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ABSTRACT 

 

The output of space-time adaptive processing (STAP) is a weighted sum of 

multiple radar returns, where the weights for each return in the sum are calculated 

adaptively and in real-time. The most computationally intensive portion of most STAP 

approaches is the calculation of the adaptive weight values. Calculation of the weights 

involves solving a set of linear equations based on an estimate of the covariance matrix 

associated with the radar return data. The traditional approach for computing the adaptive 

weights is based on a direct method called QR-decomposition. This method has a fixed 

computational complexity, which depends on the size of the equation matrix and provides 

the exact solution. An alternative approach based on an iterative method called Conjugate 

Gradient is proposed, which allows for trading off accuracy for reduced computational 

complexity. The two approaches are analyzed and compared.  

Existing computational strategies for STAP typically rely on the use of multiple 

digital signal processors (DSPs) or general-purpose processors (GPPs). An alternative 

strategy is proposed, which makes use of Field Programmable Gate Arrays (FPGAs) as 

vector co-processors that perform inner product calculations. Two different “inner-

product co-processor” designs are introduced for use with a host DSP or GPP. The first 

has a multiply-and accumulate structure and the second uses a reduction-style tree 

structure having two multipliers and an adder. The proposed strategies are implemented 

and compared to the traditional method. 
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CHAPTER I 

INTRODUCTION 
 
 
 

1.1 Motivation for Space-Time Adaptive Processing 

Modern airborne radar platforms are required to provide long-range detection of 

smaller and smaller targets in the presence of severe interference from both natural and 

artificial sources. This detection of targets is often performed over land, where ground 

clutter can be very high [1], and in the presence of electronic countermeasures such as 

jamming [1, 2]. These radar platforms must have the capability to nullify both clutter and 

jamming to below the ambient noise level.  

The suppression of jamming and clutter has posed a problem to radar engineers 

since the beginning of radar. Over the years, many techniques have been developed to try 

and eliminate jamming and clutter; however, the problem is difficult because it is 

dependent on a number of different inter-related variables. A potential target may be 

obscured not only by the mainlobe clutter (i.e., the clutter that originates from the same 

angle as the target) but also by the sidelobe clutter (i.e., the clutter that comes from 

different angles but has the same Doppler frequency) [2]. Displaced-phase-center-antenna 

(DPCA) processing was developed to address the problem of clutter in airborne radar 

platforms [3]. The effects of jamming on radar systems can often be successfully 

cancelled by adaptive array processing techniques [4].  

The above two techniques – DPCA and adaptive array processing – individually 

provide a partial solution to the problem of clutter and jamming, respectively. These two 

techniques have been effectively combined in a technique known as Space-Time 
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Adaptive Processing (STAP), which can be viewed as a generalization of DPCA 

processing. STAP simultaneously and adaptively combines the signals received on 

multiple elements of an antenna array – the spatial domain – and from multiple pulse 

repetition periods – the temporal domain.  

STAP offers the potential to improve airborne radar performance in several areas. 

STAP algorithms can provide improved target detection in the presence of interference 

through the adaptive nulling of both ground clutter and signal jamming [5]. It can 

improve low velocity target detection through better mainlobe clutter suppression. It can 

also be used to detect small targets, which would otherwise be obscured by the presence 

of sidelobe clutter. STAP also provides a capability to cancel non-stationary interference. 

Thus, STAP combines both spatial and temporal adaptive processing techniques to cancel 

out the clutter and interference contained in the radar signals received by an airborne 

antenna array.  

Another significant feature of STAP is that it improves the performance of the 

antenna array while requiring little or no modification to the basic radar design. However, 

the computational complexity associated with STAP is generally very high; an extremely 

large amount of data needs to be processed in real-time. This in turn requires a large 

computational throughput.  

 

1.2 Candidate Computational Technologies for STAP 

The computational requirements of STAP algorithms are well suited for execution 

on digital signal processors (DSPs), which are special purpose microprocessors optimized 
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to perform arithmetic operations such as multiplication, addition, and subtraction with 

high efficiency.  In addition to their increased performance for certain computations, 

DSPs are generally silicon conservative, less expensive, and more power efficient than 

comparable general-purpose microprocessors. Thus, DSPs are often a better choice than 

general-purpose processors for embedded applications that have strict size, weight, and 

power (SWAP) restrictions.  

Even though DSPs are well-suited for embedded systems, their architectures are 

still somewhat generic, which means they may have more silicon complexity than is 

absolutely necessary for any given application. For example, an application specific 

integrated circuit (ASIC) designed for a given application is generally better matched 

(i.e., has less complexity and/or better performance) for that application than does a DSP.  

However, some disadvantages of ASICs include their high cost of design, which makes 

them ineffective in terms of cost when they need to be produced in small volumes, and 

their inflexibility (i.e., they cannot generally be re-used for other applications). 

An alternative to both DSPs and ASICs is the use of reconfigurable computing 

devices, which can provide performance near ASIC levels while having programming 

flexibility similar to DSPs. Reconfigurable computing is usually based on field 

programmable gate array (FPGA) technology. Because FPGA chips are commercially 

available, reconfigurable systems based on FPGAs can be developed at a fraction of the 

cost associated with using ASICs. The recent popularity of reconfigurable systems is 

consistent with the growing trend toward utilizing commercial-off-the-shelf (COTS) 

hardware in place of custom-designed ASICs for military applications [6]. The feature of 
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being able to reconfigure FPGAs also allows for the possible use of one system for many 

different applications. 

An FPGA device typically consists of an array of programmable logic blocks 

interconnected by a programmable routing fabric. The task of “programming” an FPGA 

is actually similar to that of designing an ASIC in the sense that the programming of an 

FPGA is expressed through a hardware description language (HDL) such as VHDL [7]. 

The designer’s HDL code is compiled into a binary file called the “bit-stream,” which is 

targeted for a particular FPGA part. The bit-stream defines the internal programming of 

both the logic blocks and routing resources within the FPGA in order to implement the 

HDL design.   

FPGAs and ASICs are particularly well-suited for embedded applications in 

which a stream of input data must be processed. In such applications, the required 

computations are often deterministic, primarily involving numerical operations. Thus, 

when compared to DSPs, the use of FPGAs and ASICs can provide improvements in 

speed and throughput by exploiting parallelism and eliminating the overhead associated 

with load/store operations, branch operations, and instruction decoding.  

 

1.3 Focus of the Thesis 

The most computationally intensive part of STAP algorithms is typically the 

calculation of adaptive weights, which are used in combining the multiple returns (across 

both time and space). Traditionally the adaptive weights for STAP are computed using 

the QR-decomposition [8] approach, which is a direct matrix solver that gives exact 
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solutions. QR-decomposition involves a fixed number of floating point operations 

determined by the size of the equation matrix. For most applications in radar processing 

precise answers may not be required; approximate answers are sufficient. In such cases it 

would be very effective in terms of computations and time to compute approximate 

answers.  

This research involves two distinct objectives for improving the performance of 

STAP processing. The first objective is to investigate alternate approaches to compute the 

adaptive weights, in which the accuracy of the answers can be traded for the associated 

computations. Two approaches are investigated and compared: the traditional QR-

decomposition technique and a newly proposed approach based on the conjugate gradient 

(CG) method [8]. The second goal is to use reconfigurable computing platforms to 

perform a part of the core computations needed in both the QR and CG approaches; 

improving the throughput of the system as well as the overall characteristics (e.g., size, 

weight, and power) of the system. The core computation implemented with 

reconfigurable computing is the calculation of the inner products. 

 The reconfigurable computing platforms usually use FPGAs as the 

reconfigurable logic components. The use of reconfigurable hardware maybe divided into 

three categories: 

1. Logic – where FPGAs are used to implement glue logic. 

2. Embedded Computing – where FPGA-based reconfigurable co-processors are 

used along with DSP or general-purpose processors (GPPs) to perform computationally 

intensive part(s) of an algorithm. 
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3. General Computing – where completely reconfigurable computing platforms 

based on FPGAs are used in a system designed for general purpose computing.  

