
Journal of Parallel and Distributed Computing 62, 1386–1406 (2002)
doi:10.1006/jpdc.2002.1852
A Genetic-Algorithm Approach to
Scheduling Communications for
Embedded Parallel Space–Time
Adaptive Processing Algorithms

Jack M. West and John K. Antonio1

School of Computer Science, University of Oklahoma, 200 Felgar Street, Norman, Oklahoma 73019-6151

E-mail: west@ou.edu; antonio@ou.edu

Received March 29, 2000; accepted January 29, 2002

Computational efficiency is of great significance for high-performance

embedded applications. The work here develops and evaluates a genetic-

algorithm-based (GA-based) optimization technique for the scheduling of

messages for a class of parallel embedded signal processing techniques known

as space–time adaptive processing (STAP). The GA-based optimization is

performed off-line, resulting in static schedules for the compute nodes of the

parallel system. These static schedules are utilized for the on-line implementa-

tion of the parallel STAP application. The primary motivation and

justification for devoting significant off-line effort to solving the formulated

scheduling problem is the resulting reduction of hardware resources required

for the actual on-line implementation. Numerical studies illustrate that

reductions in hardware requirements of around 50% can be achieved by

employing the results of the proposed scheduling techniques. This reduction in

hardware requirement is of critical importance for STAP, which is typically an

airborne application in which the size, weight, and power consumption of the

computational platform are severely constrained. # 2002 Elsevier Science (USA)

Key Words: embedded processing; genetic algorithms; hardware minimiza-

tion; mapping; scheduling.
1. INTRODUCTION

For an application implemented on a parallel and embedded system to achieve

required performance, it is important to effectively map the tasks of the application

onto the processors in a way that reduces the volume of inter-processor

communication traffic. It is also important to schedule the communication of
1 To whom correspondence should be addressed.

13860743-7315/02 $35.00

2002 Elsevier Science (USA)
All rights reserved.

A GA FOR SCHEDULING PARALLEL STAP COMMUNICATIONS 1387
messages in a manner that minimizes network contention so as to achieve the

smallest possible communication times.

Mapping and scheduling can both}either independently or in combination}be

cast as optimization problems, and optimizing mapping and scheduling objectives

can be critical to the performance of the overall system. For embedded applications,

great importance is often placed on determining minimal hardware requirements

that can support a number of different application scenarios. This is because there

are typically tight constraints on the amount of hardware that can be accommodated

within the embedded platform. Using mappings and schedules that minimize the

communication time of parallel and embedded applications can increase the overall

efficiency of the parallel system, thus leading to reduced hardware requirements for a

given set of application scenarios.

The work outlined in this paper focuses on using a genetic-algorithm-based (GA-

based) approach to optimize the scheduling of messages for a class of parallel radar

signal processing algorithms known as space–time adaptive processing (STAP).

STAP is an adaptive signal processing method that simultaneously combines

the signals received from multiple elements of an antenna array (the spatial

domain) and from multiple pulses (the temporal domain) of a coherent processing

interval [6]. The focus of this research assumes that STAP is implemented using an

element-space post-Doppler partially adaptive algorithm, refer to Appendix A and

[6, 7] for details.

STAP involves signal processing methods that operate on data collected from a set

of spatially distributed sensors over a given time interval. Signal returns are

composed of range, pulse, and antenna-element digital samples; consequently, a

three-dimensional (3-D) data cube naturally represents the STAP data. A distributed

memory multiprocessor machine is assumed here for the parallel STAP implementa-

tion. The core processing requirement proceeds in three distinct phases of

computation, one associated with each dimension of the STAP data cube. After

each phase of processing, the data must be re-distributed across the processors of the

machine, which represents the communication requirements of this parallel

application. Thus, there are two primary phases of inter-processor data commu-

nication required: one between the first and second phases of processing and the

other between the second and third phases of processing. After all three phases of

processing are complete for a given STAP data cube, a new data cube is input into

the parallel machine for processing.

A proposed GA-based approach is used to solve the message-scheduling problem

associated with each of the two phases of inter-processor data communication. This

GA-based optimization is performed off-line, and the results of this optimization are

static schedules for the compute nodes of the parallel system. These static schedules

are used within the on-line parallel STAP implementation. The results of the study

show that significant improvements in communication time performance are possible

using the proposed approach for scheduling. It is then shown that these

improvements in communication time translate to reductions in required hardware

for a class of scenarios. Performance of the mappings and schedules are evaluated

based on a Mercury RACE1 network simulator developed in [7] and described in

Appendix C.

WEST AND ANTONIO1388
The rest of the paper is organized as follows. Section 2 investigates the issue of

defining suitable mappings of the STAP data cube onto the multiprocessor system.

The GA-based approach for scheduling messages associated with the two phases on

inter-processor communication is given in Section 3. The benefits of using the GA-

based approach are illustrated through numerical studies in Section 4, followed by

conclusions in Section 5.

2. DATA MAPPING FRAMEWORK

For this work, the STAP data cube is partitioned into sub-cube bars of vectors

where each bar is mapped onto a given compute node (CN), refer to Appendix B for

more details. A two-dimensional process set, as described in [8], defines the mapping

of data onto CNs for each computational phase. Additionally, the process set defines

the communication pattern for the required ‘‘distributed corner turns’’ of the STAP

data cube [3].

Figure 1 illustrates the application of a two-dimensional process set to a STAP

data cube prior to processing contiguous data in the range dimension. The STAP

data is distributed to the processors based on the process set definition. Defining a

process set requires two important steps. First, the two dimensions of the process set

should be specified such that the product of the two dimensions is not greater than

the number of available processors. Second, each CN number should be assigned a

location (row and column) in the process set. In this example, the STAP data cube,

which contains L range samples, M pulse samples, and N channel elements, is

partitioned by a 3 � 4 process set (i.e., three rows and four columns for a total of 12

CNs). The 3 � 4 process set defines the partitioning of the data cube prior to range

processing. The CNs are assigned in a raster ordering from left to right. Each of the

12 CNs is assigned a sub-cube of contiguous data vectors of size L� M
4
� N

3
based on

their respective location in the process set.

