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Abstract—In this paper, we derive a time-complexity bound for
the gradient projection method for optimal routing in data net-
works. This result shows that the gradient projection algorithm
of the Goldstein–Levitin–Poljak type formulated by Bertsekas
converges to within " in relative accuracy in O("�2hminNmax)
number of iterations, whereNmax is the number of paths sharing
the maximally shared link, and hmin is the diameter of the
network. Based on this complexity result, we also show that the
one-source-at-a-time update policy has a complexity bound which
isO(n) times smaller than that of the all-at-a-time update policy,
where n is the number of nodes in the network. The result of
this paper argues for constructing networks with low diameter
for the purpose of reducing complexity of the network control
algorithms. The result also implies that parallelizing the optimal
routing algorithm over the network nodes is beneficial.

Index Terms—Algorithm complexity, congestion control, inter-
networking, routing.

NOMENCLATURE

OD Origin Destination.
GP Gradient Projection.
OSA One-Source-at-A-time.
AAA All-At-A-time.

Number of paths sharing the maximally shared link.
Diameter of the network graph.

W Set of OD pairs in the traffic demand.
maximum row sum.
maximum column sum.

Square root of the largest eigenvalue of
Greatest lower bound of
Least upper bound of

Number of hops in the active pathat iteration
Bound for the spectral radius of the Hessian matrix

I INTRODUCTION

BECAUSE of rapid demand increases for telecommunica-
tion, wide-area data networks have become very large.

As a result, computation efficiency for congestion-control
algorithms has become an important issue. In this paper, we
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study time complexity for the gradient projection (GP) method
for optimal routing in wide-area networks.

There is an extensive literature devoted to numerical meth-
ods for optimization problems; yet, far less attention has
been paid to complexities of optimization problems or the
algorithms for solving them [1]. In their book, Nemirovsky
and Yudin [1] have addressed both the problem complexity
and algorithm complexity for general convex optimization; in
this paper, we focus on a specific gradient projection algorithm
for the path-formulated optimal routing problem.

The optimal routing problem and the GP algorithm are
important topics. The optimal routing problem is a multicom-
modity flow problem, which is essential for transportation of
commodities over a network. The GP algorithm stands out
because of its many advantages over other types of algorithms
(Bertsekas [2], [8], [9]). The GP algorithm diagonally scaled1

by the second derivatives [8] appears to be the best quasistatic
optimal routing algorithm. In a deterministic synchronous
environment, it converges faster than shortest path methods
(used by many networks [4], [8]), and also faster (in terms of
computation efforts) than the projected Newton method, when
starting far from an optimal routing. These facts make the GP
method most attractive [8].

While we have derived an earlier time-complexity bound
of the GP algorithm in [13], this paper presents a tighter
bound and derives the bounds for the AAA and OSA update
policies. The definitions of the AAA and OSA policies will be
given in Section V. The result shows that the GP algorithm
of the Goldstein–Levitin–Poljak type formulated by Bertsekas
converges to within in relative accuracy in
number of iterations, where is the number of paths
sharing the maximally shared link, and is the diameter of
the network. The notation is explained in the footnote.2

Thus, the result of this paper argues for constructing networks
with low diameter for the purpose of reducing complexity of
the network control algorithms. We also show that the OSA3

update policy has the same overall complexity bound as that

1In this diagonally scaled GP algorithm, the gradient is first scaled by
dividing each of its entries by the corresponding diagonal entry of the Hessian,
then a tentative update is made, and then the result is projected onto the
positive orthant, as in the equation just before (7).

2Let A be some subset of< and letf : A 7! < andg: A 7! < be some
functions. The notationf(x) = O(g(x)) [respectively,f(x) = 
(g(x))]
means that there exists a positive constantc and somex0 such that for
every x 2 A satisfyingx � x0; we havejf(x)j � cg(x) [respectively,
jf(x)j � cg(x)]. The notationf(x) = �(g(x)) means thatf(x) = O(g(x))
andf(x) = 
(g(x)):

3The OSA update policy can be considered as a variation of the coordinate
descent algorithm in nonlinear programming [12], or a special case of the
Gauss–Seidel algorithm in the general iterative algorithm [11].
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of the AAA update policy [2]. The result also implies that
parallelizing the optimal routing algorithm over the network
nodes is beneficial (see the discussion in Section V).

