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ABSTRACT

Embedded systems often must adhere to strict size, weight and power (SWAP)

constraints and yet provide tremendous computational throughput. Increasing

the difficulty of this challenge, there is a trend to utilize commercial-off-the-shelf

(COTS) components in the design of such systems to reduce both total cost and

time to market. Employment of COTS components also promotes standardiza-

tion and permits a more generalized approach to system evaluation and design

than do systems designed at the application-specific-integrated-circuit (ASIC)

level.

The computationally intensive application of synthetic aperture radar (SAR)

is by nature a high-performance embedded application that lends itself to par-

allelization. Mercury Computer Systems’ RACE multicomputer is the COTS

computing platform under investigation. With the target software and hardware

defined, a system performance model, in the context of SWAP, is developed based

on mathematical programming. This work proposes an optimization technique

using a combination of constrained nonlinear and integer programming.
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CHAPTER I

INTRODUCTION

Even as increasingly more computing power is available on ever decreasing

areas of silicon, the processing requirements of modern applications often exceed

the capabilities of individual processors. That is, regardless of the speed and

memory of a system, there always will exist some application that pushes the

envelope of imaginable computation. It is highly probable that this maxim will

remain valid for all generations of computers to come. Out of this truth was

born parallel processing.

When current technology cannot provide a single chip with adequate perfor-

mance, it seems reasonable to assume that multiple chips might work in tandem

to provide for the shortcomings of the single chip. However, apart from the

fact that a vast number of computational tasks are not easily parallelizable,

the physical requirements of multiple processors can pose critical difficulties in

terms of size, weight, and power (SWAP). Such constraints especially hold true

for embedded systems.

Synthetic aperture radar (SAR) data processing often belongs to this genre of

problems that require both high-performance computing and adherence to tight

SWAP constraints. Intensive computing results from the massive amount of in-

formation that is required to process a SAR image and SWAP constraints are
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due to the nature of the host vehicles of such systems — often unmanned aerial

vehicles (UAVs) or spaceborne orbiting satellites. Assuming the requirement of

multiple processors and exploiting the well-defined parallelization of SAR pro-

cessing, it is beneficial to determine the exact configuration of hardware and

software that will optimize limited resources (i.e., SWAP). This work proposes

two optimization models based on mathematical programming. The models are

applied to a Mercury Computer Systems’ RACE heterogeneous multicomputer

[7], assumed to be onboard a tightly SWAP-constrained UAV, on which a SAR

stripmap image processing algorithm is mapped across multiple computing ele-

ments.

This work begins with an overview of the background material. Chapter II

briefly covers the principles of radar and synthetic aperture radar and the for-

mulas that are most relevant to the processing of the data. Chapter III provides

an overview of the Mercury RACE multicomputer and applies the processing

techniques discussed in Chapter II to the Mercury RACE system. Chapter IV

formulates the optimization problem in the context of mathematical program-

ming and establishes a basis for applying it to the configuration of a Mercury

RACE system. Chapter V introduces an ideal shared-memory model (ISMM)

and investigates a representative sample of solutions using this model. Chapter

VI introduces a more sophisticated and realistic approach, the CN-constrained

model (CNCM). Comparison to the ISMM is conducted and the utility of the
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ISMM as an approximator to the CNCM is investigated. Chapter VII explores

the use of random configurations to both verify the solutions obtained from the

models discussed and also possibly provide an alternative method of performing

optimization. Chapter VIII concludes the work with a summary of the investi-

gation and results.
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CHAPTER II

PRINCIPLES OF SYNTHETIC APERTURE RADAR

Synthetic aperture radar (also known as synthetic array radar) is imple-

mented in numerous systems for military, commercial, and scientific purposes.

SAR’s widespread use is due to its ability to produce photo-quality images with

the use of radio waves. Uses include ground surveillance, terrain mapping,

weather mapping, ocean current and ice floe tracking, and detection of earth-

quake faults. Because radio waves are relatively unaffected by poor weather

and/or lighting, radar’s performance remains constant in most conditions. In

contrast to most optical techniques, as a ranging instrument radar can deliver

true three-dimensional images. As discussed below, SAR distinguishes itself from

conventional radar by its drastically reduced size requirements of the physical

antenna in exchange for a substantial amount of postprocessing. A brief overview

of basic radar and more specific SAR principles as is relevant to this research is

given below. For a thorough treatment of basic radar, the reader is referred to

books such as [6, 21, 22]. Synthetic aperture radar is covered in works such as

[3, 5, 9, 12].
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2.1 Conventional Radar

The fundamental principle of radar involves the detection of objects by the

transmission and return of electromagnetic waves. When pulses are emitted

from the radar transmitter, portions of the signals are returned (with significant

attenuation in power) after colliding with objects in their path. Since electro-

magnetic waves travel at the speed of light, the range R of an object can be

easily calculated by

R =
cTe

2
,

where c is the speed of light and Te is the elapsed time from the transmission to

the reception of the signal.

If the transmitter consisted simply of a point with no direction of the signal,

the range information returned by an object would yield only the radius of

the spherical surface on which the object resides, with the transmitter located

at the center. However, transmitters typically direct the signal beam so as

to sweep out a solid angle of the sphere. In the case of an airborne radar

directed toward the ground, such as employed for terrain mapping or ground

surveillance, the solid angle effectively becomes an elliptical area on the ground

illuminated by electromagnetic waves, known as the radar’s footprint (Fig. 2.1).

This two-dimensional area is referred to in terms of range and azimuth, where
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Fig. 2.1: Footprint of aerial radar.

the range dimension extends orthogonally from the aircraft and the azimuth

dimension runs parallel to the aircraft’s line of flight. The range swath Rs is the

length of the footprint in the range dimension, and the width of the footprint

in the azimuth dimension is the beamwidth at a given range. Although the

beamwidth increases with range, typically it is treated as a constant, assuming

an insignificant variance in the beamwidth from the bottom to the top of the

range swath, at least at ranges of interest.

The radar resolution is the minimum distance between two distinguishable

points on the ground. Resolutions for azimuth and range are individually calcu-

lated. However, physical parameters of the system are typically determined such

that the resolutions in both dimensions are equal. Other factors, as discussed

6



below, determine the actual resolution for a given system. Distinction is made

between a simple radar, which employs a minimum of signal processing, a conven-

tional radar, which is mounted on a stationary platform, and finally a synthetic

aperture radar.

Range resolution δR of a simple radar is affected by the transmission pulse.

Directly proportional to the duration of the pulse τp, δR is defined by the follow-

ing equation:

δR =
cτp

2
. (2.1)

Therefore for fine resolution, τp must be small. However, a significant signal to

noise ratio (SNR) in the returned signal must be maintained, requiring a high

total power in the transmitted signal. A small τp and a set total power entails

a very high burst of energy for fine resolutions, which is impractical for most

systems.

To overcome this difficulty, a carrier frequency that varies with time is often

applied to the pulse, known as analog linear frequency modulation. Physically,

this pulse is represented by Fig. 2.2. Mathematically, however, it should be

noted that each pulse is visualized as a signal with both positive and negative

frequency components, centered at time t = 0 (Fig. 2.3). The resultant pulse

is known as a chirp, and the rate with which the frequency varies is the chirp
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rate. With signal processing techniques, this method allows definition of the

compressed pulse width τc in time as

τc =
1

B
,

where the bandwidth B of the pulse is the frequency differential between the

lowest and highest frequencies of the carrier signal. A new equation for δR

follows:

δR =
cτc

2

=
c

2B
. (2.2)

The above equation for range resolution is greatly improved over the previous

one employing τp because of the high bandwidths feasible in typical systems.
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The carrier frequency is often in the gigahertz range, although the frequency

range (i.e., B) is typically in megahertz.

With a conventional radar, azimuth (also known as cross-range) resolution

δreal is defined simply by the beamwidth. Most systems, however, cannot produce

a sufficiently narrow beam at ranges of interest to provide acceptable resolution.

Beamwidth depends upon the real antenna aperture Areal (length of the antenna)

and is approximated as follows:

δreal ≈ Rλ

Areal
, (2.3)

where λ is the wavelength.

Fine azimuth resolution at a set range therefore can be obtained with a small

wavelength or a large effective aperture. Different wavelengths are preferential
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for different types of targets, so this variable may also be set to some degree.

The effective aperture is extremely limited by the allowable size and weight of

an antenna mountable on an aircraft, especially a UAV.

An intuitive method of increasing the effective aperture would be to line up

several smaller antennas and average the returns. Such an array of antennas

might be feasible for a ground radar system, but this provides no help in the

case of airborne radar. This idea of an antenna array, however, leads to the

discussion of SAR, which simulates an antenna array with only one antenna.

2.2 Synthetic Aperture Radar

SAR provides a method of obtaining high (fine) cross-range resolution with a

small effective aperture. Assuming a fixed-angle radar and straight line of flight,

the method (called stripmapping) exploits the inherent motion of an aircraft

by utilizing many successive large-beamwidth footprints, each slightly offset in

time by the interval between transmitted pulses, or pulse repetition interval PRI

(Fig. 2.4). After processing, the resultant radar image has a resolution that is

otherwise obtainable only with a beamwidth many times narrower than the real

one (Fig. 2.5). The real antenna aperture then can be replaced by the synthetic

aperture Asyn. Counterintuitively, Asyn can be as great as the width of the

real radar footprint δreal, creating an inverse relationship between real antenna

length Areal and synthetic aperture length Asyn. This phenomenon is shown by
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substituting the equation for the real beamwidth δreal (Eqn. 2.3) for Asyn in the

corresponding equation for δsyn:

δsyn =
Rλ

Asyn

=
Rλ
Rλ

Areal

= Areal.
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Because of increased phase sensitivity that occurs from processing the return sig-

nals of the synthetic aperture, an additional 1
2

can be factored into the equation

for δreal [9], resulting in

δsyn =
Areal

2
. (2.4)

Notice that the above equation for δsyn involves only the antenna length Areal

and is independent of range.
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Processing of the returned signals in both the range and azimuth dimensions

involves the use of matched filtering, a signal processing technique in which

the returned signal is convolved with a reference signal to reduce noise and/or

increase resolution. The convolution integral is defined as

g(t) =

∫ ∞

−∞
h(τ)f(t − τ)dτ, (2.5)

where g(t) is the output, h(t) is the impulse response of the filter, and f(t) is

the input signal. For a matched filter, the reference function h(t), also known

as the convolution kernel, is essentially a mathematically manipulated version

of the original signal. The resultant waveform from the convolution contains a

“spike,” or mainlobe, representing the return for the compressed range pulse or

compressed azimuth beamwidth (Fig. 2.2).

In azimuth processing, the matched filter effects the focusing of multiple real

beamwidths to the compressed beamwidth by emulating the geometry of a radar

receiver dish. Receiver dishes are classically parabolic in shape because of the

property of parabolas in which lines parallel to the axis and incident on the

parabola all converge at the focus. Furthermore, the lengths of all such line

segments originating from a common range are equal. At ranges of interest,

the return signal is approximated by a plane wave composed of parallel lines.

SAR emulates a parabola, even though the synthetic array is a straight line,

13
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by mathematically setting the time delays in the return signals that would have

occurred if the array was parabolic in shape. This compensation is accomplished

by the convolution of the return signal and the reference function. Without this

adjustment, an antenna array is termed “unfocused.”

The convolution integral in Eqn. 2.5 is most efficiently implemented with the

use of Fast Fourier Transforms (FFTs), where the Fourier Transform F (ω) of a

function f(t) is given by

F (ω) =

∫ ∞

−∞
f(t)e−jωtdt. (2.6)
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The inverse Fourier Transform is similarly expressed as

f(t) =
1

2π

∫ ∞

−∞
F (ω)ejωtdω.

The FFT describes a family of efficient algorithms for computing the discrete

form of Eqn. 2.6. This use of FFTs to perform convolution is known as fast

convolution. Fast convolution exploits the Fourier transform property in which

the product of two functions in the frequency domain is equivalent to their

convolution in the time domain. The Fourier transform of Eqn. 2.5 is

G(ω) = H(ω)F (ω), (2.7)

where H(ω) and F (ω) represent the reference and received signals, respectively.

Computationally, Eqn. 2.7 can be faster to perform on a digital computer than

Eqn. 2.5. It should be noted that at the digital processing level, the operations

are discrete, with the input function a sampled representation of the real returned

signal. The discrete forms of Eqns. 2.5 and 2.7 are, respectively,

g[t] =

∞∑
τ=−∞

h[τ ]f [t − τ ],
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and

G[ω] = H [ω]F [ω].

Similarly, the reference function is represented by a discrete number of sample

points equal to a value known as the time-bandwidth product.

In the case of range processing, the time-bandwidth product depends strictly

upon the original signal, where the time component is τp and bandwidth is

B. This value also represents the compression ratio achieved by processing,

as determined in Eqn. 2.2. Because the reference function in a matched filter

convolution is called the kernel, this parameter will be referenced in this work as

the range kernel size Kr, representing the number of discrete points in the kernel.

A convenient form of this value is derived by taking the ratio of uncompressed

range resolution (Eqn. 2.1) to the compressed range resolution, resulting in

Kr =
cτp

2δR
. (2.8)

A brief discussion of Doppler effects precedes derivation of the azimuth ref-

erence function and time-bandwidth product. Doppler frequency shift describes

the effect of relative motion between two objects on the reception of a signal

by one object when transmitted or reflected by the other object. The shift
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is inversely related to the rate of change of distance between the two objects.

Given a fixed radar platform velocity, the distance from the aircraft to an object

constantly changes within the synthetic aperture and thus so does the Doppler

frequency. The frequency of the returned signal then will not be identical to

that of the transmitted signal.

Taking time t = 0 to be the point at which the radar is directly perpendicular

to the target in question, i.e., when the center of the real beam (and synthetic

beam) footprint is upon the target, the formula for Doppler frequency fd is

approximated as follows:

fd ≈ 2v2t

Rλ
(2.9)

where v is the velocity of the aircraft. When a target first appears in the real

beam footprint, fd is at its maximum because the rate of change in the azimuth

dimension toward the target is at a maximum. When the object is in the center

of the aperture, fd is zero. Then, as the object leaves the footprint, fd assumes

its greatest negative value. Doppler frequency information, as well as signal

intensity, from the received signal is stored for azimuth resolution processing.

The azimuth time-bandwidth product depends upon the range of Doppler

frequency in the returned signal rather than on the bandwidth of the transmitted

signal as in range compression. The frequency range is defined by Eqn. 2.9. The
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time parameter is the duration of the synthetic aperture rather than that of the

real aperture. As for range, the value also defines the azimuth compression ratio,

describing the ratio of the real beamwidth to the synthetic beamwidth. Using

Eqns. 2.3 and 2.4, azimuth kernel size Ka can be represented as follows:

Ka =
δreal

δsyn

=
2Rλ

A2
real

=
Rλ

2δsyn
.

This chapter has presented an overview of the fundamental mathematics

of SAR. The next chapter incorporates the equations derived in this chapter

into the framework of a SAR processing system based on the Mercury RACE

multicomputer.
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CHAPTER III

THE MERCURY RACE SYSTEM

Following is an overview of the Mercury RACE multicomputer. This first

section has been taken in part from J. West’s introduction to the Mercury RACE

system [24]. West is currently researching the Mercury RACE at the network

level for the target application of space-time adaptive processing.

In recent years, Mercury Computer Systems, Inc. has emerged as one of the

leaders in the development and manufacturing of high-performance embedded

heterogeneous message-passing systems designed to address complex real-time

applications requiring tremendous computational throughput. The computa-

tional requirement is often in the order of billions of floating point operations

per second (Gflops). Mercury’s RACE multicomputer provides a foundation for

parallel systems and offers a set of building blocks that provide upward scala-

bility. A high-level diagram of a typical RACE multicomputer is illustrated in

Fig. 3.1. The system’s primary components include DSPs, reduced-instruction-

set-computing (RISC) processors, I/O ports, and a network interface all con-

nected via the RACEway interconnection network.

The fundamental computing unit in the RACE system is the compute node

(CN). A CN houses one or more compute elements (CEs) of the same type, either

central processing units (CPUs) or digital signal processors (DSPs). Daughter-
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Fig. 3.1: The RACE multicomputer.

cards accommodate one or two CNs of the same type. Two or more daughter-

cards reside on one mainboard. Communication between CNs, daughtercards,

and mainboards takes place through the RACEway interconnect. Communica-

tion between processors residing on the same CN, however, is routed through

the logic within the CN. This hardware logic also facilitates access to a shared

memory block by all processors on the same CN, as well as accomodating remote

memory accesses from other CNs.

The RACEway interconnection network is the framework used to provide
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high-performance communications among the interconnected processors and de-

vices. Each node in the multicomputer interfaces the network through the RACE

network chip. The network chip (see Fig. 3.2) is a crossbar with six bidirectional

channels consisting of 32 parallel data lines and eight control leads. Each cross-

bar transfers data synchronously at a clock rate of 40 megahertz (MHz). Each

channel is bidirectional but is only driven in one direction at a time at 160

megabytes per second (MB/s) [15]. Among the six ports comprising a RACE

crossbar, each switch can either interconnect any three port pairs, providing an

aggregate bandwidth of 480 MB/s, or can cause data to be broadcasted to all or

a subset of the remaining five ports [7].

The versatility of the RACE network chip allows the RACE multicomputer

to be configured into a number of different network topologies. Possible network

topologies include two-dimensional (2-D) and three-dimensional (3-D) meshes,

2-D and 3-D rings, grids, and Clos networks. However, the most common config-

uration is a fat-tree architecture (see Fig. 3.3). For a fat-tree configuration, the

crossbar switches are connected in a parent-child arrangement. Each crossbar

has two parent ports and four child ports (see Fig. 3.2). The crossbars of the

RACE multicomputer are connected to form the branches of the fat tree. The

compute nodes represent the leaves of the tree.

To route a message from one processor to another, the message goes up the

tree, selecting one of the two parents as it goes, until it reaches a network chip
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Fig. 3.2: The RACEway six-port network chip (derived from [15]).

that is a common ancestor of both the source and destination node [15]. After

reaching the common ancestor network switch, the message travels down the

fat tree to the destination compute node. Fig. 3.4 illustrates a message transfer

between two CNs.

In conventional tree architectures, there is only one path between any pair

of processors. One major problem associated with such conventional networks

is that they suffer communication bottlenecks at higher levels in the tree. For

example, when several compute nodes in the left subtree communicate with com-

pute nodes in the right subtree, the root node must handle all the messages [14].

This problem can be partially alleviated by increasing the number of effective

parallel paths between compute nodes. This type of modified tree architecture

is referred to as a fat tree. Mercury’s RACE system is based on the fat-tree
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Fig. 3.3: The RACE multicomputer fat-tree interconnection network.

topology.

The RACE system is a circuit-switched network. In a circuit-switched net-

work, a compute node establishes a path through the network. Once the compute

node has been granted a path to the destination node, the path is occupied for

the duration of the message transmission.

To send a message through Mercury’s fat-tree network, the first step is to

establish a path. To establish a path, a message header specifying a path is

sent through the network along a given channel. The status of a channel is

categorized as either free or occupied. The header makes as much progress as

possible through the network until blocked. After a message header has been

blocked, it waits until a free channel becomes available. When a free channel
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Fig. 3.4: Message transfer between two CNs.

matching the path specification (of the message header) becomes available, the

channel is flagged as occupied, and the message header advances along that

path. After establishing a path to the destination node, the message header

sends an acknowledgment to the source along the allocated path. Upon receiving

acknowledgment of a granted network path, the source node sends its message

down the path in a pipelined fashion [15]. During the transmission of the last

byte of data, the status of each occupied channel is set to free.

As stated above, the Mercury interconnection network under consideration

is a fat-tree architecture comprised of multiple parallel paths. An interesting

feature of the Mercury system is that it provides auto route path selection at
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the crossbar level, which means the multiple paths in the RACEway network may

be automatically and dynamically selected by the RACE network crossbars. For

instance, if one path is currently occupied with a data transfer and another path

matching the path specification is free, the free path is automatically selected

by the crossbar logic [19]. Auto-route path selection frees the programmer from

the details of path routing. In addition, processes that require high amounts

of interprocessor communication, such as a distributed matrix transposition,

benefit from adaptive routing [7].

In networks that take advantage of adaptive routing, some type of priority

scheme is typically used to avoid deadlocks and guarantee that an application will

meet tight real-time constraints. To facilitate the implementation of a priority

scheme, each message header includes a priority number, ranging from zero to

three. To understand the role of priorities, suppose a high priority message

arrives at a crossbar, and all the outgoing channels matching the message’s path

specification are occupied by other messages. If a lower priority message occupies

one of the channels that the higher priority message needs, the lower priority

message is required to release the channel in the Mercury system [15]. The lower

priority message is suspended by sending a “kill” signal backwards along the

path to the source node. Data that was already in the path propagates down

the pipeline to the destination node with the current byte releasing the channels

as if it were the last byte of data in the message. After the path becomes
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free, the higher priority message may gain access to the channel. The lower

priority message resumes when a free channel becomes available. The processor-

network hardware contains built-in facilities that handle the suspension and

reestablishment of a killed message.

For messages contending for the same channel with the same priority, the

incoming port number is the tie-breaking mechanism. Furthermore, messages

coming from parents have a higher priority than messages from children, and

messages coming from a higher numbered parent (or child) port number have a

higher priority than messages originating from lower numbered ports. However,

this is only a tie-breaking mechanism for messages arriving or blocked at the

same crossbar, and it does not result in suspension of any message that has

already been routed to the next switch [15].

With the network configured as a fat tree, the RACEway interconnection

fabric provides very good scaling properties. In a p-processor system, the height

h of the fat tree is h = dlog4 pe. Thus, the network diameter D or maximum

number of links traversed is D = 2h−1. The bisection bandwidth B of a system,

which is defined as the minimum number of edges (or channels) that have to be

removed along a cut that partitions the network into two equal halves, assuming

p = 4k processors, where k is an integer, is B = 160
√

p MB/s. (Each channel in

the RACEway system has a bandwidth of 160 MB/s [15].

