS

FCFS BPRM 0.90 25.34 270.5 2.29E+05 3.69E+03 76.5 0.6 39.5 6.3 9.3 0.0 3.2
FCFS BPOM 0.75 25.34 267.0 2.48E+05 3.92E+03 78.9 0.4 42.4 6.2 8.8 0.0 3.4
FCFS BC 0.80 25.79 359.3 5.80E+05 8.32E+03 111.2 3.1 63.9 22.8 39.0 0.0 5.2
FCFS BM 0.75 25.34 278.1 2.46E+05 3.89E+03 84.9 0.7 41.3 6.4 9.4 0.0 3.4
FCFS LDM 0.75 25.79 341.9 5.05E+05 7.45E+03 101.0 2.5 61.2 12.0 18.7 0.0 4.9
FCFS LWR 0.75 25.34 301.4 3.20E+05 5.07E+03 87.6 0.8 46.7 13.0 21.3 0.0 3.9
FCLS BPRM 0.95 25.34 28.4 1.98E+03 -1.91E+03 1.1 -0.1 0.1 1.7 3.1 2.5 0.0
FCLS BPOM 0.80 25.34 27.9 1.99E+03 -1.90E+03 0.7 -0.1 0.1 2.8 5.3 0.0 0.0
FCLS BC 0.80 25.79 59.8 2.53E+03 -1.52E+03 0.8 0.1 0.1 17.9 34.1 0.0 0.0
FCLS BM 0.80 25.34 33.0 2.00E+03 -1.89E+03 1.0 -0.1 0.1 2.9 5.5 0.0 0.0
FCLS LDM 0.80 25.75 47.2 2.29E+03 -1.69E+03 0.6 0.1 0.1 11.0 21.0 0.0 0.0
FCLS LWR 0.80 25.34 34.9 2.14E+03 -1.79E+03 0.8 0.0 0.1 5.5 10.4 0.0 0.0
EDF BPRM 0.90 25.34 29.4 1.98E+03 -1.90E+03 0.5 -0.1 0.1 2.5 4.7 0.0 0.0
EDF BPOM 0.80 25.34 15.1 1.96E+03 -1.92E+03 0.2 -0.1 0.1 2.1 3.9 0.0 0.0
EDF BC 0.80 25.80 44.9 2.50E+03 -1.54E+03 0.3 0.1 0.1 17.4 33.1 0.0 0.0
EDF BM 0.80 25.34 17.2 1.97E+03 -1.91E+03 0.3 -0.1 0.1 2.3 4.3 0.0 0.0
EDF LDM 0.80 25.73 36.5 2.26E+03 -1.71E+03 0.5 0.1 0.1 10.3 19.5 0.0 0.0
EDF LWR 0.80 25.34 22.9 2.12E+03 -1.81E+03 0.3 0.0 0.1 5.6 10.6 0.0 0.0
LLF BPRM 0.90 25.34 35.6 2.00E+03 -1.89E+03 0.5 -0.1 0.2 2.8 5.3 0.0 0.0
LLF BPOM 0.80 25.34 22.1 1.98E+03 -1.91E+03 0.6 -0.1 0.1 2.4 4.5 0.0 0.0
LLF BC 0.80 25.80 47.0 2.50E+03 -1.54E+03 0.3 0.1 0.1 17.0 32.3 0.0 0.0