Recall that STAP requires three phases of processing, one associated with each

dimension of the data cube. Consequently, a process set must be defined for each
Ran
ge

C
h

an
n

el

Pulse1 1
1 M

L

N

STAP Data Cube (N × M × L)

C
h

an
n

el

Pulse

3 × 4 Process Set
(left-to-right raster ordering of CNs)

9 10 11 12

5 6 7 8

1 2 3 4

Ran
ge

C
h

an
n

el

Pulse

34

NM
L ××

Each CN is assigned a sub-cube of
data vectors of size:

5 6 7 8

1 2 3 4

9 10 11 12

FIG. 1. Process set partitioning of a STAP data cube for range processing.

A GA FOR SCHEDULING PARALLEL STAP COMMUNICATIONS 1389
phase of processing. The process sets not only define the allocation of CNs to data

but also the required data transfers during phases of data redistribution. To

illustrate, let T1 represent the process set for range processing and T2 define the

process set for processing in the pulse dimension. The process sets T1 and T2 define

the required message traffic to form contiguous vectors in the pulse dimension after

range processing is complete. The row and column dimensions of T1 and T2 affect the

communication pattern that is induced for the first communication phase. Similarly,

the row and column dimensions of T2 and T3 affect the volume and pattern of the

second communication phase. Refer to Appendix B for a more detailed explanation

of how mapping choices impact communication requirements.

The possible values for the row and column dimensions of a given process set,

denoted by ðR;CÞ, is defined by the following:

ðR;CÞ 2 fði; jÞ j i j ¼ pg; ð1Þ

where p is the number of processors (i.e., the number of CNs). A complete mapping

is defined by specifying the dimensions of all three process sets; thus, the number of

complete data cube mappings is given by

jfði; jÞ j i j ¼ pgj3: ð2Þ

To illustrate, for p ¼ 12 there are six possible process sets: fð1; 12Þ; ð2; 6Þ;
ð3; 4Þ; ð4; 3Þ; ð6; 2Þ; ð12; 1Þg. Because a process set must be applied to each of the

three dimensions of the data cube, there are a total of 63 ¼ 216

possible mapping alternatives. It is noted that the number of possible schedules

associated with a single mapping is generally much larger than the number of

mappings. In Section 3, a GA-approach to optimal scheduling for a given mapping is

developed.

Based on the class of mappings defined above, an objective function is developed

next for defining the merit of individual mappings. The mapping objective function

quantifies the quality of the mapping associated with a collection of three process

sets. The message size and the distance each message must travel (i.e., the number of

crossbar connections required for transmission) are key parameters of the objective

function. The process sets T1 and T2 induce message traffic requirements as do the

process sets T2 and T3. The induced message traffic produced by process sets T1 and

T2 is quantified using the following expression:

X

ði; jÞ2S1

jmijjdij; ð3Þ

where S1 represents the set of all messages induced by process sets T1 and T2, mij

defines a message from CN i to CN j, jmijj is the message size, dij is the distance the

message traverses from source to destination. By combing the above expression with

a similar expression for the message traffic between process sets T2 and T3, an

objective measure of overall mapping quality is defined as

X

ði; jÞ2S1

jmijjdij þ
X

ði; jÞ2S2

jmijjdij: ð4Þ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250

Rank

O
b

je
ct

iv
e

F
u

n
ct

io
n

V
al

u
es

(x
10

^6
) 4 CNs

8 CNs

16 CNs

FIG. 2. Illustration of the mapping objective function values associated with mapping a 240 � 32 � 16

STAP data cube mapped onto a 4, 8, and 16 CN system.

WEST AND ANTONIO1390
Figure 2 compares mapping objective function values associated with mapping a

240 � 32 � 16 STAP data cube onto a 4, 8 and 16 CN system. The results shown in

the figure illustrate that as the number of CNs is increased, the (ranked) objective

function values also increase. It should be noted that the addition of more CNs

decreases the underlying parallel computation time because the data cube size is fixed

and thus each CN has less work to accomplish. However, the addition of more

processors provides a greater dissection of the data; thus, repartitioning the data

among computational stages requires a greater number of messages between a

greater number of processors. More messages and more processors generally require

greater communication time and more network resources. The overall goal, of

course, is to produce the minimal overall execution time (which includes both

computation and communication phases). This goal will be considered later in

Section 4.

In general, the results in Fig. 2 (and many more studies conducted in [8])

illustrate a wide variation of objective function values. In addition to this variation,

it was discovered that multiple mappings produce the same mapping objective

function values. The computed ratio in objective function values between good and

poor mappings range from one-third to one-half, refer to [8] for more detailed

studies.

It is noted that there is no guarantee that a mapping having a minimal objective

function value, once implemented, is necessarily the best overall choice. This is

because the scheduling of messages also has a significant impact on performance.

How to optimally schedule messages for a given mapping using a GA-based

approach is the topic of the next section.

A GA FOR SCHEDULING PARALLEL STAP COMMUNICATIONS 1391
3. GENETIC-ALGORITHM APPROACH TO MESSAGE SCHEDULING

A GA is a population-based model that uses selection and recombination

operators to generate new sample points in a solution space [5]. A GA encodes a

potential solution to a specific problem on a chromosome-like data structure and

applies recombination operators to these structures in a manner that preserves

critical information. Reproduction opportunities are applied in such a way that

those chromosomes representing a better solution to the target problem are given

more chances to reproduce than chromosomes with poorer solutions. GAs are a

promising heuristic approach to locating near-optimal solutions in large search

spaces [5]. For a complete discussion of GAs, the reader is referred to [2, 5, 8].

Typically, a GA is composed of two main components, which are problem

dependent: the encoding problem and the evaluation function. The encoding problem

involves generating an encoding scheme to represent the possible solutions to the

optimization problem. In this research, a candidate solution (i.e., a chromosome) is

encoded to represent valid message schedules for all of the CNs. The evaluation

function measures the quality of a particular solution. Each chromosome is

associated with a fitness value, which in this case is the simulated completion time

of the schedule represented by the given chromosome. For this research, smaller

completion times indicate better fitness. The network simulator described in

Appendix C is used to determine the communication time of the schedule encoded

by each chromosome.