The complexity result developed in this paper has two
important differences from the classical asymptotic conver-
gence rate analysis. First, our result is a time-complexity
result, i.e., the computation effort is explicitly expressed as
a function of the problem size. In contrast, the classical
result is an asymptotic convergence rate estimate in which
the dependency on the problem size is not investigated.
The asymptotic convergence rate describes the behavior of
error of the algorithm solutionas the number of iterations
“goes to infinity”. Thus, even if the rate of convergence is
known, this rate cannot be generally converted to a time-
complexity bound. Second, our complexity deals with the
speed of convergenceoutside a small neighborhood of a
stationary point, while the classical convergence rate result
deals with the speed of convergenceinsidea neighborhood of a
stationary point, e.g., Luenberger [10]. In practice, as the input
demands are constantly fluctuating, and the measurements are
inherently inaccurate, it is not important for the algorithm to
achieve fast convergence to exact optimality; rather, it is more
important for the algorithm to achieve fast convergence to a
neighborhood of optimality.

Thus, our complexity result is in the same form of the time-
complexity bound derived by Nemirovsky and Yudin [1] for
strongly convex problems. There are two main differences
between our result and that of Nemirovsky and Yudin. The
first is that the optimal routing problem is not strongly convex
because the Hessian matrix has zero eigenvalues (correspond-
ing to paths with zero flows). The second is that the optimal
routing problem is a specific convex optimization problem (as
opposed to the general strongly convex problem) and we are
able to get stronger results. The time-complexity estimates
for the AAA and OSA update policies are the extra results
obtained because of the specific structure of the optimal
routing problem.

At this point, we would like to comment on the objective
function for the optimal routing problem formulated in this
paper. While the classical M/M/1 delay function was used as
the link-objective function, the entire analysis will still carry
through as long as the link-objective function is convex with
second derivatives bounded above and away from zero. We
chose to use the M/M/1 delay function only for purposes of
illustration. Networks today employ a wide variety of sched-
uling and queuing mechanisms to control the transmission at
a link; this implies that the appropriate link-objective function
varies and depends on many factors. For practical networks,
the cost associated with a link tends to go to infinity as the
input rate approaches the link capacity. Such a kind of cost
can be quite appropriately modeled by a convex function with
bounded second derivatives. As the analysis in this paper can
be easily adapted to this large class of link-objective functions,
the results are applicable to most networks.

This paper is organized as follows. The optimal routing
problem formulation and the GP algorithm are introduced in
Section II. The complexity result for the usual GP algorithm,
along with the computation model and the implications of

the assumptions, are discussed in Section III. The series of
technical lemmas leading to the first complexity result is given
in Section IV, and the complexity bound for the OSA policy
is described in Section V. Section VI concludes the paper and
the Appendix contains the proof for Lemma 1.

II. OPTIMAL ROUTING PROBLEM AND THE GRADIENT

PROJECTION ALGORITHM

The optimal routing problem is described as follows. Sup-
pose is a directed graph, where is the set of
nodes, and is the set of directed links. Let be the set of
OD pairs, and for each OD pair let the traffic demand
be The independent variables are the set of path flows

which satisfies the traffic demand

(1)

where is a given set of paths for an OD pair and is
the traffic flow on path for In our notation, each path is
uniquely identified by the integer in the entire set of paths.
The traffic balance equations, stating that the total traffic flow
on any directed link is the sum of all the path flows for all the
paths using that directed link, must also be satisfied. Let
be the traffic flow on link then the traffic balance
equations can be written as

(2)

or in matrix form where th entry of is
one if link is in path otherwise zero, i.e. is thepath-
link incidence matrix. All the traffic flows must
be nonnegative

(3)

Let us consider a standard cost used in optimal routing problem
for data networks: the average number of outstanding packets.
Using the standard Kleinrock independence approximation and
the Jackson network formulation [6], [8], the average number
of outstanding packets is given by

(4)

where is the capacity of the link The cost function
defined in (4) will run into numerical problems if some
assigned link flows are greater than or equal to the respective
link capacities. It is possible that, in the course of the routing
algorithm, a link’s total flow exceeds its capacity temporarily.
The conventional remedy is to use a quadratic-like cost func-
tion which gives the bounded cost at all times while the cost is
identical with the original cost when all link flows stay within
a fixed (but high) percentage of the respective capacities. This
approximation is realistic for two reasons: 1) in real network
operations, the final optimal routing always produces link
flows satisfying the condition that the link capacities are not
exceeded and 2) for real-world optimal routing algorithms,
the approximation is routinely applied to avoid a numerical
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stability problem. Therefore, the analysis derived in this paper
adopts this convention of quadratic-like cost function.