LLF BM 0.80 25.34 21.3 1.98E+03 -1.91E+03 0.3 -0.1 0.1 2.5 4.7 0.0 0.0
LLF LDM 0.90 25.48 15.1 2.00E+03 -1.88E+03 0.4 -0.1 0.0 1.6 3.0 0.0 0.0
LLF LWR 0.80 25.34 25.0 2.12E+03 -1.80E+03 0.3 0.0 0.1 5.8 11.0 0.0 0.0
PLLF BPRM 0.90 25.34 36.5 2.00E+03 -1.89E+03 0.4 -0.1 0.2 2.8 5.4 0.0 0.0
PLLF BPOM 0.80 25.34 19.3 1.98E+03 -1.90E+03 0.4 -0.1 0.1 2.4 4.6 0.0 0.0
PLLF BC 0.80 25.81 49.5 2.52E+03 -1.53E+03 0.3 0.1 0.1 17.8 33.9 0.0 0.0
PLLF BM 0.80 25.34 20.6 1.98E+03 -1.90E+03 0.4 -0.1 0.1 2.5 4.8 0.0 0.0
PLLF LDM 0.80 25.79 38.4 2.27E+03 -1.69E+03 0.4 0.1 0.1 10.7 20.4 0.0 0.0
PLLF LWR 0.80 25.34 27.3 2.13E+03 -1.80E+03 0.5 0.0 0.1 5.8 11.0 0.0 0.0
SWF BPRM 0.95 25.34 14.4 1.94E+03 -1.93E+03 0.7 -0.1 0.0 1.1 2.1 0.0 0.0
SWF BPOM 0.80 25.34 18.6 1.97E+03 -1.91E+03 0.5 -0.1 0.1 2.1 4.0 0.0 0.0
SWF BC 0.80 25.79 46.9 2.50E+03 -1.54E+03 0.5 0.1 0.1 17.0 32.4 0.0 0.0
SWF BM 0.80 25.34 19.2 1.97E+03 -1.91E+03 0.3 -0.1 0.1 2.4 4.6 0.0 0.0
SWF LDM 0.80 25.73 34.9 2.26E+03 -1.70E+03 0.3 0.1 0.1 10.7 20.3 0.0 0.0
SWF LWR 0.80 25.34 21.8 2.11E+03 -1.81E+03 0.6 0.0 0.1 5.2 10.0 0.0 0.0
DSWF BPRM 0.95 25.34 15.2 1.94E+03 -1.93E+03 0.3 -0.1 0.0 1.1 2.1 0.0 0.0
DSWF BPOM 0.80 25.34 16.2 1.97E+03 -1.91E+03 0.5 -0.1 0.1 2.2 4.2 0.0 0.0
DSWF BC 0.80 25.79 45.4 2.51E+03 -1.54E+03 0.6 0.1 0.1 17.9 34.0 0.0 0.0
DSWF BM 0.80 25.34 17.8 1.97E+03 -1.91E+03 0.5 -0.1 0.1 2.1 4.0 0.0 0.0
DSWF LDM 0.80 25.73 36.3 2.26E+03 -1.70E+03 0.3 0.1 0.1 10.7 20.3 0.0 0.0
DSWF LWR 0.80 25.34 22.2 2.12E+03 -1.80E+03 0.3 0.0 0.1 5.6 10.7 0.0 0.0