In this thesis, the focus is on the use of the second category. The target FPGA 

platform is the WildOne computing engine made by Annapolis Micro Systems, 

Annapolis MD [9]. 

A major challenge of implementing core components of STAP algorithms on 

FPGA-based computing engines is determining the architectural requirements to perform 

the these computations. The details related to the size and the optimal number of adder 

and multiplier circuits are investigated. Because these architectural design details are 

flexible, the most appropriate configuration depends on the data characteristics (e.g., 

dynamic range and accuracy) and the data representation used (e.g., floating point vs. 

block floating point). A basic goal is to investigate the accuracy that can be achieved with 

the use of block floating point operations instead of floating point operations for a given 

dynamic range of numbers.  

The remainder of this thesis is organized in the following manner. Chapter II 

gives an overview of radar signal processing and the computational complexity analysis 

of two known STAP algorithms, namely fully-adaptive STAP and partially-adaptive 

STAP. Studies conducted to evaluate two different approaches (QR vs. CG) to compute 

the adaptive weights associated with partially adaptive STAP algorithm are discussed in 

Chapter III. Chapter IV briefly introduces the basic components of the WildOne 

reconfigurable computing board that is being used in this work. In Chapter V, two 

alternate architectures for GPP/FPGA implementations are illustrated along with the 
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discussion of a general design methodology for the design of hardware/software co-

system and the use of Unified Modeling Language (UML) [10] to model the system 

effectively. The common attribute of both the architectures is that the FPGA component 

serves as an inner product co-processor to the GPP. The architectures differ in how the 

inner product calculations are performed on the FPGA. Chapter VI presents some 

numerical studies conducted on the two architectures. Finally, Chapter VII concludes the 

work with a summary of the research completed, the results and the future work.   
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CHAPTER II 

SPACE-TIME ADAPTIVE PROCESSING 
 

 
2.1 Introduction 

The concept of radar dates back to the 1880’s when Hertz first demonstrated that 

radio waves reflected from metallic and dielectric objects. However, radar technology did 

not come into its own until its widespread development and application during World 

War II. Since then, the use of radar has increased phenomenally. Today, radar technology 

is being used in a range of military, commercial, and private applications.  

Modern airborne radar systems are required to detect smaller and smaller targets 

in the presence of clutter and interference. The cancellation of ground clutter and 

jamming interference from radar returns has been the topic of research over the years. 

STAP algorithms were developed to extract desired target signals from returns comprised 

of Doppler shifts (associated with radar platform motion), ground clutter returns, and 

jamming interference. 

The following sections describe the principles of modern radar systems and the 

major components of typical STAP algorithms, giving a brief overview of the different 

stages of computation that are generally required. For a more thorough analysis of STAP 

algorithms, the reader is referred to [5]. The following section on radar fundamentals 

borrows extensively from [11] that gives a more complete overview of radar. 
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2.2 Radar Fundamentals 

The fundamental purpose of radar is to detect the presence of an object of interest 

and provide information concerning that object’s range, velocity, angular coordinates, 

size, and other parameters [12]. The basic principle of radar is very simple. An 

elementary form of radar consists of a transmitting antenna and a receiving antenna. 

Radar operates by radiating electromagnetic (EM) energy, oscillating at a predetermined 

frequency, f, and duration, τ, into free space through the transmitting antenna.  In general, 

the radar antenna forms a beam of EM energy that concentrates the EM wave into a given 

direction [13].  By effectively rotating and pointing the antenna, the transmitted radar 

signal can be directed to a desired angular coordinate.  

A portion of the radar’s transmitted energy is intercepted by an object located in 

the path of the transmitted beam and is scattered in all directions depending on the 

target’s physical characteristics. In general, some of the transmitted energy will be 

reflected back in the direction of the radar.  This retro-reflected energy is referred to as 

backscatter [13].  A portion of the backscattered wave, or echo return, is received by the 

radar antenna.  The echo returns, which are gathered by a set of sensors, are sampled, and 

the resulting data is processed to identify targets and parameter estimation.  

The distance to the target is determined by measuring the time taken for the radar 

signal to travel to the target and back.  Furthermore, the angular position of the target 

may be determined by the arrival direction of the backscattered wave.  If relative motion 

exists between the target and radar, the shift in the carrier frequency of the reflected 
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wave, also known as the Doppler effect, is a measure of the target’s relative velocity and 

may be used to distinguish moving targets from stationary objects [2].   

The basic role of the radar antenna is to act as a transducer between the free-space 

propagation and guided-wave propagation of the EM wave [14].  The specific function of 

the antenna during transmission is to concentrate the radiated energy into a shape beam 

directive that illuminates targets in a desired direction.  During reception, the antenna 

collects the energy from the reflected echo returns.  Many varieties of radar antennas 

have been used in radar systems.  The type of radar antenna selected for a certain 

application depends not only on the electrical and mechanical requirements dictated by 

the radar design specifications but also on its application.  In airborne-radar applications, 

radar antennas must generate beams with shape directive patterns that can be scanned. 

The properties offered by antenna arrays are quite appealing to airborne radar 

systems. Antenna arrays consist of multiple stationary elements, which are fed 

coherently, and use phase or time-delay control at each element to scan a beam to given 

angles in space [15].  The primary reason for using radar arrays is to produce a directive 

beam that can be repositioned electronically.  An electronically steerable antenna array, 

whose beam steering is inertialess, is drastically more cost effective when the mission 

requires surveying large solid angles while tracking a large number of targets [15].  

Additionally, arrays are sometimes used in place of fixed aperture antennas because the 

multiplicity of elements allows a more precise control of the radiating pattern. 

The purpose of moving-target indication (MTI) radar is to reject signal returns 

from stationary or unwanted slow-moving targets, such as buildings, hills, trees, sea, rain, 
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and snow, and retain detection information on moving targets such as aircraft and 

missiles [16].  The term Doppler radar refers to any radar capable of measuring the shift 

between the transmitted frequency and the frequency of reflections received from 

possible targets [17].  Relative motion between a signal source and a receiver creates a 

Doppler shift of the source frequency.  When a radar system intercepts a moving object 

that has a radial velocity component relative to the radar, the reflected signal’s frequency 

is shifted.   

To illustrate the Doppler effect, consider a radar that emits a pulse of EM energy 

that is intercepted by both a building (fixed target) and an airplane (moving target) 

approaching the radar.  As previously stated, each of the objects will scatter the 

intercepted radar signal, which will include a portion of backscatter energy.  After the 

reflected radar signal returns to the radar in a certain time period, a second pulse of EM 

energy is transmitted.  The reflection of the second pulse of energy from the building is 

returned to the antenna in the same time period as the first pulse.  However, the reflection 

of the second pulse from the moving aircraft returns to the antenna in less time than the 

first pulse because the aircraft is moving towards the radar.   This time change between 

pulses is determined by comparing the phase of the received signal with the phase of the 

reference oscillator of the radar [17].  If the phase of received consecutive pulses change, 

the object of interest is in motion. 
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2.3 Space-Time Adaptive Processing 

 The main goal of surveillance radar is to search a specified volume of 

space for potential targets. A typical radar system used for surveillance consists of 

multiple array elements mounted on an airborne platform. These radar systems have to 

detect targets in the presence of clutter and jamming. If the interference is localized in 

frequency and comes from a limited number of sources, targets can be detected by using 

adaptive spatial weighting of the data from each element of an antenna array [18].  By 

applying the computed weights to the data, the effects of interference can be reduced thus 

increasing the reception of the reflected signal. Because the platform is in motion the 

Doppler spread of the clutter returns is significantly wider, and the clutter characteristics 

are highly variable due to the constantly changing ground terrain. Because of the added 

dimensionality of received data, the weights must now be adapted from the data in both 

the time and space dimensions.  This signal processing method is referred to as STAP, 

which is an adaptive processing technique that simultaneously combines the signals 

received from multiple elements of an antenna array (the spatial domain) and from 

multiple pulses (the temporal domain) of a coherent processing interval (CPI) [5]. 

