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Complexity of Gradient Projection Method for
Optimal Routing in Data Networks

Wei K. Tsai, Member, IEEEJohn K. Antonio,Senior Member, IEEEand Garng M. HuangSenior Member, IEEE

Abstract—n this paper, we derive a time-complexity bound for  study time complexity for the gradient projection (GP) method
the gradient projection method for optimal routing in data net-  for optimal routing in wide-area networks.
works. This result shows that the gradient projection algorithm There is an extensive literature devoted to numerical meth-
of the Goldstein—Levitin—Poljak type formulated by Bertsekas oo ) .
converges to within = in relative accuracy in O(==2humin Nuwax ) ods for .opt|m|zat|on p_rpblems, y.et,. fa_r less attention has
number of iterations, where Ny is the number of paths sharing Peen paid to complexities of optimization problems or the
the maximally shared link, and A.:. is the diameter of the algorithms for solving them [1]. In their book, Nemirovsky
network. Based on this complexity result, we also show that the and Yudin [1] have addressed both the problem complexity
one-source-at-a-time update policy has a complexity bound which 54 51gorithm complexity for general convex optimization; in

is O(n) times smaller than that of the all-at-a-time update policy, thi f ifi dient ecti lqorith
where 7 is the number of nodes in the network. The result of 'S PaPer, WeI0CUS On a Specitic gradient projection algorithm

this paper argues for constructing networks with low diameter for the path-formulated optimal routing problem.
for the purpose of reducing complexity of the network control The optimal routing problem and the GP algorithm are
algorithms. The result also implies that parallelizing the optimal  jmportant topics. The optimal routing problem is a multicom-
routing algorithm over the network nodes is beneficial. modity flow problem, which is essential for transportation of
Index Terms—Algorithm complexity, congestion control, inter- commodities over a network. The GP algorithm stands out
networking, routing. because of its many advantages over other types of algorithms
(Bertsekas [2], [8], [9]). The GP algorithm diagonally scadled
NOMENCLATURE by t.he secon'd derivatiyes [8] appears to pg the best quasistatic
optimal routing algorithm. In a deterministic synchronous
environment, it converges faster than shortest path methods
: (used by many networks [4], [8]), and also faster (in terms of
OSA  One-Source-at-A-time. computation efforts) than the projected Newton method, when
AAA - All-At-A-time. , , _ starting far from an optimal routing. These facts make the GP
Nmax  Number of paths sharing the maximally shared link,,«ihod most attractive 8.
humin ~ Diameter of the network graph. While we have derived an earlier time-complexity bound
w Set of OD pairs in the traffic demand. of the GP algorithm in [13], this paper presents a tighter
[Alloe maxi{X;lai;|, }, maximum row sum. bound and derives the bounds for the AAA and OSA update
[Allr max;{35]ag;], }, maximum column sum. policies. The definitions of the AAA and OSA policies will be
|4]l2 Square root of the largest eigenvaluetf A. given in Section V. The result shows that the GP algorithm
Dy, Greatest lower bound ab (k) of the Goldstein—Levitin—Poljak type formulated by Bertsekas
Least upper bound ab (k) converges to withi in relative accuracy i (e~ 2hyin Nimax)

oD Origin Destination.
GP Gradient Projection.

v Do/ Diin . . o number of iterations, wheréV,,., is the number of paths
hy(k)  Number of hops in the active pathat iterationk  sharing the maximally shared link, angl;, is the diameter of
L Bgupd for the spectral radius of the Hessian matrihe network. TheD(-) notation is explained in the footnote.
V2D (2(k)). Thus, the result of this paper argues for constructing networks
with low diameter for the purpose of reducing complexity of
| INTRODUCTION the network control algorithms. We also show that the ®SA

ECAUSE of rapid demand increases for telecommunicgpdate policy has the same overall complexity bound as that

tion, wide-area daFa netV\_Io_rkS have become.very Iargelln this diagonally scaled GP algorithm, the gradient is first scaled by
As a result, computation efficiency for congestion-contraividing each of its entries by the corresponding diagonal entry of the Hessian,

algorithms has become an important issue. In this paper {iign a tentative update is made, and then the result is projected onto the
' positive orthant, as in the equation just before (7).
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of the AAA update policy [2]. The result also implies thathe assumptions, are discussed in Section Ill. The series of
parallelizing the optimal routing algorithm over the networkechnical lemmas leading to the first complexity result is given
nodes is beneficial (see the discussion in Section V). in Section IV, and the complexity bound for the OSA policy

The complexity result developed in this paper has twis described in Section V. Section VI concludes the paper and
important differences from the classical asymptotic convethe Appendix contains the proof for Lemma 1.
gence rate analysis. First, our result is a time-complexity
reSUlt, i.e., the Computation effort is eXleCltIy eXpressed as ||I. OPTIMAL ROUTING PROBLEM AND THE GRADIENT
a function of the problem size. In contrast, the classical PROJECTION ALGORITHM
result is an asymptotic convergence rate estimate in whic . . . .
the dependency on the problem size is not investigatedh.The optimal rOl_Jtlng problem is described as follows. Sup-