Policies

Th
re

sh
ol

d

BC
T

C
um

ul
at

iv
e

C
os

t
(S

ig
m

oi
d)

C
um

ul
at

iv
e

C
os

t
(Q

ua
dr

at
ic

)

Normalized Tardiness % of Late Workflows

Page 16

128

Table A.13: Statistics for simulation of Case Study One with 128 quad-core machines.

Simulation Results
Cluster Size 128
Case1

RSP MSP Cumulative Max 95th % 99th % Total UI Batch WS

FCFS BPRM 0.90 12.86 6.7 1.34E+03 -5.70E+02 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
FCFS BPOM 0.75 12.86 6.7 1.34E+03 -5.71E+02 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
FCFS BC 0.75 13.08 28.8 1.72E+03 -3.43E+02 0.2 0.1 0.1 26.6 41.0 0.0 0.0
FCFS BM 0.75 12.86 6.7 1.34E+03 -5.70E+02 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
FCFS LDM 0.80 12.93 27.8 1.65E+03 -4.06E+02 0.1 0.1 0.1 33.2 51.1 0.0 0.0
FCFS LWR 0.75 12.86 13.5 1.36E+03 -5.59E+02 0.2 -0.1 0.1 2.0 3.1 0.0 0.0
FCLS BPRM 0.95 12.86 7.5 1.34E+03 -5.69E+02 0.2 -0.1 -0.1 0.3 0.5 0.0 0.0
FCLS BPOM 0.90 12.86 6.7 1.34E+03 -5.71E+02 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
FCLS BC 0.90 12.92 7.2 1.43E+03 -5.14E+02 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
FCLS BM 0.90 12.86 6.7 1.34E+03 -5.71E+02 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
FCLS LDM 0.90 12.91 6.9 1.39E+03 -5.42E+02 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
FCLS LWR 0.90 12.86 6.7 1.34E+03 -5.68E+02 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
EDF BPRM 0.95 12.86 6.8 1.34E+03 -5.70E+02 0.1 -0.1 -0.1 0.1 0.2 0.0 0.0
EDF BPOM 0.90 12.86 6.7 1.34E+03 -5.71E+02 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
EDF BC 0.90 12.92 7.2 1.43E+03 -5.14E+02 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
EDF BM 0.90 12.86 6.7 1.34E+03 -5.71E+02 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
EDF LDM 0.90 12.91 6.9 1.39E+03 -5.42E+02 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
EDF LWR 0.90 12.86 6.7 1.34E+03 -5.68E+02 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
LLF BPRM 0.90 12.86 6.7 1.34E+03 -5.70E+02 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
LLF BPOM 0.90 12.86 6.7 1.34E+03 -5.71E+02 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
LLF BC 0.90 12.92 7.2 1.43E+03 -5.14E+02 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
LLF BM 0.90 12.86 6.7 1.34E+03 -5.71E+02 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
LLF LDM 0.90 12.91 6.9 1.39E+03 -5.42E+02 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
LLF LWR 0.90 12.86 6.7 1.34E+03 -5.68E+02 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
PLLF BPRM 0.90 12.86 6.7 1.34E+03 -5.70E+02 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
PLLF BPOM 0.90 12.86 6.7 1.34E+03 -5.71E+02 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
PLLF BC 0.90 12.92 7.2 1.43E+03 -5.14E+02 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
PLLF BM 0.90 12.86 6.7 1.34E+03 -5.71E+02 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
PLLF LDM 0.90 12.91 6.9 1.39E+03 -5.42E+02 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
PLLF LWR 0.90 12.86 6.7 1.34E+03 -5.68E+02 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
SWF BPRM 0.95 12.86 6.8 1.34E+03 -5.70E+02 0.1 -0.1 -0.1 0.2 0.3 0.0 0.0
SWF BPOM 0.90 12.86 6.7 1.34E+03 -5.71E+02 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
SWF BC 0.90 12.92 7.2 1.43E+03 -5.14E+02 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
SWF BM 0.90 12.86 6.7 1.34E+03 -5.71E+02 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
SWF LDM 0.90 12.91 6.9 1.39E+03 -5.42E+02 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
SWF LWR 0.90 12.86 6.7 1.34E+03 -5.68E+02 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
DSWF BPRM 0.95 12.86 6.9 1.34E+03 -5.70E+02 0.1 -0.1 -0.1 0.2 0.3 0.0 0.0
DSWF BPOM 0.90 12.86 6.7 1.34E+03 -5.71E+02 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
DSWF BC 0.90 12.92 7.2 1.43E+03 -5.14E+02 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
DSWF BM 0.90 12.86 6.7 1.34E+03 -5.71E+02 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
DSWF LDM 0.90 12.91 6.9 1.39E+03 -5.42E+02 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
DSWF LWR 0.90 12.86 6.7 1.34E+03 -5.68E+02 0.0 -0.1 0.0 0.0 0.0 0.0 0.0

% of Late WorkflowsPolicies

Th
re

sh
ol

d

BC
T

C
um

ul
at

iv
e

C
os

t
(S

ig
m

oi
d)

C
um

ul
at

iv
e

C
os

t
(Q

ua
dr

at
ic

)

Normalized Tardiness

Page 25

129

Table A.14: Statistics for simulation of Case Study Two with 128 quad-core machines.