Following [2], let be a positive constant, independent
of the problem size (to be defined in Section III) and satisfying
the condition, For all let

if

otherwise
(5)

where

The function will be referred to as the link cost
function for each The constant is actually a
replacement for themaximum link utilizationof the network,
which is defined to be : for a link
flow vector Now the first and second derivatives of the
link costs are bounded for bounded flows, independent of the
problem size. The cost to minimize is now written as

(6)

Note that is convex and twice continuously differen-
tiable.

The path-formulated optimal routing problem is that of
minimizing (6) subject to constraints (1)–(3). The constraints
(2) are eliminated by substituting in to get
a new cost function is obviously convex and
twice continuously differentiable. With this new cost and
constraints (1) and (3), we obtain a variation of the classical
multicommodity flow problem(MFP).

The optimality condition for this MFP can be easily derived
[2] and is stated below

(7)

where the -superscript indicates that the corresponding quan-
tity is optimal for the MFP, denotes
which is interpreted as the first derivative of the “length”
(FDL) of at and is a shortest path according
to FDL

For our analysis we will also be concerned with the second
derivatives of the “lengths” (SDL) for two pathsand

The Goldstein–Levitin–Poljak GP algorithm formulated by
Bertsekas [2] for the above MFP is described as follows: let
denote the iteration number. For each at each iteration

the updated flow is computed as
follows. The algorithm will choose, for every OD pair at every
iteration a particular shortest FDL path; we will refer to these
special shortest FDL paths as thechosenshortest FDL paths.

Let be the chosen shortest FDL path in at iteration
Thus

where Due to the complexity of the
notation we shall, from now on, use to repre-
sent in a slight abuse of notation.

The GP algorithm is based on a transformed cost which is

defined below. We will use the notation
to denote thestep, i.e. the change in the path flow

vector. The GP update is derived from the standard Taylor
series expansion at the cost at iteration

(8)

where lies in the line segment formed by joining
and

Substitute

into we get the transformed cost 4 The first
and second derivatives of the transformed cost are derived

(9)

(10)

where [respectively, ] denotes the first (re-
spectively, second) derivative of the notation

means that link is part of the path denotes the
set of common links of paths and and denotes the
chosen shortest path for the OD pair to which belongs.

We will use the symbol to denote the transformed step,
i.e., the change in the transformed path flow vector, and
to denote the set of active paths which are not the chosen
shortest path at iteration

4We point out here that the transformed cost~D(~x(k)) and the actual cost
D(x(k)) give the same value, even though they are technically two different
functions.
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In terms of the transformed cost, the Taylor series expansion
(8) can be rewritten as

(11)

The GP update equations can be stated as follows:

where is defined by theth element of
is the scalar step size, and is a scaling factor. In

this GP algorithm, is assumed to be bounded in the
following sense: let and be scalar positive constants,
independent of the problem size, such that satisfies
the condition

(12)

Here, is an estimate of the minimum of the minimum
diagonal elements of the Hessian matrices associated with the
set of active paths for all the iterations, andis an estimate
of the maximum of the maximum diagonal elements of the
Hessian matrices associated with the set of active paths5 for all
the iterations. The upper-bound is guaranteed by our cost
function assumption (5), and the lower-boundis an extra
assumption. The lower-bound assumption is always observed
in practice, as any practical implementation of GP algorithm
will make sure that the division by is bounded away
from zero, independent of the problem size.

III. COMPUTATION MODEL AND COMPLEXITY RESULT

In this section, we will describe our computation model
(our assumptions), the implications of our assumptions, and
the complexity bound for the usual GP algorithm.

What constitutes the problem size? Obviously, there are
many different ways to parameterize the size of the MFP. The
complication here is that the MFP actually depends on many
intertwining factors: the network topology, the network link
capacities, and the traffic demands for networks, to name just
a few. We shall use, in a simplified way, the number of nodes

as the problem size.
As the network size goes to infinity, the cost may also go to

infinity. It is obvious that, even if the network size approaches
infinity, we should only be concerned with the relative cost
performance. That is, the algorithm should be considered to
have “converged” if the cost lies within a small percentage
of the optimal cost. Thus, in this paper we will consider only
relative accuracy of the cost.