. . . pofseG = (N, L) is a directed graph, whet®” is the set of
The asymptotic convergence rate describes the behavior' 0 : . .
) . . . nodes, and is the set of directed links. Lé¥’ be the set of

error of the algorithm solutioras the number of iterations . . )
. S . .OD pairs, and for each OD pais € W, let the traffic demand
goes to infinity”. Thus, even if the rate of convergence i

known, this rate cannot be generally converted to a tim%? rw. The independent variables are the set of path flows

complexity bound. Second, our complexity deals with th Zrlper. luew which satisfies the traffic demand
speed of convergenceutside a small neighborhood of a Z Zp=ry YweW 1)
stationary point, while the classical convergence rate result
deals with the speed of convergerigsidea neighborhood of a
stationary point, e.g., Luenberger [10]. In practice, as the inpiifere P, is a given set of paths for an OD pair, andz;, is
demands are constantly fluctuating, and the measurementstBgetraffic flow on pattp for w. In our notation, each path is
inherently inaccurate, it is not important for the algorithm t&niquely identified by the integer in the entire set of paths.
achieve fast convergence to exact optimality; rather, it is mof&e traffic balance equations, stating that the total traffic flow
important for the algorithm to achieve fast convergence to%4 any directed link is the sum of all the path flows for all the
neighborhood of optimality. paths using that directed link, must also be satisfied. fgt
Thus, our complexity result is in the same form of the time2e the traffic flow on link(i, j) € £, then the traffic balance
complexity bound derived by Nemirovsky and Yudin [1] forequations can be written as
strongly convex problems. There are two main differences _
between our result and that of Nemirovsky and Yudin. The fi=2 >
first is that the optimal routing problem is not strongly convex
because the Hessian matrix has zero eigenvalues (corresp@idn matrix form f = Exz, where ((4, j), p)th entry of E is
ing to paths with zero flows). The second is that the optimahe if link (¢, j) is in pathp otherwise zero, i.eE is thepath-
routing problem is a specific convex optimization problem (aimk incidence matrixAll the traffic flowsz = [z ]wcw must
opposed to the general strongly convex problem) and we @€ nonnegative
able to get stronger results. The time-complexity estimates
for the AAA and OSA update policies are the extra results rp 20, Vpe P,NweW. ©)
obtained because of the specific structure of the opti

pEDP,

z, Y(i,5) €L ()
weW (i, j)Ep, pED,,

routing problem n]_aét us consider a standard cost used in optimal routing problem
OL,JAt t?fp N 'et ' Id like t ¢ the obiect for data networks: the average number of outstanding packets.
IS point, we would fike to comment on the objec IVeUsing the standard Kleinrock independence approximation and

function for the optimal routing problem formulated in thi%he Jackson network formulation [6], [8], the average number
paper. While the classical M/M/1 delay function was used ag outstanding packets is given by TR

the link-objective function, the entire analysis will still carry
through as long as the link-objective function is convex with fij @)
second derivatives bounded above and away from zero. We Cij — fij
chose to use the M/M/1 delay function only for purposes of
illustration. Networks today employ a wide variety of schedwhereC;; is the capacity of the linK¢, ). The cost function
uling and queuing mechanisms to control the transmissiondafined in (4) will run into numerical problems if some
a link; this implies that the appropriate link-objective functiomssigned link flows are greater than or equal to the respective
varies and depends on many factors. For practical networkek capacities. It is possible that, in the course of the routing
the cost associated with a link tends to go to infinity as tregorithm, a link’s total flow exceeds its capacity temporarily.
input rate approaches the link capacity. Such a kind of cobhe conventional remedy is to use a quadratic-like cost func-
can be quite appropriately modeled by a convex function witlon which gives the bounded cost at all times while the cost is
bounded second derivatives. As the analysis in this paper dédentical with the original cost when all link flows stay within
be easily adapted to this large class of link-objective functiore fixed (but high) percentage of the respective capacities. This
the results are applicable to most networks. approximation is realistic for two reasons: 1) in real network
This paper is organized as follows. The optimal routingperations, the final optimal routing always produces link
problem formulation and the GP algorithm are introduced iitows satisfying the condition that the link capacities are not
Section Il. The complexity result for the usual GP algorithnexceeded and 2) for real-world optimal routing algorithms,
along with the computation model and the implications dhe approximation is routinely applied to avoid a numerical

(i,)eL
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stability problem. Therefore, the analysis derived in this papket 5, (k) be the chosen shortest FDL pathA, at iteration
adopts this convention of quadratic-like cost function. k. Thus