The RACEway system may be configured as a heterogeneous multicomputer
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composed of two or more different types of processors. The potential heterogene-

ity of the RACE multicomputer includes various possible configurations of i860,

PowerPC, and Super Harvard Architecture Computer (SHARC) DSP processors.

The SHARC DSP is ideally suited for embedded vector signal processing oper-

ations such as FFTs where physical size and power are at a premium or other

similar algorithms that have a high ratio of data-to-computation. Furthermore,

Analog Devices’ 21060 SHARC processor provides more than twice the physical

processor density of RISC-based CNs. In contrast, the PowerPC and i860, both

RISC processors, are appropriate for executing scalar-type applications, with a

low ratio of data to computation, generated by arbitrary compiled code.

Because this work focuses on optimization of the FFT-intensive operations

involved in SAR processing, it is assumed that the system studied uniformly

employs SHARC CNs. However, there exist different types of CNs even with

the same type CE. At the time of this writing, the two standard SHARC-based

daughtercards are the S2T16B and the S1D64B. The S2T16B implements two

CNs for a total of six CEs and 32 MB of DRAM. The S1D64B implements

only two CEs but 64 MB of DRAM, all contained within one CN. The power

consumption of the S2T16B and the S1D64B are 12.2 and 9.6 watts, respectively.

Clearly, both daughtercards have different characteristics, each with a different

CE-to-memory ratio and power consumption penalty.
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3.1 Mapping of SAR Processing onto the RACE System

The basic computational framework and mapping of CEs assumed here is

the same as that described in [8]. The descriptions given in this section and the

next represent an overview; for more details refer to [8].

CEs are divided into range and azimuth CEs. Every CE is dedicated ex-

clusively to the processing of data either in the range or azimuth direction.

Although it would be possible to investigate the utilization of individual CEs

for the simultaneous processing of both range and azimuth data, only one frac-

tional CE each for range and azimuth is potentially wasted. Consideration of the

processing overhead associated with multitasking and the memory overhead of

multiple programs quickly diminishes any benefit that might be obtained from

such a configuration. Furthermore, [8] recommends availability of both mem-

ory and CEs above the calculated requirement to provide for flexibility and any

contingencies. Any such excess resources are usually in excess of that associated

with a single CE.

After radar returns have been sampled and converted to digital signals, sam-

ples are typically read into memory at a rate of 5–50 Msamples/s [8]. By visual-

izing memory as a two-dimensional grid, a row of memory contains the returns

from a single radar pulse, whereas a column contains returns of different pulses

from the same range. Memory is therefore sequentially filled a row at a time.

When a sufficient number of rows have been filled, this data is processed by a
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range CE. These blocks of data are sent to the range CEs in a round-robin fash-

ion. After a number of range CEs have processed data, the conglomerate block

of data is “corner-turned,” or matrix-transposed, and then sent to the azimuth

CEs. Note that the number of range and azimuth CEs need not be the same.

The matrix transposition of the data dictates that the azimuth CEs receive the

range-processed rows as columns and the unprocessed columns of the azimuth

direction as rows. Fig. 3.5 illustrates the communication in a matrix transposi-

tion. Note that although each range processor is responsible for several signal

returns (set of pulses), each range processor only needs to hold one entire return

in memory for computation before sending the result to the azimuth processors.

3.2 Computational Framework

As discussed earlier, SAR processing primarily involves convolution of the

data with reference functions. For the sake of simplicity and without loss of

significant performance (because of the relatively small requirement of range

processing as compared to azimuth), it is assumed that the entire vector of range

samples for a given pulse return is processed as a single section of data. The

azimuth CEs perform similar operations on the data as the range CEs (i.e., fast

convolution) but with one important difference: the length of the data stream

in the azimuth direction is indefinite, whereas in the range direction it is of a

fixed length. Therefore the data cannot be convolved as a single entity in the
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azimuth dimension.

Sectioned fast convolution [18] provides a method for processing data streams

of indefinite length. For such a data stream, the data is divided into sections

of arbitrary length. A section is then convolved with the prestored kernel as

in the case of a regular fast convolution. (Note that this prestored kernel saves

the time of taking the FFT of the transmitted signal each time, which ideally

should be the same for each pulse. Furthermore, functions such as windowing

and other filtering techniques can be included in this kernel and precalculated.)

Overlapping the sections by an amount equal to the kernel size and performing

fast convolutions on each overlapped section yields the same result as if the

entire data stream were convolved at once. However, there is a price to be paid
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in computational efficiency for using this method. A portion (of length equal

to the kernel size) of each convolution resultant must be discarded. Therefore

computational efficiency decreases as the ratio of the section of new data to the

kernel size decreases. Fig. 3.6 illustrates the principle of sectioned convolution.

Besides memory, another limiting factor to the size of the new data to be

convolved is the O(N lg N) time complexity of the standard FFT algorithm.

An important objective is to balance computational efficiency with memory re-

quirements. For instance, selecting a section size that maximizes computational

efficiency alone, without regard for concomitant memory requirements, may be

unfavorable due to high power consumption by the memory. Accounting for this

tradeoff is an important aspect of the model presented in this work.

A fast convolution consists of an N -point FFT, N complex multiply opera-

tions, and an N -point inverse-FFT, where N is the number of data points to be

processed, including any overlap. The complexity of this computational load is

therefore L = O(N lg N + N). The exact number of floating point operations

generally depends on CE- and implementation-specific details. If SHARC CEs

are assumed, the exact number of floating point operations is given by [8]:

L = 10N lg N + 6N.

The computational load per sample is obtained by dividing L by the number of
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new data points processed, which reflects the efficiency of the calculation. For

range processing this load per sample φr due to the fast convolution is given by

φr =
10Fr lg Fr + 6Fr

Sr

,

where Fr is the FFT size for the range and Sr is the number of points in the

range to be processed. These two values can differ because of the stipulation

in the FFT algorithm that requires the FFT size to be a power of two (i.e.,

Fr = 2k). Although this implies some inefficiency, it is usually still faster than

using a direct convolution algorithm based on the exact sequence length.

The number of range points Sr is equal to the range swath Rs divided by the

desired resolution δ (assuming δsyn = δR = δ). That is,

Sr =
Rs

δ
. (3.1)
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Using this expression, the equation for φr becomes

φr =
δFr(6 + 10 lg Fr)

Rs
.

Similarly, the azimuth processing load per sample due to the fast convolution is

given by

φa =
Fa(6 + 10 lg Fa)

Sa
,

where Fa is the azimuth FFT size and Sa is the azimuth section length.

To determine the number of CEs required for both range and azimuth pro-

cessing, the total computational load must be derived. The fast convolution

comprises the majority of the load. However, several other operations are also in-

volved, including fix-to-float conversion, complex signal formation, motion com-

pensation, magnituding, and the matrix transpose already mentioned [8]. It is

important to realize that different operations can take different amounts of time,

even if they are considered to be a “single floating point operation.” Therefore,

calculating the total computational load requirement per data sample involves

dividing the number of real operations per sample of each type by their respec-

tive tested throughputs for a given type of CE. This value multiplied by the

sample rate yields the total number of CEs required.
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Range and azimuth processing have unique load requirements in addition to

the fast convolution load and are noted by the constants αr and αa, respectively.

The required number of range CEs is then defined by

Pr = Q(αr +
φr

γ
), (3.2)

where Q is the sample rate and γ is the throughput in Mflops for a fast convo-

lution based on the assumed CE type used. Similarly, the number of azimuth

CEs required is given by

Pa = Q(αa +
φa

γ
). (3.3)

It can be shown that the sample rate is determined by the following equation

[8]:

Q =
vRs

δ2
.

If this expression is substituted for Q and the expressions for φr and φa are also
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applied, then Eqns. 3.2 and 3.3 become

Pr =
v(6δFr + αrγRs + 10δFr lg Fr)

γδ2

Pa =
vRs(αa + Fa(6+10 lg Fa)

γSa
)

δ2
. (3.4)

The total memory required for range processing is a product of the number

of range CEs Pr and the number of range samples Sr. This value represents the

number of complex range samples that are stored in memory at a given instant,

each complex sample consisting of 16 bytes. Therefore the total range memory

required is

Mr = 16PrSr,

or equivalently,

Mr =
16Rsv(6δFr + αrγRs + 10δFr lg Fr)

γδ3
. (3.5)

Azimuth memory requirements dominate total system memory, necessitating

a double-buffer (for the matrix transpose operation) and an output image buffer,

both of size Sr(Sa + Ka). The double-buffer stores complex values; the output

image buffer stores reals. Storing the data in the double buffer as complex
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fixed-point values instead of complex reals reduces the double-buffer storage by

50%. Computation, however, is performed using reals to prevent a substantial

compromise in precision. The total azimuth memory requirement in bytes is

expressed as

Ma = 10Sr(Sa + Ka). (3.6)

The value of Ka can be expressed in terms of basic parameters of the radar.

Let λ be the wavelength of the radar. The value for Ka is derived in [8] to be:

Ka =
λR

2δ2
. (3.7)

Substituting this expression and Sr = Rs/δ into Eqn. 3.6 yields

Ma =
5Rs(λR + 2δ2Sa)

δ3
. (3.8)
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CHAPTER IV

THE OPTIMIZATION PROBLEM

The final equations derived above for Pr, Pa, Mr, and Ma, given by Eqns. 3.2,

3.4, 3.5 and 3.6, depend on several different types of basic system parameters.

These basic parameters can be divided into four major categories:

• radar parameters: R (range), Rs (range swath), and λ (wavelength);

• application parameters: δ (desired resolution) and v (platform velocity);

• processor parameters: αr, αa, and γ; and

• software parameter: Sa.

From Eqns. 3.2, 3.4, 3.5 and 3.6, it appears that there is also a dependence on

the parameters Fr (range FFT size) and Fa (azimuth FFT size). However, recall

that Fr and Fa are functions of Sr and Sa + Ka, respectively, and Sr and Ka

can both be expressed in terms of basic radar and application parameters (see

Eqns. 3.1 and 3.7).

Let the total processor requirement Pr+Pa and the total memory requirement

Mr +Ma be denoted as P and M . Any variable will be represented as a function

when it is a function of another variable that is to be implicitly or explicitly

optimized in the problem. In the example of P and M , they will normally be
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represented as P (Sa) and M(Sa) as a reminder that they are dependent on the

optimization variable Sa.

Throughout this work, it is assumed that all radar and processor param-

eters are fixed. Depending on the optimization objective, one or more of the

application or software parameters will be optimized, with the remaining pa-

rameters fixed or implicitly computed. However, in each case the optimal Sa

must be determined. The problem then focuses on finding an optimal value for

Sa and the effect of Sa on the resulting computing platform configuration and

the optimization objective.

4.1 Mathematical Programming

Optimization of parameters can be achieved through a method known as

mathematical programming. The expression that represents the variable or vari-

ables to be minimized is called the objective function, consistently designated in

this work as Z. Additional inequality and equality relations comprise the set of

constraints for the programming problem.

Many algorithms exist for different types of mathematical programming prob-

lems. The algorithm employed depends on the nature of the optimization. If

possible, it is favorable to formulate the problem such that the solution space

can be constructed by a set of linear equations. Such a problem falls into the

category of linear programming. One common linear programming algorithm is
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the Simplex Method. The Simplex Method merely examines vertices of the two-

dimensional solution space constructed by the constraints until the minimum

value is found, the linear nature of the solution space assuring that a minimal

solution will fall on a vertex.

Often, however, nonlinear equations enter into the problem, as is the case

in this work. Nonlinear programming requires more complex algorithms. MAT-

LAB’s constr function in the Optimization Toolbox is employed in this work to

solve the nonlinear programming problems.

The constr function implements a Sequential Quadratic Programming (SQP)

algorithm, which constitutes a family of the most efficient constrained optimiza-

tion algorithms currently known. See [2] for specific information on the MAT-

LAB implementation of the constr function and [10] for an overview of the SQP

algorithm.

Like most optimization algorithms, the SQP algorithm requires that the so-

lution space is convex to guarantee an optimal solution. That is, no local minima

or maxima exist in the solution space to deceive the algorithm to settle for a

suboptimal solution. In general, without an exhaustive search, which is not prac-

tical in the continuous domain, no algorithm can guarantee an optimal solution

from a nonconvex solution space. Optimization algorithms operate on the basis

of finite changes in the objective function value due to small changes in the op-

timization variables. When no more improvement can be obtained, within a set
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tolerance, from various excitations of the optimization variables, the algorithm is

done. If the optimization algorithm ventures into a local minimum or maximum,

the conditions for algorithm completion are met even if the value of the solution

is very bad relative to other points in the solution space.

Proving the convexity of a multidimensional problem can be very time con-

suming, without the guarantee of an eventual solution. Even if a problem can

be proved to be nonconvex, optimal solutions still often are desired, without a

way of restructuring the problem to be convex. One method of countering such

problems in a nonconvex space is to either backtrack from a solution and go in a

different direction from the one previously taken for a certain number of steps,

even if the immediate results from such an action return an inferior objective

function value. If the algorithm consistently returns to the original solution, it

may be assumed with increasing confidence that the given solution is not a local

minimum or maximum. This procedure resembles a Tabu search or simulated

annealing algorithm, of which portions may be applied, with either deterministic

or probabilistic methods of determining the next direction to try [4, 11, 17].

Another method of approaching nonconvex or possibly nonconvex problems

is to solve the same problem many times, with each solution given a different

initial guess. To provide the highest level of confidence that a resultant solution is

good (optimal or near optimal), the range of initial guesses should be as disparate

as is practically feasible. These initial guesses, consisting of values for one or
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more optimization variables, can be deterministically or nondeterministically

generated.

Unless explicitly stated, it is assumed that the problems optimized in the suc-

ceeding chapters are convex. Although convexity has not been formally proved

for any case, it is considered adequate that widely ranging initial guesses affect

only the speed of convergence of the optimization algorithm, not the final so-

lution. Furthermore, obvious logic dictates that when plotted against linearly

spaced independent variable values, the optimal solution surfaces would repre-

sent either nondecreasing or nonincreasing functions of those variables in each

dimension. As this research illustrates, this trend holds true for all the problems

investigated except where explicitly noted. See Section 5.3 for an example of a

possibly nonconvex problem formulation.

Integer programming constitutes another type of mathematical program-

ming. Integer programming imposes the stipulation that one or more of the

variables to be optimized must be an integer, and can be applied to either lin-

ear or nonlinear programming. In general, efficient algorithms do not exist for

integer programming, and solving such optimization problems can be computa-

tionally intensive (see [13] for a summary on integer programming techniques).

Although different approaches exist in integer programming, essentially a prob-

lem must be solved using linear or nonlinear programming, the noninteger result

rounded up or down, and the solution then recomputed based on the new values.
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Because it is difficult to predict how the rounding of one variable will affect the

other variables, testing of many permutations of the discrete variables may be

required. In many cases, the optimal solution may not involve the floor or ceil-

ing of the calculated optimal value for a given variable, especially in nonlinear

problems with many variables.

4.2 Optimization Objectives

Several different optimization objectives are investigated in this work. An

optimization objective can be categorized in two different dimensions. The first

dimension concerns the SWAP constraint of interest. In UAV systems, all SWAP

constraints are critical. However, in terms of computer processing, the most

variable and controllable parameter is power. The weight of a computer system

largely results from the chassis, which for UAVs is commonly custom designed.

The size of the embedded system is a combination of volume of individual com-

ponents and the geometry by which they are arranged and physically configured.

Straightforwardness and generalized application in the calculation of power re-

quirements lend power consumption to be the fundamental case of study in this

research.

The second dimension of the objective function involves the parameter, or

performance measure, to be optimized. The most obvious parameter to be opti-

mized is power consumption. The minimization of power is indeed the primary

42



objective function under consideration for this work. However, within the frame-

work of computable power consumption, the maximization of velocity and the

minimization (making as fine as possible) of resolution are explored as objective

functions, assuming a preset maximum power consumption level for the onboard

computing system. Further constraints of weight and/or size could be added to

the problem, but these are not investigated in this work because of the reasons

given above.

4.3 Hardware Configurability

Basic guidelines about the hardware components available for system design

determine which variables can be optimized. One such set of guidelines includes

the option of custom designing each component. Such endeavors should result

in very efficient and highly specialized components. Another guideline that is

often applied is that widely available preexisting components of less specialized

purpose must be employed in the design of the system. This latter assumption

is the basis of this research. Both of these approaches are examined below.

4.3.1 Optimal Configuration Using Custom-Designed Boards

The custom design of a card entails the capability to produce a board with

the desired ratio of memory to processing power. The objective function Z of

43



such an approach is given by the following:

κP + βM, (4.1)

where κ and β are constants that represent power requirements on a per pro-

cessor (or per Mflop) and per byte of memory basis, respectively. Although the

above optimization problem appears to be a simple linear programming problem

(assuming the existence of constraints), even for this most basic formulation it

must be noted that both P and M are functions of several variables. In partic-

ular, they are functions of the software parameter Sa. If the expressions for P

and M are substituted into Eqn. 4.1, the following equivalent expression results:

κ

[
v(6δFr + αrγRs + 10δFr lg Fr)

γδ2
+

vRs(αa + Fa(6+10 lg Fa)
γSa

)

δ2

]

+β

[
5Rs(λR + 2δ2Sa)

δ3
+

16Rsv(6δFr + αrγRs + 10δFr lg Fr)

γδ3

]
.

(4.2)

Even if all variables except for Sa are fixed, Eqn. 4.2 is obviously nonlinear

and requires a nonlinear programming algorithm such as constr. Determining

a value of Sa that minimizes this function defines an optimal configuration,

with a corresponding optimal number of P processors and M bytes of memory.

Modeling total consumed power as described above is unrealistic in many cases

because of the overhead in time and money involved in production of customized

boards. In addition, the resultant system would be fairly inflexible because it
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would have been optimized for a specific velocity and resolution. If either of these

two application parameters changed at a later point in time or even if a radar

parameter changed, the system would become inefficient at best and possibly

obsolete. Any change thus would necessitate the design of a new board.

4.3.2 Optimal Configurations Using COTS

The disadvantages discussed above of custom designed boards often lead to

the employment of commercially available boards, or commercial off-the-shelf

(COTS) products, that contain differing numbers of processors and amounts

of memory. The COTS components under consideration here are Mercury’s

S2T16B and the S1D64B daughtercards. Although systems composed of COTS

components are theoretically never as efficient as custom designed boards be-

cause of their more generalized purpose, COTS systems often can be built to

provide adequate performance for a fraction of the cost and in much less time.

Furthermore, if any parameters change, the system can be quickly adapted to

accommodate the changes merely by adding or removing cards and appropriately

modifying the software. This work is premised on the assumption that COTS

hardware must be used, specifically the Mercury RACE system and associated

individual components.

With this assumption, the total power requirements of a system can be com-

puted directly from the number of daughtercards employed. When appropriate,
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the power consumption will be denoted by the symbol Π, usually with an ap-

propriate subscript depending on the exact context. In all systems this research

considers, power consumption is assumed to be equal to the product of the num-

ber of daughtercards of a given type employed and the power consumption for

a single daughtercard of that type. The total power consumption of a system is

the sum of all such products for each of the types of daughtercards.

4.4 Architectural Models

This research investigates in depth two models of processor-memory architec-

tures. The first and simplest architecture assumes that all memory and proces-

sors that the daughtercards in the system contribute can be pooled and treated

as a single entity. For reasons discussed below, this architectural assumption

is termed as the ideal shared-memory model (ISMM). The second model treats

each CN as a separate entity, and thus is designated as the CN-constrained model

(CNCM).

4.4.1 Ideal Shared-Memory Model

The simplest and most intuitive approach to determine how many daughter-

cards are required to provide the necessary total memory M and processors P for

correct system function involves taking the maximum of M and P divided by the

46



amount of memory or number of processors, respectively, contributed by a single

daughtercard (discussed in Chapter V). In the case of the S2T16B, 32 MB of

memory and six processors are contributed, or in the case of the S1D64B, 64 MB

and two processors. Because the tasks involved in SAR processing are readily

parallelizable, the assumption of pooled processors does not present a problem.

However, the concept of pooled memory across daughtercards (or more specifi-

cally, CNs), can be dangerously naive, as discussed in the next subsection.

The above assumption provides a simplified model of a real system. Although

the usefulness of such a model might be questioned, this research demonstrates

that such a model can be used as a lower bound heuristic that yields adequately

consistent results for the expected power consumption. Such a heuristic is useful

when considering that the solution to the more realistic model discussed below

involves a large amount of integer programming, resulting in a more complex

problem formulation that is much more computationally intensive in terms of

time. Furthermore, in the case that a different system is investigated for which

memory can be effectively pooled, this model is valid. This model is investigated

in Chapter V.

4.4.2 CN-Constrained Model

A more realistic model for the Mercury RACE system necessitates transition

from the aggregate of daughtercards as the quantity of concern to the CN as the
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fundamental hardware denominational unit in terms of memory and processors.

In the ISMM, an optimal configuration of components may allow all processors

on one daughtercard to be employed in computation, but each of which require

memory of the daughtercard on which they reside and all the memory on several

other daughtercards. In such a case, the active constraint on minimum power

is memory, leaving the processors on most daughtercards idle. Although such

a configuration is theoretically possible, such never occurs in practice because

of the prohibitive costs in communication time involved with remote memory

accesses from a processor on one CN to the DRAM of another CN. Remote

memory accesses occur only during the distributed matrix transposition, which

is relatively time consuming considering the amount of data handled. Note that

for even two CNs on the same daughtercard to communicate, they must send

requests through the crossbar, just as if they were on distinct daughtercards.