Simulation Results

Case2

RSP MSP Cumulative Max 95th % 99th % Total UI Batch WS

FCFS BPRM 0.65 13.82 476.1 4.17E+05 6.22E+03 74.3 0.0 36.6 4.8 6.0 0.0 2.5
FCFS BPOM 0.80 13.92 680.4 2.47E+06 2.70E+04 140.1 0.2 83.2 5.3 5.8 0.0 4.2
FCFS BC 0.80 13.95 689.9 2.54E+06 2.80E+04 140.4 0.2 84.7 5.4 6.0 0.0 4.2
FCFS BM 0.80 13.92 678.4 2.45E+06 2.68E+04 140.6 0.2 83.5 5.2 5.8 0.0 4.2
FCFS LDM 0.80 13.96 684.9 2.51E+06 2.74E+04 143.6 0.2 84.2 5.3 5.8 0.0 4.2
FCFS LWR 0.80 13.91 683.4 2.47E+06 2.71E+04 141.0 0.2 83.8 5.4 6.0 0.0 4.2
FCLS BPRM 0.95 13.82 193.3 8.25E+03 -3.01E+03 0.7 -0.1 0.2 3.9 5.9 0.0 0.0
FCLS BPOM 0.90 13.83 55.4 8.02E+03 -3.11E+03 0.7 -0.1 0.0 0.9 1.4 0.0 0.0
FCLS BC 0.90 13.90 57.6 8.64E+03 -2.73E+03 0.5 0.0 0.0 1.1 1.6 0.0 0.0
FCLS BM 0.90 13.83 55.5 8.02E+03 -3.11E+03 0.7 -0.1 0.0 0.9 1.4 0.0 0.0
FCLS LDM 0.90 13.90 57.2 8.28E+03 -2.94E+03 0.6 -0.1 0.0 1.1 1.6 0.0 0.0
FCLS LWR 0.90 13.83 53.9 8.03E+03 -3.11E+03 0.6 -0.1 0.0 1.0 1.5 0.0 0.0
EDF BPRM 0.90 13.87 100.9 8.17E+03 -3.03E+03 0.3 -0.1 0.1 3.3 5.0 0.0 0.0
EDF BPOM 0.90 14.04 42.4 7.98E+03 -3.13E+03 0.3 -0.1 0.0 0.5 0.8 0.0 0.0
EDF BC 0.90 14.06 46.4 8.60E+03 -2.75E+03 0.2 -0.1 0.0 0.5 0.8 0.0 0.0
EDF BM 0.90 14.04 42.4 7.98E+03 -3.13E+03 0.3 -0.1 0.0 0.5 0.8 0.0 0.0
EDF LDM 0.90 14.05 43.6 8.24E+03 -2.97E+03 0.2 -0.1 0.0 0.5 0.7 0.0 0.0
EDF LWR 0.90 14.02 41.8 8.00E+03 -3.12E+03 0.2 -0.1 0.0 0.4 0.6 0.0 0.0
LLF BPRM 0.90 13.77 107.3 8.18E+03 -3.02E+03 0.3 -0.1 0.1 3.6 5.4 0.0 0.0
LLF BPOM 0.80 13.96 41.4 7.98E+03 -3.13E+03 0.2 -0.1 0.0 0.5 0.7 0.0 0.0
LLF BC 0.80 14.02 46.7 8.62E+03 -2.74E+03 0.3 0.0 0.0 0.8 1.2 0.0 0.0
LLF BM 0.80 13.96 41.4 7.98E+03 -3.13E+03 0.2 -0.1 0.0 0.5 0.7 0.0 0.0
LLF LDM 0.80 13.97 43.6 8.25E+03 -2.96E+03 0.2 -0.1 0.0 0.6 0.9 0.0 0.0
LLF LWR 0.80 13.86 41.7 8.00E+03 -3.12E+03 0.2 -0.1 0.0 0.6 0.9 0.0 0.0
PLLF BPRM 0.90 13.66 118.0 8.21E+03 -3.01E+03 0.3 -0.1 0.2 3.9 5.8 0.0 0.0
PLLF BPOM 0.85 13.66 41.3 7.99E+03 -3.13E+03 0.1 -0.1 0.0 0.6 0.9 0.0 0.0
PLLF BC 0.80 13.74 45.5 8.62E+03 -2.74E+03 0.2 0.0 0.0 0.7 1.1 0.0 0.0
PLLF BM 0.85 13.69 41.3 7.99E+03 -3.13E+03 0.1 -0.1 0.0 0.6 0.9 0.0 0.0
PLLF LDM 0.85 13.73 43.6 8.26E+03 -2.95E+03 0.2 -0.1 0.0 0.7 1.1 0.0 0.0
PLLF LWR 0.85 13.70 41.4 8.00E+03 -3.12E+03 0.1 -0.1 0.0 0.5 0.8 0.0 0.0
SWF BPRM 0.95 14.23 150.0 8.17E+03 -3.04E+03 0.5 -0.1 0.2 3.1 4.6 0.0 0.0
SWF BPOM 0.95 14.88 39.8 7.96E+03 -3.14E+03 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
SWF BC 0.95 14.92 42.8 8.56E+03 -2.79E+03 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
SWF BM 0.95 14.88 39.8 7.96E+03 -3.14E+03 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
SWF LDM 0.95 14.86 42.0 8.40E+03 -2.88E+03 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
SWF LWR 0.95 14.81 39.9 7.98E+03 -3.13E+03 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
DSWF BPRM 0.95 14.14 145.8 8.15E+03 -3.05E+03 0.5 -0.1 0.2 2.8 4.1 0.0 0.0
DSWF BPOM 0.95 14.73 39.8 7.97E+03 -3.14E+03 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
DSWF BC 0.95 14.94 42.8 8.56E+03 -2.79E+03 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
DSWF BM 0.95 14.73 39.8 7.97E+03 -3.14E+03 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
DSWF LDM 0.95 14.97 42.0 8.40E+03 -2.88E+03 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
DSWF LWR 0.95 14.70 39.9 7.98E+03 -3.13E+03 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0