The subsections to follow overview two STAP algorithms: the more complex 

“fully adaptive” STAP algorithm and the less complex “partially adaptive element space 

post-Doppler” STAP algorithm. The complexity associated with these algorithms is also 

overviewed. For a more theoretical foundation of STAP, the reader is referred to [5, 18].  
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2.3.1 Fully Adaptive STAP 

Consider an N element antenna array mounted on an airborne platform that 

transmits a coherent burst of M pulses at a pulse repetition rate of fr = 1/Tr (where Tr is 

the pulse repetition interval - PRI). The time interval over which the waveform returns 

are collected is referred to as the coherent-processing interval (CPI). Thus, the length (in 

time) of one CPI is equal to MTr. For each PRI, L samples are collected in the temporal 

dimension to cover the range interval of the returns. With N channels, M pulses, and L 

range bins, the received data for one CPI comprises LMN data samples. This set of data 

can be visually represented as a three-dimensional data cube of size LMN ××  as shown 

in Fig. 2.1. This data set is referred to as the CPI data-cube. 

Figure 2.1 The STAP CPI data-cube. 

Let xnml represent the nth array element and the mth pulse at the lth range sample 

time.  Next, define xm,l to represent an 1×N  column vector, or a spatial snapshot, 
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composed of the return signals from each array element for the mth pulse and the lth range 

bin. By combining all of the spatial snapshots at a given range of interest, say l, an 

MN ×  matrix Xl can be formed, where ],,,,[ ,,3,2,1 lMllll xxxxX L= .   The shaded plane 

in Fig. 2.2, referred to as a range gate, represents the matrix Xl. To detect the presence of 

a target in given range gate, a linear adaptive filter is used that combines the MN data 

samples to produce a scalar output. This scalar is then compared with a threshold value to 

indicate the presence or absence of a target. 

Figure 2.2 Generic computational phases for fully  
adaptive STAP. 

Fully adaptive STAP generally consists of three major phases of computation. 

First a set of rules, called the training strategy, is applied to the CPI data. The objective of 

the training strategy is to estimate the interference that is present at the range gate of 

interest. Because the interference is not known a-priori, it is estimated, adaptively, from 
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the data comprising the CPI data-cube. Typically, the data from several range gates near 

the range gate of interest are used in the training strategy. 

The training data determined in the first phase is used as input to calculate the 

adaptive weight vector in the second phase.  The weight computation phase is the most 

computation-intensive portion of the space-time processor.  The weight computation 

involves the solution of a system of linear equations [5].  The most common weight 

computation strategy is called sample matrix inversion (SMI).  In an SMI approach, the 

weight vector is computed based on the covariance matrix of training data. After the 

weight vector is computed, the final third phase of weight application commences.   

In the weight application phase, a scalar output is produced by computing the 

weighted sum of the elements of the range gate of interest.  This scalar output is 

compared to a threshold value to determine if a target is present at a specified angle and 

Doppler [5].  Because a potential target’s angle and velocity are unknown, the space-time 

processor computes multiple weight vectors to cover many different target angles, ranges, 

and velocities at which target detection is to be queried [5]. 

In fully adaptive STAP, a separate adaptive weight is applied to every array 

element and pulse of a given range gate. The size of the weight vector for fully adaptive 

STAP is therefore MN.   In order to compute the weight vector, a system of linear 

equations with dimension MN must be solved; thus, computing a single weight vector 

requires a O((MN)3) operations [5].  For many conventional radar systems, the product of 

MN may vary from several hundred to several thousand with M and N both ranging from 

ten to several hundred.  Furthermore, a weight vector must be calculated for each training 
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set used.   The sheer computational complexity necessary to compute the weight vectors 

for fully adaptive STAP, in real-time, is typically beyond the capabilities of current 

embedded computing systems.  This fact alone usually renders fully adaptive STAP 

impractical and provides adequate motivation for the formulation of alternative heuristic 

algorithms.    

 

2.3.2 Partially Adaptive STAP 

The goal of partially adaptive STAP algorithms is to break the fully adaptive 

problem into a number of reduced-dimension, more manageable adaptive problems while 

achieving near optimal performance. These reduced dimension adaptive problems are 

then solved to get the desired weight vectors.  Instead of computing an MN-dimensional 

weight vector for each range gate, weight vectors of size KN are associated with each of 

the M returns. Typical values of K range from 1 to 3, whereas M may range from 32 to 64 

[18]. Thus, solving M sets of linear equations of size KN has an overall complexity of 

O(M(KN)3) [5]. If K << M, this complexity is superior to that of fully adaptive STAP, 

which is O((MN)3). Thus, the computational complexity is reduced substantially by 

calculating M KN-dimensional weight vectors instead of one MN-dimensional weight 

vector. The partially adaptive algorithms are classified according to the type of 

preprocessing done first.  For instance, in element-space pre-Doppler STAP, Doppler 

filtering follows adaptive-processing (see [5] for details on different classifications of 

partially adaptive STAP algorithms).    

In the next chapter, a particular partially adaptive STAP algorithm is discussed 

and two approaches to solving the given problem of calculating the adaptive weights are 
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proposed. Results of some numerical studies comparing the performance of the two 

approaches in terms of floating point operations needed, and the relative error are 

presented.  
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CHAPTER III 

COMPARISION OF TWO ALGORITHMS FOR 

ADAPTIVE WEIGHT COMPUTATION  
 

 

The focus of this chapter is the adaptive weight calculation of a partially adaptive 

STAP technique called the Kth-order Doppler-factored STAP algorithm [18]. Two 

candidate approaches to compute the adaptive weights for this algorithm are described. 

The first approach, which is characterized as a direct method, is based on performing a 

QR-decomposition [19, 20] on the data used to calculate the covariance matrix. In 

contrast to this approach, the second approach uses the CG technique, which is an 

iterative method, to compute the adaptive weights. 

This chapter is organized as follows. In the next section, the Kth-order Doppler-

factored STAP algorithm is described. Section 3.2 describes the QR-based technique for 

computation of the adaptive weights and Section 3.3 describes the conjugate-gradient 

approach. Comparisons between the two approaches, based on numerical studies using 

actual radar return data, are discussed in Section 3.4.  

 

3.1 Kth-Order Doppler-Factored STAP 

The Kth-order Doppler-factored STAP algorithm can be one of the most practical 

and effective STAP techniques  for clutter and interference suppression. The architecture 

of Kth-order Doppler-factored STAP is composed of Doppler processing of data across all 

the pulse repetition intervals (PRIs) followed by adaptive filtering [18], i.e., the 
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calculation and application of the adaptive weights. The adaptive filtering utilizes both 

the spatial and the temporal degrees of freedom. The spatial degree of freedom is 

provided by the N antenna array channels (Figure 2.1), while the temporal degree of 

freedom is provided by using K adjacent Doppler bins centered around the Doppler bin 

for which the weights are being calculated (see Figure 3.1). Here, Doppler bin refers to 

the dimension along the pulse (PRI) dimension of the data-cube after Doppler processing, 

and K indicates the order of the partially adaptive STAP algorithm.  

Figure 3.1 Space-time snapshot of Kth-order Doppler-factored  
STAP for K = 3. 

The adaptive weights for a particular range cell r and Doppler bin k are computed 

from the space-time snapshot vector consisting of data across the N channels and K 

adjacent Doppler bins kmin through kmax. For Kth-order Doppler-factored STAP 

( ) ( )21modmin −−= Kkk M , and      (3.1) 
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( ) ( )21modmax −−= Kkk M ,      (3.2) 

where  M is the number of pulses. For example, if M = 32, K = 3, and k = 13, then 

kmin = 12 and kmax = 14. 