Following [2], let p,,..x be a positive constant, independent
of the problem size (to be defined in Section I11) and satisfying d5,, (xy(k) = min{d,(k): p € Pu},

the condition,0 < pax < 1, pmax &~ 1. For all (¢, 7) € L, let
. whered,(k) = d,(z(k)). Due to the complexity of the
Qij(fij), 1 fij <pmaxCi; notationd; (1, we shall, from now on, usé; (k) to repre-
C'v)—i—Q,‘»(p Cii)(fij = pmaxCij) P (k) WE ' ; P
D;;(fi) def= Qij(PmaxCi gAPmax g A Pmaxul sentdy, 1y, in @ slight abuse of notation.

def

+%Qz‘j(pmaxcij)(fij—pm_aXCij)Qv The GP algorithm is based on a transformed cost which is
otherwise (5) defined below. We will use the notation),(k) = zp(k +
where 1) — z,(k) to denote thestep i.e. the change in the path flow
et , vector. The GP update is derived from the standard Taylor
Qij(r) = C. series expansion at the cost at iteration
]
The function D;;(f;;) will be referred to as the link cost — D(w(k+ 1)) = D(w(k)) + Y _ dp(k)sy(k)
function for each(i,j). The constantp,.x is actually a pel
replacement for thenaximum link utilizatiorof the network, +1i Z Z 42 (2(k))sp(k)sq(k) (8)

which is defined to benax{f;;/C;;: (i.j) € L} for a link
flow vector f. Now the first and second derivatives of the
link costs are bounded for bounded flows, independent of thiaere z(k) lies in the line segment formed by joiningk)

peP gePl

problem size. The cost to minimize is now written as and z(k + 1).
. Substitute
D(f)= Y Di(fiy)- (6)
(ihi)EL 5 (k) (k) =70 — Z zp(k) YweW

— . . . 5 PE Py, p#P., (k)
Note thatD(-) is convex and twice continuously differen-
tiable. into D(z(k)), we get the transformed cost(z(k)).* The first

The path-formulated optimal routing problem is that ofnd second derivatives of the transformed cost are derived
minimizing (6) subject to constraints (1)—(3). The constraints

(2) are eliminated by su?stituting = Ez in D(f) to get (k) 4t OD(&(k)) _ Ay (k) = dy o (R)

a new cost functionD(z); D(z) is obviously convex and Oy

twice continuously differentiable. With this new cost and _ D () — Dk 9

constraints (1) and (3), we obtain a variation of the classical Z i (i () Z i (Jii(R)) )

multicommodity flow probleniMFP). o
The optimality condition for this MFP can be easily derivedg2 (i) f 9" D(x(k))

(@ 5)ep (4,5)€P., (k)

[2] and is stated below 0
7> 0= dy(a”) ~ dp, (27) = 0 ™ =L Dol B Dyl
(&, 5)erng (4, 5)€P., ()Ng
where the*-superscript indicates that the corresponding quan- + Z D;;(fij(k))

tity is optimal for the MFP,d,(x*) denotesoD(z*)/dx;,

o X S (4, ))EP (R)NT 1 (k)
which is interpreted as the first derivative of the “length”

(FDL) of p at z*, and (k) is a shortest path according - Y Di(fi(k)) (10)
to FDL (i.5)Cpra, s (k)
dp,, (¢%) = ;g},ny{dq(x*)}- whereD,; () [respectively,D(; ;(-)] denotes the first (re-

_ _ _ spectively, second) derivative &f;; ;(-), the notation(, j) €
For our analysis we will also be concerned with the secopfimeans that links, ;) is part of the patlp, pn ¢ denotes the

derivatives of the “lengths” (SDL) for two pathsandg set of common links of pathg and ¢, andg,,, denotes the
2 chosen shortest path for the OD pair to which ¢ belongs.
2 def a D(‘T) .
dm(k) = Bron. We will use the symbok(k) to denote the transformed step,
p q

i.e., the change in the transformed path flow vector, BiH)

The Goldstein-Levitin—Poljak GP algorithm formulated byo denote the set of active paths which are not the chosen
Bertsekas [2] for the above MFP is described as followsk letshortest path at iteratioh
denote the iteration number. For eagle W, at each iteration _
k = 1,2,---, the updated flowz,(k + 1) is computed as P(k) df={pe PAweW,s.tpe Py, p# Dy(k), 2p(k)>0}.
follows. The algorithm will choose, for every OD pair at every 4We point out here that the transformed céi%ti(k)) and the actual cost

iterat.ion a particular shortest FDL path; we will refer to thesﬁ(m(k)) give the same value, even though they are technically two different
special shortest FDL paths as tbleosenshortest FDL paths. functions.
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In terms of the transformed cost, the Taylor series expansifar all «w € W. Finally, we also assume that at each iteration