Policies

Th
re

sh
ol

d

BC
T

C
um

ul
at

iv
e

C
os

t
(S

ig
m

oi
d)

C
um

ul
at

iv
e

C
os

t
(Q

ua
dr

at
ic

)

Normalized Tardiness % of Late Workflows

Page 26

130

Table A.15: Statistics for simulation of Case Study Three with 128 quad-core ma-
chines.

Simulation Results

Case3

RSP MSP Cumulative Max 95th % 99th % Total UI Batch WS

FCFS BPRM 0.60 13.84 216.2 5.97E+03 -4.75E+03 0.7 -0.1 0.4 2.4 3.2 0.0 1.0
FCFS BPOM 0.80 13.92 666.5 1.63E+06 1.82E+04 140.1 0.2 66.5 5.3 5.8 0.0 4.2
FCFS BC 0.80 13.95 675.3 1.67E+06 1.89E+04 140.4 0.2 67.8 5.3 5.9 0.0 4.2
FCFS BM 0.80 13.92 664.1 1.61E+06 1.80E+04 140.6 0.2 66.5 5.2 5.8 0.0 4.2
FCFS LDM 0.80 13.95 671.2 1.66E+06 1.86E+04 143.6 0.2 67.4 5.3 5.8 0.0 4.2
FCFS LWR 0.80 13.91 670.5 1.62E+06 1.82E+04 141.0 0.2 67.3 5.3 5.8 0.0 4.2
FCLS BPRM 0.95 13.82 126.0 5.70E+03 -4.89E+03 0.7 -0.1 0.2 2.0 3.0 0.0 0.0
FCLS BPOM 0.90 13.83 33.7 5.54E+03 -4.97E+03 0.5 -0.1 -0.1 0.4 0.6 0.0 0.0
FCLS BC 0.90 13.90 34.5 5.96E+03 -4.66E+03 0.4 -0.1 0.0 0.4 0.7 0.0 0.0
FCLS BM 0.90 13.83 33.3 5.54E+03 -4.97E+03 0.5 -0.1 -0.1 0.4 0.5 0.0 0.0
FCLS LDM 0.90 13.90 34.3 5.71E+03 -4.84E+03 0.4 -0.1 0.0 0.4 0.7 0.0 0.0
FCLS LWR 0.90 13.83 31.7 5.54E+03 -4.97E+03 0.4 -0.1 0.0 0.4 0.6 0.0 0.0
EDF BPRM 0.90 13.85 55.2 5.64E+03 -4.91E+03 0.2 -0.1 0.1 1.8 2.7 0.0 0.0
EDF BPOM 0.80 14.00 28.6 5.51E+03 -4.99E+03 0.3 -0.1 -0.1 0.1 0.2 0.0 0.0
EDF BC 0.80 14.04 29.8 5.94E+03 -4.68E+03 0.1 -0.1 0.0 0.1 0.2 0.0 0.0
EDF BM 0.80 14.00 27.9 5.51E+03 -4.99E+03 0.1 -0.1 -0.1 0.1 0.2 0.0 0.0
EDF LDM 0.80 14.04 28.5 5.68E+03 -4.86E+03 0.1 -0.1 -0.1 0.1 0.2 0.0 0.0
EDF LWR 0.80 14.00 27.8 5.52E+03 -4.98E+03 0.1 -0.1 -0.1 0.1 0.2 0.0 0.0
LLF BPRM 0.90 13.67 60.8 5.66E+03 -4.89E+03 0.3 -0.1 0.1 1.9 2.9 0.0 0.0
LLF BPOM 0.75 13.72 60.1 5.65E+03 -4.90E+03 0.3 -0.1 0.1 1.9 2.8 0.0 0.0