The space-time snapshot vector is then defined as 

( ) ( ) ( ) ( )[ ]T
dddd rkNxrkxrkNxrkxrkx ,,,,1,,,,1),( maxmaxminmin ⋅⋅⋅⋅⋅⋅⋅⋅⋅=

r
, (3.3) 

where ( )rknxd ,,  represents the data sample corresponding to rth range cell, kth Doppler 

bin and nth channel, and the superscript “T” denotes matrix transpose1. This space-time 

snapshot vector is shown in Figure 3.1 for K = 3. In practice, the range dimension is 

divided into non-overlapping segments, called range segments. Let Lr denote the number 

of range bins in each range segment, and let B denote the number of range segments; 

thus, B = L/Lr.  The covariance matrix for the kth  Doppler bin and bth range segment, 

denoted as ( )bk,ψ , is estimated by averaging over the outer product of the snapshot 

vectors. That is 

∑
+−=

=
r

r

bL

Lbr

H

r

rkxrkx
L

bk
1)1(

),(),(1),( rrψ       (3.4) 

where k = 1, 2, … M and b = 1, 2, … B. Note that ( )bk,ψ  is a square matrix of dimension 

KN × KN.  

An alternate expression for ( )bk,ψ  can be derived based on the rLN ×ˆ space-time 

data matrix, denoted ),( bkX , which is defined to be 

[ ]),()1)1(,(),( rr bLkxLbkxbkX rr
⋅⋅⋅⋅⋅⋅+−= .     (3.5) 

                                                           
1 Related notation used in this thesis is the superscript “H” for Hermetian transpose of the matrix 

and “*” denotes complex conjugate of the matrix. 
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Based on this definition, the estimate of the covariance matrix of Eq. (3.4) can be 

expressed as  

),(),(1),( bkXbkX
L

bk H

r

=ψ .      (3.6) 

Let ),( bkwr denote the vector of adaptive weights associated with the kth Doppler bin and 

the bth range segment. The value for ),( bkwr is determined by solving the following 

equation 

sbkwbk rr
=),(),(ψ ,        (3.7) 

where sr  is a known steering vector. The values of the elements of the steering vector  are 

dependent on the angle (relative to the radar platform) at which the target is to be 

detected and the speed of the target [5]. Thus, the above equation must be solved for each 

steering vector  (i.e., each target position and speed) of interest.  

Substituting Eq. (3.6) into (3.7) gives the following:  

sLbkwbkXbkX r
H rr

=),(),(),( .      (3.8) 

 The following two sections discuss weight computation strategies for the above 

system of linear equations. The two different approaches discussed here are the QR-

decomposition method and the Conjugate Gradient method.  

 

3.2 QR-decomposition Method 

This method operates by first performing a QR-decomposition on the space-time 

data matrix ),( bkX T . The QR-decomposition produces a Lr × Lr orthogonal matrix Q , 

and an rLN ×ˆ  upper triangular matrix R  such that QRbkX T =),( . The matrix R can be 
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written as ]0[ 1
TR  where 1R is a NN ˆˆ ×  (i.e., KN × KN) full rank upper triangular matrix. 

The matrix product (Eq. 3.8) then decomposes to  

*
11

**),(),( RRRQQRbkXbkX TTTH == ,     (3.9) 

where the last equality above is due to the orthogonality of Q; i.e., IQQT =* . 

Following QR-decomposition, Eq. (3.8) is written as  

sLbkwRR r
T r

=),(*
11 ,        (3.10) 

where it should be noted that both TR1  and *
1R  are triangular matrices. Letting 

),(*
1 bkwRp rr

= , Eq. (3.10) becomes  

sLpR r
T rr

=1 , 

which enables the determination of pr using simple forward elimination. Once pr is 

known, then ),( bkwr is determined with backward substitution based on the definition of 

pr : 

pbkwR rr
=),(*

1 .        (3.11) 

 

3.3 Conjugate Gradient Method 

The Conjugate Gradient method provides a general means for solving a system of 

linear equations of the form 

A x = b, 

where A is symmetric and positive definite [19, 20]. This approach can be applied to the 

problem of computing the adaptive weights because the covariance matrix is symmetric 

and positive definite. 
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The Conjugate Gradient method is based on the idea of minimizing the function 

bxAxxxf T −=
2
1)( . 

The function is minimized when its gradient 

bAxf −=∇ , 

is zero, which corresponds to the solution of the original system of linear equations. The 

minimization is carried out by generating a succession of search directions pi and 

improved minimizers xi, where the subscript i denotes the iteration count. At each 

iteration a quantity αi is found that minimizes f(xi + αipi). The value of xi+1 is then 

updated to xi + αipi. The values of pi and αi are formed in such a way that xi+1 is also the 

minimizer of f over the whole vector space of directions already taken, i.e., {p1,p2,…,pi}. 

For this study, the estimate of the covariance matrix as given in Eq. (3.6) takes the 

place of A and the known vector sr  is used in place of b. Thus, the conjugate gradient 

method is to be applied to the system of equations given by Eq. (3.7). 

The conjugate gradient method consists of three distinct stages: initialization, 

iteration, and checking for convergence.  

 

3.3.1 The Initialization Phase 

The initialization phase consists of selecting an initial solution, and setting the 

initial direction [20]. The initial solution is typically selected to be the zero vector, 

however, a better initial guess may be used if known. Assuming a vector of zeros, the 

initial guess for the weight vector is denoted by  
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00 =wr .         (3.13) 

The initial direction, 0d
r

, is then defined to be 

00 wsd rrr
ψ−= ,         (3.14)  

which is a conjugate of the initial gradient 0gr , i.e., 

00 dg
rr

−= .         (3.15) 

 

3.3.2 The Iteration Phase 

During the iteration phase, successive direction vectors are generated that are the 

conjugates of the successive gradient vectors obtained as the method progresses. Thus, 

the directions are not known beforehand but are generated sequentially at each iteration 

[20]. At each step the current negative gradient vector is evaluated and a linear 

combination of the previous direction vectors is added to it to obtain a new direction 

vector along which to move. At each stage a quantity αi is calculated which minimizes f 

(wi + αi di). The following operations are performed during each iteration : 

i
T
i

i
T
i

i dd
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rr

rr

ψ
α =          (3.16) 
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rrr α+=+1         (3.17) 
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+−= +

++ ψ
ψ1

11  .      (3.19) 

The iteration phase continues making progress toward the solution at each step. 
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3.3.3 Checking for Convergence 

After each iteration, a check for convergence is done to determine if the solution 

has reached a desired accuracy. Convergence is typically checked by evaluating the 

difference between the current and previous values of the solution vector. If the 

difference is small enough (i.e., is smaller than a specified tolerance), then the iteration 

phase is stopped.  

 

3.4 Numerical Studies on MCARM STAP data 

Numerical studies were conducted using Matlab implementations of the QR-

decomposition and the Conjugate Gradient methods on actual STAP data collected by the 

Multi-Channel Airborne Radar Measurement (MCARM) system of Rome Lab [21]. This 

data consists of one CPI data-cube having 24 channels, 32 pulses, and 2500 range cells 

(i.e., the size of the CPI data-cube is 24 × 32 × 2500). 

Two cases were considered. In the first case the range cells were segmented into 

blocks of 125 (i.e., Lr = 125) while in the second case the range cells were divided into 

blocks of 250 (i.e., Lr = 250). The two different approaches – QR-decomposition and 

Conjugate Gradient methods – were then used to calculate the adaptive weights. Figure 

3.2 shows the number of flops (floating-point operations) needed for each approach for  

Lr = 125, and Figure 3.3 shows the number of required flops for Lr = 250.  Note that the 

number of flops needed decreases for the iterative method as the value of the 

convergence tolerance is increased, which implies decreased accuracy. 
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For Lr = 125 the flop count for the iterative approach is comparable to the flop 

count of the QR-decomposition approach when the convergence tolerance is relatively 

high. However, for Lr = 250 the flop count for the iterative approach is less than the flop 

count for the QR-decomposition approach, even for very high desired accuracy (i.e., 

small convergence tolerance). This is because the complexity of the QR approach 

depends on the value of Lr. However, the complexity of the Conjugate Gradient method 

is nearly independent of Lr, depending primarily on the dimension of ),( bkψ , which is 

the same for the two cases considered.  

Figure 3.2. Flop count versus tolerance for Lr = 125. 