(8) can be rewritten as of the GP algorithm, there af&1) number of active paths per
. L - OD pair. The above assumptions are natural and consistent
D(z(k+1)) = D(z(k)) + Z dp(k)sp(k) with practical data networks.

pel(k) Remark: So far, we have defined many symbols and more
+1 Z Z dgq(z(k))sp(k)sq(k). symbols will be added. To simplify the (rlwgtation, we will use
pEP() qeP(k) the following convention. We defin® = U,ew B, tO

(11) be the set of admissible paths. We will us¥ = D(f*)

to denote the optimal cost. For any variable writtenvék),
The GP update equations can be stated as follows: we could mean the variable(z(k))—for example,D(k) is
_ _ -1 g + the short form ofD(x(%)). D(-) will be used as thgeneric
2p(k+1) = [y (k) = almp (k)™ (dp(k) = dp, (K))] cost,independent og‘ tE]e)llctu(al)argumerifsnr example D (k)
e+ ) =re— Y ap(k+1) denotes the cost at iteratidn We will use|| - || to denote the
PEPw, P#P, (k) Euclidean norm lg-norm).

From the standard Jackson network formulation [6], [8],
and our basic assumptions, the average number of outstanding
é)ackets will grow at a rate proportional to number of OD pairs,
given that the average delay remains unchanged. Thus we will
also assume the following:

where[-]* is defined by theth element ofz]" = max(0, z;),
« is the scalar step size, and,(k) is a scaling factor. In
this GP algorithm,m,(k) is assumed to be bounded in th
following sense: let/ and A be scalar positive constants,
independent of the problem size, such thaj(k) satisfies

the condition D* = Q([W)). A
0<l<mp(k) <A Vpe P, weW. (12)

77 7

From (5), there exist positive constarﬁmn, Dy Do

Here, £ is an estimate of the minimum of the minimumandD,,, all independent of,, such that, for allt > 0 and
diagonal elements of the Hessian matrices associated with the) € £
set of active paths for all the iterations, aidis an estimate

of the maximum of the maximum diagonal elements of the
Hessian matrices associated with the set of active péahall Dy < Dyi(fi5(k)) < Do
the iterations. The upper-bour is guaranteed by our cost

function assumption (5), and the lower-boufids an extra From the GP algorithm, a paghwill be active at some iteration
assumption. The lower-bound assumption is always observeé 0 only if z,,(0) >0 or p is the chosen shortest FDL path at
in practice, as any practical implementation of GP algorithspme iteratiork” < k. Because of the optimality condition (7),
will make sure that the division by, (%) is bounded away we assume that, for each OD pair at iteration 0, the traffic

max

(13)

from zero, independent of the problem size. demandr,, can be assigned to a few (i.€)(1) in number)
minimum hop paths.
lll. COMPUTATION MODEL AND COMPLEXITY RESULT From this assumption and (13), the number of hap&:)

. . . : _ for any active pathp at any iterationt > 0 is bounded b
In this section, we will describe our computation modeﬂ1 4 pathy y - y

(our assumptions), the implications of our assumptions, ancF inequality
the complexity bound for the usual GP algorithm. hp(k) < Yhmin (14)
What constitutes the problem size? Obviously, there are
many different ways to parameterize the size of the MFP. Théhere h.,;, is the diameter of the network, which is the
complication here is that the MFP actually depends on mamaximum of the minimum hop distance between any two
intertwining factors: the network topology, the network linkdistinct nodes in the network. Then, from (9), (10), and (14),
capacities, and the traffic demands for networks, to name jfist any active pattp at iterationk, its transformed FDL and
a few. We shall use, in a simplified way, the number of nod&DL are bounded by
n as the problem size. . , . "
As the network size goes to infinity, the cost may also go to d < YDypaPomin,  dpy (k) < 2vDychimin. - (15)
infinity. It is obvious that, even if the network size approaches ) . .
infinity, we should only be concerned with the relative costN® Next lemma is an immediate consequence of the GP

performance. That is, the algorithm should be considered &90rithm, see [3], [S]; the proof is included in the Appendix

have “converged” if the cost lies within a small percentag@" complet?ness.

of the optimal cost. Thus, in this paper we will consider only Lémma 1:For allw € W, &k > 0

relative accuracy of the cost. N ) )
We now state more assumptions of the computation model. Z (dp(k) = du, 5, () (K))3p (K)

For each(i,j) € £, we assume thaC;;(n) = 6(1), and p

consistent with this assumption, we assume théh) = 6(1), < _Z Z |sp (k).