LLF BC 0.80 13.89 30.8 5.95E+03 -4.67E+03 0.2 -0.1 0.0 0.2 0.4 0.0 0.0
LLF BM 0.75 13.70 60.6 5.66E+03 -4.89E+03 0.3 -0.1 0.1 1.9 2.8 0.0 0.0
LLF LDM 0.75 14.04 85.4 6.28E+03 -4.42E+03 0.3 0.0 0.1 5.0 7.5 0.0 0.0
LLF LWR 0.75 13.81 72.5 5.77E+03 -4.82E+03 0.3 -0.1 0.1 3.2 4.8 0.0 0.0
PLLF BPRM 0.85 13.67 63.2 5.67E+03 -4.89E+03 0.3 -0.1 0.1 2.0 3.0 0.0 0.0
PLLF BPOM 0.75 13.67 62.7 5.67E+03 -4.89E+03 0.5 -0.1 0.1 1.9 2.9 0.0 0.0
PLLF BC 0.75 13.86 408.3 8.56E+03 -3.00E+03 0.3 0.1 0.2 32.5 49.0 0.0 0.0
PLLF BM 0.80 13.64 29.0 5.53E+03 -4.98E+03 0.3 -0.1 -0.1 0.2 0.3 0.0 0.0
PLLF LDM 0.80 13.67 29.1 5.70E+03 -4.84E+03 0.1 -0.1 -0.1 0.2 0.3 0.0 0.0
PLLF LWR 0.75 13.69 74.8 5.78E+03 -4.82E+03 0.3 -0.1 0.1 3.1 4.7 0.0 0.0
SWF BPRM 0.95 14.23 100.0 5.65E+03 -4.92E+03 0.5 -0.1 0.2 1.6 2.4 0.0 0.0
SWF BPOM 0.95 14.88 27.5 5.51E+03 -4.99E+03 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
SWF BC 0.95 14.92 29.5 5.91E+03 -4.71E+03 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
SWF BM 0.95 14.88 27.5 5.51E+03 -4.99E+03 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
SWF LDM 0.95 14.88 28.9 5.78E+03 -4.80E+03 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
SWF LWR 0.90 14.25 27.8 5.52E+03 -4.98E+03 0.1 -0.1 -0.1 0.1 0.2 0.0 0.0
DSWF BPRM 0.95 14.16 92.8 5.64E+03 -4.92E+03 0.5 -0.1 0.2 1.5 2.3 0.0 0.0
DSWF BPOM 0.95 14.77 27.5 5.51E+03 -4.99E+03 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
DSWF BC 0.95 14.77 29.5 5.91E+03 -4.71E+03 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
DSWF BM 0.95 14.77 27.5 5.51E+03 -4.99E+03 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
DSWF LDM 0.95 14.83 28.9 5.78E+03 -4.79E+03 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
DSWF LWR 0.95 14.79 27.6 5.52E+03 -4.98E+03 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0

