

Optimal Configuration of Compute Nodes for Synthetic Aperture Radar Processing

by Jeffrey T. Muehring and John K. Antonio Texas Tech University {muehring, antonio}@ttu.edu

EHPC '98: Workshop on Embedded HPC Systems and Applications April 3, 1998

Supported by Rome Laboratory Grant No. F30602-96-1-0098 and DARPA Contract No. F30602-97-2-0297

Motivation and SAR Basics

- Parallelization of SAR Processing
- The Optimal Configuration Problem
 - Formulation
 - Numerical Results
- Conclusions

- Embedded Systems
- High-Performance Computing
- **DSPs**: Digital Signal Processors
- GPPs: General Purpose Processors
- FPGAs: Field Programmable Gate Arrays
- COTS: Commercial Off-the-Shelf
- UAV: Unmanned Aerial Vehicle
- SWAP: Size, Weight, and Power

Nominal UAV Payload

Uses:

- Ground surveillance
- Terrain and weather mapping
- Ocean current and ice floe tracking
- Detection of earthquake faults

Advantages over optical methods:

- Radio waves relatively unaffected by bad weather and poor lighting
- True 3-D images possible

Pulse (Range):

• Based on bandwidth of FM chirp

•Resolution:

Uncompressed	Compressed
$\delta_{R} = \frac{c \tau_{p}}{2}$	$\delta_R = \frac{c}{2B}$

Azimuth:

• Based on Doppler frequency shift

•Resolution:	Uncompressed	Compressed
	$\delta_{Az} \approx \frac{R\lambda}{A}$	$\delta_{Az} = \frac{A}{2}$

Offset Overlapping Beams

Synthetic Beams

- Motivation and SAR Basics
- Parallelization of SAR Processing
- The Optimal Configuration Problem
 - Formulation
 - Numerical Results
- Conclusions

where S_a is the azimuth section length and K_r is the range reference kernel size

Reference: T. Einstein, "Realtime Synthetic Aperture Radar Processing on the RACE Multicomputer," App. Note 203.0, Mercury Computing Sys, 1996.

Large Overlap/Section ratio \Rightarrow Small azimuth memory, large number azimuth processors Small Overlap/Section ratio \Rightarrow Large azimuth memory, small number azimuth processors

Reference: T. Einstein, "Realtime Synthetic Aperture Radar Processing on the RACE Multicomputer," App. Note 203.0, Mercury Computing Sys, 1996.

- radar-dependent: R (range), R_s (range swath), and λ (wavelength)
- application-dependent: δ (desired resolution) and v (platform velocity)
- **processor-dependent:** α_r and α_a (non-fastconvolution range and azimuth loading) and γ (fast convolution throughput)
- software-dependent: S_a (azimuth convolution section length), F_a (azimuth FFT length), and F_r (range FFT length)

Derivations for Memory and Processor Requirements

$$P_r = \frac{\nu(6\delta F_r + \alpha_r \gamma R_s + 10\delta F_r \lg F_r)}{\gamma \delta^2}$$

$$P_a = \frac{\nu R_s \left(\alpha_a + \frac{F_a (6 + 10 \lg F_a)}{\gamma S_a}\right)}{\delta^2}$$

$$M_r = \frac{16R_s v (6\delta F_r + \alpha_r \gamma R_s + 10\delta F_r \lg F_r)}{\gamma \delta^3}$$

$$M_a = \frac{R_s(\lambda R + 2\delta^2 S_a)}{\delta^3}$$

where P_r and P_a are the number of required processors and M_r and M_a are the memory requirements in Mbytes for range and azimuth processing, respectively

SHARC Compute Node Architecture

RACEway Interface

Daughtercard Types

Type 1:

- 2 CNs/card
- 6 CEs/card
- 3 CEs/CN
- 32 MB DRAM/card
- 16 MB DRAM/CN
- 5.33 MB DRAM/CE
- 12.2 Watts

Type 2:

- 1 CN/card
- 2 CEs/card
- 2 CEs/CN
- 64 MB DRAM/card
- 64 MB DRAM/CN
- 32 MB DRAM/CE
- 9.6 Watts

- Motivation and SAR Basics
- Parallelization of SAR Processing
- The Optimal Configuration Problem
 - Formulation
 - Numerical Results
- Conclusions

- Based on characteristics of CNs:
 - Power consumption
 - Number of CEs
 - Amount of memory
- CEs are assigned to perform either range or azimuth processing.
- Processed data for a CE must be stored locally for both range and azimuth computations.

- **Objective:** Determine configurations for the CNs, number of CNs of each configuration, and section size, to satisfy processor and memory requirements and minimize power consumption
- Notation and Definitions:
 - CN Configuration: Specifies the daughtercard type and number of range and azimuth CEs (per configured CN)
 - *X*, *Y*: The two possible CN configurations
 - X_T , Y_T : Daughtercard type for each CN configuration

- Notation and Definitions:
 - X_{r} , Y_{r} : Number of range processors per CN (for each configuration)
 - X_a , Y_a : Number of azimuth processors per CN (for each configuration)
 - N_X , N_Y : Number of CNs of configurations X and Y
 - Π_{CN}(•): Power per CN as a function of daughtercard type
 - $M_{CN}(\bullet)$: Memory per CN as a function of daughtercard type
 - $P_{CN}(\bullet)$: Processors per CN as a function of daughtercard type

Minimize:

 $Z = N_X \Pi_{CN}(X_T) + N_Y \Pi_{CN}(Y_T)$

Subject to:

$$\begin{split} P_r &\leq N_X X_r + N_Y Y_r \\ P_a(S_a) &\leq N_X X_a + N_Y Y_a \\ M_{CN}(X_T) &\geq X_r \frac{M_r}{P_r} + X_a \frac{M_a(S_a)}{P_a(S_a)} \\ M_{CN}(Y_T) &\geq Y_r \frac{M_r}{P_r} + Y_a \frac{M_a(S_a)}{P_a(S_a)} \\ X_r + X_a &\leq P_{CN}(X_T) \\ Y_r + Y_a &\leq P_{CN}(Y_T) \\ F_a &= 2^k \geq S_a + K_a, \qquad k = 1, 2, \dots \end{split}$$

 $N_X, N_Y, X_r, X_a, Y_r, Y_a \ge 0, S_a \ge 1$

- Motivation and SAR Basics
- Parallelization of SAR Processing
- The Optimal Configuration Problem
 - Formulation
 - Numerical Results
- Conclusions

Minimum Power

Ratio of Azimuth to Range Memory

Azimuth FFT Size

Optimal Azimuth Section Size

Optimal Ratio of Kernel Size to Section Size

Sophisticated Nominal CN Configuration

Ratio of Nominal to Optimal Power

- Motivation and SAR Basics
- Parallelization of SAR Processing
- The Optimal Configuration Problem
 - Formulation
 - Numerical Results
- Conclusions

- A method for optimally configuring CN-based parallel systems for SAR processing was introduced.
- The method provides detailed HW and SW design and implementation information about how to best utilize system resources for given values of application parameters.
- The numerical studies show that the optimal ratio of daughtercard types can be relatively constant over regions of the application parameter space.
- For a fixed hardware configuration, the CNs can be reconfigured (via software re-configuration) to achieve optimal power consumption over specified regions.