The relative error between the weights obtained by the QR-decomposition and the 

weights obtained by the iterative approach (as a function of the tolerance for the iterative 

approach) is illustrated in the Figures 3.4 and 3.5 and is defined by 
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qr

cgqr

w

ww
err r

rr
−

= ,        (3.20) 

where qrwr is the adaptive weight vector calculated using the QR-decomposition method 

and cgwr is the adaptive weight vector calculated using the Conjugate Gradient method. 

Figure 3.3. Flop count versus tolerance for Lr = 250. 

As shown in Figure 3.4, the relative error for a convergence tolerance of 10-8 is 

approximately 10-8, and for a convergence tolerance of 10-1 the relative error is 

approximately 10-1 (or 10%). The graph for Lr = 250 shown in Figure 3.5 illustrates 

similar characteristics. Thus, the Conjugate Gradient method provides for a trade-off 

between flops and accuracy. This trade-off may be important for STAP because 

reasonable (i.e., not perfect) accuracy may be sufficient in some circumstances, 
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especially if the hardware required for determining the exact solution is prohibitive. 

Another motivation for using an iterative approach is the ease of implementation with 

FPGA technology.   

Figure 3.4. Relative error versus tolerance for Lr = 125. 

3.5 Motivation for Research 

A second major focus of this research is to demonstrate that at least some of the 

computationally intensive requirements of real-time STAP can be effectively 

implemented on a reconfigurable (FPGA-based) computing platform. Of particular 

interest is the computation required for determining the adaptive weights. It is proposed 

that a reconfigurable computing platform may be used as a “co-processor” to improve the 

performance of the host processors (e.g., a DSPs or GPPs). Performance maybe improved 

by off-loading some execution cycles to the reconfigurable coprocessor. The regular and 



 29

repetitive nature of the iterative Conjugate Gradient approach described above makes it a 

prime candidate for implementation on an FPGA-based co-processor. 

Figure 3.5. Relative error versus tolerance for Lr = 250. 

3.6 Conclusion 

In this chapter, the results of studies that compare the computational complexities 

of two competing approaches for solving the adaptive weights associated with STAP 

were presented. The trade-off between accuracy and the required computations associated 

with the Conjugate Gradient method was discussed. The results indicate that significant 

performance gains (in terms of required flops) can be realized at the cost of sacrificing 

some numerical accuracy. It is also seen that both the above methods for solving for 

adaptive weights involve computing a number of vector inner-products. A significant 

improvement in performance can be achieved if the inner-product computations can be 
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off-loaded to the FPGA board while the GPP/DSP is free to do other tasks. While DSPs 

like SHARCS can do a single-cycle multiply they cannot perform an add operation very 

efficiently. The FPGA on the other hand can be programmed to perform a single-cycle 

multiply-and-add/accumulate, which makes it a very attractive for computing vector 

inner products.  
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CHAPTER IV 

OVERVIEW OF THE WILDONE™ RECONFIGURABLE  

COMPUTING ENGINE 
 

The use of reconfigurable computing platforms based on FPGAs is, in some 

instances, becoming more popular approach to implementing application-specific 

computing systems than designing special-purpose ASICs. A decade ago, when an 

embedded system required special-purpose computing hardware, it was usually designed 

into a special chip. However, manufacturing an ASIC is prohibitively expensive if the 

number of chips needed is very small, which is often the case with special-purpose 

embedded applications. A way to avoid the high cost of ASICs for special applications is 

to use relatively general-purpose chips like DSPs, along with application-specific 

software. Although DSPs are often well tuned for embedded applications, these devices 

are still relatively general in the sense that they are not designed specifically for any one 

application. Thus, the performance may not be as good as if ASICs were used in the 

implementation.  

Reconfigurable computing systems that use FPGAs as the primary logic are 

providing a relatively new alternative to both DSP and ASIC based designs. Instead of 

application software controlling the processor(s), as is the case in DSP-based systems, 

software is actually used to configure the FPGA, thereby defining its functionality. The 

software used in this process is typically an encoding expressed using a hardware 

descriptor language such as VHDL. The use of FPGAs allows the matching of the 

hardware design with the processing needs of the application with the design directly 
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implemented in hardware. Thus reconfigurable computing devices provide the flexibility 

of soft design methodology along with the performance advantage of hardware 

implementation. 

 

4.1 WildOne™ Reconfigurable Computing Engine 

In recent years, the manufacturers of reconfigurable devices have responded to the 

market demand of using reconfigurable hardware for some core components of high 

performance computing systems. This has led to improvements in reconfigurable 

hardware design to the point that FPGAs are now a viable implementation alternative. 

These developments have resulted in a number of reconfigurable computing systems, that 

can be used as a plug-in board, being manufactured by many companies with their own 

distinctive features. The WildOne reconfigurable computing board that is being used in 

this research is made by Annapolis Micro Systems. 

The WildOne system offers a variety of configuration options. A high level 

diagram of the WildOne reconfigurable computing system is illustrated in Figure 4.1. The 

board has two processing elements, processing element 0 (PE0) and processing element 1 

(PE1), which are Xilinx 4000 series FPGAs. (See the Appendix for more details of Xilinx 

4000 series FPGAs.) These two processing elements (PEs) are connected to the on board 

bus through a dual port memory controller or through a FIFO. The FIFOs are each 36 bits 

wide and 512 words deep. The dual port memory control allows the access of the 

memory to the host as well as the PEs. There are also a number of fixed and 

reconfigurable internal data paths on the board to allow communication between the PEs, 
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or between the PEs and external I/O cards that may include other FPGA boards, DSPs, 

ASICs and microprocessors. Section 4.2 describes the various data paths in detail. 

Figure 4.1 Block diagram of the WildOne™  
reconfigurable computing board. 

4.2 WildOne Data Paths 

The host system may communicate with the board through the PCI bus. The 

communication between the host and the processing elements can be done using the 

FIFOs or the dual-port memory controller or through interrupt signals. In addition, the 

board can communicate with other boards via the SIMD connector. The SIMD connector 

is well-suited for high speed and real-time applications with the data coming directly into 

the board from an external transducer or from other boards on the same host system or 
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boards on another host. There are also a number of fixed and reconfigurable internal data 

paths that allow the processing elements to communicate with each other. One of the 

most useful data paths between PE0 and PE1 is the Direct Data bus. This bus is very 

useful when the design is partitioned across the two processing elements.  

Another useful bus similar in function to the Direct Data bus is the PE1_Right 

systolic bus. This bus, in addition to connecting PE0 and PE1, is also present on the 

external I/O connectors. This enables external inputs to be sent directly to both 

processing elements and allows the outputs to be a combination of signals from either 

processing element. Another set of internal signals is the handshaking and the auxiliary 

handshaking signals. These signals are called CPE_PE1_Bus and CPE_PE1_AuxBus in 

PE0 and PE_CPE_Bus and PE_CPE_AuxBus in PE1. The PE0 is also known as the 

controlling processing element (CPE) while the PE1 is also called the processing element 

(PE). The signals called CPE_PE1_Bus and CPE_PE1_AuxBus are signal names for the 

busses from the CPE or PE0 side while PE_CPE_Bus and PE_CPE_AuxBus are the 

signal names visible from PE or PE1 side. These signals are bi-directional and may be 

used in whatever mode the user desires. They may be used to for handshaking, starting a 

process, signaling process completion etc. For a more complete description of the 

WildOne board the reader is referred to [9]. 

The board is supported by an application programming interface (API) library that 

offers a set of C++ functions that execute low level run-time library functions not visible 

to the application programmer. Each board is accessible via a set of API routines, a 

corresponding set of data structures and constant definitions. 