Chromosomes evolve through successive iterations, called generations. A new

generation is created when new chromosomes, called offspring, are formed by (a)

merging two chromosomes from the current population together using a crossover

operator or (b) modifying a chromosome using a mutation operator. Crossover, the

main genetic operator, generates valid offspring by combining features of two parent

chromosomes. Chromosomes are combined together at a defined crossover rate,

which is defined as the ratio of the number of offspring produced in each generation

to the population size. Mutation, a background operator, produces spontaneous

random changes in various chromosomes. Mutation serves the critical role of either

replacing the chromosomes lost from the population during the selection process or

introducing new chromosomes that were not present in the initial population. The

mutation rate controls the rate at which new chromosomes are introduced into the

population. In this paper, results are based on the implementation of a position-

based crossover operator and an insertion mutation operator, refer to [2] for details.

Selection is the process of ordering (i.e., ranking) chromosomes in the population

by their fitness values from the best to worst. There are two fundamental paradigms

for implementing the selection process: (1) value-based roulette wheel selection

scheme and (2) rank-based roulette wheel selection scheme. In a value-based scheme,

the probability of a chromosome being selected for reproduction is proportional to

its fitness value. Each chromosome is allocated a sector on a roulette wheel

proportional to its fitness value. To better illustrate the value-based approach to

selection, let P denote the population size and Ai denote the angle allocated to the ith
chromosome. In addition, let fi represent the fitness of the ith chromosome, and let

the average fitness of the population be favg. In this selection scheme, the ith

WEST AND ANTONIO1392
chromosome is allocated a sector of the roulette wheel with area proportional to

favg=fi [5]. This proportionality assumes the best chromosome has the smaller fitness

value; therefore, it is allocated a larger slice of the roulette wheel.

In a value-based scheme, chromosomes with the same fitness values have the same

probability of being selected. In contrast, chromosomes in a rank-based scheme that

have the same fitness value are arbitrarily ranked among themselves. The 0th ranked

chromosome is the fittest and has the sector with the largest angle A0; the ðP
 1Þth
ranked chromosome is the least fit and has the smallest angle Ap
1 [5]. The ratio

between two adjacent chromosomes is a constant R ¼ Ai=Aiþ1. If the 3608 of the

roulette wheel are normalized to one, then

Ai ¼ RP
i
1 �
ð1
 RÞ
ð1
 RP Þ

; ð5Þ

where R > 1, 04i5P , and 05Ai51 [5].

The selection step involves the generation of P uniformly distributed random

numbers ranging from zero to one. Each number maps to a location on the roulette

wheel, thereby selecting the chromosome allocating that sector of the wheel. Because

better solutions occupy larger portions of the wheel than poorer solutions, the better

candidates have a higher probability of selection. This selection process produces P
candidates for recombination and mutation operations, where multiple copies of the

same candidate are permissible. For this research, the size of the next generation is

always kept a constant P , and a rank-based selection scheme is used. Advantages of

rank-based fitness assignment is, it provides uniform scaling across chromosomes in

the population and is less sensitive to probability-based selections, refer to [5] for

details.

As successive generations emerge in the GA heuristic, it is important to compare

the best solution found thus far to the best solution in the current population. The

best solution is updated whenever the fitness value (i.e., the completion time) of a

particular candidate is smaller than the current best solution. After evaluating and

possibly updating the best solution, the stopping criteria are evaluated. The

algorithm terminates if one of the stopping criteria are true, otherwise the algorithm

continues by performing the states of selection, crossover, and mutation.

The optimization of schedules during phases of data redistribution between CNs

on the parallel system can be viewed as a problem with discrete objects (i.e., the

source and destination locations of the messages are fundamental to the encoding of

the chromosomes). Optimization problems involving discrete data sets are called

combinatorial optimization problems. In traditional genetic-based algorithms,

chromosomes are represented as binary strings. However, this representation is

not well suited for all combinatorial problems. The most natural representation, and

the one implemented in this research, is a permutation representation. In this

approach, messages are listed in the order in which they appear in each CN queue by

a decimal number representing the destination node of the message. This

representation (see Fig. 3) is called path representation.

The illustrative example in Fig. 3 shows four CNs with associated message queues.

The boxes represent a message, and the number in the box indicates the destination

CN 1 CN 2 CN 3 CN 4

2

3

4

1

4

1

2

4

2

3

Message
Queue

S0 = 2 3 4 1 4 1 2 4 2 3-1 -1 -1 -2

FIG. 3. Illustration of the encoding of a chromosome.

A GA FOR SCHEDULING PARALLEL STAP COMMUNICATIONS 1393
of the message. For example, CN 1 needs to send a message to CN 2, 3, and 4. A

chromosome for a schedule is composed of a particular ordering of all the messages

for all four CNs. One permutation of the messages for each CN is combined together

to form a chromosome, in this case S0. The message identifiers for the CNs are

appended in sequence starting with the first CN. For the work in this paper, special

separation tags (i.e.,
1 values) are inserted between the orderings of successive CNs.

Crossover operations are applied to sections of the chromosome bounded by the

separation tags, thus eliminating the prospect of creating invalid chromosomes. In

addition to separation tags, a termination tag (i.e.,
2) is appended to the end of the

chromosome to signal the end of the chromosome.

4. NUMERICAL RESULTS

4.1. GA-Based Message Scheduling

The GA-based approach is applied to the two phases of communications induced

by a given mapping for a given data cube. Forty random schedules were initially

generated; then the poorest 20 schedules were eliminated from this population and

the GA population size was kept a constant 20 after each iteration (i.e., generation).

The recombination operators included a position-based crossover algorithm and an

insertion mutation algorithm. A rank-based selection scheme was employed with the

angle ratio of sectors on the roulette wheel for two adjacently ranked chromosomes

to be 1 þ 1=P , where P is the population size. The stopping criteria were: (1) the

number of generations reached 500; (2) the current population converged (i.e., all the

chromosomes have the same fitness value); or (3) the current best solution had not

improved in the last 150 generations.