% of Late WorkflowsPolicies

Th
re

sh
ol

d

BC
T

C
um

ul
at

iv
e

C
os

t
(S

ig
m

oi
d)

C
um

ul
at

iv
e

C
os

t
(Q

ua
dr

at
ic

)

Normalized Tardiness

Page 27

131

Table A.16: Statistics for simulation of Case Study Four with 128 quad-core machines.

Simulation Results

Case4

RSP MSP Cumulative Max 95th % 99th % Total UI Batch WS

FCFS BPRM 0.90 25.34 9.3 1.87E+03 -1.98E+03 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
FCFS BPOM 0.75 25.34 9.3 1.87E+03 -1.98E+03 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
FCFS BC 0.80 25.80 39.7 2.48E+03 -1.55E+03 0.1 0.1 0.1 17.0 32.4 0.0 0.0
FCFS BM 0.75 25.34 9.3 1.87E+03 -1.98E+03 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
FCFS LDM 0.75 25.79 24.5 2.18E+03 -1.74E+03 0.2 0.0 0.1 5.1 9.7 0.0 0.0
FCFS LWR 0.75 25.34 17.2 2.01E+03 -1.88E+03 0.2 0.0 0.1 3.0 5.7 0.0 0.0
FCLS BPRM 0.95 25.34 9.3 1.87E+03 -1.98E+03 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
FCLS BPOM 0.80 25.34 9.3 1.87E+03 -1.98E+03 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
FCLS BC 0.80 25.81 39.3 2.48E+03 -1.55E+03 0.1 0.1 0.1 17.2 32.6 0.0 0.0
FCLS BM 0.80 25.34 9.3 1.87E+03 -1.98E+03 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
FCLS LDM 0.80 25.74 28.4 2.20E+03 -1.74E+03 0.1 0.1 0.1 8.7 16.6 0.0 0.0
FCLS LWR 0.80 25.34 11.5 1.97E+03 -1.90E+03 0.1 -0.1 0.0 1.8 3.3 0.0 0.0
EDF BPRM 0.90 25.34 9.3 1.87E+03 -1.98E+03 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
EDF BPOM 0.80 25.34 9.3 1.87E+03 -1.98E+03 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
EDF BC 0.80 25.79 39.5 2.48E+03 -1.55E+03 0.1 0.1 0.1 17.0 32.3 0.0 0.0
EDF BM 0.80 25.34 9.3 1.87E+03 -1.98E+03 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
EDF LDM 0.80 25.73 28.2 2.20E+03 -1.74E+03 0.1 0.1 0.1 8.5 16.1 0.0 0.0
EDF LWR 0.80 25.34 11.4 1.97E+03 -1.90E+03 0.1 -0.1 0.0 1.7 3.3 0.0 0.0
LLF BPRM 0.90 25.34 9.3 1.87E+03 -1.98E+03 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
LLF BPOM 0.80 25.34 9.3 1.87E+03 -1.98E+03 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
LLF BC 0.80 25.78 39.9 2.48E+03 -1.55E+03 0.1 0.1 0.1 16.8 32.0 0.0 0.0
LLF BM 0.80 25.34 9.3 1.87E+03 -1.98E+03 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
LLF LDM 0.90 25.50 9.8 1.96E+03 -1.91E+03 0.0 -0.1 0.0 0.2 0.3 0.0 0.0