We now state more assumptions of the computation model.
For each we assume that and
consistent with this assumption, we assume that

5An active path is a path with a positive flow.

for all Finally, we also assume that at each iteration
of the GP algorithm, there are number of active paths per
OD pair. The above assumptions are natural and consistent
with practical data networks.

Remark: So far, we have defined many symbols and more
symbols will be added. To simplify the notation, we will use

the following convention. We define to

be the set of admissible paths. We will use
to denote the optimal cost. For any variable written as
we could mean the variable —for example, is
the short form of will be used as thegeneric
cost,independent of the actual arguments.For example,
denotes the cost at iteration We will use to denote the
Euclidean norm ( -norm).

From the standard Jackson network formulation [6], [8],
and our basic assumptions, the average number of outstanding
packets will grow at a rate proportional to number of OD pairs,
given that the average delay remains unchanged. Thus we will
also assume the following:

(A)

From (5), there exist positive constants
and all independent of such that, for all and

(13)

From the GP algorithm, a pathwill be active at some iteration
only if or is the chosen shortest FDL path at

some iteration Because of the optimality condition (7),
we assume that, for each OD pair at iteration 0, the traffic
demand can be assigned to a few (i.e., in number)
minimum hop paths.

From this assumption and (13), the number of hops
for any active path at any iteration is bounded by
the inequality

(14)

where is the diameter of the network, which is the
maximum of the minimum hop distance between any two
distinct nodes in the network. Then, from (9), (10), and (14),
for any active path at iteration its transformed FDL and
SDL are bounded by

(15)

The next lemma is an immediate consequence of the GP
algorithm, see [3], [5]; the proof is included in the Appendix
for completeness.

Lemma 1: For all
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From Lemma 1 and (11), we have

(16)

where is a bound for the spectral radius of the symmetrical
positive semi-definite Hessian matrix Thus, by
choosing an appropriate stepsize say, for some positive
constants and

(17)

we guarantee that for all This
stepsize will depend on It turns out that the complexity is
intimately related to the ratio of to we define this ratio
to be

(18)

This ratio of largest to smallest eigenvalues is well known to
be an important determinant of the computational effort. For
example, see [12].

Let denote the number of iterations needed for the
GP algorithm to converge to within Among all the
network parameters, we will highlight and where

is the number of paths sharing the maximally shared
link.

From our experience with the GP algorithm, we have ob-
served that, in general, the larger the maximum link utilization,
the larger the number of iterations needed for the algorithm
to converge. However, we will not highlight the dependency
of the complexity bounds on We do this because, in
the quadratic-like cost function (5), is typically chosen
independent of In addition, for realistic data networks, the
final maximum link utilization is always reasonably bounded
away from unity and our analysis is well suited for such
situations. Note also that, from (14), the largest number of
links in any active path will be in the order of the network
diameter.

Now the complexity result can be stated as follows.
Theorem 1: If the stepsize is chosen according to (17), then

for any the number of iterations needed for the
GP algorithm to converge to within is bounded by

IV. PROOF OF THECOMPLEXITY FOR THE

USUAL GP ALGORITHM

The proof of Theorem 1 will be completed by using lemmas
1, 2, and 3.

Lemma 2:

Proof: Let denote the Hessian matrix
and let denote the Hessian matrix

where
denotes the path-link incidence matrix between the set of
link flows and the set of path flows for paths in
i.e., active paths which are not the chosen shortest paths.
Note that is a diagonal matrix. It is easy to see

that where the -superscript
denotes matrix transpose. Let denote the spectral radius
of the square matrix

Now use the following relations:

the lemma is proved.
From the way we choose our stepsize (17) and Lemma 2,

we have

(19)

Lemma 3: There exists a positive constant independent
of such that

Proof: By convexity and the fact that

(20)

(21)

where in inequality (21), we use the facts
[c.f. (15)], [from (19)],
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for and
The lemma now follows using Holder’s inequality and the
assumption that there are number of active paths per each
OD pair.

Proof of Theorem 1:Combining (16) and Lemma 3, we get

(22)

From assumption (), there exists such that
Whenever

(23)

In inequality (23), we have used the fact and the
inequality (17). Now the complexity estimate follows.