Figures 4 and 5 show the evolution of fitness values}which are simulated

communication times}for the GA-based message scheduling approach applied to

the two phases of communication induced by the ½8 � 4; 8 � 4; 8 � 4� mapping

(32 CNs) for a STAP data cube assumed to have 240 range bins, 32 pulses, and 16

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0 100 200 300 400 500 600

Generation

F
it

n
es

s
(c

o
m

p
le

ti
o

n
ti

m
e

in
m

ic
ro

se
co

n
d

s)
GA1

GA2

GA3

FIG. 4. Simulated communication completion time for the communication requirements for data

redistribution after range processing and prior to processing in the pulse dimension. For GA 1, the

crossover rate ðPxoverÞ ¼ 20% and the mutation rate ðPmutÞ ¼ 4%. For GA 2, Pxover ¼ 50% and Pmut ¼ 10%.

For GA 3, Pxover ¼ 90% and Pmut ¼ 50%.

WEST AND ANTONIO1394
antenna elements. Figure 4 is for the first communication phase (between processing

in the range and pulse dimensions) and Fig. 5 is for the second communication phase

(between processing in the pulse and element dimensions). The three curves in each
4.4

4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

0 50 100 150 200 250 300 350

Generation

F
it

n
es

s
(c

o
m

p
le

ti
o

n
ti

m
e

in
m

ic
ro

se
co

n
d

s)

GA 1

GA 2

GA 3

FIG. 5. Simulated communication completion time for the communication requirements for data

redistribution after processing in the pulse dimension and prior to the final phase of processing. For GA 1,

the crossover rate ðPxoverÞ ¼ 20% and the mutation rate ðPmutÞ ¼ 4%. For GA 2, Pxover ¼ 50% and

Pmut ¼ 10%. For GA 3, Pxover ¼ 90% and Pmut ¼ 50%.

A GA FOR SCHEDULING PARALLEL STAP COMMUNICATIONS 1395
figure correspond to different values for the crossover and mutation probability

parameter settings. In the first GA scenario (GA 1), the crossover rate ðPxoverÞ is 20%

and the mutation rate ðPmutÞ is 4%. For GA 2, Pxover is 50% and Pmut is 10%. For GA

3, Pxover is 90% and Pmut is 50%.

Figures 4 and 5 illustrate that for a fixed mapping, the GA-based approach is

capable of improving the scheduling of messages, thus providing improved overall

performance for a given mapping. All three genetic-based scenarios improve the

completion time for both communication phases. In each phase, GA 2 records the

best schedule of messages (i.e., the smallest completion time). Extensive numerical

studies involving different mappings, data cube sizes, and numbers of CNs have been

conducted, but are not included here due to space limitations. A summary of some of

these results will be given at the end of this section; for more details and analysis, the

reader is referred to [8].

To better understand the interplay between mapping and scheduling, the

following four process set mappings were considered for a 32 CN multi-

computer: ½32 � 1; 32 � 1; 32 � 1�, ½16 � 2; 16 � 2; 16 � 2�, ½8 � 4; 8 � 4; 8 � 4�, and

½8 � 4; 2 � 16; 16 � 2�. Based on a data cube of size 32 � 32 � 32, the best mapping

objective function value (from all possible mappings) is the ½32 � 1; 32 � 1; 32 � 1�
mapping. The ranking of the ½16 � 2; 16 � 2; 16 � 2� mapping was 13th, the

½8 � 4; 8 � 4; 8 � 4� mapping ranked 31st, and the ½8 � 4; 2 � 16; 16 � 2� mapping

ranked 111th. For this example, the number of possible mappings was 63 ¼ 216.

The results illustrated in Fig. 6 compare the communication times associated with

the best GA-schedules for each of the four mappings defined above (when applied

to a 32 � 32 � 32 data cube). The required communications between the range

and pulse processing is denoted by Phase 1 label; Phase 2 label refers to the
0

0.5

1

1.5

2

2.5

F
it

n
es

s
(c

o
m

p
le

ti
o

n
ti

m
e

in
m

ill
is

ec
o

n
d

s)

32x1, 32x1,
32x1

16x2,16x2,
16x2

8x4, 8x4, 8x4 8x4, 2x16,
16x2

Mapping

Phase 2

Phase 1

FIG. 6. Illustration comparing communication times associated with four different mappings schemes

using the best GA-based schedules for each mapping. The STAP data cube is of size 32 � 32 � 32 and

there are 32 CNs in the multiprocessor system.

WEST AND ANTONIO1396
communications between processing in the pulse and element dimensions. Based on

the mapping objective function, the ½32 � 1; 32 � 1; 32 � 1� mapping receives the

highest ranking. With this mapping, there is no required communication in the first

phase of communication. Thus, the communications for this mapping is entirely in

the second data transfer phase. And although the mapping objective function is

minimal, the network is flooded with messages during the second communication

phase resulting in high levels of network contention. In two of the other mappings,

the data transfers are dispersed between two phases of traffic, thereby resulting in a

smaller overall communication time. The poorest ranked mapping considered (i.e.,

½8 � 4; 2 � 16; 16 � 2�), is indeed associated with the poorest overall communication

time. Unlike the case presented here, other sets of mappings and data cube sizes are

considered in [8] in which the rankings of the mappings remain consistent with the

resulting rankings of the overall communication times associated with using the best

GA-based schedules.

4.2. SWAP Analysis

For many airborne radar systems, the goal of minimizing the total size, weight,

and power (SWAP) of the computing platform can be critical. Until recently, very

little research has focused on the effect data mapping and message scheduling have

on overall SWAP requirements for a parallel computing platform.

Figure 7 shows the total computation time and three candidate communication

completion times (total, for both communication phases) for a set of processors

ranging from 4 to 32. For this figure, the STAP data cube consisted of 480 range

bins, 64 pulses, and 16 channel elements. The computation time component

was measured from an actual Mercury system executing the Real-Time STAP
0

50

100

150

200

250

300

4 8 12 16 20 24 28 32 36

Processors

T
im

e
(m

s) Computation

Scenario #1

Scenario #2

Scenario #3

FIG. 7. Comparison of the computation time and communication times for three mapping/scheduling

scenarios for a STAP data cube composed of 480 range bins, 64 pulses, and 16 channel elements.