PE P, p#P., ()

5An active path is a path with a positive flow. PE P, p#P, (k)
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From Lemma 1 and (11), we have that H,(k) = EI(k)HL(k)E.(k), where theT-superscript
~ ~ /L denotes matrix transpose. LgtM/ ) denote the spectral radius
D(z(k+1)) < D(a(k)) — [a - —} ||5(%)||? (16) of the square matrix\/

2
< T
where L is a bound for the spectral radius of the symmetrical pUHp(F)) —p(HL(k))HE‘;(k)Ea(k)HOO .
positive semi-definite Hessian matrik2D(z(k)). Thus, by Sp(HL(E)IEZ (B)llool| Ea (k)]0

choosing an appropriate stepsiae say, for some positive Now use the following relations:
constants’; andCs, 0< Cy < C1 <1 .
||Ea (k)Hoo < ’thin

20 20

OQZ S @ S Olf (17) ||Ea(k)||oo S Nmax
we guarantee that for all > 0, D(z(k+1)) < D(x(k)). This PHLK)) = Doy
stepsize will depend on. It turns out that the complexity is the lemma is proved. Q.E.D.
intimately related to the ratio of to ¢, we define this ratio  From the way we choose our stepsize (17) and Lemma 2,
to be @ we have

et L 1

Q d:f ? = 9(04_1) = Q(L) (18) E = 9(h111inanax)- (19)

This ratio of largest to smallest eigenvalues is well known to Leémma 3: There exists a positive constast, independent
be an important determinant of the computational effort. F&f 7, such that
example, see [12]. N A .

Let T7(n) denote the number of iterations needed for the D{x(k)) = D" < A — VWs(R)]l-
GP algorithm to converge to withifl +¢)D*. Among all the
network parameters, we will highligltt,,;,, and V.., where

Numax is the number of paths sharing the maximally sharpgx(k)) D < Z Z (dp (k) — di_(k))

link. . . . weW  pe Py, p#P,, (k)
From our experience with the GP algorithm, we have ob- . ¥
- (ap(k) = zp)

served that, in general, the larger the maximum link utilization,

Proof: By convexity and the fact thak,(k) > 0 =% > 0,

the larger the number of iterations needed for the algorithm <> > (dp(k) — dp (k) p(k)
to converge. However, we will not highlight the dependency WEW pe Py, p£p,. (k)

of the complexity bounds om..... We do this because, in _ Ak — d= (k

the quadratic-like cost function (5p..x iS typically chosen Z Z (k) = dp, (F)

WEW p€ Py, @y (k+1)=0

independent of:. In addition, for realistic data networks, the
’ - (ap(k) — zp(k + 1))

final maximum link utilization is always reasonably bounded

away from unity and our analysis is well suited for such + Z Z

situations. Note also that, from (14), the largest number of wWEW pe Py, 7, (k+1)>0, p#£p,, (k)
links in any active path will be in the order of the network mp(k)

diameter. : —1; (zp(k) = zp(k + 1))z p(k)

Now the complexity result can be stated as follows.
Theorem 1: If the stepsize is chosen according to (17), then
for anye >0, n > 0, the number of iterations needed for the

IA

2. 2

wCW pc Py, z,(k+1)=0

GP algorithm to converge to withib*(1 + ¢) is bounded by *dp(R)|2p(F) = 2p(k + 1)]
Ti(n) < O(2Q) = O(e2hminNuae)- + > >
weW pe Py, xp(k+1)>0, p#£p,, (k)
IV. PROOF OF THECOMPLEXITY FOR THE A
USUAL GP ALGORITHM . |zp(k) — zp(k + D2, (K)]- (20)

The proof of Theorem 1 will be completed by using lemmas > >
1, 2, and 3. wEW pC Py, p#p,, (k)
Lemma 2:

IN

na {4y (1), 8oy (0) 1+ 1)

Proof: Let H,(k) denote the Hessian matrix max{rmeaX,Tnmx} 2 Z
3?*D(z(k))/8z>, and let H; (k) denote the Hessian matrix A Y ew
*D(f*(k))/0f% where f*(k) = Eu(k)2(k), E.(k) . 3 (k) — z,(k+1)]  (21)
denotes the path-link incidence matrix between the set of pC P pop ()

link flows and the set of path flows for paths iR(k), e

i.e., active paths which are not the chosen shortest pathvere in inequality (21), we use the fads(k) < YD, fomin

Note that H; (k) is a diagonal matrix. It is easy to sedc.f. (15)], (1/a) = O(hminNmax) [from (19)], |z, (k)| <

L S ’YDmaXhminNma.X .