Because of this fact, the CN is the fundamental unit of concern in this more

realistic model.

To avoid remote memory accesses, a formulation must ensure that all pro-

cessors employed on a single CN have adequate local memory to complete their

tasks. Only configurations that abide by such constraints are considered in the

solution. In addition, range and azimuth processors are treated as distinct since

they operate based on distinct programs. That is, a processor is dedicated to ei-

ther azimuth or range processing. However, there is no need for entire dedicated
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range and azimuth CNs, since each processor on the CN still can operate from

a different program. As discussed in depth in Chapter VI, integer programming

is required to ensure integral solutions of range and azimuth processor assign-

ments to CNs. Just for the two daughtercards under consideration, it will be

shown that the number of processor assignment combinations that may need to

be evaluated is in excess of 50, which translates to a 5000% increase in com-

putation. Needless to say, in the case that there exist more than two types of

daughtercards from which to select, quick solutions are not forthcoming due to

the computational intensity.

4.5 Hardware Availability Constraints

The most general type of configuration assumes that there are multiple

daughtercards from which to select. Furthermore, the optimization routine is

given freedom to populate a system completely with only one type of card or to

determine some mixture of the two card types. This case will be designated the

mixed card type configuration.

If a constraint is added to the formulation such that the number of daugh-

tercards of one type or the other must equal zero, this special case will be called

the single card type configuration. Such a formulation represents a scenario in

which a system will not tolerate multiple types of daughtercards or the scenario

in which hardware has already been acquired and the hardware happens to con-
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sist of all one type daughtercard. Furthermore, solutions to the single card type

formulation provide insight into the characteristics and best usages of a card

type.

4.6 Points of Reference: Nominal Configurations

It has been suggested that using a section size Sa equal to the azimuth kernel

size Ka is a good heuristic for adequate system performance yet with moderate

conservation of memory, which is usually the scarce resource [7]. Such a heuristic

ensures the intuitively comfortable result of processing at least as much new

data as old data with each convolution. However, as the research exemplifies,

the optimal section size often deviates from this heuristic choice.

To illustrate the advantage of optimizing the software parameter Sa, compar-

isons are made of the optimal solutions to what will be termed nominal solutions,

meaning that the above heuristic was employed in determining the section size

instead of the optimization routine. However, even in such nominal configura-

tions, there are often still other variables that may be optimized. If a system was

designed without any forethought to optimization, basing configuration only on

heuristics or the most obvious approach, it is true that no optimization of any

sort might occur. In this case, even most of the nominal configurations presented

in this work will outperform arbitrarily designed systems. However, giving the

benefit of the doubt to system designers, and for the purpose of analyzing the
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utilization of optimized section sizes, all other variables besides Sa are optimized

even in the nominal configurations.

4.7 Summary

The next two chapters present the results of computed solutions for the ISMM

and the CNCM, respectively. Because of the computational intensity involved

with the CNCM and because of the greater insight into parameter interrelation-

ships provided by the ISMM, more examples have been investigated in the ISMM.

For the CNCM, more space is dedicated to examination of the formulation and

its complexity, with fewer examples than the ISMM with the assumption that

the ISMM provides a good heuristic for solutions. However, it must be noted

that the CNCM provides, in addition to more realistic power consumption val-

ues, more detailed information for the actual implementation of a configuration.

That is, whereas the ISMM only provides information on the number of daugh-

tercards necessary for the entire system, the optimal azimuth section size, and

the resultant power consumption, the CNCM also provides precise information

on which processors are dedicated to range and azimuth and how much memory

of the total local memory is allocated to each. This latter information is suf-

ficient to design a system, whereas the designer still has several problems left,

the solutions to which may be physically infeasible, to resolve with the ISMM

results.
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In addition to the two distinct models, within each model examples are gen-

erated by taking combinations of different optimization objectives and hardware

availability scenarios. To illustrate the utilization of optimization, comparison

is also made between optimal and nominal configurations.

All numerical results produced in this work are based on radar and processor

parameters fixed at the following values: R = 100000 m, Rs = 20000 m, λ =

0.03 m, αr = 0.3528 Mflops, αa = 0.9068 Mflops, and γ = 94 Mflops. These

values are derived from [8], representative of a real SAR system and experimental

SHARC throughputs.

Most examples investigated in this work are represented by three-dimensional

graphs with the x and y axes formed by the range of values for two independent

variables and the z axis the optimal solution to the given optimization problem,

respective of the two independent variables. In the case of power minimization,

the two independent variables are resolution and velocity, consistently ranging

from 0.5 m to 2.0 m and 50 m/s to 400 m/s, respectively. In the velocity

maximization problem, power and resolution are the independent variables, with

the same resolution range as noted above and a power range of 30 w to 100 w.

Similarly, in the resolution minimization problem, power and velocity comprise

the independent variable set with the same range of values for both variable as

just noted above for the two other optimization problems. In each case, solution

values on the z axis correspond to linear samplings on the x and y axes such
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that 25 points of equal intervals on each axis are generated. As a result, each

graph represents 252 = 625 separate optimizations.
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CHAPTER V

IDEAL SHARED-MEMORY MODEL

The first COTS model to be investigated considers the two Mercury RACE

daughtercards but assumes no penalty for communication between CNs physi-

cally located on different cards. After calculating the system requirements, the

optimal number of cards is found by dividing the system requirements by the

processing and memory capacity of the cards. Such an approach ignores commu-

nication costs for remote memory accesses and treats the aggregate throughput

of all the processors as a single entity. Although vendors often advertise total

throughput and memory to characterize a system, real performance rarely can

be modeled accurately based on such a preposition.

Research shows that the only significant flaw in this assumption in regards

to SAR processing on the Mercury RACE is the communication costs for remote

memory accesses. It is theoretically feasible that a problem would call for an

optimal FFT size too large for a single processor to handle and thus would require

a distributed FFT algorithm, which would change the entire model. However,

test cases with real data show that this case does not occur within the scenarios

studied in this research.

Therefore, although this approach is unrealistic for determining the real re-

quirements of a Mercury RACE or similar system, this model reflects the per-
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formance of an ideal shared-memory system (henceforth, this model is referred

to as the ISMM). Furthermore, the fundamental nature of the problem and op-

timal solutions are illustrated more clearly with such a model. The addition of

real constraints to ensure solutions of considerable fidelity tends to obscure lower

level dynamics of the problem.

5.1 Minimization of Power

Minimization of power is the simplest of the optimization problems because of

the variables that can be fixed before the optimization algorithm is invoked. All

the range variables Kr, Sr, Fr, Pr, and Mr are functions of only radar, processor,

and application parameters. Among the azimuth variables, only Ka can be fixed,

a function of radar parameters and resolution. The other azimuth variables are

dependent on the the section size Sa, which is an optimization variable, and

therefore cannot be calculated statically outside the optimization algorithm.

Because the range variable values will remain the same for each of the power

minimization problems, it is useful to examine them only once initially. Fr is a

function of Kr and Sr, only assuming values equal to integer powers of two. Kr

and Sr are linear functions of fixed radar parameters and resolution (Eqns. 2.8

and 3.1) and therefore will be planes that decrease as resolution becomes coarser.

The graph of Fr is shown in Fig. 5.1. The figure illustrates Fr as a step function,

assuming only the following values: 16384, 32768, and 65536. Note that Fr is
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independent of velocity.

The number of processors and megabytes of memory necessary for range pro-

cessing is represented in Figs. 5.2 and 5.3. Both these parameters can be con-

sidered as constants added to the azimuth processor and memory requirements.

The average number of range processors required is 16.8, with a minimum of

0.85 and a maximum of 121.7. The plot of the required range memory displays

a similar trend with an average of 7.2, a minimum of 0.14, and a maximum of

77.9 MB. It is observed that both these graphs exhibit rapid growth, increasing

as resolution becomes finer. This observation is confirmed by Eqns. 3.2 and 3.5,

which show δ2 in the expression for Pr and δ3 in the expression for Mr.

Because the azimuth variables are the only variables that can be optimized

in the power minimization problem, unless otherwise specified, variables such as

FFT kernel size, section size, and FFT size will refer to the azimuth parameters

as opposed to the range parameters. These variables are discussed and graphed

below.

5.1.1 Optimal Mixed Card Type Configuration

Let C1 and C2 denote the number of S2T16B and S1D64B cards utilized,

respectively. Thus the function for total consumed power (in watts) is defined
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Fig. 5.1: Range FFT size for power minimization.
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minimization.
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as

Z = 12.2C1 + 9.6C2, (5.1)

reflecting the total power requirements of the two boards. Next, two required

constraint equations naturally follow based on the values of P (Sa) and M(Sa):

6C1 + 2C2 ≥ P (Sa) (5.2)

32C1 + 64C2 ≥ M(Sa). (5.3)

These two constraint equations ensure that the total number of processors in

the configuration is no less than the total number of required processors and the

total amount of memory in the configuration is no less than the total amount

of memory required. In this framework, values for the parameters C1 and C2

must be optimized in addition to the value of the parameter Sa. Although the

parameter Sa does not explicitly appear in the objective function that is to be

minimized (i.e., Z), its effect is implicit through the constraint equations. That

is, the optimal values for C1 and C2 are contingent on some calculated value of

Sa.

The only discontinuous portion in the formulation is due to the definition of

Fa, which is a discontinuous function of Sa. (Recall that Fa is defined as the
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smallest integer power of two that is greater than Sa + Ka.) This discontinuous

function prevents the direct application of nonlinear programming. However, by

selecting Fa as an integer power of two, and adding a constraint to ensure that

Ka +Sa is no greater than this selected value, the discontinuity can be removed.

Thus, in addition to the constraints given by Eqns. 5.2 and 5.3, the following

constraint equation is added:

Ka + Sa ≤ Fa, (5.4)

where the value of Fa = 2k is fixed (the value of Ka is known based on the values

of the specified basic parameters). The discrete nature of Fa constitutes an

integer programming problem and precludes the direct application of nonlinear

programming techniques with Fa as an optimization variable. Thus, to ensure

optimality it may be necessary to solve several constrained optimizations based

on different feasible values for Fa. In practice, however, only a few values for

Fa need to be tried: from the smallest feasible value (2k where k = dlg Kae) up

to the point at which the optimal value of Sa is such that Ka + Sa < Fa (i.e.,

the constraint becomes inactive). The inactiveness of the constraint suggests

that every value of Fa greater than that last tried would produce an increasingly

worse solution. This phenomenon is true because if Sa does not inflate to its

maximum value given the constraint (i.e., Fa − Ka), memory is in shortage and
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will become more in shortage with every increment in the FFT size.

With the addition of constraints that ensure that optimization variables are

greater than zero (Sa ≥ 1, C1 ≥ 0, C2 ≥ 0), Eqns. 5.1–5.4 constitute the first con-

strained nonlinear and integer optimization problem solved in this work. Rep-

resentative samples of the MATLAB code used to solve all the optimization

problems and produce the data are included in the Appendix.

Fig. 5.4 represents the total power consumption of the ISMM for a range of

resolution and velocity pairs. As would be expected, more power is required for

higher velocities and finer resolutions. However, it is noted that resolution has

a more dramatic effect on power consumption than does velocity. The graph

is smooth except for several almost imperceptible ridges at resolution values of

approximately 0.65 m, 0.91 m, 1.28 m, and 1.78 m. When the power graph is

compared to the graph for Fa (Fig. 5.5), the cause of the anomalies becomes

apparent. The ridges result from the discontinuous nature of Fa, as described

above. For this set of resolution and velocity values, optimal Fa values range from

512 to 8192 points, corresponding to coarse and fine resolutions, respectively.

This finding supports the observation that resolution requirements dominate

system performance, and fine resolution demands high memory usage, which in

turn drives power consumption high, even in the case of very low velocity. In

this scenario, at fine resolutions, relatively inefficient data processing is being

performed because memory is in shortage, entailing a surplus of processors.
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Fig. 5.3: Range memory requirements (in MB) for power minimization.
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Fig. 5.4: Optimal power consumption.
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Although most of the attention paid to explaining Fig. 5.4 will be in terms

of the role of azimuth processing requirements, to understand all the intricacies

of the graph the role of range processing also must be taken into consideration.

As already noted, Figs. 5.3 and 5.2 illustrate the requirements of range process-

ing. Similarly, Figs. 5.6 and 5.7 show the graphs of the azimuth memory and

processor requirements. Note that for the power minimization model, although

the range requirements remain constant for different configurations, the azimuth

requirements change according to the optimally computed Sa. Analysis of the

ratio of azimuth requirements to range requirements therefore is useful. Figs. 5.8

and 5.9 represent these ratios for memory and processors. It is obvious that the

disparity between azimuth and range memory is much greater than that of pro-

cessor requirements. The ratio of azimuth to range processor requirements varies

from 0.9:1 to 7.2:1, the lower ratio entailing a larger range processor requirement

than that for azimuth. However, the ratio of azimuth to range memory require-

ments varies from 59:1 to 648:1, a minimum disparity of almost sixty times the

amount of required memory for azimuth than for range processing, even at the

few points where more range processors are required than azimuth processors.

A general statement can therefore be made that azimuth requirements always

dominate a power minimization configuration (for the given range of resolution,

velocity, and radar parameters). Furthermore, every visible ripple in the power

consumption graph of Fig. 5.4 can be accredited to discontinuities in azimuth
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Fig. 5.6: Optimal azimuth memory requirements for power minimization.
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Fig. 5.7: Optimal azimuth processor requirements for power minimization.
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Fig. 5.8: Optimal ratio of azimuth to range memory requirements for power
minimization.
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requirements because the discontinuities in range requirements correspond spa-

tially to discontinuities in azimuth requirements. It might seem that if the power

graph is to be analyzed primarily in terms of azimuth requirements, then the

power consumption by range requirements should be subtracted from the to-

tal power requirements before analysis. This method is implausible, however,

because the power consumption can not be measured strictly by the product

of the requirements and some constant representing the power per megabyte or

power per processor, as was theorized in the custom-VLSI model of Section 4.3.1.

Adherance to both the processor and memory constraints of Eqns. 5.2 and 5.3

leads to taking the maximum of the daughtercards required by both constraints

to determine total power consumption. Consequently, power consumption by

only range or azimuth processing has no meaning because optimization of the

azimuth section size automatically seeks to utilize all available resources, which

are dependent on the range requirements. Therefore, throughout the rest of the

power minimization model, knowledge of the range requirements and the impact

they have on total power requirements should be considered, but discussion of

variables will be limited to the azimuth requirements because they are the values

of optimization.

As is expected from Eqn. 3.7, the graph of Ka (Fig. 5.10) is completely

smooth, increasing as resolution becomes finer, and independent of velocity. The

graph of Sa (Fig. 5.11), however, is more interesting. Sa is nondecreasing in the
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Fig. 5.9: Optimal ratio of azimuth to range processor requirements for power
minimization.
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Fig. 5.10: Optimal azimuth FFT kernel size for power minimization.
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velocity dimension, but undulates in the resolution dimension. This rippling

effect results from the graph of Fa. The tiers of the Fa graph determine the

discontinuities of the Sa graph. As resolution becomes finer, Sa also decreases to

compensate for the additional memory that is required by the resolution. When

the processing becomes too inefficient, the next value of Fa becomes optimal and

evokes a corresponding increase in Sa. Resolution demands again necessitate re-

ductions in Sa to save memory and utilize processors until the next value of Fa

becomes optimal. However, notice that in Fig. 5.12, which represents the ratio

of Sa to Fa, overall Sa gradually decreases as a proportion of Fa as resolution

becomes finer. As a result of the gradual decrease in this ratio, there is a cor-

responding decrease in the computed optimal employment of the processor-rich

(S2T16B) boards to the memory-rich boards (S1D64B). This trend is illustrated

in Figs. 5.13 and 5.14.

Surprisingly, note that velocity seems to have a more dramatic effect on the

card type utilization than does resolution. However, recall that the two card

types vary by a factor of two in memory capacity but vary by a factor of three in

processors. The undulations in both graphs again result from the discontinuities

in the graph of Fa, but the effect of the Fa discontinuities is very transient,

resulting in spikes that quickly return to the general shape of the graph.
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Fig. 5.11: Optimal azimuth section size for power minimization.
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Fig. 5.12: Optimal ratio of azimuth section size to FFT size for power minimiza-
tion.
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Fig. 5.14: Optimal percentage of power usage by the S1D64B.
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5.1.2 Optimal Single Card Type Configuration

In the case that only one or the other daughtercard type is available for system

configuration, the optimization problem is easily adapted to accommodate this

tighter constraint. The generalized objective function becomes

Z = Πd(CT ), (5.5)

where Πd denotes the power consumption per daughtercard as a function of the

card type and CT is the card type. Similarly, the constraint equations become:

CPd(CT ) ≥ P (Sa) (5.6)

CMd(CT ) ≥ M(Sa), (5.7)

where C is the number of cards employed, and Pd and Md are the number of

processors and amount of memory available as functions of the daughtercard

type. All other constraints remain the same. Solving this problem for both card

types produces the power consumption graphs of Figs. 5.15 and 5.16. Fig. 5.15

for the S2T16B is a much smoother graph than that of the S1D64B in Fig. 5.16.

There is a noncoincidental resemblance between Fig. 5.15 and the perfectly

smooth curled plane of Ka (note that the graph of Ka is the same for every

configuration involving optimal power with resolution and velocity fixed). As Ka

increases, so does the card requirement. However, Fig. 5.16 depicts a less smooth
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Fig. 5.15: Optimal power consumption in S2T16B-only configuration.
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Fig. 5.16: Optimal power consumption in S1D64B-only configuration.
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function. Obviously, the S1D64B configuration depends on more than just Ka.

This difference is explained by an examination of the resource utilizations of both

configurations. In both cases, there is a 100% processor utilization. The S2T16B

similarly has an average 99.7% memory utilization. In contrast, average memory

utilization in the S1D64B configuration was only 90.5%, seemingly low for an

optimal solution. The low memory usage in the latter case is a consequence of

the more extreme ratio of memory to processors in the S1D64B, having one-third

as many processors but twice as much memory as the S2T16B. Thus, in regards

to resource utilization, the processor-rich S2T16B is better suited for the range

of resolution and velocity pairs in this investigation.

Resource utilization, however, was not the goal of the optimization problem.

It seems reasonable to assume that efficient resource utilization would entail low

power consumption, but that is not necessarily the case. As is observed from

examining Figs. 5.15 and 5.16, peak power consumptions were 1265 and 1079 w

for the S2T16B and S1D64B configurations, respectively. Similarly, average

power consumption was 213.2 and 164.3 w. The S1D64B, with its poorer memory

utilization, consumed an average 29.8 w less than the S2T16B configuration.

Such statistics can be misleading, however, if overgeneralized. If it is neces-

sary to employ only one type of card in a system, the S1D64B is not necessarily

a better choice. As seen by Figs. 5.17 and 5.18, there is a clear demarcation

of the areas where each card type is most appropriate. Fig. 5.17 shows the per-
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cent gain in power consumption of employing the S2T16B over the S1D64B. The

plane running through the graph marks zero percent gain. Everywhere above

the plane therefore signifies that the S1D64B card is more efficient, noting a

gain in power over the S1D64B. Similarly, areas of the graph below the plane de-

note better performance by the S2T16B. Fig. 5.18 represents the surface formed

in Fig. 5.17 as a binary function, with blue denoting gains in power and red

losses (improvements) in power. The S1D64B provides up to a 135% decrease in

power and at worst consumes up to 39% more power. However, the S1D64B is

better-suited for 59% of the cases considered.

Clearly, the required resolution and velocity determine which card is most

appropriate in a single-card type system. The two extremes of the card type

power consumptions occur at the extremes of the resolution and velocity graph.

The S1D64B’s advantage is most apparent at the highest performance scenario—

where velocity is at a peak (400 m/s) and resolution is finest (0.5 m). Conversely,

the S2T16B outperforms the S1D64B most drastically in the low performance

scenario—where velocity is lowest (50 m/s) and resolution is coarsest (2 m).

5.1.3 Nominal Mixed Card Type Configurations

It has been suggested that using an azimuth section size (Sa) equal to the

kernel size (Ka) is a good heuristic for adequate performance with moderate

conservation of memory, which is usually the scarce resource [7]. The optimiza-
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tion problem is simplified by removing Sa from the optimization variables and

setting it equal to Ka. The third constraint (Eqn. 5.4) is also removed, resulting

in only one meaningful value for Fa (Fa = 2dlg(2Ka)e). Fig. 5.21 graphs the power

consumption of a system using the section size heuristic yet still optimizing the

number of cards of each type. For the range of values tested in this investigation,

it was found that for 91.5% of the cases, the optimal kernel to section size ratio is

larger than the 1:1 ratio associated with the heuristic. Fig. 5.20 shows the ratio

of the kernel size to the optimal section size. The average ratio in this scenario

is 2.24 with a minimum of 0.72 and maximum of 10.42. Consequently, there is a

substantial increase in power requirements of the nominal configuration. Adap-

tation of the number of cards of each type by the optimization routine keeps

the increase from attaining the ten fold that might otherwise occur if the same

card type ratio was maintained from the optimal to the nominal configuration.

Nevertheless, Fig. 5.21 shows a power increase from 0–82.3% with an average

of 19.4%. The 0% increase occurs where the optimal section size happens to

be equal to the kernel size and the 82.4% increase intuitively occurs in the area

where the optimal Ka : Sa ratio is highest, where velocity is at a minimum and

resolution finest.

The entire region where velocity is low exhibits extreme improvements for the

optimal section size. At first glance, this seems to be a surprising result because

resolution and memory requirements usually dominate power requirements. This
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Fig. 5.19: Optimal card type configuration and nominal section size for power
minimization.
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Fig. 5.20: Ratio of azimuth kernel size to optimal section size for power mini-
mization.