 35

The next chapter discusses a general design methodology for designing an 

application for hardware/software co-system like the WildOne board. Two alternate 

architectures for computing the inner products are presented and the use of UML to 

model hardware/software co-systems is illustrated. The chapter also describes the 

architectural details of the two implementations.  
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CHAPTER V 

INNER-PRODUCT CO-PROCESSOR DESIGN 
 

 

By definition, methodology is an art that represents an orderly approach in 

performing a task or finding a solution to a problem. A good methodology helps in 

creating a design that is easy to understand and implement. In this chapter an application 

design methodology to design for a hardware/software co-system such as the WildOne 

board and its related host software is discussed. The general design methodology is 

illustrated first and then the application of this methodology to the problem at hand is 

discussed illustrating each step in the design process. The methodology uses UML to 

model the system and its components. 

 

5.1 Application Design Methodology 

When designing an application for the WildOne boards, it is helpful to divide the 

application design cycle into various stages as shown in Figure 5.1. Because the board is 

re-programmable, it is best not to attempt to design the entire application before testing, 

but rather to design in stages. This incremental design allows the designer to test the 

functionality of their design before progressing any further, thus decreasing the amount 

of time spent in testing the entire application. 
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5.1.1 Application Concept 

The first step in any design process is to understand what the application is to 

accomplish. The designer should outline exactly what needs to be accomplished within 

the design. The designer should be familiar with the format of the input and output data 

sets, and the processes that need to be performed in order to process the data. The 

application should be thoroughly researched and all possible strategies reviewed. In the 

application at hand, inner product computations need to be performed on the FPGA 

board. Moreover, the computations need to be pipelined in order to perform single-cycle 

multiply-and-add operations to meet the throughput requirements needed for applications 

like STAP. Considering the limited resources available on an FPGA a block-floating-

point [22] architecture is to be implemented with the mantissa width specified to be 16 

bits with the most significant bit indicating the sign of the number and the block exponent 

being 8 bits wide. Block-floating-point arithmetic format is a fixed point arithmetic with 

one exponent for all data in a common block (i.e., vector). Block-floating-point numbers 

provide a compromise between the accuracy of fixed point numbers and the dynamic 

range of the floating-point numbers, without the full complexity or speed degradation 

associated with full floating-point operations.  

Two different strategies are selected for performing this processing on the FPGA 

board. The first strategy uses the multiply-and-accumulate operations to reduce two N-

vectors to a fixed number of partial sums (equal to the number of stages in the 

accumulate pipe). The host may then add up these few partial sums or may send these 
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partial sums back to another FPGA for addition. In the second strategy, multiply-and-add 

operations reduce two N-vectors to N/2 partial sums, which then need to be added on the 

host. The two strategies are shown in Figures 5.2 and 5.3. 

Figure 5.1 Illustration of application design cycle. 

5.1.2 Problem Partitioning 

After the strategy for performing the inner product has been chosen and verified, 

it is then partitioned into blocks that are independent of each other. For example, the two 

designs may be divided into separate blocks like the Input Block, Data Processing Block, 

and Output Block. Each of the individual blocks can then be subdivided into sub-blocks, 

e.g., the Input Block may have controllers for getting the data in and out of FIFO and the 

memory. The Data Processing Block may be divided into smaller subtasks like 
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Multiplying Unit and Accumulator Unit, which may subsequently be broken down into 

lower level entities (needed to create higher level designs). This kind of design is known 

as top-down design. The designer must also determine how the host system would handle 

the data that needs to be sent to the board as well as the processed data from the board. 

During this phase the use of UML is also a great help in partitioning and visualizing the 

different system components and modeling the system as a whole. Figures 5.4 through 

5.8 show the UML class diagram representation of the Data Processing Block, which is 

called the Inner Product Co-Processor. 

Figure 5.2 Multiply-and-accumulate strategy. 
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Figure 5.3 Multiply-and-add strategy.  

5.1.2.1 UML Class Diagrams 

The class diagram is one of the core components of a UML model [10]. A class 

diagram illustrates the important abstractions in the system including relationships. The 

primary elements included on a class diagram are class icons and relationship icons. 

Figure 5.4 shows the class diagram of the inner-product co-processor. The rectangular 

boxes represent the classes, while the lines connecting the classes signify relationships. A 

solid line with a hollow diamond at one end indicates an aggregation relation (i.e., one 

object is composed of another object). A solid line represents an association between the 

objects. The numbers shown at each end of the association denotes the number of 

potential objects participating in that relationship. 
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Figure 5.4 Inner-product co-processor UML class diagram. 

The main class Inner-Product Co-Processor in Figure 5.4 is composed of two 

classes, the Block-Floating-Point Unit and the Data Input/Output. The Block-Floating-

Point Unit gets its data from the Data Input/Output and also sends data back to the Data 

Input/Output when it has finished processing. Figure 5.5 illustrates the UML class 

diagram of the Block-Floating-Point Unit. This diagram implies that the floating-point 

unit is composed of one Multiplying Unit one and one Accumulator. The multiplying unit 

in turn is composed of registers, multiply stages and 4-bit adders while the accumulator is 

composed of registers, a 3-bit adder, 4-bit adders, a normalizing unit and a 

complementing unit. The class diagrams for the multiplying unit and the accumulator are 

shown in Figure 5.6 and 5.7 respectively. The normalizing unit, shown in Figure 5.8, is 

composed of a subtractor, a magnitude comparator and a number of registers, which are 
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the lowest level of components in the design. Figure 5.9 shows the class diagram for the 

Data Input component. This component consists of a memory controller and FIFO 

controller. 

Figure 5.5 Block Floating-Point Unit UML class diagram. 

After the different components have been defined using the UML class diagram, 

the next step is to define the functionality of each component of the system and how it 

interacts with the host system or with other components. This can be done by using the 

UML statecharts and activity models [10].   

 

 

 

Figure 5 9 Class Diagram for the Data Input/Output system
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Figure 5.6 Multiplying unit UML class diagram. 

Figure 5.7 Accumulator UML class diagram. 
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Figure 5.8 Normalizing unit UML class diagram. 

Figure 5.9 Data input/output system UML class diagram. 
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5.1.2.2 Inner-Product Co-Processor UML Statechart Diagram  

The UML statechart models are based on the finite state machines using an 

extended Harel state chart notation [10]. A statechart diagram represents a state machine 

and illustrates the sequence of states that an object goes through during its life cycle. The 

states are represented by a rectangle with rounded corners and arrows connecting the 

states represent transitions. The initial state is shown as a small filled dot representing 

any transition to the enclosing state [10]. A final state is shown as a small filled dot 

enclosed by a circle. In a state chart diagram the occurrence of an event may trigger a 

state transition. 

A UML activity model is a variation of a state machine in which the states are 

activities representing the performance of operations and transitions are triggered by 

completion of an operation. Activity diagrams focus on the flows driven by internal 

processing. While activity charts are used to model synchronous events a statechart 

diagram should model any asynchronous events.  

Figure 5.10 shows the statechart diagram for the Inner-Product Co-Processor. The 

statechart indicates the events and transitions that occur to get the data from the host to 

the FPGA board and the subsequent processing. The statechart represents two distinct 

state machines, one on the host system and the other on the FPGA board. The two state 

machines are running concurrently and the state transitions in one of the state machines 

may be triggered as a result of an event occurring in the other state machine. Dashed lines 

between the two state machines shown in Figure 5.10 indicate these events.  
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Figure 5.10 Inner-product co-processor statechart diagram. 
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request for the mantissa portion of the data. The host then writes the mantissa parts of the 

vectors (whose inner-product is to be found) to the FPGA FIFO and then returns an 

interrupt acknowledge signal back to the FPGA board. The FPGA system then reads in 

the mantissa data and multiplies the corresponding data in the vectors and either writes 

these back to the FIFO memory or keeps on accumulating the partial sums depending on 

the algorithm being used. This processing continues until all the data has been read and a 

done flag is set. The FPGA state machine then sends an interrupt request to the host 

system to indicate that it has finished processing the data and the host system can read 

back the processed data. The host then reads back the data from the FPGA memory or the 

FPGA FIFO. 