IN

7
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ro = 0(1) for p € P, andrpax = max{r,: w € W}. For the AAA policy, the iteration complexity will be
The lemma now follows using Holder's inequality and th€)(n?humis), While the time complexity for each iteration
assumption that there aé¢1) number of active paths per eachwill be O(n?®). Thus, the overall time complexity will be
OD pair. Q.ED. O(®’hy). It turns out that the iteration complexity bound
Proof of Theorem 1:Combining (16) and Lemma 3, we getfor the OSA policy isO(n) larger than that of the AAA policy
¢ L\ (D(a(k)) — D*)? (see Theorem 2 below). Since the computation complexity for
D(z(k+1)) — D(z(k)) < —<— - —) 5 . each iteration of the OSA policy i©(n?) (only one-source
a2 <A1é> W shortest path problem is to be solved per iteration), the overall
«@ complexity for the OSA policy iSO(n®hmyin), Which is the
(22) same as that of the AAA policy. This result is not surprising
since the difference between the OSA and the AAA policies is
N . similar to the difference between the Gauss—Seidel and Jacobi
Cs|W|. WheneverD(x(k)) — D* = De updates in the general iterative algorithm [11]. It is known that
61— C1)Cs D2, (23) Gauss—Seidel method is twice faster than the Jacobi method
A2N2 ' for the one-dimensional discretized Poisson equations [11].
In this subsection, we shall use subscriptto denote

From assumption 4), there existsCs >0 such thatD* >

D(z(k+ 1)) — D(z(k)) < —«

In inequality (23), we have used the fach <1 and the o ) i h

inequality (17). Now the complexity estimate followgE.D. duantities associated with the OSA policy. Lief denote an
Note that the inequality (22) also shows that, in order féfPPer bound for the spectral radii of trlfffec_'[|v2e[f|e55|an

D(k) — D* to be belowe(D(z(0)) — D*), it suffices thatk be matrices for the OSA policy, i.e. the matrixX“D(z(k))

greater than the inverse af,(D(2(0)) — D*)e2, where A, is restricted to the set of active paths updated at an OSA iteration.

a constant depending an Hence, the complexity of obtaining Since there are onl§(1) number of active paths per OD pair,

a factor of= improvement scales inversely with the initial costt 1S OPvious that

V. COMPLEXITY OF THE OSA RoLIicY Ly = O(L/n).

The overall time complexity of the GP algorithm can be
estimated by the product of the iteration complexity and tHehoosea, the stepsize for the OSA policy
time complexity of each iteration. So far, in this paper, we
have focused on the iteration complexity since the complexity C 2t <a.<C 2t

. . . . . : 2 A (24)

of each iteration is trivial to estimate. It is easy to see that the s s
time complexity of each iteration is dominated by the shortest
path computation. This complexity is bounded®y»?) since Thus, we have
the known fastest sequential algorithm for the all-pair shortest
path problem require®(»®) amount of computation efforts. 1 = §(nhmin) (25)

According to Bertsekas [2], there exist two variations of R e
the update policy for the GP algorithm. The usual policy is
that, at each iteration, the path flows for all the OD pairs ateetting @, denote the ratial, /¢, we haveQ, = O(Q/n).
updated; this policy will be referred to as the AAA policy. AnLet T,(n) denote the number of iterations needed for the
alternate policy is that, at each iteration, the path flows for ti&P algorithm with OSA update policy to converge to within
OD pairs corresponding to only one origin node are updateR;(1+¢). To find the iteration complexity for the OSA policy,
and the origin nodes take turn in a round-robin fashion swe will prove a lemma similar to Lemma 3. Fix aty> 0,
participate in these iterations; this policy will be referred twe will focus onn consecutive iterations grouped together in
as the OSA policy. Bertsekas [2] has commented that tHee form:k, k+1,---,k+n—1. For any active path updated
OSA policy converges in less time overall, even though ttad iterationk +-¢, let d,, ., denote the transformed FDL for path
number of iterations is more for the OSA policy. In fact, @ at the iterationk + ¢; we also write
fast sequential code for the GP algorithm developed at MIT
[9] uses the OSA policy, and the OSA policy has consistently 2p (k) def (k+1) = z,(k)
shown faster convergence from the experience of the authors e r r
of [9]. A reason for this phenomenon suggested by Bertsekas , . . :
[2] is that the OSA policy changes less amount of flowgnd similarly, we write
and the Taylor series expansion becomes more accurate, and
the algorithm can afford a larger stepsize without inducing s, -(k) def spbk+4) =zp(k+i+1) —xp(k +4).
divergence.

Let us also assume, in this section, that we will use an| emma 3a: Suppose the OSA policy is adopted. There
explicit bound forNp.x. Assume that the number of OD pairsexists a positive constants, independent of., such that
is O(n?) and that each OD pair ha&1) number of active

paths at each iteration, then AsA

Noe = O(n2). D(@(k) = D" < —— VW[5 (®l-
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) . s e TABLE |
Proof: Following the same initial inequalities in the DaTA POINTS T (1) VersusF(n)
proof of Lemma 3
n Ti(n) F(n) R
D(z(i)) — D* < d (Vo (k 169 36 9.21E+7 3.91E-07
(x(k)) = Z o (k) p(k) 289 66  4.70E+8 1.41E-07
pel (k) 256 96 8.22E+8 1.17E-07