76



rule remains true in this case also but indirectly. At lower velocities, processing

power becomes less crucial. A nominal section size results in a surplus of mem-

ory. The optimal section size lowers the section size, resulting in less efficient

processing but more efficient memory usage. The undulations in the surface of

Fig. 5.21 correspond to the rippling nature of Sa (Fig. 5.11).

5.1.4 Nominal Single Card Type Configurations

To complete the comparison of optimal and nominal section sizes in both

single and mixed card type configurations, nominal single card type configura-

tions are now investigated. As expected, this configuration requires the highest

power. Figs. 5.22 and 5.23 represent the power consumption graphs of the two

single card type configurations. The S2T16B graph now follows Ka (Fig. 5.10)

even more closely than its optimal section size counterpart. This resemblance is

due to the total lack of configuration optimization. In the nominal mixed card

type configuration, C1 and C2 are still optimization variables. In the single card

type configuration, C is calculated by the following formula:

C = max

{
P (Ka)

Pd(CT )
,

M(Ka)

Md(CT )

}
. (5.8)

Therefore memory is always the active constraint for the memory-poor S2T16B

configuration. That is, the right side of Eqn. 5.8 is always dominant. However,
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Fig. 5.21: Percentage increase in power of nominal section size over optimal
section size configuration.
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Fig. 5.22: Power consumption of nominal single card type configuration using
the S2T16B.
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Fig. 5.23 still exhibits sharp points. The memory-rich S1D64B configuration

is still susceptible to both memory and processor constraints, being processor

bound in 73.1% of the cases and memory bound the other 26.9% of the cases at

low velocities.

5.1.5 Summary of Power Minimization Models

Fig. 5.24 compares the six possible configurations discussed so far. The ve-

locity is fixed at 298 m/s. Fig. 5.25 similarly compares the six configurations but

with the resolution fixed at 0.875 m. As expected, the optimal mixed configura-

tion requires the least power for all values of resolution and velocity. Table 5.1

summarizes the comparison across all values.

5.2 Maximization of Velocity

All models presented thus far have considered the minimization of power

consumption as the objective function. In this section the maximization of ve-

locity v for a given system is investigated. It is assumed that the resolution δ

and either available power or the number of daughtercards of each type are the

independent variables.
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Fig. 5.23: Power consumption of nominal single card type configuration using
the S1D64B.
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Fig. 5.25: Comparison of power consumption of six configurations with resolution
fixed at 0.875 m.

Table 5.1: Comparison of configurations showing the minimum, maximum, and
average power and the percent increase of each statistic over the power consump-
tion of the optimal mixed configuration.

Configuration Min. % Inc. Max. % Inc. Avg. % Inc.

Optimal Mixed 9.192 – 867.6 – 135.5 –

Nominal Mixed 13.52 47.05 1002 15.49 166.8 23.13

Opitmal S2T16B 17.96 95.37 1265 45.82 213.2 57.40

Optimal S1D64B 9.203 .1134 1079 24.41 164.3 21.28

Nominal S2T16B 34.36 273.8 2221 156.0 379.1 179.9

Nominal S1D64B 13.52 47.05 1289 48.61 206.3 52.30
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5.2.1 Set Power with Variable Number of Cards

Fixing power still leaves the number of each card type to be maximized. The

formulation for velocity maximization is very similar to that of power minimiza-

tion. The objective function is simply the maximization of the following:

Z = v. (5.9)

The constraint equations are also similar to the power minimization model ex-

cept for the addition of a power constraint that is almost identical to the objec-

tive function in the power minimization model. This additional constraint is as

follows:

Π ≥ 12.2C1 + 9.6C2, (5.10)

where Π represents the power allocated for the system. The optimization prob-

lem is slightly more complex than in the case of minimizing power because Pr,

Pa, and Mr are all functions of v. Therefore both Sa and v are implicit in

the constraint equations. Following the convention set forth, Eqns. 5.2 and 5.3
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become

6C1 + 2C2 ≥ P (Sa, v) (5.11)

32C1 + 64C2 ≥ M(Sa, v). (5.12)

In addition, the following lower bound is added:

v ≥ 0. (5.13)

Eqn. 5.10 could be expressed as an equality constraint because fractional

numbers of cards are not disallowed in this formulation. The inequality expres-

sion is left, however, because the optimization algorithm always finds a solution

utilizing all available power. Furthermore, the inequality constraint is more cor-

rect in the generalized form of the problem if C1 and C2 are forced to be integers.

5.2.1.1 Optimal Mixed Card Type Configuration

The graph of the maximum attainable velocity given a set power and resolu-

tion is shown in Fig. 5.26. The expressed maximum velocity at high power and

fine resolution is probably impracticably high for a real airborne UAV, but such

speeds might be realistic for a spaceborne satellite, although other parameters

in the radar system would probably change and necessarily the range R.
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Fig. 5.27 illustrates the different geometry of the solution space in reference

to the power minimization problem. The three plateaus are at FFT sizes of

1024, 2048, and 4096. About one third of the graph is missing (32.0%) because

there was no feasible solution to the given power-resolution pair. The boundary

of infeasibility in this scenario runs roughly on the line where resolution equals

1.0. Recalling that azimuth memory is defined by an expression with δ3 in the

denominator (Eqn. 3.8), the 1.0 resolution boundary is logical. Increasing the

power range would provide at least some feasible solutions for all resolutions.

However, the maximum attainable velocity at coarse resolutions would become

unreasonably high for the given scenario because the velocity already exceeded

1800 m/s (over Mach 5) in Fig. 5.26. Note that the graph of Ka is the same

as for the power minimization problem (Fig. 5.10). Fig. 5.28 shows the optimal

section size. Each point of inflection corresponds to a jump in the FFT size.

The plot of the optimal S2T16B usage for maximum velocity is shown in

Fig. 5.29. The plot for the S1D64B can be easily visualized by turning the graph

upside down, or taking one minus the graph for the S2T16B. The high plateau in

Fig. 5.29 corresponds to the low plateau in the graph of the FFT size (Fig. 5.27).

When the optimal FFT size was low, implying a great quantity of processing,

the processor-rich S2T16B became the exclusively ideal choice. Outside of this

region, a mixture of the two cards was optimal, with the S2T16B usage generally

increasing both as resolution became coarser and available power increased. For
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Fig. 5.26: Maximum velocity attainable at fixed power and resolution.
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Fig. 5.27: FFT size of maximum velocity solutions.
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Fig. 5.28: Optimal section size for maximum velocity.
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Fig. 5.29: Percentage power consumption by S2T16B in optimal mixed configu-
ration.
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this range of values, the S2T16B consumed an average 65.7% of the power.

5.2.1.2 Optimal Single Card Type Configuration

Observing that the S2T16B seems to be favored in the velocity maximiza-

tion problem, the optimal single card type configurations are now investigated.

Figs. 5.30 and 5.31 show the maximum velocities attainable using only the

S2T16B or the S1D64B daughtercards. As expected, for feasible scenarios

the S2T16B accommodates an average maximum velocity of 721 m/s compared

to 286 m/s for the S1D64B. Thus, the S2T16B shows a 150% improvement over

the S1D64B. However, the above statistic only considers the average across the

feasible solutions for that card type. The S2T16B provides feasible solutions in

only 45.9% of the power-resolution pairs, as compared to 68.0% for the S1D64B,

which is the same percentage as attained by the optimal mixed configuration.

This outcome results from the exclusive employment of the S1D64B in the fine

resolution region by the mixed configuration. Although the S1D64B is not ideal

in the majority of cases tested, it can always provide a feasible solution whenever

the S2T16B can.

The FFT size employed in both single card type configurations follows the

pattern expected by the respective memory-processor ratios of the daughter-

cards. Of the feasible solutions, the FFT size ranged from 512 to 2048 for the

S2T16B and from 1024 to 4096 for the S1D64B. The graphs of the section size
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Fig. 5.30: Maximum velocity with S2T16B-only configuration.
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Fig. 5.31: Maximum velocity with S1D64B-only configuration.
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for both daughtercards are shown in Figs. 5.32 and 5.33. Note that the graph for

the S2T16B closely resembles a shifted and scaled version of the graph for the

S1D64B. The shift would be in the resolution dimension by about 0.5 m and the

scaling in the Sa dimension by one half. This phenomenon results from an active

memory constraint in the optimization problem up to the point of feasibility for

the S2T16B and an active processor constraint thereafter.

5.2.1.3 Nominal Mixed Card Type Configuration

The nominal section size with optimal card configuration problem evokes

some interesting variable relationships. Fig. 5.34 graphs the maximum velocity

attainable under this configuration. The points of discontinuity in the graph

correspond to jumps in the FFT size, as illustrated in Fig. 5.35. The point of

interest in these two graphs is that as the velocity increases, Fa decreases (note

that Fig. 5.35 is reversed in regards to Fig. 5.34). It could be expected that

maximizing velocity, being processor intensive, would call for large FFT sizes for

efficient processing as in the optimal mixed configuration (Fig. 5.26). However,

just the opposite is true in this case. The nominal section size forces the FFT

size to be much smaller than is optimal because the section size is equivalent to

the kernel size (Fig. 5.10), and the kernel size decreases as resolution becomes

coarser. Compensation for this counterproductive section size trend is made by

employing a larger percentage of the S2T16B card (Fig. 5.36). The processor
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Fig. 5.32: Section size of S2T16B configuration in maximum velocity problem.
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Fig. 5.33: Section size of S1D64B configuration in maximum velocity problem.
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Fig. 5.34: Maximum velocity attainable in nominal mixed configuration.

30
40

50
60

70
80

90
100

0.5

1

1.5

2

1500

2000

2500

3000

3500

4000

Power
δ

F
a

Fig. 5.35: FFT size for maximum velocity attainable in nominal mixed configu-
ration.
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rich and memory poor S2T16B card can afford to do rather inefficient processing

with the small FFT size yet still provide higher velocities than could the S1D64B.

5.2.1.4 Nominal Single Card Type Configuration

Finally, the nominal single card type configurations are investigated. Figs. 5.37

and 5.38 depict the maximum velocities and feasibility regions for the nominal

section size configurations of the two card types. The relationship between

these two configurations is very similar to that of the optimal single card type

configurations but with decreased velocities and regions of feasibility.

5.2.1.5 Comparison of Maximum Velocity Configurations

Table 5.2 compares the different configurations for the maximum velocity

problem. Note that the minimum velocity statistic is not meaningful because

each configuration theoretically at some point provides a maximum velocity of

0+ε, where ε is a very small number. However, from graph to graph the minimum

velocity varies because the discrete sampling points disallow the occurrence of

the real minimum velocity in each case. Although the percentage of area with

feasible solutions statistic approaches 100% as the resolution and power approach

infinity, the statistic is meaningful for the sampling space because these values are

deemed as representative of values of a real system. Average velocity statistics
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Fig. 5.36: Percent power consumption by S2T16B in nominal configuration for
maximum velocity.
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are given both over the total area and over the feasible area only. The average

velocity over the feasible area is not a valuable statistic alone in the design of a

system, although it does provide insight into the performance of a configuration

once the feasible solution boundary is crossed.

5.2.2 Configuration with Set Number of Cards

Constraining the problem further, the number of each card type is also fixed.

Although this model is much simpler to optimize because there are two fewer

optimization variables (C1 and C2), this model may represent a frequently occur-

ing situation for a system engineer: The hardware is already decided, whether

because it was the only option in purchasing or because it is being reused from a

previous purpose, and now the software must be configured to make the system

work at optimal performance. The power then is set (Π = 12.2C1 + 9.6C2) and

the only variables left to optimize are v and Sa. The objective function and

constraints remain the same as in the set power problem except for the omission

of the power constraint (Eqn. 5.10).

Fig. 5.39 compares the optimal and nominal configurations of two different

systems. The first system has five each of the two daughtercard types. The

second type has seven of the S2T16B and two of the S1D64B. Note that the

power consumption of both systems is slightly different: The 5:5 system requires

109.0 w and the 7:2 requires 104.6 w. The results were similar to those above
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of the fixed power but variable card-configuration model. As expected, the

configuration with the greater proportion of S2T16B cards performed better at

coarse resolution and provided fewer feasible solutions at fine resolutions.

A revealing point in the plot is where resolution is approximately 1.35 where

there is a sharp point of discontinuity. Unlike the power minimization problem,

the discontinuities do not result from jumps in the FFT size. Inspection of

Figs. 5.40 and 5.41 shows no corresponding FFT size movement at δ = 1.35 m. In

the 7:2 configuration, Fa even remains at a constant 2048. Instead, the reason for

the discontinuites in the maximum velocities for the optimal configurations is due

to a jump in the range FFT size. The range FFT size has played an insignificant

role in the optimization problem up to this point in the investigation. With the

number of cards and resolution set, the fall of Fr from 32768 to 16384, caused

by the increase in resolution coarseness, spurred a sharp increase in maximum

velocity because an additional seven processors became available for azimuth

processing. Recall that Fr is computed as the next power of two greater than

the sum of Sr and Kr, both of which are functions of resolution and radar

parameters, and are therefore not optimized in the maximum velocity problem.

As a result, the effect of Sr is much more poignant in the present problem than

in other problems.

Also note that a major disadvantage with the nominal section size heursitic

in the maximum velocity problem is that as the section size optimally needs to
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Fig. 5.40: Optimal and nominal FFT and section sizes for the 5:5 system.
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Fig. 5.41: Optimal and nominal FFT and section sizes for the 7:2 system.
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be increasing as resolution becomes coarser, the decreasing Ka forces Sa to also

decrease. As a result, the disparity between the optimal and nominal configu-

rations increases as curves approach the right side of the plot where resolution

becomes coarser.

Table 5.2.2 summarizes the two set hardware configurations discussed above.

Dissimilar to the power minimization problem, where the optimal section size

was usually much smaller than the kernel size, the optimal section size in the

present case averages two to three times the nominal section size.

5.3 Minimization of Resolution

The minimization of resolution (i.e., making resolution finer) is the most com-

putationally intensive of the optimization problems. Resolution must be known

before any of the following expressions can be calculated: Kr, Sr, Pr, Mr, Ka, Pa,

and Ma. The most troublesome of the above variables for formulation is Ka.

Without a value for Ka when the optimization algorithm is entered, not even

a lower bound for Fa can be determined. Recalling that Fa = 2k, where k =

dlg(Ka + Sa)e, and because Sa is to be optimized, the first value of k usually

tried is k = dlg(Ka + 1)e. Without a value for either Sa or Ka, however, the

above calculation for k becomes k = dlg(1 + 1)e = 1.

Based on historical data, a slightly larger value for k can be initially injected

into the optimization routine and successively higher values tried thereafter in
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Table 5.2: Comparison of configurations showing the average velocity over the
total sampling area (vt), maximum velocity, the average velocity over only the
feasible solutions (vf), and percentage of area with feasible solutions and the
percent increase or decrease of each statistic over that of the optimal mixed
configuration.

Configuration vt % + Max. % − vf % + % Feas. % −

Optimal Mixed 382 – 1851 – 562 – 68.0 –

Nominal Mixed 309 19.0 1429 22.8 592 5.3 52.3 23.1

Opitmal S2T16B 331 13.5 1851 0.0 592 28.2 45.9 32.5

Optimal S1D64B 194 49.2 789 57.5 286 -49.1 68.0 0.0

Nominal S2T16B 211 44.8 1429 22.8 882 56.8 24.0 64.7

Nominal S1D64B 141 63.1 605 67.3 271 -51.9 52.3 23.1

Table 5.3: Comparison of set hardware configurations: (1) five each of both
cards and (2) seven S2T16Bs and two S1D64Bs. The table shows the mini-
mum resolution at which a solution was feasible, the maximum velocity, the
average velocities over the total range of resolutions (vt) and over only feasible
resolutions (vf ), and the average section size Sa.

Configuration Min δ Max v vt vf Sa

Optimal 5:5 0.95 1511 516 679 1932

Nominal 5:5 1.20 1157 379 622 690

Opitmal 7:2 0.86 1323 574 821 1215

Nominal 7:2 1.09 1006 415 768 629
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the same manner as in the other problems. A better initial value could be offered

for Fa if the lowest feasible value for resolution was calculated beforehand for

which all the constraints are met, but that in itself is the optimization problem.

As a result of the above difficulty with a lack of an initial Ka, the first

guesses at Fa tend to be very poor. MATLAB’s constr function is not always

robust enough to handle such poor guesses and in the course of calculating the

best resolution for the range of Fa values tried, constr periodically “crashes”

on infeasibly low Fa values, seemingly having entered into an infinite loop. To

rectify such a situation, the program must be restarted at the point it failed,

incrementing the k in Fa by one (only for that power-velocity pair).

Only several of the possible configurations for the resolution minimization

problem are investigated here because of the computational intensity and strains

on the robustness of the optimization routine for this problem. Furthermore, in

some cases solution points are obviously aberrant from their surrounding val-

ues. Consequently, the absolute convexity of the solution space for resolution

minimization is suspect. In each configuration investigated below, the initial

solution surface is shown as for all the power minimization and velocity maxi-

mization problems. However, because of the aberrant solution points mentioned,

where appropriate the aberrant points in the initial surfaces are smoothed using

a moving average technique. This surface then is also presented.

The objective function for the resolution minimization problem, similar to
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the velocity maximization problem, is to minimize

Z = δ. (5.14)

The constraints are revised to reflect the dependence on δ:

6C1 + 2C2 ≥ P (Fa, Sa, δ) (5.15)

32C1 + 64C2 ≥ M(Sa, δ) (5.16)

Ka(δ) + Sa ≤ Fa, (5.17)

with the standard lower bounds:

C1 ≥ 0, C2 ≥ 0, Sa ≥ 1, δ > 0. (5.18)

5.3.1 Optimal Mixed Card Type Configuration

The initial optimal solution graph for the resolution minimization problem

is shown in Fig. 5.42. It would be expected that an optimal surface would

be nonincreasing or nondecreasing along each dimension. That is, as velocity

increases in one dimension for a set power, resolution should become coarser.

Similarly, as power increases for a set velocity, resolution should become finer.

Thus it is expected that the optimal solution surface is nondecreasing in the

101



power dimension and nonincreasing in the velocity dimension.

However, it is observed that there are aberrations from this expected char-

acterization in Fig. 5.42. Checking the surface against the characterization de-

scribed above, a total of twelve deviant points are found, although a cursory

visual inspection of the graph reveals four prominent aberrations. For each of

these nonoptimal solutions, it is found that the optimization routine employed

a smaller FFT size than in the surrounding points. In some cases, forcing the

optimization routine to solve for a higher FFT size results in the optimal solu-

tion. In other cases, the optimization routine cannot find the optimal solution

without a very precise initial guess and an adjusted step size for the MATLAB

function. It is also observed that for some deviant points, the surrounding area,

although smooth, does not employ a constant FFT size. Rather, the FFT size

oscillates between two values. This phenomenon could suggest a boundary area

or even a nonconvex area in the solution space resulting in nonoptimal solutions.

Supporting the possibility of nonconvexity, the optimization routine occasionally

returns an “infeasible solution” message with some initial guesses.

Due to the time expenditure and unreliability of reoptimizing a particular

point in the solution surface, as discussed above, a 3 x 3 neighborhood averaging

mask was applied to apparently suboptimal solution points. The resultant sur-

face of this smoothing technique is shown in Fig. 5.43. Note that the smoothing

mask is not applied to the entire surface but only to the apparent points of de-
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Fig. 5.42: Initial minimum resolution solution in optimal mixed card type con-
figuration.
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Fig. 5.43: Smoothed minimum resolution solution in optimal mixed card type
configuration.
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viation. Such interpolated points should provide a basis from which to calculate

an optimal value in the case that the particular power-velocity coordinates are

exactly the values that are required on a particular system. Confidence in the

overall optimality, previously aberrant points notwithstanding, of the solution

graph of Fig. 5.43 is lent both from the characteristics of the surface itself and

from informal verification of values by cross checking them against the power

minimization and velocity maximization graphs of Figs. 5.4 and 5.26, respec-

tively.

Figs. 5.44, 5.45, and 5.46 illustrate the surfaces formed by the azimuth FFT

size, section size, and kernel size, respectively, for optimal resolution. That is,

the graphs below are based on interpolated values from the smoothed graph of

Fig. 5.43. Note that in Fig. 5.44 the surface is consistent with FFT size graphs

from previous problems, except for the rift toward the center of the graph. This

rift is also reflected in the section size graph of Fig. 5.45, and corresponds to a

portion of the level area spanning the graph of minimum resolution in Fig. 5.43.

This phenomenon could result from suboptimal solutions in the lower portions

of the surface, but it must be kept it mind that there are no infeasible solutions

plotted in the graph. Therefore, according to the principle of necessary nonin-

creasing or nondecreasing functions along each dimension for optimal resolution

values, as discussed above, the upper values of the surface can only be in ques-

tion in that they are too high, not too low. It is assumed at this point that
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Fig. 5.45: Optimal azimuth section size for minimum resolution.

105



Fig. 5.43 represents a very close approximation to the optimal solution surface.

Methods to scrutinize this assumption will be investigated in Chapter VII.

5.3.2 Optimal Single Card Type Configuration

Optimization of the single card type configuration for resolution minimization

encountered problems. When only the S2T16B was allowed in the configuration,

the initial solution surface displays several aberrant points as with the mixed card

type graph in Fig. 5.43. See Figs. 5.47 and 5.48 for the initial and smoothed

graph for the S2T16B-only configuration.

It would be expected that the single card type configuration using only the

S1D64B would display a similar optimization graph with just several anomalies.