0

50

100

150

200

250

300

350

4 8 12 16 20 24 28 32 36

Processors

T
im

e
(m

s)
Scenario #1

Scenario #2

Scenario #3

Optimal 8 CN

Optimal 16 CN

FIG. 8. Comparison of the overall completion times, including both computation and communication,

for the three mapping/scheduling scenarios of Fig. 7. The optimal mapping/scheduling for 8-processor and

16-processor systems are indicated with dashed lines.

A GA FOR SCHEDULING PARALLEL STAP COMMUNICATIONS 1397
benchmark provided by Mitre [1]. Scenario 1 communication time corresponds to

the best time reported by the GA optimization utilizing the best mapping for the

given number of assigned processors. The communication completion times for a

baseline scheduling of transfers given a typical mapping is illustrated by scenario 2,

and communication scenario 3 consists of a typical mapping and a poor schedule.

The illustration shows a distinctive variation in the communication scenarios’

completion times. Additionally, note that as the number of processors increases, the

computation time decreases.

To better visualize the affect data mapping and scheduling have on hardware

requirements, the computation time can be added to each of the three communica-

tion scenarios shown in Fig. 7; the resulting completion times are depicted in Fig. 8.

The intersection of optimal 8 processor dashed line and scenario 1 line represent the

optimal mapping and scheduling for an 8 processor system. In this case, the

completion time is around 140 ms; however, if scenario 3 was used the completion

time would be closer to 170 ms per data cube. Obviously with the optimal mapping

and scheduling (scenario 1), more data cubes per unit time can be processed; thus, in

a unit of time more data cubes can be processed than with scenario 2 or 3. Note also

from the figure that if a poor mapping/scheduling strategy (scenario 3) were utilized,

then 11 or 12 processors would be required in order to match the performance of the

optimally mapped (scenario 1) 8 processor system. This represents a potential

reduction in hardware requirements of around 50% by utilizing the overall optimal

mapping and scheduling scheme.

An optimal 16 processor system, which includes optimal data mapping and

scheduling, can achieve the same performance as a 24 processor system with a poor

WEST AND ANTONIO1398
mapping and scheduling. As a result, if a poor mapping and scheduling was selected

for a 24 processor system, the same performance could be realized with an optimal

16 processor configuration. The overall SWAP requirements for a 16 processor

system would be less than a 24 processor system. Therefore, by optimizing the

mapping of data and the scheduling of messages the SWAP requirements can be

reduced.

This example illustrates that by utilizing the optimal mapping and scheduling

methodologies of Sections 2 and 3, hardware savings of 50% and more can be

realized when compared to sub-optimal solutions to the mapping and scheduling

problems. Because of limitations on the size of problems that could be executed/

simulated, systems up to a size of only 32 processors were investigated. However,

from the trends observed in overall completion times, it appears that even more

significant savings in hardware/power requirements are realizable for STAP

applications that require substantially larger systems having hundreds or even

thousands of processors.

4.3. Summary of Numerical Studies

The results recorded here for message scheduling demonstrate that off-line GA-

based message scheduling can significantly improve the communication performance

in a parallel system. In most cases, a moderate level of crossover (50%) and mutation

rates (10%) yielded the best schedules. Although not included here, when compared

to baseline and randomly generated schedules, the GA-based schedules are

significantly superior}typically reducing communication times by between 20%

and 50%, see [8] for details.

Interestingly, it is shown here that the best mapping}defined as a mapping that

minimizes a mapping objective function}is not always the best choice in terms of

minimizing overall communication time. In particular, as the number of CNs is

increased, optimal mappings that require only one phase of communication

generally report higher overall communication times than those good, but not

optimal mappings that require two non-trivial phases of communication.

5. CONCLUSION

The optimization of mapping and scheduling, either independently or in

combination, is critical to the performance of the STAP application for embedded

parallel systems. For such systems, great significance is placed on minimizing overall

execution time, which includes both computation and communication components.

Such reductions in execution time also translate into improved hardware efficiency

and thus reduced hardware requirements, which is often critical. The focus of this

research is off-line optimization of data mapping and message schedules for a class

of STAP algorithms to be implemented on a parallel embedded system.

An objective function is proposed and developed to measure the merit of a class of

mappings for STAP for implementation on the Mercury multicomputer. The

objective-function-based ranking provides a measure of the communication costs

A GA FOR SCHEDULING PARALLEL STAP COMMUNICATIONS 1399
associated with a given mapping. A combination of the message size and required

network resources for each message are key attributes used by the objective function.

A GA-based approach is proposed and developed for solving the message-

scheduling problem for a given mapping. A GA is a population-based optimization

model that uses selection and recombination operators to generate new sample

points in the solution space. Reproduction opportunities are applied in such a way

that those chromosomes representing a better solution to the targeted problem are

given more opportunities to reproduce than poorer chromosomes. Each chromo-

some is associated with a fitness value, which in this case is the communication

completion time of a schedule. The fitness of a candidate solution is calculated based

on its simulated performance. The GA-based optimization is performed off-line, and

the results of this optimization are static schedules for each CN in the parallel

system. These static schedules can then be used within the online parallel STAP

implementation. Through extensive numerical studies, it is shown that the off-line

optimization approaches can yield mappings and schedules that greatly improve the

on-line performance and reduce the hardware requirements of the parallel embedded

system.

APPENDIX A: OVERVIEW OF STAP

STAP algorithms have been developed to extract desired signals from potential

target returns comprised of Doppler shifts associated with radar platform motion,

clutter returns, and interference including jamming. In order to solve complex, large-

scale, and real-time problems such as STAP, parallel processing has emerged as a key

hardware technology. This appendix provides a brief overview of STAP methods; for

a thorough theoretical treatment of STAP, the reader is referred to [6].