324 83 8.70E4+8 0.95E-07
361 69 1.13E49 0.61E-07

IA
S
o
—~
}l
g
8
=3
o
—~
}l
g

Pk
per® 3 225 78 175E4+9  0.46E-07
+ Y (dp(k) = dp o (k))zp, o(k).  (26) 441 83  1.82E+9 0.46E-07
peP(k) 400 121  2.71E4+9  0.45E-07

Now the first term in the right-hand-side of (26) is similar in

form to (20) and we can apply the proof technique of Lemma Theorem 2: If the stepsize is chosen according to (25) and

3 to get the OSA policy is adopted, then for ary>0, n > 0, the

A A number of iterations needed for the GP algorithm to converge
Z dp, sp, (k) < L= VW15 (R (27) to within (1 + &)D* is bounded byI;(n) < O(e 2n?Q;) =
peP k) s 0(5_2n3h111in)-
The proof of Theorem 2 can be followed almost verbatim

The second term in (26) is bounded as follows. By the Medrom the proof of Theorem 1 and we omit the proof.

Value Theorem, we can write, for any The result in this section also implies the benefit of paral-
. . . lelizing the optimal routing algorithm over the network nodes.
dp o =dp(k)+ D dpo(#(k)ses(k)  (28) The AAA policy can be easily parallelized since at each

qCP(k), g<p iteration, the updating of path flows can be done at each

o . L origin of the OD pairs, and each origin node only has to solve

where 2" (k) lies in the line segment formed by joiningk) 5 single-source shortest path problem. Thus, this parallelized
and z(k + 1), (k) is assumed to be updated at iteratiofersion of the AAA-GP algorithm will have an overall time

k + i, and the notatiory < p means that path is updated at complexity ofO(n*hm), showing a perfect speed-up©fn)

an iteration beforg’s iteration, i.e., before iteratioh +4.  with O(n) parallel processors. This parallelization will not be
We can express the second term in (26) as attractive if the OSA policy has an overall time complexity of
. . O(n*hmin), because the sequential OSA-GP algorithm would
Z (dp (k) — dy, s (k))ay, s (k) have the same time complexity while using only one processor.
pel(k) The complexity bound derived in this section suggests that

= _ Z Z Jpq(zp(k))sq S(k)z, o(K) this latter scenario is unlikely and the parallelized AAA-GP

pEP(R) qeP(), a<p algorithm is efficient.

= —Ts(k) Hy (k)35 (k), VI. NUMERICAL RESULTS

where H,(k) is the special Hessian matrigd,,(z*(k)) : In this section, we present some numerical results which
g < p}. Thus demonstrate the usefulness of our theoretically derived bounds.
. B ) The symbols used in Table | are:
<&a(k) Ha(k)3a(k) = —Hy (R)F:(k) 3() n number of node
< N HY (B2, (B)[15:(B)l- (29)  7y(n) number of iteration
F(n) estimate functiorh ,inNVmax /2

Since the number of active paths iR(k) is assumed to R ratio Ty (n) /F(n)
be O(|W|) = O(n?) and dy,(2P(k)) < Aghmin, Where _
Ay = 2vD) P [cf. (15)] We wrote a program to generate mesh networks with 0.5
probability that a single node will be an OD node. An OD
|HE (k)& (k)| < Arn®humin node is a node which is both an origin and a destination. The
link capacities and demands are randomly generated.
where A7 is a positive constant independentsaf Thus The data points (Z77(n),F(n)), where F(n) =
~ ~ € 2hminNmax, for the networks are plotted in Fig. 1
> (dypk) = dp, o (k))zp, o (k) and shown in Table I.
peP(k) Note that 2 will be an estimate for the constant in the
Any/[W] O(e™?huminNVimax) Notation. From Table | and Fig. 1, it is

< A1 hnin 35 (B)|| < As Iss(E)Il - (30) clear that the ratio remains relatively unchanged. This re-
sults show that the theoretically derived bouffd(n) =

where A is some positive constant independentrofThe  O(e ™ 2hminNmax) iS an excellent predictor of the trend in

lemma follows by combining (27) and (30) witl; = A;+A¢ the number of iterations as the node number increases. The

and noting (25). Q.E.D. tiny ratio R (hence, a small constant in tli&(-) notation) is

5
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sx10  large, while in the latter case, the stepsize should be chosen

130 —_—

120 small. Another obvious observation is that, if the network is
heavily loaded, then the stepsize should be chosen small and
1or the algorithm will converge slowly, as some elements of the
100 Hessian matrices will tend to be large.
= 90~ - An interesting application of Lemma 3 is that the Euclidean
F g0 2 norm of the transformed ste§{%) can be used as a stopping
20 criterion for the GP algorithm. Lemma 3 implies that the
norm of the transformed step can be used to define level
60 - . .
sets for the cost function. An actual stopping measure should
50 also be normalized so that the measure is independent of the
40 ¢ problem size.
Oes a0 50 a00 850 400 o Finally, t_he resuI.t of this paper argues for con§tructlng
n networks with low diameter for the purpose of reducing com-

plexity of the network control algorithms. This comes from

the observation that, among all the terms in the complexity
bounds, onlyh,,;, is at the disposal of the network designer.

attributed to the large value ef 2. The pleasant surprise isin fact, by observing most practical networks, one easily
that the trend is well predicted and the trend (or the derivativeijscovers that the network diameter is usually a very slowly
is what is the most wanted in an asymptotic complexityicreasing function of the network size, showing that the
analysis. network designers have been making the right decisions.