However, Figs. 5.49 and 5.50, different views of the same graph, do not display

isolated points of deviation, but deviant trends. As a result, the smoothing

technique is not employed on this graph because not every aberrant point is

surrounded by reasonable solution points from which to interpolate a better

value. More research into the constr function implemented in MATLAB and

the solution space of the problem is necessary to surmise why the algorithm

performed so poorly for this configuration.
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Fig. 5.46: Azimuth kernel size for minimum resolution.
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Fig. 5.47: Initial solution graph of the S2T16B-only configuration for resolution
minimization.
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Fig. 5.48: Smoothed solution graph of the S2T16B-only configuration for reso-
lution minimization.
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Fig. 5.49: Initial solution graph of the S1D64B-only configuration for resolution
minimization.
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5.4 Conclusions

Three distinct optimization objectives have been investigated in this chap-

ter: power minimization, velocity maximization, and resolution minimization.

Of the three objectives, most attention has been directed toward power mini-

mization because power is representative of the restrictions concerned in SWAP-

constrained systems, as introduced at the beginning of this work. Velocity and

resolution optimizations were also investigated, with limited success in the min-

imzation of resolution because of the computational complexity and possible lack

of solution space convexity.

For each objective mentioned above, different configurations are explored.

Configurations in which the section size is optimized are denoted as optimal,

where configurations in which the section size is fixed as the kernel size are

denoted as nominal. Both mixed and single card type configuations are investi-

gated. In the mixed configurations, the number of each type of the two available

card types are optimized, except for one scenario in the velocity maximization

problem where the number of each card type is set.

One of the motivating factors in the outset of this research was to investigate

the significance of the arbitrarily-set azimuth section size. It has been shown

that proper selection of the section size is crucial to the performance of a system.

Without optimization of this parameter, processors or memory can be wasted

in a system. The optimal value of the section size is often unintuitively low,
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conserving memory but causing relatively inefficient use of processors.

The ISMM provides a starting point for system design and perfomance eva-

lutation. Although some significant assumptions are made in this model to

simplify the optimization formulation and concomitant computation, it will be

shown that this simplification provides a reasonable lower-bound for the more

involved and accurate model presented in Chapter VI. Furthermore, the sim-

plicity of the ISMM and the associated freedom granted the parameters in each

scenario accentuate the interrelationships between the variables, the characteris-

tics of which are otherwise more difficult to discern in the more realistic model.

This simplification results in significantly reduced computational intensity and

allows for the production of all the data presented in this chapter.
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Fig. 5.50: Alternate view of the initial graph of the S1D64B-only configuration.
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CHAPTER VI

CN-CONSTRAINED MODEL

Increasing the realism of the optimization model, the set of constraints is

now revised to ensure that no remote memory accesses occur besides the matrix

transposition operation from the range to the azimuth processors. This model

is significantly more complex and necessitates the introduction of several new

variables. Besides the additional constraints restricting the amount of available

memory per processor, the primary difference between this model (henceforth

denoted as the CNCM) and the ISMM is in the concept of the fundamental

unit of system construction. The fundamental building block shifts from an

ambiguously configured daughtercard to a precisely configured CN.

6.1 Formulation

The variables C1 and C2, designating the first and second card types, or num-

ber of S2T16Bs and S1D64Bs employed, no longer have meaning in the present

model without further refinement. Two new sets of variables, discussed in depth

in the next section, are introduced to replace C1 and C2, implementing these

refinements. Instead of simple card type variables, the new model requires CN

configuration variables. The distinction is made in that the card type is only one

parameter in the configuration of a card. In addition, the configuration must
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specify the number of processors dedicated to range processing and the num-

ber of processors dedicated to azimuth processing. Similarly, the configuration

description must also delimit the amount of memory dedicated to range and

azimuth processors on a given CN. This last detail guarantees the absence of

remote memory access during range and azimuth processing. Data must still be

transferred after range processing is complete from range to azimuth processors

(the distributed matrix transposition).

With only two processor usages (azimuth and range processing), optimization

always will require at most two different card configurations. In this chapter,

a card configuration defines the number of processors on each CN type used

for range and azimuth processing, and the amount of memory allocated to both

types of processing per CN type. Recall that a CN consists of multiple processors

sharing a common memory.

Three possible optimization scenarios are possible. The first and most simple

scenario occurs when the optimization routine determines that the optimal con-

figuration involves dividing the processors and memory on a card type such that

both range and azimuth processing is executed. Furthermore, assuming that

whatever division of resources is determined to be optimal, the ratio of range

and azimuth processors in the given configuration is equal to the ratio of total

range and azimuth processors in the system. In this case, N such configured

CNs are required, providing all the required processors, and thus only one card
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configuration is demanded. If this mixed CN configuration is optimal (a mixed

CN configuration is one in which non-zero fractions of the resources on the CN

are allocated for both range and azimuth processing), then no other configura-

tion is necessary. That is, the addition of a second configuration will not improve

the performance of the system in any way. (The only time this rule does not

hold true is in the optimization of the final CN of a type, which is probably

fractional according to the requirements. At this point, however, fractional CNs

are permitted in the solution and further discussion of this situation is deferred

until later in this chapter.)

To illustrate the first scenario, suppose ten range processors and twenty az-

imuth processors are optimally required. A possible configuration of the above

type might be implemented with S2T16B cards, with one range and two az-

imuth processors assigned per CN. This configuration assumes that the sixteen

megabytes of memory on the single CN is sufficient for all three processors. That

is, twice the azimuth memory requirement plus the range requirement per pro-

cessor must be less than or equal to sixteen megabytes. Note that the azimuth

and range memory requirements per processor need not be, and most probably

will not be, the same.

Consider the next optimization scenario in which the optimization algorithm

determines that the best use of CNs is to dedicate all of one type of CN con-

figuration to range processing and another to azimuth processing. In this case,
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two configurations are necessary for optimality. As an example, one type of CN

could be on the S2T16B and all three processors could be dedicated to range

processing. Each processor would have for its own exclusive use 16
3

= 5.33 MB.

The azimuth processing could be assigned to CNs of the S1D64B card. Both

processors could be utilized, yielding 64
2

= 32 MB per processor.

The above example coincidentally preserves the convention of the S2T16B as

the card type of the first CN configuration and the S1D64B as the card type of

the second CN configuration. However, it is important to note that with the new

notation, the card types associated with the two CN configurations do not neces-

sarily correspond to the S2T16B and the S1D64B, respectively. The optimization

algorithm is given freedom to determine the optimal configuration(s), and the

result could be a reversal of the previously designated card types. Although this

ambiguity alone could be easily forced into conformity with the earlier definition

of type, it is important to maintain the ambiguity to allow for the possibility of

only one optimal CN configuration, as in the first example, or even to allow for

two different CN configurations using the same daughtercard type. The fact that

there are two card types and two possible optimal CN configurations is purely

coincidental. The latter is due to the presence of two possible programs, or

two types of processing (range and azimuth). Even for any number of available

daughtercard types, an optimal configuration still would only require at most

two CN configurations.
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The third possible optimization scenario resembles the first example in the

mixed CN configuration, but with the exclusion of the condition that the ratio

of range and azimuth processors on the CN is equivalent to the ratio of the

total required range and azimuth processors. Such a situation necessarily oc-

curs when there exists a great disparity in the required number of range and

azimuth processors. In such a case, one CN configuration would be a heteroge-

neous assignment of range and azimuth processors to a single CN, and the second

CN configuration would be a homogeneous assignment of whichever processor

type was still lacking. For example, if five range processors and twenty azimuth

processors were required, the CN configuration of the first example could be em-

ployed to incorporate all the range processors and ten of the azimuth processors.

The remaining ten azimuth processors would be assigned in a homogeneous CN

configuration, either on the same or different type card.

In each case, it is possible that there will be a portion of memory wasted

on each CN. In the same way, it is possible that an entire processor is wasted

on a CN. If the memory requirements hinder the utilization of all processors,

then a processor must be left idle. However, in most cases the optimization

algorithm decides against using such a configuration because there is usually a

more efficient way of configuring the system, usually by decreasing the section

size so that less memory is required and all processors are utilized. In the last

example, to accomodate the remaining ten azimuth processors on the same card
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type, it is probable that only two of the three processors per CN could be utilized

because azimuth processors usually require more memory than range processors.

To note the distinction between the ISMM card type variables and the new

CN configuration variables, let X and Y abstractly represent the two CN con-

figurations (note that X and Y will not be used in the formulation without

accompanying subscripts defining specific characteristics of each configuration).

Let XT and YT represent the daughtercard types of the new configuration vari-

ables of the CNCM, where the type can be either the S2T16B or the S1D64B

daughtercard. Let NX and NY denote the number of each CN required of the

corresponding configuration. Note that the combination of the two sets of vari-

ables defined above essentially serves the same function as did C1 and C2 in the

ISMM, with C1 and C2 representing the number of cards required themselves and

their type implicit in their definition. In contrast, the new variables explicitly

define each quantity and quality associated with them.

Two additional subscripts are necessary for the CN configuration variables

to complete their description. For notational convenience, let I ∈ {X, Y }. To

denote the number of processors dedicated to range and azimuth processing on

a specifically configured CN, Ir and Ia are introduced, where the r and a refer

to range and azimuth. It might seem necessary also to create a variable to define

the amount of memory allocated to each processor of each type, but as shown

below, this constraint can be implicitly figured by the ratio of the total amount
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of memory needed per processor function (i.e., for range or azimuth processing)

to the total number of processors (per function) required. Memory thus will be

treated as an implicit rather than an explicit optimization variable.

The first two constraints in the formulation ensure that a sufficient number

of range and azimuth processors are allocated:

Pr ≤ NXXr + NY Yr

Pa(Sa) ≤ NXXa + NY Ya.

In contrast to the ISMM, where only one constraint concerned the total number

of processors required, it is necessary to separately calculate and constrain the

range and azimuth processor requirements in this model. The above two con-

straints define the available range or azimuth processors by taking the product

of the number of CNs of each type and the number of processors on that CN

dedicated to the given type of processing.

The next two constraints in the formulation are the memory counterpart of

the first two processor constraints. However, as mentioned earlier, the memory

per processor is not an explicit optimization variable as is the processors per

CN. Instead, the memory per processor is computed implicitly by the following
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ratios:

MCN(XT ) ≥ Xr
Mr

Pr
+ Xa

Ma(Sa)

Pa(Sa)
(6.1)

MCN(YT ) ≥ Yr
Mr

Pr
+ Ya

Ma(Sa)

Pa(Sa)
. (6.2)

Similar to the formulation in Subsection 5.1.2, MCN represents the memory avail-

able per CN as a function of the configuration type. In the present case, this

function is defined as follows:

MCN(IT ) =

{
16 if IT = S2T16B,

64 if IT = S1D64B.

An additional basic constraint is necessary to ensure that the number of

processors assigned to a CN is physically realizable by that CN. The following

constraint ensues:

Xr + Xa ≤ PCN(XT )

Yr + Ya ≤ PCN(YT ),

where PCN designates the number of processors available per CN as a function

of the configuration type. Again, as in Subsection 5.1.2, such a function allows

the addition of any number of daughtercard types to the hardware choice list
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without changing the optimization formulation. Only the function definitions

would need to be modified to incorporate the addition of daughtercard types. In

the present work, the function PCN is limited to the following definition:

PCN(IT ) =

{
3 if IT = S2T16B,

2 if IT = S1D64B.

The only additional constraint involves the FFT size and is the same as in

the ISMM:

Fa = 2k ≥ Sa + Ka, k = 1, 2, . . . .

The standard lower bounds must also be included:

NI ≥ 0, Ir ≥ 1, Ia ≥ 1, Sa ≥ 1.

6.2 Computational Approach

The CNCM introduces additional variables that must assume only discrete

values. Unlike the section size Sa, which can be computed by merely rounding

its optimized value, variables Ir and Ia, respectful of IT , must be handled in the

same manner as the FFT size Fa. Consequently, many feasible combinations of

processor assignments must be tried in order to ensure optimality.
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The upper bound on the number of configuration combinations that must

be evaluated can be calculated by examining the three optimization scenarios

discussed above. In the first scenario, involving only one type of CN heteroge-

neously configured with both azimuth and range processors, all combinations on

each daughtercard type in which the sum of the range and azimuth processors is

less than or equal to the number of processors available on a given CN must be

evaluated. Let it be assumed that the first configuration type variable is opti-

mized for this heterogeneous processor assignment on a single CN configuration

(i.e., NX 6= 0 and NY = 0, which could be reversed in an actual solution). Let

πT = PCN(XT ), for T ∈ {1, 2, . . . , Nd}, where Nd is the total number of differ-

ent daughtercard types available, and all daughtercard types are represented by

arbitrary consecutive numbers beginning with one. Let Ehet denote the set of

different combinations that must be evaluated in the single CN heterogeneous

scenario. The enumerated triples in the following equation, i.e., daughtercard

type (as a number), Xr, and Xa, completely specify the set of feasible combina-

tions in the single CN heterogeneous scenario:

Ehet =

Nd⋃
T=1

πT −1⋃
Xr=1

πT−Xr⋃
Xa=1

(T, Xr, Xa). (6.3)

To sum the total number of feasible combinations that must be tried, Eqn. 6.3
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is evaluated as

|Ehet| =

Nd∑
T=1

πT−1∑
Xr=1

πT−Xr∑
Xa=1

(1)

which also can be expressed by

|Ehet| =

Nd∑
T=1

πT−1∑
j=1

(
j

1

)

=

Nd∑
T=1

πT−1∑
j=1

j

=

Nd∑
T=1

[πT − 1][(πT − 1) + 1]

2

=
1

2

Nd∑
T=1

(π2
T − πT ). (6.4)

To illustrate, suppose that the number of available daughtercard types is

Nd = 3 and that the number of processors for each CN associated with each

daughtercard is π1 = 2, π2 = 4, and π3 = 3. Then according to Eqn. 6.4,

|Ehet| = 1
2
[(22 − 2) + (42 − 4) + (32 − 3)] = 10.

In the second scenario, involving homogeneous assignments to CNs of range

and azimuth processors, two CN configurations are necessary in which either Ir =

0 in one case and Ia = 0 in the other, or vice-versa. To enumerate the feasible

CN configuration combinations, let πT as used in the heterogeneous scenario

above be modified to reflect the letter of the configuration variable in addition
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to the daughtercard type. That is, let πIT
= PCN(IT ), for T ∈ {1, 2, . . . , Nd}.

Furthermore, let Ehom represent the feasible configuration combinations in the

homogeneous case. Assume, without loss of generality, that Xa = 0 and Yr = 0,

effectively designating configuration set X as the range CN and configuration

set Y as the azimuth CN. The set of feasible configurations in the homogeneous

case is then given by the following expression:

Ehom =

Nd⋃
XT =1

Nd⋃
YT =1

πXT⋃
Xr=1

πYT⋃
Ya=1

{(XT , Xr, Xa = 0), (YT , Yr = 0, Ya)}, (6.5)

where the pair of triples is of the same convention as set in the heterogeneous

formulation.

Although Eqn. 6.5 represents a large number relative to Eqn. 6.3, only a

small percentage of these combinations must be actually tried for the optimal

solution because the configuration of the range CN is independent of the azimuth

CN configuration in the homogeneous scenario. That is, the optimal range CN

is optimal regardless of the optimal azimuth CN and vice-versa, and thus one

CN configuration (range or azimuth) can be optimized without evaluating every

combination of the other CN (range or azimuth). Therefore, the quadruple

summation can be separated into the range and azimuth CN combinations as
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follows:

range CN combinations:

Nd∑
XT =1

πXT∑
Xr=1

(1)

azimuth CN combinations:

Nd∑
YT =1

πYT∑
Ya=1

(1).

As a result, Eqn. 6.6 can be reduced to the following:

Ehom =

Nd⋃
XT =1

πXT⋃
Xr=1

{
(XT , Xr, Xa = 0)

} ⋃ Nd⋃
YT =1

πYT⋃
Ya=1

{
(YT , Yr = 0, Ya)

}
. (6.6)

If n is the number of combinations associated with Eqn. 6.5, then the number

of evaluations described by Eqn. 6.6 is 2
√

n. Eqn. 6.6 simplifies to

|Ehom| =

Nd∑
XT =1

πXT∑
Xr=1

(1) +

Nd∑
YT =1

πYT∑
Ya=1

(1)

=

Nd∑
XT =1

πXT
+

Nd∑
YT =1

πYT

= 2

Nd∑
T=1

πT ,

where the last equation employs the notation used in the heterogeneous scenario.

The third scenario, which involves both a homogeneous and heterogeneous

CN, is a combination of the first two scenarios. Let this mixed scenario be

represented by Ehet,hom. One heterogeneous CN configuration out of all the

124



feasible combinations expressed by Ehet is necessary in this case. Because of

the independence of the homogeneous range and azimuth CN configurations,

exploited by the reduction of Eqn. 6.5 to Eqn. 6.6, all combinations of Ehom

must also be applied. As a result, the following value for Ehet,hom is derived:

|Ehet,hom| = |Ehet| · |Ehom|.

The upper bounds for the total number of processor assignment combina-

tions, respective of daughtercard type, that must be considered in the CNCM

optimization is simply the sum of the expressions for the three scenarios already

investigated. That is,

|E| = |Ehom| + |Ehet| + |Ehet,hom|,

where |E| represents the total number of evaluations for all scenarios. Note that

the above summation also can be expressed by the following:

|E| = |Ehet| + |Ehom| + |Ehet| · |Ehom|.

With the S2T16B and S1D64B daughtercards exclusively as choices, E can

be easily calculated for the model under investigation. Because Nd = 2, let the

daughtercard type be the S2T16B if T = 1 and the S1D64B if T = 2, preserving

125



the convention of the ISMM. Thus, π1 = 3 and π2 = 2. With this definition,

Ehet can then be evaluated as follows:

|Ehet| =
1

2

Nd∑
T=1

(π2
T − πT )

=
1

2

2∑
T=1

(π2
T − πT )

=
1

2
[(32 − 3) + (22 − 2)]

= 4.

In the same way, |Ehom| is evaluated:

|Ehom| = 2

Nd∑
T=1

πT

= 2
2∑

T=1

πT

= 2(3 + 2)

= 10.

The total number of necessary evaluations is therefore

|E| = |Ehet| + |Ehom| + |Ehet| · |Ehom|

= 4 + 10 + (4)(10)

= 54.
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Up to 54 different combinations of processor assignments and card types must be

evaluated to ensure optimality. For each combination, the optimization routine

must be invoked and the best value, for whatever objective is chosen, of all the

combinations and corresponding configuration are declared optimal.

6.3 Minimization of Power

Power minimization is the fundamental case of investigation in this work.

Because of the increased computational intensity involved with the CNCM, this

model is only applied to the power minimization objective. Furthermore, it is

deemed sufficient to illustrate the utilization of this new model by applying it

only to the two cases of optimal and nominal mixed card type configurations

because the mixed configuration is the most general of all the configurations.

Analysis of the solutions of both cases will be carried out, followed by investiga-

tion of the utilization of the ISMM as a lower-bounds heuristic for the CNCM.

Similar to the convention set in Subsection 5.1.2, power requirements will be

represented as functions of the configuration types. Thus the objective function

for the power minimization model is as follows:

Z = NXΠCN(XT ) + NY ΠCN(YT ).

Note that with only the S2T16B and S1D64B available, the power function above
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is defined as

ΠCN(IT ) =

{
6.1 if IT = S2T16B,

9.6 if IT = S1D64B.

The above power values reflect the power consumption per CN instead of

the power per daughtercard value employed in the ISMM. Although the above

function definition of ΠCN consists of only two cases, as with this entire model,

the number of different types of daughtercards could increase by adjusting the

power function without affecting the optimization formulation.

Some reductions can be made to E for the power minimization model, ex-

ploiting the fixed nature of velocity and resolution. These reductions result from

the determination of either infeasible combinations, based on constraints such

as memory, or inexpedient combinations, which can be proved to provide sub-

optimal solutions. Note that different optimization objectives entail different

methods of reducing E as an upper bound or of reducing the mean E.

In the case of the homogeneous range CN, only one combination needs to be

evaluated. Because the range processor and memory requirements (Pr and Mr)

are fixed with resolution and velocity, the memory per range processor is also

fixed. Therefore the maximum feasible number of range processors per CN is
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given by the following expression:

max Ir =

⌊
MCN(IT )

Mr

Pr

⌋

=

⌊
MCN(IT )Pr

Mr

⌋
. (6.7)

Eqn. 6.7 also expresses the viable minimum number of range processors per CN

that should be evaluated because there is no advantage to leaving a processor

idle if it can be utilized. Thus Eqn. 6.7 represents the only combination that

needs to be evaluated for the homogeneously configured range CN. As a result,

Ehom is modified accordingly:

|Ehom| =

Nd∑
T=1

πT +

Nd∑
T=1

(1)

=

Nd∑
T=1

πT + Nd.

For the heterogeneous case, all combinations that do not meet the follow-

ing constraint can be removed from consideration before the invocation of the

optimization routine:

MCN(IT ) ≥ Ir
Mr

Pr
+ Ia

Ma(Sa = 1)

Pa(Sa = 1)
. (6.8)

The above condition is also valid for the homogeneous azimuth CN configuration,
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where Ir = 0. No minimum azimuth processor per CN value can be computed as

for the range because the expression is only a lower bound for the optimization

variable Sa. A low Sa entails a very high number of processors, but this fact

alone does not eliminate any configurations, whereas the memory constraint does

do so. However, the upper bound on E remains unchanged because it is possible

that the restriction of Eqn. 6.8 will never be active, although the mean E should

be reduced.

With application of the above restrictions, the lower bound on E is zero,

meaning that the application and radar parameters do not allow for a feasible

configuration on the available types of daughtercards. To calculate the new

upper bound of E for the power minimization model, with the two familiar

daughtercards available, the new Ehom first must be computed:

|Ehom| =

Nd∑
T=1

πT + Nd

= (3 + 2) + 2

= 7.