Note that the inequality (22) also shows that, in order for
to be below it suffices that be

greater than the inverse of where is
a constant depending on Hence, the complexity of obtaining
a factor of improvement scales inversely with the initial cost.

V. COMPLEXITY OF THE OSA POLICY

The overall time complexity of the GP algorithm can be
estimated by the product of the iteration complexity and the
time complexity of each iteration. So far, in this paper, we
have focused on the iteration complexity since the complexity
of each iteration is trivial to estimate. It is easy to see that the
time complexity of each iteration is dominated by the shortest
path computation. This complexity is bounded by since
the known fastest sequential algorithm for the all-pair shortest
path problem requires amount of computation efforts.

According to Bertsekas [2], there exist two variations of
the update policy for the GP algorithm. The usual policy is
that, at each iteration, the path flows for all the OD pairs are
updated; this policy will be referred to as the AAA policy. An
alternate policy is that, at each iteration, the path flows for the
OD pairs corresponding to only one origin node are updated,
and the origin nodes take turn in a round-robin fashion to
participate in these iterations; this policy will be referred to
as the OSA policy. Bertsekas [2] has commented that the
OSA policy converges in less time overall, even though the
number of iterations is more for the OSA policy. In fact, a
fast sequential code for the GP algorithm developed at MIT
[9] uses the OSA policy, and the OSA policy has consistently
shown faster convergence from the experience of the authors
of [9]. A reason for this phenomenon suggested by Bertsekas
[2] is that the OSA policy changes less amount of flows
and the Taylor series expansion becomes more accurate, and
the algorithm can afford a larger stepsize without inducing
divergence.

Let us also assume, in this section, that we will use an
explicit bound for Assume that the number of OD pairs
is and that each OD pair has number of active
paths at each iteration, then

For the AAA policy, the iteration complexity will be
while the time complexity for each iteration

will be Thus, the overall time complexity will be
It turns out that the iteration complexity bound

for the OSA policy is larger than that of the AAA policy
(see Theorem 2 below). Since the computation complexity for
each iteration of the OSA policy is (only one-source
shortest path problem is to be solved per iteration), the overall
complexity for the OSA policy is which is the
same as that of the AAA policy. This result is not surprising
since the difference between the OSA and the AAA policies is
similar to the difference between the Gauss–Seidel and Jacobi
updates in the general iterative algorithm [11]. It is known that
Gauss–Seidel method is twice faster than the Jacobi method
for the one-dimensional discretized Poisson equations [11].

In this subsection, we shall use subscriptto denote
quantities associated with the OSA policy. Let denote an
upper bound for the spectral radii of theeffectiveHessian
matrices for the OSA policy, i.e. the matrix
restricted to the set of active paths updated at an OSA iteration.
Since there are only number of active paths per OD pair,
it is obvious that

Choose the stepsize for the OSA policy

(24)

Thus, we have

(25)

Letting denote the ratio we have
Let denote the number of iterations needed for the
GP algorithm with OSA update policy to converge to within

To find the iteration complexity for the OSA policy,
we will prove a lemma similar to Lemma 3. Fix any
we will focus on consecutive iterations grouped together in
the form: For any active path updated
at iteration let denote the transformed FDL for path

at the iteration we also write

and similarly, we write

Lemma 3a: Suppose the OSA policy is adopted. There
exists a positive constant independent of such that
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Proof: Following the same initial inequalities in the
proof of Lemma 3

(26)

Now the first term in the right-hand-side of (26) is similar in
form to (20) and we can apply the proof technique of Lemma
3 to get

(27)

The second term in (26) is bounded as follows. By the Mean
Value Theorem, we can write, for any

(28)

where lies in the line segment formed by joining
and is assumed to be updated at iteration

and the notation means that path is updated at
an iteration before ’s iteration, i.e., before iteration

We can express the second term in (26) as

where is the special Hessian matrix
Thus

(29)

Since the number of active paths in is assumed to
be and where

[cf. (15)]

where is a positive constant independent ofThus

(30)

where is some positive constant independent ofThe
lemma follows by combining (27) and (30) with
and noting (25).

TABLE I
DATA POINTS TI(n) versusF (n)

Theorem 2: If the stepsize is chosen according to (25) and
the OSA policy is adopted, then for any the
number of iterations needed for the GP algorithm to converge
to within is bounded by

The proof of Theorem 2 can be followed almost verbatim
from the proof of Theorem 1 and we omit the proof.