Fig. 1. Ty(n) versusF(n).

APPENDIX
VII. CONCLUSION

In this paper, we have studied the time-complexity Proof of Lemma 1:From the GP algorithm

bounds for the GP method for optimal routing in data 0< —s,(k) < N )
networks. Our result shows that the GP algorithm of =TT my (k)
the Goldstein—Levitin—Poljak type formulated by Bertsekaﬁhus

converges INO(huy,inNmax) Number of iterations. We also

show that OSA update poliqy has t.he same overgll cc_)mplexity — Z (dp(k) = du, 5, (1) (K))5p (k)
as that of AAA update policy. This result also implies that PEPuw, 7P, (k)
parallelizing the optimal routing algorithm over the network myp(k)
nodes is beneficial. 2 Z |3p(/f)|2pT

One should interpret the results carefully. Complexity PELw, P#P,, (k)

bounds are worst-case estimates; it does not mean that theﬁﬁ _
) ) with that/ =

bounds are actually attained in many real-world problems.

These bounds do tell us, however, that the number of OD

pairs, the network diameters, and the number of active paths

per OD pair could be the dominating factors determining thél] A. S. Nemirovsky and D. B. YudinProblem Complexity and Method

- ; - - - Efficiency in Optimization New York: Wiley, 1983.

!teratlon complexity. The main E?mplexny bound Can_lbe put[2] D. P. Be)r/tsekag, “Optimal routing and flov}\// control methods for com-
into another form,77(n) < O(a™") = O(Q) = O(LL™1), munication networks,” inAnalysis and Optimization of Systema.
which tells us that the inverse of the stepsize is the critical Benzcitéssgg and J. L. Lions (Eds.). New York: Springer-Verlag, 1982,
factor. Often’ one Cfrm Choose_ a small stepsize and let t \F/)\? K. Tsai, “Convergence of gradient projection routing methods in a
GP algorithm runs—if the algorithm does converge, then the " distributed asynchronous stochastic quasistatic virtual circuit network,”
computational efforts are proportional to the inverse of the IEEE Trans. Automat. Contrvol. 34, pp. 20-23, Jan. 1989.

. . . 4] W. T. Tsai, C. V. Ramamoorthy, W. K. Tsai, and O. Nishigushi, “A
chosen stepsize, otherwise, one can reduce the stepsize éddnew adaptive hierarchical routing protocolEE Trans. Computvol.

keep on trying. From our implementation experiences, the 38, pp. 402-407, Aug. 1989.

computational efforts are Weakly dependent on the number &f! J- N. Tsitsiklis and D. P. Bertsekas, “Distributed asynchronous optimal
oD . d d dent th ¢ K di t Th routing in data networks,IEEE Trans. Automat. Contrvol. AC-31,
pairs and more dependent on the network diameters. The ;" 355 335 19g6.

fact that the complexity bounds are proportional to the ratio ofé] L. Kleinrock, Communication Nets: Stochastic Message Flow and Delay

i i i ini i New York: McGraw-Hill, 1964.
the maximum eigenvalue estimate to the minimum elgenvaIUﬁ] R. G. Gallager, “A minimum delay routing algorithm using distributed

estimate of the Hessian matrices is also very interesting. This' computation,”IEEE Trans. Communvol. COM-25, pp. 73-85, Jan.
result implies the following: if the active paths are more or 1977

; : : 8] D. P. Bertsekas and R. G. GallagBata Networks Englewood Cliffs,
less mutually independent, then the ratio will tend to be smali, NJ: Prentice-Hall, 1987,

and algorithm will converge faster. On the other hand, ifi9] D. P. Bertsekas, B. Gendron, and W. K. Tsai, “Implementation of an

all the active paths are coupled in a complicated way, then optimal network flow algorithm based on gradient projection and a path
flow formulation,” MIT, Cambridge, MA, LIDS Rep. p-1364, Feb. 1984.

the ratio will tend to be large, and the a|90r|thm will tenqlo] D. G. Luenberger, “The gradient projection method along geodesics,”
to be slow. In the former case, the stepsize can be chosen Management Sciencgol. 18, no. 11, pp. 620-631, July 1972.

inf{m,(k)} in (7) implies the lemmaQ.E.D.
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