Current and future airborne radars must detect smaller targets in the presence of

increasing interference such as clutter, jamming, noise, and platform motion. If the

interference is localized in frequency and comes from a limited number of sources,

targets can be detected by using adaptive spatial weighting of the data from each

element of an antenna array [6]. By applying computed weights (determined in real

time) to the data, the effects of interference can be reduced.

For an airborne radar platform that is in motion, the Doppler spread of the clutter

returns is significant and the clutter characteristics are highly variable due to the

changing ground terrain. In this type of an environment the weights must be adapted

from the data in both the time and space dimensions. This general type of signal

processing method, which is referred to as STAP, is an adaptive processing technique

that simultaneously combines signals received from multiple elements of an antenna

array (the spatial domain) and from multiple pulses (the temporal domain). The

paragraphs to follow provide a general description of the computational complexity

involved in implementing STAP algorithms. For a detailed theoretical foundation

and analysis of these and other STAP algorithms, the reader is referred to [6].

Consider an N element airborne radar array that transmits a coherent burst of M
pulses at a constant pulse repetition frequency (PRF) fr ¼ 1=Tr, where Tr is the pulse

repetition interval (PRI). The time interval over which the echo returns are collected

is referred to as the coherent processing interval (CPI), and the resultant length of

Range

PRI

Array
Element

1 M

1

N

1

L

MN samples for
a fixed range gate

FIG. A1. The STAP CPI three-dimensional data cube (derived from [6]).

WEST AND ANTONIO1400
one CPI is MTr. For each of the M pulses, L range samples are collected by each

array element. With M pulses and N array channels, the return signal for one CPI is

composed of LMN complex signal samples. Because the signal returns are composed

of L range gates, M pulses, and N antenna array samples, the data may be

represented by the 3D data set shown in Fig. A1. This L�M � N data set will be

referred to as a CPI data cube (or simply a data cube) [6].

Let xnml represent the nth array element and the mth pulse at the lth range sample

time [6]. Next, define xm;l to represent an N � 1 column vector, or a spatial snapshot,

composed of the complex return signals from each array element for the mth pulse

and the lth range. By combining all of the spatial snapshots at a given range of

interest, an N �M matrix Xl can be formed, where Xl ¼ ðx1;l; x2;l; x3;l; . . . ; xM ;lÞ. The

shaded plane in Fig. A1, referred to as a range gate, represents the Xl spatial

snapshot at the lth range. To detect the presence of a target within a range gate, a

space–time processor combines the data samples from the range gate to produce a

scalar output, which is then passed through a threshold process for target detection.

The major components of a generic space–time processor are illustrated in

Fig. A2. First, a set of rules called the training strategy is applied to the data to

estimate the interference. The objective of the training strategy is to provide a good

estimate of the interference at a given range gate. Because the interference is

unknown, the training data is estimated data-adaptively from the STAP data cube.

The training data is used as input to the next component where the adaptive

weight vector is calculated. The weight computation component is the most

computationally intense portion of the space–time processor (and this component is

the focus of attention in this paper). Weight computation itself is typically performed

with three phases of processing: the first two phases involving linear filtering and the

final phase requiring the solution of a set of linear equations [6]. After completing

each phase of processing associated with weight computation, the data must be re-

distributed across the compute nodes of the machine, which represents the

communication requirements of STAP. Thus, there are two primary phases of

inter-processor data communication required: one between the first and second

phases of processing and one between the second and third phases of processing.

Ran
ge

PRI1 M
1

N

1

Weight
Application

z!=!wH

Weight
Application

z = wHχ

Weight
Computation

Weight
Computation

Training
Strategy

Training
Strategy

Threshold
Detection

|z|

Threshold
Detection

|z|

L

z

Training
Data

CPI
Data

w

SPACE-TIME PROCESSOR

Target
Decision

CPI Data Cube

A
nt

en
na

E
le

m
en

t

Target
Data

FIG. A2. Generic space–time adaptive processor (derived from [6]).

A GA FOR SCHEDULING PARALLEL STAP COMMUNICATIONS 1401
After all three phases of processing for weight computation are complete for a given

STAP data cube, a new data cube is input into the parallel machine for processing.

The space–time processor produces a scalar output by computing the inner

product of the weight vector and range gate of interest. The scalar output is

compared to a threshold value to determine if a target is present at a specified angle

and Doppler [6]. Because a potential target’s angle and velocity are unknown, the

space–time processor computes multiple weight vectors to cover a range of possible

target angles, ranges, and velocities at which target detection is to be queried.

APPENDIX B: PARALLEL STAP ON THE MERCURY SYSTEM

The weight computation component of any STAP algorithm is the most

computationally intensive of the three components illustrated in the generic space–

time processor of Fig. A2; it is the component that typically requires significant

parallel computing resources in order to perform the required computations in a

real-time setting. For this reason, our focus in this paper is on mapping and

scheduling strategies for the weight computation component of processing.

Furthermore, the terms ‘‘STAP’’ and ‘‘STAP computation’’ are understood to refer

to the weight computation component unless noted otherwise.

Typical processing requirements of STAP range from 10 to 1000 giga-floating-

point operations (Gflops), which can be met by multiprocessor systems composed of

numerous interconnected compute elements (CEs) [3]. A CE contains a processor,

local memory, and a connection to the network interconnecting the CEs. In the

parallel STAP implementation assumed here, the network supports the three phases

of inter-processor communication in which data must be exchanged among CEs.

The parallel computing system targeted for this work is the Mercury RACE1

multicomputer. The RACE1 multicomputer consists of a collection of compute

CrossbarCrossbar

CrossbarCrossbarCrossbarCrossbar

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FIG. B1. Mercury RACE1 fat-tree architecture configured with 16 CNs.

WEST AND ANTONIO1402
nodes (CNs), as well as various high-speed I/O devices, all interconnected by

Mercury’s RACEway1 interconnection network [4]. A CN is a collection of one or

more CEs, where the CEs within a CN are interconnected locally by a shared-

memory. A high-level diagram of a 16-CN RACEway1 topology is illustrated in

Fig. B1. The interconnection network is configured in a fat-tree topology and is a

circuit switched network. The RACEway1 interconnection network is composed of

a network of crossbar switches and provides high-speed data communication among

the CNs. The Mercury multicomputer can support a heterogeneous collection of CN

types (e.g., SHARC and PowerPCs processors), for more details refer to [7].