Note that with a larger selection of daughtercard types, the effect of this reduc-

tion would be greater. Considering this change in Ehom, the new value of E is
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found to be

|E| = |Ehet| + |Ehom| + |Ehet| · |Ehom|

= 4 + 7 + (4)(7)

= 39.

This new value for E results in a 28% reduction in the upper bound of the

number of evaluations necessary in the optimization routine.

6.3.1 Optimal Mixed Configuration

Results of the optimization for the optimal mixed card type configuration are

given in Fig. 6.1. The smooth surface, nonincreasing in the resolution dimension

and nondecreasing in the velocity dimension, is characteristic of an optimal power

surface. Although comparison of the CNCM power graph to that of the ISMM

will be presented later in this chapter, it is noted that the graph is almost

identical in shape to that of the ISMM (see Fig. 5.4). However, important

differences resulting from the additional constraints and variables introduced in

the present model necessitate new approaches to analysis of the data.

The most important new information available from the new model is the

configuration variables IT , Ir and Ia. It is feasible to present all the information

from all three of these variables concisely on one graph because only a subset of
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the total possible permutations is found to include optimal solutions in the range

of values investigated. For labeling purposes, let the following notation be used:

a configuration is represented by one or two three-digit numbers. Each number

is constructed digit by digit with the CN type first, then the number of range

processors per CN of that type, and then the number of azimuth processors per

CN of that type. Both of the two possible CN configurations are encoded in this

way as part of a total system configuration. That is, a system configuration is

denoted by the following: XT XrXa YTYrYa, where IT may be represented by a

‘1’ or a ‘2’ in the present case, denoting the S2T16B or the S1D64B, respectively.

For example, if the optimization routine determined that the optimal system

configuration consisted of assigning three range processors and no azimuth pro-

cessors to the S2T16B, and two azimuth processors and no range processors to

the S1D64B, the resultant representation is: 130 202. In the purely heteroge-

neous scenario, an optimal system configuration might assign one processor each

on the S1D64B to range and azimuth processing. The representation for this

case would be simply: 211.

The corresponding optimized system configurations for the power surface of

Fig. 6.1 is shown in Fig. 6.2. The configuration notation explained above is

employed in the legend of the graph.

The majority of system configurations are purely homogeneous CN configu-

rations in which each CN is dedicated to either range or azimuth processing. As
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Fig. 6.1: Minimal power for optimal mixed configuration.
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would be expected, for this configuration the S2T16B is used for range process-

ing and the S1D64B for azimuth processing. As resolution becomes coarser and

velocity decreases, other optimal configurations appear. Primarily motivated by

decreasing memory demands resulting from coarser resolution, the heterogeneous

configuration is optimal in which only the S2T16B is utilized with one range and

two azimuth processors. It is expected that if power were optimized over even

lower resolutions than 0.5 m, the heterogeneous configuration employing only

the S1D64B would become more common.

The optimal azimuth FFT size Fa in the present model is very similar to

that in the ISMM. Fig. 6.3 illustrates this resemblance. However, high velocity in

conjunction with fine resolution entails a decreased azimuth memory to processor

ratio relative to lower velocities at the same resolution. With no advantage in

conserving memory that no other processors can use, the two processors on the

S1D64B (note that the corresponding configuration at these resolution-velocity

pairs is: 130 202) optimize memory usage by increasing the FFT size.

The azimuth section size Sa closely resembles that of the ISMM just as does

Fa. Fig. 6.4 shows the surface of Sa. Note the corresponding additional peak in

Sa as in Fa at the high performance velocity-resolution pairs. The graph of the

azimuth kernel size, independent of optimization variables, is the same as in the

ISMM (see Fig. 5.10).

The ratio of the azimuth kernel size to the section size (Ka/Sa) differs slightly
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Fig. 6.4: Section size in optimal mixed configuration.
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from that of the ISMM because of the motivation to not waste memory available

on a CN. Fig. 5.20 shows that this ratio tends to be lower in the coarse resolution

area because Sa is increased to utilize all available memory.

Azimuth memory and processor requirements are slightly different from their

counterparts in the ISMM. Fig. 6.6 shows an increase in memory over the ISMM

at the high performance corner of the surface, corresponding to the increase in

FFT size at the same location observed in Fig. 6.3.

Azimuth processor requirements (Fig. 6.7) exhibit a premature rise and abrupt

fall in the area of high velocity and coarse resolution. This seemingly anomalous

feature is explained by the configuration graph (Fig. 6.2). Note that this raised

area on the processor graph corresponds to the area on the configuration graph

in which the memory-poor S2T16B is employed for both range and azimuth

processing.

The ratios of azimuth memory and processors to range memory and proces-

sors, respectively, are shown in Figs. 6.8 and 6.9. Note that the discontinu-

ities in the memory ratio graph is more accentuated in the CNCM than in the

ISMM, while the undulations in the processor ratio graph are smoother (com-

pare to Figs. 5.8 and 5.9). One explanation for this observation involves the

optimization motivation to utilize all the available memory on a CN, combined

with the restriction of using only the memory on a single CN. With the range

processing and memory requirements the same for both models, only azimuth
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Fig. 6.8: Ratio of azimuth to range memory in optimal mixed configuration.
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processing can be modified to take advantage of extra memory. As a result, the

azimuth memory per processor tends to be more uniform. Fig. 6.10 illustrates

this tendency, with a lone spike corresponding to the configuration in which the

S1D64B was employed with one range and one azimuth processor. This uni-

formity in azimuth memory per processor entails greater discontinuities in the

memory requirements, dependent on the FFT size and section size. The number

of azimuth processors also becomes slightly more uniform because optimization

of available memory on a card prevents extremely inefficient processing, as might

be optimal in the ISMM.

Azimuth memory per processor is one of the most noticeable differences be-

tween the CNCM and the ISMM. In the ISMM, memory per processor was not

a concern because memory is pooled. For the sake of comparison, the azimuth

memory per processor for the ISMM is plotted here in Fig. 6.11. The familiar

rolling effect is evident here, associated with the different FFT sizes. The surface

shape of Fig. 6.11 is almost identical to that of the ratio of the section size to

the FFT size, with the reversal of the velocity axis (see Fig. 5.12).

The other dramatic difference in corresponding optimization variables be-

tween the two models is the usage of the two types of daughtercards. As opposed

to the undulating characteristic apparent in the ISMM (see Figs. 5.13 and 5.14),

the CNCM favors the S1D64B, except in a small area of coarse resolution and

high velocity, where the S2T16B is exclusively employed. Figs. 6.12 and 6.13
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Fig. 6.10: Azimuth memory per processor for optimal mixed configuration in
CNCM.
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illustrate this trend. Because azimuth requirements dominate the system, ho-

mogeneous use of the S1D64B for azimuth processing results in this favoritism,

although the S2T16B is homogeneously employed for range processing. In the

corner of the graph where velocity is high and resolution coarse, reduced azimuth

memory requirements allow implementation of azimuth processing as well on the

S2T16B.

6.3.2 Nominal Mixed Configuration

As for the ISMM, comparison of the optimal configuration to the nominal

configuration is used to measure the utility of optimization. However, unlike

in the ISMM, in which the nominal configuration was merely a simplified and

specific case of the optimal configuration, with the section size removed as an

optimization variable and set equal to the kernel size, the nominal configura-

tion in the CNCM calls for special attention and a slightly more complicated

formulation for the nominal configuration to compete with the optimal. Both

the simplistic approach, in which no special attention is given, and the more

complicated approach will be examined. Because of this difference in formu-

lation, the two approaches to the nominal configuration presented here will be

denoted as the naive and sophisticated approaches. The general formulation of

the nominal problem is the same as for the optimal configuration but with the

aforementioned removal of Sa as an optimization variable.
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The added complexity in the nominal configuration formulation results from

the lack of optimizing the section size so as to correlate the employed processors

with the available memory. Reliance by the present formulation on the memory

per processor values to enforce the local memory access constraint (Eqns. 6.1

and 6.2) entails a serious problem for the nominal configuration. Because both

azimuth processor and memory requirements are fixed, the ratio of memory to

processors is also fixed. Although this fact alone does not prohibit optimization

in most cases, there is a set of resolution and velocity pairs that do not permit a

feasible solution regardless of how much power is allocated because the memory

per azimuth processor exceeds 64 MB, the upper limit on memory per processor

for the two daughtercards under consideration. As it might be surmised, in many

cases even the solutions that are feasible are rather poor because there is such

an inefficient use of memory. Fig. 6.14 displays the excessive power requirements

of the nominal configuration, with approximately 15% of the area investigated

infeasible.

This problem at first seems to be a reasonable and even expected penalty

for not optimizing the section size, which has been seen to be so critical in

the ISMM. However, inspection of Fig. 6.14 reveals a disturbing observation:

the area of infeasibility does not occur at the highest performance corner of

the graph but in the area at which resolution is fine and velocity is low. At

increased velocities, solutions become feasible. This unintuitive result calls for a
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new formulation. Such a formulation still may not find feasible solutions in every

case, but it should not produce feasible solutions by increasing the requirements.

Fig. 6.15 depicts the optimal card and processor assignments with the nom-

inal section size. It is noted that only one azimuth processor is allocated on the

S1D64B in the feasible solution area immediately outside the infeasible solution

area. This assignment infers a shortage of memory, as is expected by the nom-

inal configuration in which the kernel size is too large to act as a section size.

Fig. 6.16 confirms this suspicion that the memory per processor is greater than

64 MB at the points at which no solutions were found.

The extreme memory per processor values in Fig. 6.16 result from a high

memory requirement due to the fine resolution but yet a low processor require-

ment due to the low velocity. In the research presented thus far, it has been

accurate to assume that 100% processor utilization occurs. In the ISMM, this

point is not relevant because a high memory to processor ratio never explicitly

causes infeasibility. In the optimal configuration of the CNCM, the section size is

always optimized such that resources are not idle. (In tests conducted after the

original data was collected for the previous subsection on the optimal configura-

tion, 100% processor utilization was shown to be optimal for every resolution and

velocity value investigated. However, it is plausible that for more extreme ap-

plication parameter values, allowing less than 100% processor utilization might
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be necessary even with an optimized section size.)

To rectify an excessive memory to processor ratio, either the required memory

must be decreased or the number of processors increased. Because the memory

required is dependent on section size, which in the nominal case is fixed, memory

requirements cannot be modified. However, the number of processors can be

increased, thus reducing the individual processor utilization percentage.

One method to achieve feasible solutions in the nominal case is to calculate

the actual number of processors Pact (as opposed to the required number of

processors Pa, assuming 100% utilization) by the following equation:

Pact =
Pa

Up
, (6.9)

where Up denotes the processor utilization as a ratio, and has a range (0,1].

However, the necessary Up somehow still must be computed.

The most basic approach to calculating Pact is to consider the ratio of the

required memory and the maximum available memory per CN. Let Mmax rep-

resent this maximum available memory. If T is the target card type, then

Mmax = MCN(T ). If the target card type is not previously determined, and

the most versatile (in terms of feasibility) card type is desired, then the card

type with the greatest amount of memory per CN should be employed. That is,

Mmax = max{MCN(T ) : T = 1, 2, . . .Nd}, where T represents the daughtercard
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types denoted by consecutive integers beginning with ‘1’. Thus, one solution to

the actual number of processors is

Pact = max {Pa,
Ma

Mmax
}. (6.10)

With the two daughtercards under consideration, Mmax is 64.

Eqn. 6.10 implies the following expression for Up:

Up = min {1.0, PaMmax

Ma

}. (6.11)

With this formulation, it is assured that if a feasible solution exists with the

nominal section size, the lack of a large number of required processors will not

prevent finding a solution. The solution found, however, may be poor since Up

is set to its maximum possible value. In cases where all the memory is dedicated

to one processor on a card, regardless of how many processors are located on the

card and how little memory range processors may require, lack of consideration

of less than maximum values of Up will often entail additional wasted resources

on other cards.

To compare the nominal section size with the optimal section size without

this added disadvantage of the nominal formulation, either Up or Pact must be

optimized. Instead of only two optimization variables in the nominal configu-
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ration, a third variable is introduced into the formulation. Let Pact be the new

optimization variable so that the formulation may be modified by replacing every

occurrence of Pa in the constraints with Pact and setting Pa as a lower bound for

Pact.

The power requirement results of such a formulation are shown in Fig. 6.17.

Notice that they more closely emulate the relationship between the optimal and

nominal configurations in the ISMM, with the nominal requiring approximately

30% more power. Furthermore, solutions exist for the entire range of resolution

and velocity values.

The configuration graph for the sophisticated nominal model is presented in

Fig. 6.18. Comparing this graph to that of the naive approach, it is observed

that where previously there were infeasible solutions and solutions that dedi-

cated the entire S1D64B to one azimuth processor, now the S1D64B is used to

accommodate one azimuth processor and one range processor. This heteroge-

neous use of the CN greatly reduces the overall power consumption because a

range processor can be assigned to a CN on the S1D64B essentially for “free,”

because the ratio of azimuth memory to range memory is so high in these areas.

It is obvious that the freedom granted to the formulation to add processors

above the strict requirement as computed from the equation for Pa (see Eqn. 3.3)

improves the calculated power consumption of a system. There is a definite

penalty paid for this improvement, however, and the penalty is in terms of the
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Fig. 6.17: Power requirements for the sophisticated approach to the nominal
mixed configuration.
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Fig. 6.18: Configurations for the sophisticated approach to the nominal mixed
configuration.
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extra processors added to reduce the processor utilization and thus the memory

per processor. Figs. 6.19 and 6.20 show the number of added processors (i.e.,

Pact−Pa) and Up, respectively. Note that as the performance requirements of the

system decrease, the utilization also increases because the memory-per-processor

constraint becomes inactive.

Comparing the two approaches, the ratio of the power requirements of the

naive to the sophisticated approach is plotted in Fig. 6.21. Note that the area

which is infeasible in the naive approach cannot be compared. The maximum ra-

tio is 1.67 and occurs at the resolution-velocity coordinates {0.75 m, 239.6 m/s}.

The minimum ratio is 1.00, occurring at the coordinates {0.94 m, 137.5 m/s}

and approaching unity in many places. The mean ratio over the graph of mu-

tually feasible areas is 1.30. Note that this figure would be higher if the naive

approach found solutions in the infeasible area because its performance in this

area would be worst.

6.3.3 Comparison of Optimal and Nominal Configurations

Comparisons will be made of the optimal configuration with both the naive

and sophisticated nominal configurations. It is expected that the sophisticated

nominal configuration more closely resembles the nominal configuration in the

ISMM in relation to the optimal configuration. Whether it is reasonable to use

a sophisticated optimization approach to the nominal case, possibly violating
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Fig. 6.19: Added processors in the sophisticated approach to the nominal mixed
configuration.
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the term ‘nominal’, is an issue that will be discussed in the conclusions. In this

subsection only the power requirements are briefly considered.

The weakness in the naive approach to the nominal configuration is in its

propensity to infeasible or extreme solutions. Fig. 6.22 displays the ratio of

the naive nominal power requirement to the optimal power. The plot shows a

maximum ratio of 2.15 occurring at the coordinates {0.5 m, 50 m/s}, and a

minimum ratio of 1.08 occurring at {0.63 m, 195.8 m/s}. The mean ratio over

all the area in which the naive approach found a solution is 1.30.

The sophisticated approach to the nominal configuration (see Fig. 6.23)

avoids the extreme ratios present in the naive approach by reducing the maxi-

mum ratio to 1.76. This figure is still high but closely reflects the values com-

puted in the ISMM. Furthermore, it must be considered that this maximum

value occurs at the coordinates {1.69 m, 400 m/s}, which is in the infeasible

region of the naive approach. The minimum ratio is approximately the same as

in the naive approach, with a value of 1.08 at {0.94 m, 254.2 m/s}. The mean

ratio of 1.33, however, is worse than in the naive approach. This aberration is

easily explained, though, by taking into consideration the infeasible area of the

naive approach that is not calculated in that average, but is calculated in the

average of the sophisticated approach. The two approaches cannot meaningfully

be compared with these statistics then because of the infeasible region of the

naive approach.
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6.3.4 Effects of Integer Numbers of Cards

Taking the realism of the formulation a final step farther, the effects of dis-

cretizing the number of cards NI is explored. Up to this point, real values for

the number of daughtercards have been allowed to more accurately view the

effects of individual variables and variable relationships. Especially when the

total number of cards required is low, forcing the number of cards to be inte-

gers greatly alters the overall results. However, to completely specify a system,

it must be accepted that only integer cards are installed, even if resources are

wasted to some degree.

It is assumed that the optimization routine developed in this chapter is still

employed up to the point of determining the best solution out of all the con-

figurations evaluated. Pure integer programming would provide an absolutely

optimal solution to the problem, but such an optimization is infeasible in terms

of time for most scenarios considered. Such a method could be applied if it is

known that the total number of cards required, whatever the exact configuration,

is very low. In this case an exhaustive search and optimization of all feasible

integer solutions could be applied. This approach is not viable, however, for the

vast number of scenarios that this research purposes to address. Therefore, the

following discussion is premised on an available solution involving real values for

the number of cards, the raw results of which were presented in the previous two

subsections.

155



One approach to discretization is simply to round the numbers after opti-

mization. Although this approach yields a good average approximation to the

actual requirements, rounding off promises neither to be optimal nor even fea-

sible. Rounding off is safe and probably optimal when card number values are

near the next integer. In this case, the ceiling of a value is taken. However, in

the case that rounding off calls for truncating the decimal portion of a number

(i.e., rounding down), there exists the possibility of cutting resources below the

required levels. Rounding down is never possible in the case of a single card type

configuration or in the case in which both card number values are to be rounded

down in a two-card-type (purely homogeneous) configuration.

Rounding up of values is always safe, i.e., permits a feasible value, but does

not promise optimality, even in the integer sense. There exists the possibility

that in a homogenous configuration the floor can be taken of one of the card

number values. If this state is true, a savings of the power consumed by one

daughtercard is entailed for the overall power requirement. It is therefore useful

to check for this possibility, especially in systems in which the total number of

cards required is low.

Disparity in the characteristics of daughtercards, as is true with the two cards

under investigation in this research, often causes the probability to be low that

one card can be rounded up and the other down. Greater differences in the

resources supplied by each card imply lower probabilities that the rounding up
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of one card can supply what is sacrificed by the rounding down of the other.

To ameliorate this problem, the card number values are fixed at the proposed

rounding values and the problem is then reoptimized. The more appropriate term

for this operation is solving the problem with constraints. Note that with the card

configuration variables set (it is assumed that the processor assignments Ir and

Ia remain constant) then the only remaining optimization variable is the section

size Sa. The operation does not need to optimize Sa because it is insignificant

whether all or part of the resources on all cards is used. Determining the absolute

feasibility of the system with the fixed resources is the only goal sought with this

operation.

For each real solution returned by the initial optimization routine, two per-

mutations of rounding the card number values must be evaluated. Assuming

a purely homogeneous solution with two card configuration types involved, the

permutations that must be considered are the ceiling of one and the floor of the

other, or the floor of the first and the ceiling of the second. It is not necessary

to evaluate the floor of both card number values because this clearly violates

the required resources. Similarly, neither is it necessary to evaluate the ceiling

of both card number values because in this case the requirements are clearly

met. Nevertheless, the addition of the two permutations that must be evaluated

effectively triples the number of total optimizations that must be performed,

although these two optimizations converge quickly because there is only one
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optimization variable.

An additional consideration in the discretization of the number of required

daughtercards is the number of CNs per card. Because the optimization routine

developed in this chapter returns solutions in terms of CNs and not daughter-

cards, the number of CNs must be converted to daughtercards, rounded, and

then converted back to CNs for the reoptimization (or solving) process. The

equivalent technique implemented to collect the results presented consists of

rounding the number of CNs to a multiple of the number of CNs per that type

of card. In the case of the S2T16B, values are taken to the nearest multiple

of two. In the case of the S1D64B, the floor or ceiling of the number of CNs

constitute the same integer value in terms of daughtercards.

With all the considerations mentioned and the discussed technique applied,

one card number value allowed taking its floor in approximately 15% of the

solutions produced for the optimal mixed configuration in this model. The other

85% of solutions required taking the ceilings of both card number values.

Fig. 6.24 illustrates the effect on power consumption of forcing the number

of cards to be integers. As expected, there is no significant effect on the overall

graph (compare to Fig. 6.1), especially at the highest performance. Lower per-

formance scenarios in which relatively few cards are present in the system suffer

a more dramatic effect. Fig. 6.25 shows the ratio of power consumed by this

integer version of the solutions to the real-valued requirements.
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Fig. 6.23: Ratio of the optimal power requirement to those of the sophisticated
approach to the nominal mixed configuration.
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Fig. 6.24: Power requirements of the discrete card number solution to the optimal
mixed configuration.
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A more noticeable effect of the discretization is observed in the graph of

the configuration variables (Fig. 6.26). Although the general trends remain un-

changed from the original solution (Fig. 6.2), other configurations are found to

be optimal where several configurations produce close power requirements in

the real-valued solutions. Discretization of the values often changes the initial

optimal configuration.

In addition, the intrinsic optimality of some configurations seems to be doubt-

ful. In particular, the configuration ‘112 201’ appears inherently suboptimal. It

appears illogical that two azimuth processors can share the 16 MB of memory

on a S2T16B, but then only one azimuth processor is assigned to use the 64 MB

of memory on the S1D64B. However, it must be noted that only one such card

of the ‘201’ type is employed. The optimization routine originally configured the

system to employ only the ‘112’ type and had a fractional processor left over on

a card upon discretization. The routine therefore determined that one S1D64B

consumed less power than one S2T16B, recalling that the discretization is at

the daughtercard level and not at the CN level. In terms of CNs, the S1D64B

consumes more power per CN than does the S2T16B. The optimization routine

also could have determined that this one card should be of the ‘202’ type without

affecting any other system values.
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Fig. 6.25: Ratio of power by discrete card number solution to real-valued solution
in optimal mixed configuration.
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6.3.5 Comparison of CNCM and ISMM

The approximation of the ISMM to the CNCM is evaluated below. If the

ISMM can serve as a method of approximating the more realistic CNCM, a rel-

atively quick approximation can be ascertained for a system before formulating

the more rigorous and precise optimization. Focus is simply on the power re-

quirements because other values have little significance in this context outside

of the actual system design. That is, there probably will not be a need to accu-

rately approximate, for instance, the section size, if the card configuration data

is not yet known.