The co-processor is a synchronous system with all the operations being performed 

synchronously and is best represented by using the activity diagrams instead of the 

statechart diagrams. An activity diagram is a special case of a state diagram in which the 

states are action states where all (or at least most) of the transitions are triggered by 

completion of the action in the source state [10]. The processing is done differently 

depending on whether the multiply-and-add algorithm is being used or the multiply-and-

accumulate algorithm is being used. The activity diagrams for both algorithms are shown 

in Figures 5.11 and 5.12. 
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 Figure 5.11 Multiply-and-accumulate circuit activity diagram. 
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Figure 5.12 Multiply-and-add circuit activity diagram. 
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5.1.5 Synthesis 

The synthesis tools define the gate level logic for the target architecture from the 

VHDL implementation. It is useful to synthesize often, even if the design is not yet ready 

for the place and route step, because the synthesis tool provides preliminary estimates of 

the resource utilization and speed, which can be used to determine if the current design 

approach is viable or not. If the design is not going to meet the timing requirements or is 

too large to fit in the available real estate, then redesign becomes necessary. Many 

iterations of the above process are needed for a fair sized project. 

 

5.1.6 Place and Route 

After the design has been verified, the next stage is the place and route where the 

gate level logic generated during the synthesis stage is used to configure the FPGA. The 

output of this process is a binary file, which is  sent to the WildOne board to program the 

processing elements. 

 

5.1.7 Host Program Generation 

Once the processing element images have been generated, the next step is to write 

a C++ program that allows the host system to communicate with the WildOne board. 

This program makes use of the WildFire API functions to communicate with the board. 

While writing the host program the synchronization points between the board and the 

host program must be defined. The interaction between the host program and board is as 

shown in the sequence diagram shown in Figure 5.13.  
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Figure 5.13 Sequence diagram for interaction between  
WildOne board and the host. 
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5.2 Architectural Details of the Implementations 

The previous sections in this chapter discussed the different entities and their 

relationships. This section discusses the architectural details of the two implementations. 

The multipliers in both the units are 15-bit multipliers, i.e., the multiplier unit takes in 

two 15-bit numbers to produce a 30-bit result. Because the block-floating-point format is 

being used, all the numbers to the multipliers have the same exponent. Thus, the 

exponent of the result is two times the input exponent. The implementation of the 

pipelined multipliers is based on the implementation discussed in [23] and has 13 

pipeline stages.  

The accumulation unit in the multiply-and-accumulate circuit consists of a 

normalizing unit and a 23-bit pipelined adder. The mantissa in IEEE floating point 

numbers is 23-bit wide. To make the output compatible with the IEEE representation the 

adder and the accumulator units are 23 bits wide with another 8 bits for the exponent and 

one bit for the sign. The normalizing unit is necessary because the answer is being 

accumulated and it is possible that the exponent of the accumulated sum changes. If the 

exponent of the accumulated sum becomes greater than the incoming operand, then the 

incoming operand needs to be shifted a certain number of bits (equal to the difference in 

the exponents of the two numbers) to the right. If the exponent of the incoming number is 

greater than the exponent of the accumulated sum then the accumulated sum is shifted to 

the right. The 23-bit pipelined adder is implemented using five stages of 4-bit fast adders 

[24] and one stage of 3-bit fast adder. It should also be noted here that the output of the 

multiplying unit is 30-bit wide, however, the width of the adders is only 24-bits. 
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Therefore the result of the multiplier is truncated to 23-bits before entering the adder 

circuit. 

The addition unit in the multiply-an-add circuit has exactly the same architecture 

as the adder unit in the accumulation circuit. However, the normalizing unit is not needed 

in this implementation because the exponents of all the operands coming in are the same. 

The output of both implementations is in the IEEE floating-point format. 

  

5.3 Features of the Two Implementations 

The two implementations perform part of the computations for computing the 

vector inner products in hardware. The multiply-and-accumulate circuit takes in two N-

vectors as input and gives out 17 (the number of pipeline stages in the accumulation 

circuit) partial sums, which then need to be added on the host to get the final inner-

product. The accumulator pipe needs to be flushed [24] when all the operands have been 

added.  This circuit takes in two operands and performs two operations per clock cycle 

(multiply and an accumulate) after which the sum is fed back to the accumulator to be 

added to the new product coming into the accumulator. The multiply-and-add circuit 

takes in two N-vectors and gives out N/2 partial sums, which then need to be added on the 

host. The multiply-and-add circuit takes in four operands and performs three block-

floating-point operations (two multiplies in and an addition) per clock cycle. Consider the 

operation of each circuit at 40 MHz, which implies a throughput of 80 block-floating-

point-operations per second for the multiply-and-accumulate circuit and 120 block-

floating-point operations for the multiply-and-add circuit. The multiply-and-accumulate 
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circuit however, needs less work to be done on the host side than the multiply-and-add 

circuit. Thus, although this circuit has a slower peak throughput, it can perform more of 

the computations than the multiply-and-add design. 

Both the circuits contain components that are common to both circuits. The 

multipliers used in both the circuits are based on an implementation proposed in [23]. 

The adders used are carry-look-ahead adders discussed in  [24]. An important aspect of 

the multiply-and-add circuit, however, was how to get four 16-bit operands into the 

circuit because only 32 input pins were available. This problem was solved by clocking 

the state machine, which inputs the data to the processing circuit, at twice the frequency 

of the clock used to clock the actual processing circuit. This is illustrated in Figure 5.14. 

So at each falling edge of the data processing clock, all the four operands are available. 

 Figure 5.14 Multiply-and-add circuit clock waveforms. 
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This chapter overviewed the design methodology for the design with FPGA 

board. The various steps of this methodology were discussed and the application of the 

same to the designs at hand helped visualize its functionality. In the next chapter the 

results of numerical studies carried out to analyze the two circuit implementations are 

presented. 
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CHAPTER VI 

ANALYSIS OF THE IMPLEMENTATIONS 
 

 

An important aspect of this research is the determination of the accuracy of the 

two FPGA inner product implementations described in the previous chapter. Some 

accuracy is sacrificed as a result of a block-floating-point implementation as compared 

with a full floating-point implementation of the same computation. However, the block-

floating-point implementation was necessary because of the limited resources available 

on the FPGA. In this chapter, the accuracy of the two FPGA implementations of the 

inner-product computation, which use a block-floating-point format, are compared with 

the inner-product computation performed on the host machine, where full floating-point 

arithmetic is utilized.   

 

6.1 Accuracy Experiments  

The implemented circuits were tested for accuracy by sending a set of test vectors 

to each of the two FPGA implementations. The output of the two circuits were then 

compared with the results for the same data set obtained from the host machine, which 

performed the computation using full floating-point arithmetic. The accuracy is measured 

by dividing the answer returned by the FPGA board by the corresponding answer 

computed by the host machine. Because the elements of the test vector were positive 

values, the output of the inner product circuits were always positive. Furthermore, 

because the widths of the block-floating-point mantissas were 15 bits compared to 23 bits 
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for the full floating-point numbers, the block-floating-point numbers are always less than 

or equal to the full floating-point numbers. This implies that the ratio of final answers – 

those computed using block-floating-point representation and those computed using full 

floating-point arithmetic are always less than or equal to one. 

 The following cases present the accuracy and the dynamic range of the FPGA 

implementations. The data sets consist of two vectors, each having 512 elements. All the 

numbers are generated using a pseudo-random number generator with a uniform 

distribution over a specified range of values. 

 

6.1.1 Analysis of Uniform Data Value Distribution  
for Zero Order of Magnitude 

Figure 6.1 shows the histogram of the distribution of the data values for the range 

of 0 to 1. The figure shows a relatively uniform distribution over the entire range. 

Because the block-floating-point format is being used, it is interesting and insightful to 

look at the exponent space of the data values as well. This is because the exponent values 

dictate how many bits are shifted out of any number and thus the accuracy of the final 

answer. The number of bits shifted out of a given vector element is the difference 

between the maximum exponent value for all vector elements and the given element. 

Thus, if a given element has an exponent of 126 and the maximum exponent is 128, then 

two least significant bits would be shifted out of the mantissa of the given element. 