The result in this section also implies the benefit of paral-
lelizing the optimal routing algorithm over the network nodes.
The AAA policy can be easily parallelized since at each
iteration, the updating of path flows can be done at each
origin of the OD pairs, and each origin node only has to solve
a single-source shortest path problem. Thus, this parallelized
version of the AAA–GP algorithm will have an overall time
complexity of showing a perfect speed-up of
with parallel processors. This parallelization will not be
attractive if the OSA policy has an overall time complexity of

because the sequential OSA–GP algorithm would
have the same time complexity while using only one processor.
The complexity bound derived in this section suggests that
this latter scenario is unlikely and the parallelized AAA–GP
algorithm is efficient.

VI. NUMERICAL RESULTS

In this section, we present some numerical results which
demonstrate the usefulness of our theoretically derived bounds.
The symbols used in Table I are:

number of node
number of iteration
estimate function
ratio

We wrote a program to generate mesh networks with 0.5
probability that a single node will be an OD node. An OD
node is a node which is both an origin and a destination. The
link capacities and demands are randomly generated.

The data points where
for the networks are plotted in Fig. 1

and shown in Table I.
Note that will be an estimate for the constant in the

notation. From Table I and Fig. 1, it is
clear that the ratio remains relatively unchanged. This re-
sults show that the theoretically derived bound

is an excellent predictor of the trend in
the number of iterations as the node number increases. The
tiny ratio (hence, a small constant in the notation) is
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Fig. 1. TI(n) versusF (n):

attributed to the large value of The pleasant surprise is
that the trend is well predicted and the trend (or the derivative)
is what is the most wanted in an asymptotic complexity
analysis.

VII. CONCLUSION

In this paper, we have studied the time-complexity
bounds for the GP method for optimal routing in data
networks. Our result shows that the GP algorithm of
the Goldstein–Levitin–Poljak type formulated by Bertsekas
converges in number of iterations. We also
show that OSA update policy has the same overall complexity
as that of AAA update policy. This result also implies that
parallelizing the optimal routing algorithm over the network
nodes is beneficial.

One should interpret the results carefully. Complexity
bounds are worst-case estimates; it does not mean that these
bounds are actually attained in many real-world problems.
These bounds do tell us, however, that the number of OD
pairs, the network diameters, and the number of active paths
per OD pair could be the dominating factors determining the
iteration complexity. The main complexity bound can be put
into another form,
which tells us that the inverse of the stepsize is the critical
factor. Often, one can choose a small stepsize and let the
GP algorithm runs—if the algorithm does converge, then the
computational efforts are proportional to the inverse of the
chosen stepsize, otherwise, one can reduce the stepsize and
keep on trying. From our implementation experiences, the
computational efforts are weakly dependent on the number of
OD pairs and more dependent on the network diameters. The
fact that the complexity bounds are proportional to the ratio of
the maximum eigenvalue estimate to the minimum eigenvalue
estimate of the Hessian matrices is also very interesting. This
result implies the following: if the active paths are more or
less mutually independent, then the ratio will tend to be small,
and algorithm will converge faster. On the other hand, if
all the active paths are coupled in a complicated way, then
the ratio will tend to be large, and the algorithm will tend
to be slow. In the former case, the stepsize can be chosen

large, while in the latter case, the stepsize should be chosen
small. Another obvious observation is that, if the network is
heavily loaded, then the stepsize should be chosen small and
the algorithm will converge slowly, as some elements of the
Hessian matrices will tend to be large.

An interesting application of Lemma 3 is that the Euclidean
norm of the transformed step can be used as a stopping
criterion for the GP algorithm. Lemma 3 implies that the
norm of the transformed step can be used to define level
sets for the cost function. An actual stopping measure should
also be normalized so that the measure is independent of the
problem size.

Finally, the result of this paper argues for constructing
networks with low diameter for the purpose of reducing com-
plexity of the network control algorithms. This comes from
the observation that, among all the terms in the complexity
bounds, only is at the disposal of the network designer.
In fact, by observing most practical networks, one easily
discovers that the network diameter is usually a very slowly
increasing function of the network size, showing that the
network designers have been making the right decisions.

APPENDIX

Proof of Lemma 1:From the GP algorithm

Thus

with that in (7) implies the lemma.
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