LLF LWR 0.80 25.34 11.4 1.97E+03 -1.90E+03 0.1 -0.1 0.0 1.7 3.3 0.0 0.0
PLLF BPRM 0.90 25.34 9.3 1.87E+03 -1.98E+03 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
PLLF BPOM 0.80 25.34 9.3 1.87E+03 -1.98E+03 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
PLLF BC 0.80 25.81 39.8 2.48E+03 -1.56E+03 0.1 0.1 0.1 17.1 32.5 0.0 0.0
PLLF BM 0.80 25.34 9.3 1.87E+03 -1.98E+03 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
PLLF LDM 0.80 25.77 28.1 2.20E+03 -1.74E+03 0.1 0.1 0.1 8.7 16.5 0.0 0.0
PLLF LWR 0.80 25.34 11.4 1.97E+03 -1.90E+03 0.1 -0.1 0.0 1.7 3.3 0.0 0.0
SWF BPRM 0.95 25.34 9.3 1.87E+03 -1.98E+03 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
SWF BPOM 0.80 25.34 9.3 1.87E+03 -1.98E+03 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
SWF BC 0.80 25.81 40.6 2.49E+03 -1.55E+03 0.1 0.1 0.1 17.5 33.3 0.0 0.0
SWF BM 0.80 25.34 9.3 1.87E+03 -1.98E+03 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
SWF LDM 0.80 25.72 26.6 2.20E+03 -1.74E+03 0.1 0.1 0.1 8.4 15.9 0.0 0.0
SWF LWR 0.80 25.34 11.3 1.97E+03 -1.90E+03 0.1 -0.1 0.0 1.7 3.2 0.0 0.0
DSWF BPRM 0.95 25.34 9.3 1.87E+03 -1.98E+03 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
DSWF BPOM 0.80 25.34 9.3 1.87E+03 -1.98E+03 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
DSWF BC 0.80 25.81 40.3 2.49E+03 -1.55E+03 0.1 0.1 0.1 17.4 33.1 0.0 0.0
DSWF BM 0.80 25.34 9.3 1.87E+03 -1.98E+03 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
DSWF LDM 0.80 25.72 26.6 2.20E+03 -1.75E+03 0.1 0.1 0.1 8.2 15.5 0.0 0.0
DSWF LWR 0.80 25.34 11.3 1.97E+03 -1.90E+03 0.1 -0.1 0.0 1.7 3.2 0.0 0.0

Policies

Th
re

sh
ol

d

BC
T

C
um

ul
at

iv
e

C
os

t
(S

ig
m

oi
d)

C
um

ul
at

iv
e

C
os

t
(Q

ua
dr

at
ic

)

Normalized Tardiness % of Late Workflows

Page 28

132

Acronyms

RSP Request Selection Policy

MSP Machine Selection Policy

FCFS First Come First Serve

FCLS First Come Last Serve

LLF Least Laxity First

PLLF Proportional Least Laxity First

EDF Earliest Deadline First

SWF Shortest Workflow First

DSWF Dynamic Shortest Workflow First

BPRM Best Pre-Mapping

BPOM Best Post Mapping

BC Best CPU

BM Best Memory

LDM Least Deadline Missed

LWR Least Work Remaining

BCT Batch Completion Time

SLA Service Level Agreements

JMS Java Message Service

133