Achieving desired performance requirements for STAP implemented on a parallel

embedded system like the Mercury multicomputer largely depends on two major

issues. First is determining the best method for distributing the 3D STAP data cube

across CNs of the multiprocessor system (i.e., the mapping strategy). Second is

determining the scheduling of communications between phases of computation.

STAP computations contain three phases of processing, one for each dimension of

the data cube (i.e., range, pulse, channel). During each phase of processing, the

vectors along the dimension of interest are mapped as equally as possible among the

CNs for processing in parallel. The framework assumed here for mapping is to

partition the data cube into sub-cube bars. Each sub-cube bar is composed of partial

data samples from two dimensions while preserving one whole dimension for

processing. Fig. B2 shows an example of how sub-cube partitioning is applied to

map a 3D data cube across 12 CNs. The sub-cube bar mapping approach was first

described in [3].

During phases of data redistribution (i.e., communication) between computational

phases, the number of required communications and the communication pattern

among the CNs is dependant upon how the data cube is mapped to the CNs for each

computational phase. For example, in Fig. B2(a) the mapping of sub-cube bars to

CNs dictates that after range processing, CN 1 must transfer portions of it data sub-

cube bar to CNs 2, 3, and 4. (Each of the other CNs, likewise, is required to send

portions of their sub-cube bar to CNs on the same row.) The scheduling (i.e.,

ordering) of outgoing messages at each CN impacts the resulting communication

time. For example, in Fig. B2(a) note CN 1 could order its outgoing messages

according to one of 3! ¼ 6 permutations, i.e., ð2; 3; 4Þ, ð3; 2; 4Þ, etc. Similarly, a

scheduling of outgoing messages must be defined for each CN. Improper schedule

FIG. B2. Illustration of the sub-cube bar mapping technique for the case of 12 CNs. The mapping of the

sub-cube bars to CNs defines the required data communications. (a) Example illustration of the

communication requirements from CN 1 to the other CNs (2, 3, and 4) after completion of the range-

dimensions processing and prior to Doppler (i.e., pulse-dimension) processing. (b) Example illustration of

the communication requirements from CN 1 to other CNs (5 and 9) after the completion of Doppler

processing and prior to the final phase of processing.

A GA FOR SCHEDULING PARALLEL STAP COMMUNICATIONS 1403
selection can result in excessive network contention and thereby increase the time to

perform all communications between processing phases. Likewise, different

mappings can be defined by considering all the combinations of process set

dimensions whose product equals the number of processors. The example in Fig. B2

illustrates a 3 � 4 process set, but other dimensions are possible, i.e.,

4 � 3; 2 � 6; 14 � 12, etc.

Once the mapping and scheduling is defined for each of the STAP computation

and communication phases, respectively, the communication time for both of the

communication phases can be evaluated. In this paper, evaluation of communication

performance is made using a network simulator developed in [8].

APPENDIX C: RACEway1 NETWORK SIMULATOR

Each CN in the multicomputer interfaces the network through the RACE1

network chip. The network chip is a crossbar with six bi-directional channels

consisting of 32 parallel data lines and eight control leads [4]. Each crossbar transfers

data synchronously at a clock rate of 40-MHz. Each channel is bi-directional but is

only driven in one direction at a time at a rate of 160 MB=s [4]. Among the six ports

comprising a RACE1 crossbar, each switch can either interconnect any three port

pairs, providing an aggregate bandwidth of 480 MB=s, or can cause data to be

broadcast to all or a subset of the remaining five ports [4]. These crossbars are

WEST AND ANTONIO1404
interconnected in a parent–child fashion to form a fat tree topology as shown in

Fig. B1.

The RACE1 network is circuit-switched, thus a CN establishes a path through the

network prior to data transfer. The RACEway network is actually preemptive in

that a high-priority message can suspend (preempt) other active paths. When

arbitration for a given crossbar port, or sequence of ports, becomes necessary, the

arbitration is carried out on the basis of a combination of the user-programmable

packet priority and a fixed hardware priority at each crossbar based on the entry and

exit ports at the given crossbar [4]. For this work, the user-programmable packet

priority is assumed equivalent for all data packets, thus, the hardware priority

arbitration rules at each crossbar are used to resolve contention.

If two contending transactions have different priority levels at a given crossbar,

then the transaction having the highest hardware priority level kills the contending

lower-priority level transaction. If a transaction requires a port already occupied by

a lower-priority transaction, then the transmission of the lower-priority message is

suspended (i.e., preempted) and the released port is then taken by the higher-priority

transaction. The unsent data associated with the suspended transaction is re-

packaged as a new message at the originating CN and begins the process of

establishing a new path through the network. If two or more contending transactions

have the same priority level, the first one started holds off any other contending

transactions at the same level until the transmission of its data is completed.

The functionality of the RACEway1 network has been encoded as a network

simulator for use in this research. The details of the implementation and operation of

the simulator are not given here, but can be found in [7, 8, 9]. Provided here is an

overview of experimental studies performed that illustrate the accuracy of the

simulator when compared with measured communication times taken from an actual

Mercury multicomputer.

Two classes of communication patterns were employed to evaluate the accuracy of

the simulator: simple test patterns and complex test patterns. Simple test patterns

included the following three test categories: (I) single-source message tests; (II) two-

source message tests (non-contending and contending paths); and (III) 3..N -source

message tests (non-contending and contending paths). Complex communication

patterns included the following categories: (IV) all-to-all personalized test and (V)

randomized message queue communication test.

For the all-to-all personalized test, the outgoing message queues on each CN

contained one message to each of the other CNs in the network. For the randomized

message queue communication test (which closely resembles the communication

pattern required by STAP) a random number of messages are sent from each of the

CNs to randomly selected destinations. The outgoing message queues at each CN

were randomly scheduled (i.e., ordered). For all test cases, identical communication

patterns were executed on the actual Mercury computer and the network simulator.