The graphs of the power requirements for both the ISMM and the CNCM for

the optimal mixed configurations have been given in Figs. 5.4 and 6.1, respec-

tively. It is observed that the general shape of the graphs is the same, although

the scaling is higher for the CNCM as would be expected. Fig. 6.27 presents the

ratio of the CNCM power requirements to that of the ISMM.

Peaks in the ratio graph occur along FFT size discontinuities, as is present

in other graphs of the same nature. In the ISMM, azimuth memory per proces-

sor is allowed to reach values that are physically unrealizable on the available

daughtercards. Hence, the CNCM explicitly limits the memory per processor

and suffers from this lack of optimization that is available to the ISMM.

Overall, the approximation is deemed to be good. Statistics of the ratio graph

are as follows: a maximum value of 1.31, minimum value of 1.002, mean value of
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1.11, and standard deviation of 0.07. It is not feasible to add a constant to the

ISMM solution to obtain a better approximation because the minimum value is

so close to unity. Because the ISMM solutions by definition never exceed the

CNCM solutions, the ISMM can be used as a lower bound approximation to the

realistic CNCM. If a lower bound is not necessary, but rather a more accurate

mean value, the solution from the ISMM can be multiplied by the mean ratio

value 1.11, keeping the standard deviation in mind.

6.4 Conclusions

The CNCM involves a more sophisticated optimization formulation than does

the ISMM presented in Chapter V. With this sophistication comes increased

computational intensity, one to two orders of magnitude greater than in the

ISMM. Benefits of the CNCM include a high degree of fidelity to plausible system

realizations and the provision of information lacking in the ISMM to completely

specify a system configuration.

Although not investigated in this work, the CNCM can be applied to other

optimization objectives such as velocity maximization and resolution minimiza-

tion for fixed power. Application to other optimization objectives entails obvi-

ous modifications to the formulation, as in the ISMM, as well as consideration

of special cases that affect the upper bound on or mean number of configura-

tion combinations to be evaluated. This same principle equally applies for other
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hardware-constrained configurations such as the single card type configuration

investigated for the ISMM.

Comparison of the optimal with the nominal configuration in the CNCM

presents additional problems. Unlike in the ISMM, the most simplistic approach

to the nominal formulation results in an area in which no feasible solutions are

possible. This fact alone is not of concern, but when it is taken into consider-

ation that increasing velocity and thus the overall requirements of the system

facilitate feasible solutions, the problem calls for more attention. The problem

is discovered to result from a high memory requirement and low processor re-

quirement, thus creating an unrealizably high memory per processor value. The

problem is rectified by the introduction of additional processors, thus simulta-

neously reducing processor utilization and memory per processor.

The added complication of the nominal formulation, resulting in three opti-

mization variables just as in the optimal formulation, begs the question whether

there is any advantage in employing the nominal section size in the CNCM. The

extreme values produced by the nominal configuration probably lead to a neg-

ative response to that question. However, the primary reason for including the

nominal configuration in this chapter is not to provide an alternative and clearly

inferior method of determining a system configuration, but to serve as a point of

reference to the advantage of optimizing the section size, which is a fundamental

basis of this work.
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The utility of the ISMM solution as an approximation to power requirements

as determined by the more realistic CNCM has been demonstrated. A mean

ratio of 1.11 (CNCM power to ISMM power) and a standard deviation of 0.07

presents the ISMM as a good approximator to the CNCM.

Although not tested in this work, a possible improvement to the ISMM, if

used to approximate, is to incorporate into the formulation the same optimiza-

tion variable that was created for the nominal configuration in this chapter. If

the required processors Pa was used as a lower bound to the number of actual

processors Pact, where Pact is an additional optimization variable, the peaks in

the ratio graph might be reduced. Although the addition of an optimization vari-

able entails greater computational complexity, overall computation time should

not be greatly affected relative to the computation time of the CNCM because

of the lack of integer programming.
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CHAPTER VII

RANDOMLY-GENERATED SOLUTIONS

In this chapter the use of randomly-generated solutions is introduced to ver-

ify the results obtained in the previous two chapters. The method is applied

only to the power minimization objective of the optimal mixed configuration

of the ISMM, this case being the fundamental and most general configuration

investigated. After application of this method of verification, the possibility of

extending the use of this method as a primary means of optimization is also

explored.

7.1 Solution Verification

Although it is impossible to completely verify the optimality of a given solu-

tion set without proving the convexity of the solution space, the random solutions

provide a means to greatly increase the confidence invested in a solution. Ran-

dom numbers are generated to form a large number of random solutions, the

best of which is compared to the solution provided by the formal optimization

formulation developed in Chapter V. If any random solution is superior to one

obtained by the optimization formulation, implementation of the formulation

cannot claim to produce truly optimal solutions. Consequently, in this case

the formulation (inferring also the convexity of the problem) and/or MATLAB
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routine is suspect.

To produce random solutions, several optimization variable values are ran-

domly generated and values for the remaining variables solved based on the in-

jected random values. Given a resolution, velocity, and proposed optimal power

requirement, random values are generated for the section size Sa and number of

S2T16Bs, C1.

The range for the section size is set at [1, 215 = 32768], encompassing values

both much greater than and less than any found to be optimal in results collected.

Such a great range increases the probability of poor solutions when a random

value falls at one end of the range, but this statement presupposes the optimality

of the proposed result. In random testing this assumption cannot be made. The

FFT size is then calculated in the standard method based on the value of the

generated Sa and Ka, which is dependent only on resolution.

C1 is generated with a range that is dependent on the proposed optimal

power. Although this dependency initially appears to corrupt the impartiality

of the testing, it actually serves to ensure that every solution has at least a theo-

retical chance of being optimal. Let Πprop be the proposed optimal power. Then

an upper bound is imposed on C1 equal to the maximum number of S2T16Bs

supported by a power value of Πprop. That is, if Cmax designates this upper
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bound on C1, then

Cmax =
Πprop

Πd(S2T16B)

=
Πprop

12.2
,

where Πd is the power requirement per daughtercard expressed as a function of

the daughtercard type. Although this restriction does not necessarily improve

the mean solution value of the random test, it does insure that at the point of

generation of C1, the solution is not already inferior to the proposed optimal

solution.

With values for Sa and Fa, values for Pr, Pa, Mr and Ma can be calculated

as usual based on Eqns. 3.2, 3.3, 3.5, and 3.6. C2 is then calculated by heeding

the more demanding of processor and memory requirements in terms of daugh-

tercards. That is,

C2 = max

{
(Pr + Pa) − πd(S2T16B)C1

πd(S1D64B)
,
(Mr + Ma) − Md(S2T16B)C1

Md(S1D64B)

}

= max

{
(Pr + Pa) − 6C1

2
,
(Mr + Ma) − 32C1

64

}
,

where πd and Md are the number of processors and amount of memory per

daughtercard, respectively, as functions of the daughtercard type.

With the randomly generated and calculated values above, the power re-
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quirement can be computed, as previously, as a function of C1 and C2 and their

respective power requirements per daughtercard (Power = C1Πd(S2T16B) +

C2Πd(S1D64B)). It is clear that any given power calculation based on the ran-

dom values has a very low probability of being even close to a proposed optimal

solution. However, with a very large sampling of random solutions, the proba-

bility increases that if there exists a better solution than the proposed optimal

power, then random testing will discover it.

In this work, MATLAB’s rand function is used to generate random numbers.

The function produces a vector of uniformly distributed floats in the interval

[2−53, 1 − 2−53], with a theoretical nonrepeating period of 21492.

The method described above was applied to the resolution and velocity val-

ues of 0.88 m and 297.9 m/s, respectively. The proposed optimal solution was

183.31 w. Table 7.1 displays the results of random testing taken over 1000000

samples. Fig. 7.1 shows the histogram of the tallied results using 100 bins. The

spike at the extreme right of the graph represents the sum of the frequencies of

values greater than can be displayed on the graph range.

The random tests lend a large degree of confidence to the proposed optimal

solution. Considering Table 7.1, it is apparent that the best solution occurs

when all parameter values are near the proposed optimal values. It is noted that

random testing did not produce any solution better than the proposed solution,

although it approached the proposed solution value and for all practical purposes
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Table 7.1: Summary of random solutions.

Case Power % Inc. Fa Ka Sa C1 C2

Optimal 183.31 – 4096 1960 1491 5.43 12.19

Random Best 183.36 0.024 4096 1960 1455 5.63 11.94

Random Worst 94536 51471 2048 1960 1.0 0.477 9847

Random Average 839.3 357.9 – – – – –

1000 1500 2000 2500 3000
0

2000

4000

6000

8000

10000

12000

14000

16000

Power

N
o.

 R
an

do
m

 S
am

pl
es

Fig. 7.1: Histogram of results from random testing on minimal power.
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found a solution of equal quality, differing by only 0.024%. With one million

random tests, confidence is lent to the validity of the testing method because a

very good solution was indeed found.

Considering the worst case and mean of the random testing, the quality

of both the proposed solution and that produced by random testing is placed

in a certain perspective. Haphazard assignments of parameter values can be

catastrophic.

Although the random testing has been conducted only on one set of resolution

and velocity coordinates, the results are representative across the entire range

of coordinates. This fact is demonstrated in the next section from a slightly

different perspective.

7.2 Random Solutions as an Optimization Technique

In the previous section, random solutions are used to sample the solution

space to evaluate a proposed optimal solution. This idea leads to the implemen-

tation of random sampling as a method of optimization in itself, without the

premise of a proposed solution produced by a formal optimization routine.

The only necessary modification to the problem formulation as described in

the previous section involves the absence of a proposed solution. Without this

value to set the power range for C1, another value must be substituted in its

place. If historical data is available to provide an upper bound, this data of
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course could be utilized. However, in the absence of such data, a liberal upper

bound for power must be injected into the problem. Even a poor estimate, as

long as it is high enough, allows the possibility of finding the optimal solution.

The greater the estimate is above the true optimal power, however, the greater

the time the random sampling will take to converge to a solution approaching

the optimal.

For each case investigated in this section, the power range for C1 was set at

[0,1200] w. It is not completely fair to call 1200 w a “liberal” upper bound since

knowledge of the solution surface presented in Fig. 5.4 suggests an upper power

value of 868 w. Nevertheless, the mean power consumption of the graph is only

135 w. In practice, optimal values for power are sought for precise resolution

and velocity coordinates more often than are power surfaces as has been usually

presented in this work. Thus in the highest performance area, an upper bound

of 1200 w (and it must be remembered that this upper bound is just for one

card with no bounds on the other) is less than 50% higher than the optimal

value, which might be considered a conservative and rather accurate ‘estimate’.

However, for the majority of the resolution and velocity coordinates, 1200 w is

a very poor and very liberal power estimate. Furthermore, an auxiliary goal of

this exercise is to test all the points of the proposed optimal power surface, and

too high a power range would reduce the probability of finding better solutions

if they exist.
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Random sampling of the solution space was done over all the coordinates

evaluated by the optimization methods for power minimization as in the previous

two chapters. The range of the random section size was handled slightly different

than in the previous section. The range of Sa was modified as [1, Fa−Ka], where

Ka is dependent on the resolution and Fa is set at 216 = 65536. This modification

increases the range of Sa slightly without increasing the upper bound of Fa,

entailing more ‘intelligent’ Sa guesses at high values. Figs. 7.2–7.5 show the

results of random sampling for sample sizes per coordinate pair of 100, 1000,

10000, and 100000 respectively. Tables 7.2 and 7.3 display the statistical results.

Table 7.3 shows a steady convergence of the random sampling solutions to the

optimal solutions proposed by the formal optimization formulation. However,

note that at no point does a random sampling solution discover a better solution

than that of the formal optimization. This fact lends confidence to the absolute

optimality of the solutions produced by the formulation presented in the ISMM

and the associated convexity of the problem (at least local convexity in the range

of resolution and velocity values investigated).

Evaluation of the random sampling method involves comparison with the

formal optimization solution in terms of the accuracy of the results and calcula-

tion time. Using the formal optimization solution as a reference, it is seen that

the accuracy of the results (see Table 7.3) depends on the number of samples
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Fig. 7.2: Minimal power requirements by random sampling using sample size of
100.
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Fig. 7.3: Minimal power requirements by random sampling using sample size of
1000.
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Fig. 7.4: Minimal power requirements by random sampling using sample size of
10000.
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Fig. 7.5: Minimal power requirements by random sampling using sample size of
100000.
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Table 7.2: Comparison of optimal and random configu-
ration power consumption.

No. Samples Minimum Maximum Mean

Optimal 9.2 867.6 135.5

100 28.6 1071.7 261.3

1000 18.5 926.1 166.7

10000 15.6 890.9 144.3

100000 10.8 877.4 137.9

Table 7.3: Ratios of random to optimal power.

No. Samples Minimum Maximum Mean Std. Dev.

100 1.0072 21.365 3.7844 3.1601

1000 1.0061 10.530 1.6493 0.8310

10000 1.0021 2.7504 1.1777 0.2203

100000 1.0010 1.3799 1.0477 0.0580
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taken, although even at the 100000-sample level the accuracy is still wanting by

approximately 5% and by 18% at the 10000-sample level.

Average calculation times for the random sampling method were 0.011, 0.080,

0.550, and 6.15 s per solution point for the 100-, 1000-, 10000-, and 100000-

sample operations, respectively. Relative to the average 1.21 s per solution point

for the formal optimization method, the times for the random sampling method

are not impressive considering the quality of the solutions. The above times were

all collected on the same computer, an Intel Pentium 133 MHz with 80 MB of

memory running Microsoft Windows NT 4.0. There was sufficient memory to

allow all computations using the 80 MB of main memory only.

It should be noted that the calculation times of the random sampling method

are very consistent, since the same operation with a consistent number of itera-

tions is performed for each resolution and velocity coordinate. This consistency

is in contrast to the calculation times of the formal optimization method, which

varies depending on the accuracy of the initial guess and other factors in the

optimization routine such as step size, constraint and objective tolerance, etc.

However, even very poor initial guesses are quickly overcome by the optimization

routine and calculation times never vary by more than 300%.

To achieve comparable results with the random sampling method in regards

to the formal optimization method, the number of samples would need to be

increased beyond the 100000 samples appropriated in this investigation. As ob-
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served in the first section of this chapter, the million-sample test provided a

solution of essentially equivalent quality as the formal optimization, but this

quality was accomplished with the aid of foreknowledge of the proposed optimal

solution to set an upper bound on the power consumption by one card. Fur-

thermore, the calculation time on the million-sample test was extremely high

(approximately 20 minutes) in comparison to the other solutions, exaggerated

by constraints in memory on the local machine performing the computation and

resultant reliance on virtual memory.

Thus, in terms of time and accuracy, the random sampling method does not

perform well in comparison to the formal optimization method. The random

sampling method has the advantage, however, of simplicity in implementation.

Even at small samples, the random sampling method produces a basic solution

surface clearly similar to that of the formal optimization, so as to be useful for

quick approximation.

Random sampling as a method to verify the results of a formal optimization

is shown to be useful. Although conclusive verification is impossible, greater

confidence in the solution is achieved with larger sample sizes and greater ranges

in randomized variables.
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CHAPTER VIII

CONCLUSIONS

This work focuses on modeling the processor-memory relationships of an em-

bedded system for synthetic aperture radar (SAR) processing. The Mercury

RACE multicomputer, built with commercial off-the-shelf (COTS) components,

is the computing platform case study. Within the framework of the models

developed in this work, optimization is performed on parameters such as the

convolution section size and the choice and number of processor-memory hard-

ware subunits (daughtercards) comprising the system.

Size, weight, and power (SWAP) constraints often motivate the maximiza-

tion of performance density for a given SAR system, especially in the case of

unmanned aerial vehicles (UAVs) or satellites, which often accommodate SAR

systems. SAR in itself is an approach to densifying a radar system by substitut-

ing a large degree of data postprocessing for radar equipment with prohibitively

high size, weight, and power characteristics. Minimization of power is the funda-

mental objective in this research, although with sufficient parameter guidelines

size and weight could also be minimized using the same approach.

The specific mode of SAR investigated in this research is known as stripmap-

ping. In stripmapping, successive radar pulses are transmitted and returned in

the range dimension, which is orthogonal to the line of flight. Each received
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series of pulses from an individual transmitted pulse is then convolved with a

reference kernel to achieve range compression. The entire range is processed at

once in this way.

To create a two-dimensional image, however, processing in the azimuth di-

mension is also necessary. The azimuth dimension is parallel to the line of flight

and is conceptually infinite in length. Thus, processing of the entire azimuth

vector, created from stacked range-processed vectors, is infeasible. To counter

this problem, sectioned convolution is employed.

Sectioned convolution extracts a piece (or section) of the azimuth vector,

convolves it with a reference kernel as in the range dimension, and then discards

a section of the result equal to the length of the reference kernel. Successive

processed azimuth sections are then overlapped (with overlaps equal to the dis-

carded section length) to form continuous vectors in the azimuth dimension.

As is intuitive, a large azimuth section length requires more memory than

a small section. Correspondingly, a small azimuth section requires more overall

processing than does a large section because the percentage of new data processed

that is not discarded is low, the size of the reference kernel being fixed.

One major focus of this work is the exploitation of the section size and

the concomitant processor-memory tradeoff. Different daughtercards are better

suited for different scenarios depending on the memory per processor ratio, the

application requirement of which is largely dependent on the chosen section size.
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The combination of the choices for the section size and number and types of

daughtercards employed greatly affects the overall performance and associated

power consumption of a system.

Two models are presented in this work that address the problem of deter-

mining the optimal values for these variables. Both methods are based on math-

ematical programming, which provides a method of formulating an optimization

problem given an objective and set of constraints. All computation in the work

was performed using MATLAB 5.1 and the associated Optimization Toolbox’s

constr function, which implements a Sequential Quadratic Programming algo-

rithm to solve nonlinear constrained minimization problems.

The first model (introduced in [16]) is based on the assumption of an ideal

shared memory system. It treats all the memory contributed by individual

daughtercards as a conglomerate block, equally accessible by all processors lo-

cated on all daughtercards. For the Mercury RACE system, this is an inaccurate

oversimplification. However, it is useful to initially investigate the optimization

of the SAR system based on such an assumption because it provides clear insight

into the interrelationships between variables and the effects of perturbation of

other external parameters. In addition, the simplification eases the collection of

data because of the relatively low level of computational intensity.

The second model removes the assumption of shared memory and purposes

to address system configuration more realistically. With this goal comes an
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increase in the complexity of the optimization formulation. The constraint set

is modified to ensure only local memory access by processors. To accomplish

this optimization, a much higher degree of integer programming is required than

in the first model, entailing higher computational intensity. The benefits of

this second model include solutions that consist of a complete specification of

system resources, whereas the first model only specifies which resources are to

be employed.

Comparison of the two models shows the first model to be a good approxima-

tor to the second model. Furthermore, the first model in its own right is a valid

representation of a system in which communication time between daughtercards

is only negligibly higher than memory access time by processors to their own

memory modules.

The utility of optimization of the section size is demonstrated by comparison

of results produced by a heuristic used to determine section size. The heuristic

defines the section size to be equal to the kernel size. This section size definition

and resultant system configuration is designated as nominal. This work finds

that the nominal section size, although relatively efficient in processing, is too

large for most scenarios because of the excessive memory requirements involved.

Research shows that forcing relatively inefficient processing with an associated

reduction in memory requirements is optimal if power is to be minimized. Op-

timal section sizes thus often are found to be only a fraction of the kernel size,
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entailing the processing of more old data that is to be discarded than new data.

This work also demonstrates the advantage of employing more than one type

of daughtercard in a system. Different daughtercards are characterized by differ-

ent power requirements, amounts of memory, number of processors, and resul-

tant memory per processor ratios. Optimization exploits these differences and

determines the optimal system configurations.

Although minimization of power is the primary objective in this work, other

optimization objectives are also considered. Minimization of resolution and max-

imization of velocity with a fixed power or hardware configuration are also in-

vestigated.

Random sampling of the solution space is performed to verify the proposed

solutions produced by the optimization formulations. Such testing demonstrated

the first model to be trustworthy. Although random testing was not performed

on the second model, the same principle may be applied with an associated more

complex random testing formulation.

The concept of solution verification with random sampling leads to the pro-

posal of random sampling as a method of optimization. The weakness of this

method is in the quality of the solutions and computation time required. Except

for very low sample sizes, the required calculation time was equal to or greater

than the time required for the formal optimization algorithm. Furthermore, the

quality of the solutions was uniformly worse than the formal optimization. The
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strength of the random sampling method is in its simplicity of formulation. This

method can be implemented without any knowledge of mathematical program-

ming or availability to sophisticated mathematical optimization routines.

Generalization of the models developed in this work is straightforward. Es-

pecially in the second model, effort is made to avoid use of values specific to the

Mercury RACE system. Instead, functions are defined that take as an argument

the daughtercard type and return the number of processors, amount of memory,

and power. Thus, any system that is constructed with the daughtercard concept,

i.e., processor-memory nodes, can be modeled with minor modifications to the

formulations presented.

185



REFERENCES

[1] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming:
Theory and Algorithms, Second Edition, John Wiley & Sons, New York,
NY, 1993.

[2] M. A. Branch and A. Grace, MATLAB: Optimization Toolbox User’s Guide,
Version 1.5, The MathWorks, Inc., Natick, MA, 1996.