A small subset of the tests performed are presented here. For each test, 50

independent trials were performed and averages computed for both the actual system

and the software simulator. (Note that both the actual system and the simulator are

non-deterministic.) The CNs are numbered left-to-right starting with 1 and

incrementing by 1 for each successive CN. For instance, the first crossbar located

TABLE C1

Comparison of Measured and Simulated Communication Times for Different Communication

Patterns for Messages of Size 64 kB

Category Description Measured Simulated Percent

time (ms) time (ms) error (%)

II 2-6, 3-7 0.41119 0.40013 2.69

(non-contending)

II 2-4, 3-4 0.84948 0.79608 6.29

(contending)

III 2-3, 3-4 1.19329 1.19097 0.19

(contending) 4-2

III 2-6, 3-6 1.28852 1.21279 5.88

(contending) 6-4

IV 5-f6; 7; 8g 3.67124 3.40914 7.14

6-f5; 7; 8g
7-f5; 6; 8g
8-f5; 6; 7g

IV All-to-all personalized 9.52672 10.12816
6.31

communication

involving

CNs 2 through 8

V 2-f4; 6; 8g 3.85421 3.45185 5.89

3-f5; 7g
4-f2; 6; 8g
5-f7; 3g
6-f8; 4; 2g
7-f5; 3g
8-f6; 4; 2g

A GA FOR SCHEDULING PARALLEL STAP COMMUNICATIONS 1405
at the bottom left of the fat-tree contains the first four CNs, numbered 1, 2, 3, and 4.

The next four CNs (i.e., 5, 6, 7, and 8) are connected to the second (lowest-level)

crossbar from the left, and so forth. Provided in Table C1 are representative results

of the tests conducted. For all cases shown in the table, all transmitted messages were

of size 64 kB. This study demonstrates the accuracy of the simulator, in that it

typically has errors of around 5% or less. For a detailed discussion of these and

other tests, the reader is referred to [8].

ACKNOWLEDGMENT

This work was supported by DARPA under Contract F30602-97-2-0297.

WEST AND ANTONIO1406
REFERENCES

1. K. C. Cain, J. A. Torres, and R. T. Williams, ‘‘Real-Time Space–Time Adaptive Processing

Benchmark,’’ Mitre Technical Report: MTR 96B0000021, Mitre, Center for Air Force C3 Systems,

Bedford, MA, February 1997.

2. M. Gen and R. Cheng, ‘‘Genetic Algorithms and Engineering Design,’’ Wiley, New York, 1997.

3. M. F. Skalabrin and T. H. Einstein, STAP processing on a multicomputer: distribution of 3-D data

sets and processor allocation for optimum interprocessor communication, in ‘‘Proceedings of the

Adaptive Sensor Array Processing (ASAP) Workshop,’’ March 1996.

4. The RACE Multicomputer, ‘‘Hardware Theory of Operation: Processors, I/O Interface, and

RACEway Interconnect,’’ Vol. I, version 1.3.

5. L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A. Maciejewski, Task matching and scheduling in

heterogeneous computing environments using a genetic-algorithm-based approach, J. Parallel Distrib.

Comput. (Special Issue on Parallel Evolutionary Computing) 47 (November 1997), 8–22.

6. J. Ward, ‘‘Space–Time Adaptive Processing for Airborne Radar,’’ Technical Report 1015,

Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, MA, 1994.

7. J. M. West, ‘‘Simulation of Communication Time for a Space–Time Adaptive Processing Algorithm

Implemented on a Parallel Embedded System,’’ Master’s thesis, Computer Science, Texas Tech

University, 1998.

8. J. M. West, ‘‘Processor Allocation, Message Scheduling, and Algorithm Selection for Parallel Space–

Time Adaptive Processing,’’ Dissertation, Computer Science, Texas Tech University, 2000.

9. J. M. West and J. K. Antonio, Simulation of the communication time for a space–time adaptive

processing algorithm on a parallel embedded system, in ‘‘Proceedings of the International Workshop

on Embedded HPC Systems and Applications (EHPC ‘98)’’ (J. Rolim, Ed.), Lecture Notes in

Computer Science, Vol. 1388: Parallel and Distributed Processing, pp. 979–986, IEEE Computer

Society, Orlando, FL, April 1998.
JACK M. WEST received the B.S., M.S., and Ph.D. in computer science from the Texas Tech

University, Lubbock, Texas, in 1995, 1998, and 2000, respectively. After graduation, he was involved in

post-doctoral work at the University of Oklahoma in the area of embedded high-performance systems. He

is currently a software developer with RiskMetrics Group.

JOHN K. ANTONIO received the B.S., M.S., and Ph.D. from the Texas A&M University, College

Station, Texas, in 1984, 1986, and 1989, respectively. He is currently professor and director of the School

of Computer Science at the University of Oklahoma. Before joining the University of Oklahoma, he was

with the Department of Computer Science at Texas Tech University and the School of Electrical and

Computer Engineering at Purdue University. He is a member of the Tau Beta Pi, Eta Kappa Nu, and Phi

Kappa Phi honorary societies and is a senior member of the IEEE Computer Society. Dr. Antonio’s

current research interests include embedded high performance computing, reconfigurable computing,

parallel and distributed computing, and cluster computing.

	1. INTRODUCTION
	2. DATA MAPPING FRAMEWORK
	FIGURE 1
	FIGURE 2

	3. GENETIC-A LGORITHM APPROACH TO MESSAGE SCHEDULING
	FIGURE 3

	4. NUMERICAL RESULTS
	FIGURE 4
	FIGURE 5
	FIGURE 6
	FIGURE 7
	FIGURE 8

	5. CONCLUSION
	APPENDIX A: OVERVIEW OF STAP
	FIGURE A1
	FIGURE A2

	APPENDIX B: PARALLEL STAP ON THE MERCURY SYSTEM
	FIGURE B1
	FIGURE B2

	APPENDIX C: RACEway NETWORK SIMULATOR
	TABLE C1

	ACKNOWLEDGMENT
	REFERENCES