[3] W. G. Carrara, R. S. Goodman, and R. M. Majewski, Spotlight Synthetic
Aperture Radar: Signal Processing Algorithms, Artech House, Boston, MA,
1995.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms,
MIT Press, Cambridge, MA, 1994.

[5] J. C. Curlander and R. N. McDonough, Synthetic Aperture Radar: Systems
and Signal Processing, John Wiley & Sons, New York, NY, 1991.

[6] J. L. Eaves and E. K. Reedy, Principles of Modern Radar, Van Nostrand
Reinhold Company, New York, NY, 1987.

[7] T. Einstein, “Mercury Computer Systems’ Modular Heterogeneous RACE
Multicomputer,” Proceedings of the Sixth Heterogeneous Computing Work-
shop (HCW ’97), sponsor: IEEE Computer Society, Geneva, Switzerland,
April 1997, pp. 60-71.

[8] T. Einstein, “Realtime Synthetic Aperture Radar Processing on the RACE
Multicomputer,” Application Note 203.0, Mercury Computing Systems,
Inc., Chelmsford, MA, 1996.

[9] J. Fitch, Synthetic Aperture Radar, Springer-Verlag, New York, NY, 1988.

[10] P.E. Gill, W. Murray, and M.H. Wright, Practical Optimization, Academic
Press, London, 1981.

[11] M. Ginsberg, Essentials of Artificial Intelligence, Morgan Kaufmann Pub-
lishers, San Francisco, CA, 1993.

[12] R. O. Harger, Synthetic Aperture Radar Systems: Theory and Design, Aca-
demic Press, New York, NY, 1970.

186



[13] F. S. Hillier and G. J. Lieberman, Introduction to Operations Research,
Sixth Edition, McGraw-Hill, New York, NY, 1995.

[14] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Paral-
lel Computing: Design and Analysis of Algorithms, Benjamin/Cummings
Publishing Company, Inc., Redwood City, CA, 1994.

[15] B. C. Kuszmaul, “The RACE Network Architecture,” Proceedings of the 9th
International Parallel Processing Symposium (IPPS ’95), sponsor: IEEE
Computer Society Technical Committee on Parallel Processing, Santa Bar-
bara, CA, April 1995, pp. 508-513.

[16] J.T. Muehring and J.K. Antonio, “Optimal Configuration of Parallel Em-
bedded Systems for Synthetic Aperture Radar,” Proceedings of the 7th In-
ternational Conference on Signal Processing & Applied Technology, October
1996, pp. 1189-1194.

[17] M. Pinedo, Scheduling: Theory, Algorithms, and Systems, Prentice- Hall,
Englewood Cliffs, NJ, 1995.

[18] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Prentice-
Hall, Englewood Cliffs, NJ, 1975.

[19] RACEway Interlink Modules, VITA Standards Organization (VSO), 1994.

[20] “SHARC DSP Compute Nodes (3.3-Volt),” Mercury Computing Systems,
Inc., Chelmsford, MA, Sept. 1995.

[21] M. I. Skolnik, Introduction to Radar Systems, McGraw-Hill, New York, NY,
1962.

[22] M. I. Skolnik, Radar Handbook, Second Edition, McGraw-Hill, New York,
NY, 1990.

[23] J. S. Walker, Fast Fourier Transforms, Second Edition, CRC Press, Boca
Raton, FL, 1996.

[24] J. West, Simulation of the Communication Time for a Space-Time Adaptive
Processing Algorithm on a Parallel Embedded System, M.S. Thesis, Texas
Tech University, 1998.

187



APPENDIX

This appendix includes a representative portion of the MATLAB code that

was significant in the generation and analysis of the data presented in this work.

Note that the actual data was produced by many separate application files,

often duplicating common portions of code. This approach was taken in favor of

creating one monolithic application that required numerous input arguments or

prompts and the associated internal conditional statements. Such an approach

inevitably would have resulted in a more cumbersome program, in terms of both

execution and maintainability. The code included in the following pages often

represents only code fragments, not complete “.m” files.
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Parameter Initialization

%This complete file serves serves as a general template for

%power minimization in both the ISMM and CNCM. In addition,

%the capability to determine integer daughtercard numbers is

%included. Execution of the complete file therefore produces

%solutions to the optimal power, mixed card-type configuration

%of the CNCM with integer card numbers. This configuration

%can be treated as the most general case with the real-value

%card number case taken as a specific instance of this program

%with the integer card-number code removed. Furthermore, the

%ISMM can similarly be treated as a specific case of the CNCM,

%where the code concerning CNs is removed.

%This code also serves as the template for the other objective

%functions, although modifications are necessary in the order

%of variable calculations (for example, in resolution

%minimization the azimuth kernel size cannot be calculated

%until a resolution is known) and to the number of parameters

%passed. This latter modification is necessary also when

%switching between the ISMM and CNCM. (Note that in the case

%of the other objective functions, changing of several

%variable names would be in order.)

%Because of the occasional lockup of the optimization routine,

%it is beneficial to allow other starting indices besides 1.

%The user can obtain the index from the last output. In

%addition, certain spots in the surface can be recalculated by

%entering the appropriate index and then aborting the program

%when the desired sequence is complete. When initiating a

%fresh run, it is advised that RESULTS are set to [] before

%invocation of the program. Otherwise they are never cleared

%in order to allow for midway restarts. The indices range

%from 1 to the total number of samples. For several reasons,

%this method proved easier than dealing with both row and

%column indices.

index = input(’Enter starting index: ’);

%Global variables are used to transfer data to the CONSTR

%optimization routine. Although passing of non-optimization
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%variables is provided for in CONSTR, the large number of

%variables necessary lent global variables to be a much more

%efficient option, without causing unnecessary problems in

%program flow or maintainability. Variables are defined as

%they are introduced below.

clear delta v C1 C2 CNMem CNPow Fa Ka Mr Pr Ma Pa

clear R Rs c T alpha beta gamma lambda Meg

global delta v C1 C2 CNMem CNPow Fa Ka Mr Pr Ma Pa

global R Rs c T alpha beta gamma lambda Meg

%Parameter initializations

Meg = 10^6; %1 million

c = 3*10^8; %speed of light (m/s)

T = 2048*2/c; %pulse width (s)

R = 100000; %range (m)

Rs = 20000; %range swath (m)

lambda = .03; %wavelength (m)

alpha = 127/360; %range non-fast-convolution load (MFlops)

beta = 1061/1170; %azimuth non-fast-convolution load (MFlops)

gamma = 94; %fast-convolution load (MFlops)

CNs = [2 1]; %CNs per card type

CNPow = [6.1 9.6]; %power per CN by card type (w)

CNMem = [16 64]; %memory per CN by card type (MB)

CNCE = [3 2]; %processors per CN by card type

lb = [1,0,0]; %lower bound for optimization parameters

options = []; %clear options for optimization functions

x = [1500,0,0]; %Initial Guess

%convert index to row and column loop counters

i = ceil(index/25);

j = rem(index-1,25)+1;

vIter1 = 1; %inner loop flag

%resolution sample-space vector

dvector = linspace(.5,2,25);

%velocity sample-space vector
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vvector = linspace(50,400,25);

%outer loop for resolution

for delta=dvector(i:25)

%check flag for first iteration to use INDEX value

if ~vIter1

%set start point of inner loop at 1 after first iteration

j = 1;

%clear flag

vIter = 0;

end

%inner loop for velocity

for v=vvector(j:25)

FirstIter=1; %flag for setting first solution value

Reduced = 0; %statistics of rounding integer cards

NonReduced = 0;

%range values can be calculated statically for each

%new resolution-velocity pair

%range FFT size

Fr = 2^ceil(log2(Rs/delta+c*T/(2*delta)));

%number of range processors

Pr = v*(alpha*Rs*gamma+10*Fr*delta*log2(Fr)...

+6*Fr*delta)/delta^2/Meg/gamma;

%megabytes of range memory

Mr = 16*v*Rs*(alpha*Rs*gamma+10*Fr*delta*log2(Fr)...

+6*Fr*delta)/delta^3/Meg^2/gamma;

%Although not very flexible, the execution of the

%following two loops enumerates all the feasible

%combinations of CN configurations in the CNCM.

%A more versatile and generalized approach could be

%formulated by following the derivation of the chapter

%on the CNCM, using recursive functions or hardcoding

%the number of loops and employing several conditionals.

%However, for the task at hand of generating initial

%test data, the brute force method below was efficient

%and convenient.

%C1 and C2 represent X and Y (as in the CNCM chapter),

%or the first and second card configurations. Note that
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%these two loops would be removed in the case of the

%ISMM.

for C1=[1,1,0; 1,2,0; 1,3,0; 2,1,0; 2,2,0; ...

2,1,1; 1,1,1; 1,2,1; 1,1,2]’

for C2=[1,0,1; 1,0,2; 1,0,3; 2,0,1; 2,0,2; ...

2,1,1; 1,1,1; 1,2,1; 1,1,2]’

%Do not test for two simultaneous heterogeneous

%configurations. Only one is necessary.

if ~( C1(2) & C1(3) & C2(2) & C2(3) )

%Azimuth kernel size

Ka = ceil(R*lambda/(2*delta^2));

%Power of two for azimuth FFT size (Fa)

FFTk = ceil(log2(Ka+1));

%flag for yet-active section size constraint

ConActive=1;

%while section size constraint still active

while ConActive

%compute (next) value of Fa

Fa = 2^FFTk;

%x: vector of optimization variables

%options: optimization toolbox options

%OptFun: user-defined .m file with

% objective function and constraints

[x,options]=constr(’OptFun’,x,options,lb);

%get objective function value and constraints

%values to check validity

[f,g] = OptFun(x);

%Check if all constraints are less than the

%tolerance (default). CONSTR will display a

%warning if no feasible solution is found but

%will still return a rational value for the

%objective function even if infeasible

if g <= options(4)
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%Feasible flag set

Feasible = 1;

else

%Feasible flag cleared

Feasible = 0;

%objective function value set to infinity

%for comparison’s sake in subsequent

%iterations

options(8) = inf;

end %end if-else

%if solution is not feasible, continue

%Note that this section is only when integer

%card numbers are desired. This long

%conditional statement can be skipped if

%real-valued solutions are sought.

if Feasible

%integer card values, to be determined

Real = [0 0 0 inf];

%original values returned by optimization

Ideal = [x options(8)];

%The below code is hardcoded for the two

%daughtercards researched. For a general

%formulation, the variable CNS should

%be used.

%Use modulus to round up to nearest card,

%dependent on number of CNs per card.

if C1(1) == 1 %S2T16B

ceilx(1) = ceil(x(2))...

+ mod(ceil(x(2)),2);

floorx(1) = floor(x(2))...

- mod(floor(x(2)),2);

else %S1D64B

ceilx(1) = ceil(x(2));

floorx(1) = floor(x(2));

end %end if-else

if C2(1) == 1 %S2T16B

ceilx(2) = ceil(x(3))...
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+ mod(ceil(x(3)),2);

floorx(2) = floor(x(3))...

- mod(floor(x(3)),2);

else %S1D64B

ceilx(2) = ceil(x(3));

floorx(2) = floor(x(3));

end %end if-else

%Check mixed card usage. Otherwise any

%rounding down is infeasible. If mixed,

%check for possible use of floor of one

%card type. Floor of both types is

%always infeasible.

if ceilx

%Check for ceiling:floor of C1:C2 if

%power of such a mix is >= to optimal

%value. If not, configuration is

%infeasible by definition of minimum

%power.

if( CNPow(C1(1))*ceilx(1) + ...

CNPow(C2(1))*floorx(2) ...

>= Ideal(4) )

%restrict optimization to within

%new ceiling:floor bounds by setting

%upper bounds.

ub=[inf,ceilx(1),floorx(2)];

%reoptimize with new upper bounds

[x,options]=constr(’OptFun’,...

Ideal(1:3),options,lb,ub);

%get constraints values

[f,g] = CNHetFun(x);

%check for validity of solution

if all(g <= options(4))...

& all(x <= (ub + options(4)))

%set new card and power values

Real = [round(x(1)) ceilx(1)...

floorx(2)...

CNPow(C1(1))*ceilx(1)...

+ CNPow(C2(1))*floorx(2)];

end %if
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end %if

%Check as above but floor:ceiling for

%C1:C2 instead.

if (CNPow(C1(1))*floorx(1)...

+ CNPow(C2(1))*ceilx(2)...

>= Ideal(4) )

ub=[inf,floorx(1),ceilx(2)];

[x,options]=constr(’OptFun’,...

Ideal(1:3),options,lb,ub);

[f,g] = CNHetFun(x);

if all(g <= options(4))...

& all(x <= (ub + options(4)))

TmpPow = CNPow(C1(1))*floorx(1)...

+ CNPow(C2(1))*ceilx(2);

%compare present value to value

%(if any) of ceiling:floor

%solution and take best

if TmpPow < Real(4)

Real = [round(x(1)) floorx(1)...

ceilx(2) TmpPow];

end %if

end %if

end %if

end %if

%check for any valid answer, else...

if Real(4) == inf

Real = [round(x(1)) ceilx(1) ceilx(2) ...

CNPow(C1(1))*ceilx(1)...

+ CNPow(C2(1))*ceilx(2)];

%increment tally of ceiling:ceiling

%solutions

NonReduced = NonReduced + 1;

else

%increment tally of either ceiling:floor

%or floor:ceiling solutions

Reduced = Reduced + 1;

end %if-else

end %if
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%check if answer is feasible and is best so far

if Feasible & ( FirstIter...

| ( Real(4) <= Best(8) ) )

%new best solution

Best = [delta v Fa Ka Real C1’ C2’];

%clear flag

FirstIter = 0;

end %if

%Check for active section size constraint.

%If active, increase FFT size and try again.

%Otherwise, discontinue.

if ceil(x(1)+Ka)<Fa

ConActive=0;

else

FFTk=FFTk+1;

end %if-else

end %while

end %if

end %for C2

end %for C1

%RESULTS holds the best for each velocity-resolution pair.

%If first iteration flag still set, then no valid solution

%was found during all iterations. Set flags of 0 or

%infinity in values to mark infeasibility.

if FirstIter

results(index,:) = [delta v Fa Ka 0 0 0 inf...

0 0 0 0 0 0 0 0];

else

%REDUCED and NONREDUCED hold tallies for one entire

%resolution-velocity pair

results(index,:) = [Best Reduced NonReduced];

end %if-else

%Print to screen results. Note that the results could

%also be printed to a file instead by including a file

196



%handle instead of the ’1’, opened at the start of the

%program.

fprintf(1,’%d\t%.2f\t%.1f\t%d\t%d\t%4d\t%.1f\t%.1f...

\t%.1f\t%d%d%d\t%d%d%d\t%d/%d\n’,...

index,Best,Reduced,NonReduced);

%Increment RESULTS array index by one.

index = index + 1;

end %for v

end %for delta

%clear global variables

clear global
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Function File Preliminary Code

%The code fragments below are representative of the function

%files associated with each optimization objective and

%configuration. The preliminary common to each function

%is given below, with the unique blocks of code displayed

%below. Although in reality each block would be a uniquely

%name file, all the files are grouped here under the name

%OptFun. This file is the one referenced in the previous

%exmpale of the main program. Note that modification is

%necessary in the main program to accomodate the variously

%sized optimization variables vector and removal of range

%variable calculations where appropriate.

%Common preliminary code

%X: vector of optimization variables

%f: objective function value

%g: vector of constraints values

function [f,g] = OptFun(x)

%Global parameters

global delta v C1 C2 Fa Ka Mr Pr Ma Pa

global R Rs c T alpha beta gamma lambda Meg

ISMM Optimal Single-Card Power

%Single card-type function

%Note that there are only two optimization variables

Sa = x(1);

C1 = x(2);

Pa = v*Rs/delta^2/Meg*(beta+(10*Fa*log2(Fa)+6*Fa)/Sa/gamma);
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Ma = 12*Rs/delta*(Sa+1/2*R*lambda/delta^2)/Meg;

%Objective Function

f = 12.2*C1;

%Constraints

g(1) = (Pr + Pa) - 6*C1;

g(2) = (Mr + Ma) - 32*C1;

g(3) = Sa - (Fa-Ka);

ISMM Nominal Mixed Power

Sa = Ka;

C1 = x(1);

C2 = x(2);

%Objective Function

f = 12.2*C1 + 9.6*C2;

%Constraints

g(1) = (Pr + Pa) - (6*C1 + 2*C2);

g(2) = (Mr + Ma) - (32*C1 + 64*C2);

g(3) = Sa - (Fa-Ka);

ISMM Optimal Mixed Velocity

v = x(1);

Sa = x(2);

C1 = x(3);
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C2 = x(2);

Fr = 2^ceil(log2(Rs/delta+c*T/(2*delta)));

Pr = v*(alpha*Rs*gamma+10*Fr*delta*log2(Fr)+6*Fr*delta)/delta^2/Meg/gamma;

Mr = 16*v*Rs*(alpha*Rs*gamma+10*Fr*delta*log2(Fr)+6*Fr*delta)/delta^3/Meg^2/gamma;

Pa = v*Rs/delta^2/Meg*(beta+(10*Fa*log2(Fa)+6*Fa)/Sa/gamma);

Ma = 12*Rs/delta*(Sa+1/2*R*lambda/delta^2)/Meg;

%Objective Function

f = -v;

%Constraints

g(1) = 12.2*C1 + 9.6*C2 - P;

g(2) = Sa - (Fa-Ka);

g(3) = (Pr + Pa) - (6*C1 + 2*C2);

g(4) = (Mr + Ma) - (32*C1 + 64*C2);

ISMM Optimal Mixed Velocity with Set Hardware

v = x(1);

Sa = x(2);

Fr = 2^ceil(log2(Rs/delta+c*T/(2*delta)));

Pr = v*(alpha*Rs*gamma+10*Fr*delta*log2(Fr)+6*Fr*delta)/delta^2/Meg/gamma;

Mr = 16*v*Rs*(alpha*Rs*gamma+10*Fr*delta*log2(Fr)+6*Fr*delta)/delta^3/Meg^2/gamma;

Pa = v*Rs/delta^2/Meg*(beta+(10*Fa*log2(Fa)+6*Fa)/Sa/gamma);

Ma = 12*Rs/delta*(Sa+1/2*R*lambda/delta^2)/Meg;

%Objective Function

f = -v;
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%Constraints

g(1) = Sa - (Fa-Ka);

g(2) = (Pr + Pa) - (6*C1 + 2*C2);

g(3) = (Mr + Ma) - (32*C1 + 64*C2);

ISMM Optimal Mixed Resolution

delta = x(1);

Sa = x(2);

C1 = x(3);

C2 = x(4);

Ka=R*lambda/(2*delta^2);

Fr = 2^ceil(log2(Rs/delta+c*T/(2*delta)));

Pr = v*(alpha*Rs*gamma+12*Fr*delta*log2(Fr)+6*Fr*delta)/delta^2/Meg/gamma;

Mr = 16*v*Rs*(alpha*Rs*gamma+12*Fr*delta*log2(Fr)+6*Fr*delta)/delta^3/Meg^2/gamma;

Pa = v*Rs*(beta*Sa*gamma+12*Fa*log2(Fa)+6*Fa)/delta^2/Meg/Sa/gamma;

Ma = 6*Rs*(2*Sa*delta^2+R*lambda)/delta^3/Meg;

%Objective Function

f = delta;

%Constraints

g(1) = 12.2*C1 + 9.6*C2 - P;

g(2) = Sa - (Fa-Ka);

g(3) = (Pr + Pa) - (6*C1 + 2*C2);

g(4) = (Mr + Ma) - (32*C1 + 64*C2);
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CNCM Optimal Mixed Power

Sa = x(1);

NumCN1 = x(2);

NumCN2 = x(3);

PaReal = x(4);

Pa = v*Rs/delta^2/Meg*(beta+(10*Fa*log2(Fa)+6*Fa)/Sa/gamma);

Ma = 6*Rs*(2*Sa*delta^2+R*lambda)/delta^3/Meg;

%Objective Function

f = CNPow(C1(1))*NumCN1 + CNPow(C2(1))*NumCN2;

%Constraints

g(1) = Sa - (Fa-Ka);

g(2) = Pr - NumCN1*C1(2) - NumCN2*C2(2);

g(3) = PaReal - NumCN1*C1(3) - NumCN2*C2(3);

g(4) = C1(2)*Mr/Pr + C1(3)*Ma/PaReal - CNMem(C1(1));

g(5) = C2(2)*Mr/Pr + C2(3)*Ma/PaReal - CNMem(C2(1));

g(6) = Pa - PaReal;

CNCM Naive Nominal Mixed Power

NumCN1 = x(1);

NumCN2 = x(2);

%Objective Function

f = CNPow(C1(1))*NumCN1 + CNPow(C2(1))*NumCN2;

%Constraints

g(1) = Pr - NumCN1*C1(2) - NumCN2*C2(2);

g(2) = Pa - NumCN1*C1(3) - NumCN2*C2(3);

g(3) = C1(2)*Mr/Pr + C1(3)*Ma/Pa - CNMem(C1(1));
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g(4) = C2(2)*Mr/Pr + C2(3)*Ma/Pa - CNMem(C2(1));

CNCM Sophisticated Nominal Power

NumCN1 = x(1);

NumCN2 = x(2);

Pa = x(3);

%Objective Function

f = CNPow(C1(1))*NumCN1 + CNPow(C2(1))*NumCN2;

%Constraints

g(1) = Pr - NumCN1*C1(2) - NumCN2*C2(2);

g(2) = Pa - NumCN1*C1(3) - NumCN2*C2(3);

g(3) = C1(2)*Mr/Pr + C1(3)*Ma/Pa - CNMem(C1(1));

g(4) = C2(2)*Mr/Pr + C2(3)*Ma/Pa - CNMem(C2(1));
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