Figure 6.2 shows the histogram of the exponents for the numbers associated with 

the distribution of Figure 6.1. As shown in Figure 6.2, the maximum exponent is 128 and 

the minimum is 118. (All the exponents are in the excess 127 format [25].) This implies 



 58

that the maximum number of bits that are shifted out of any element is 10 (128 – 118). 

However, most of the exponents are closer to the maximum exponent value. This results 

in a very good accuracy for most elements. It should also be noted here that the FPGA 

implementations use a 15-bit mantissa; therefore, because the numbers are originally in 

the IEEE floating-point format, which has a 23-bit mantissa, the lower 8 bits of the 

mantissas of all the numbers are always truncated. This effect by itself introduces some 

inaccuracy in the answer.  

Figures 6.3 and 6.4 show the accuracy histograms achieved by the two FPGA 

implementations relative to the answers provided by the host machine, which utilizes the 

IEEE floating-point arithmetic.  

Figure 6.1 Histogram of the input vector data values. 

Data Histogram

0
5

10
15
20
25
30
35
40
45
50

Data Values  (zero order of magnitude)



 59

Figure 6.3 shows the accuracy for the multiply-and-add circuit that produces 256 

partial sums. As can be seen from this figure, the least accurate answer returned by the 

circuit is about 99.84% accurate. The multiply-and-accumulate circuit outputs 17 partial 

sums. Figure 6.4 shows the accuracy of the multiply-and-accumulate circuit as compared 

to the answer computed by the host processor. As can be seen from the figure all the 

answers are above 99.98% accurate. 

Figure 6.2 Histogram of exponents of the  
input vector data values. 
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Figure 6.3 Accuracy Histogram for the  
multiply-and-add circuit. 

Figure 6.4 Accuracy histogram for the  
multiply-and-accumulate circuit. 
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6.1.2 Analysis of Uniform Data Value Distribution  
for Two Orders of Magnitude 

Figures 6.5 through 6.8 are analogous to Figures 6.1 through 6.4 with the 

exception that the uniform data range is over two orders of magnitude (approximately 0 

to 100). Figure 6.5 shows the uniform distribution of the data over this range. Figure 6.6 

shows the corresponding distribution of the exponents. As can be seen from this 

distribution, the maximum exponent is 135, and the minimum exponent is 119. Thus the 

maximum number of bits shifted out is (135 – 119 = 16). So, the mantissa associated with 

the exponent value of 119 is completely shifted out, i.e., it is normalized to zero. Figure 

6.7 shows the accuracy of the multiply-and-add circuit. As can be seen, the circuit is still 

very accurate with the least accurate result being 99.39% accurate. Figure 6.8 shows the 

accuracy of the multiply-and-accumulate circuit. This circuit also is very accurate with a 

lowest accuracy of 99.89%.  

Figure 6.5 Histogram of the input vector data values. 
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Figure 6.6 Histogram of exponents of the  
input vector data values. 

Figure 6.7 Accuracy histogram for multiply-and-add circuit. 

Exponent H istogram

0

50

100

150

200

250

300

350

400

450

500

Exponent Values (two orders of m agnitude)

Accuracy H istogram

0

50

100

150

200

250

%  Accuracy (two orders of m agnitude)



 63

Figure 6.8 Accuracy histogram for the  
multiply-and-accumulate circuit.  
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6.1.4 Analysis of Uniform Data Value Distribution  
for Four Orders of Magnitude 

Figures 6.13 through 6.16 show the distribution of the data values, the 

corresponding distribution of the exponents, and the accuracy of the results of the two 

implementations for four orders of magnitude dynamic range. As can be seen from the 

accuracy histogram for the multiply-and-add circuit (Figure 6.15), the accuracy for a 

small number of the partial results is less than 50%. However the value of these numbers 

themselves are relatively very small compared to some of the larger values and their 

effect on the overall accuracy of the final result is negligible. For example, if two 

numbers 0.0001 and 1000 are multiplied together, the result is 0.1. Consider two other 

numbers, say 10 and 1000, then the result of multiplication is 10000. Now, 0.1 is 

relatively small compared to 10000 and if it is added to 10000 the percentage change in 

the final answer is negligible. Thus approximating 0.1 to zero is reasonable in this 

context. This is also indicated by the accuracy histogram of the multiply-and-accumulate 

circuit (Figure 6.16) which does not show any significant degradation in performance for 

the same data set. The degradation in accuracy for some individual partial sums (Figure 

6.15) that are relatively very small is expected because of the number of bits being shifted 

out. 

 

6.1.5 Analysis of Uniform Data Value Distribution  
for Five Orders of Magnitude 

Figures 6.17 through 6.20 show the distribution of the data values, the 

corresponding distribution of the exponents, and the accuracy of the results of the two 
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implementations for the data range of five orders of magnitude. It can be seen that some 

of the partial sums are again very inaccurate; some of them being zero percent accurate. 

Again, it should be pointed out that these numbers are relatively small compared to some 

of the larger numbers and their effect on the overall accuracy of the final result is 

generally negligible. This is also indicated by the accuracy histogram of the multiply-

and-accumulate circuit (Figure 6.20), which again does not show any significant 

degradation in performance. 

Figure 6.9 Histogram of the input vector data values. 
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Figure 6.10 Histogram of the exponents of  
input vector data values. 

Figure 6.11 Accuracy histogram for the  
multiply-and-add circuit. 
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Figure 6.12 Accuracy histogram for the  
multiply-and-accumulate circuit. 

Figure 6.13 Histogram of the input vector data values. 
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 Figure 6.14 Histogram of the exponents of input  
vector data values. 
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Figure 6.15 Accuracy histogram for the 
 multiply-and-add circuit. 

Figure 6.16 Accuracy histogram for the 
multiply-and-accumulate circuit. 
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Figure 6.17 Histogram of the input vector data values. 

Figure 6.18 Histogram of the exponents of input  
vector data values. 
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Figure 6.19 Accuracy histogram for the  
multiply-and-add circuit. 

Figure 6.20 Accuracy histogram for the  
multiply-and-accumulate circuit. 
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Figure 6.21 Histogram of the input vector data values. 

Figure 6.22 Histogram of the exponents of input  
vector data values. 

Data Values histogram

0

200

400

600

800

1000

1200

Data Values (outlyer experiment)

Exponent H istogram

0

100

200

300

400

500

600

Exponent Values (outlyer experim ent)



 73

Figure 6.23 Accuracy histogram of the  
multiply-and-add circuit. 

Figure 6.24 Accuracy histogram of the  
multiply-and-accumulate circuit. 
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6.2 Conclusions 

 As demonstrated in the numerical studies described above, it is seen that the 

circuits produce excellent accuracy results for data distributions that are uniformly 

distributed. Poor results are obtained for the case where one or a few of the elements are 

much larger than the rest of the numbers. This is because of the block-floating-point 

architecture being used to implement these circuits. The block-floating-point architecture 

normalizes all the exponents to the maximum exponent by shifting out the least 

significant bits so that all the exponents are equal and then all the operations are integer 

arithmetic operations, which are much easier to perform than the floating point 

operations. The shifting out of the bits produces an inaccuracy in the computations. For 

all the ranges of numbers considered, if the numbers are uniformly distributed, then the 

exponent distribution has an increasing exponential shape with a majority of the numbers 

close to the maximum value in the exponent domain. This results in a smaller number of 

bits from the mantissas of the numbers being shifted out, on the average. Another 

important point is that the multiply implementation uses a 15-bit mantissa, which implies 

that the mantissa of the input floating-point number is truncated to 15 bits from 23 bits, 

thereby introducing some inaccuracies. 
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CONCLUSIONS AND FUTURE WORK 
 

 

The computational complexity associated with STAP can easily overwhelm the 

computational capabilities of processors used on current airborne platforms. The typical 

computational throughput required by a third-order Doppler-factored STAP is 39.81 

billion floating-point operations per second (Gflops/s) [18]. The most computationally 

intensive part of the STAP algorithm is the computation of the adaptive weights, and 

constitutes approximately 91% of all the computations needed in adaptive processing 

[18]. For some applications in radar processing, precise answers may not be required but 

a close approximation will be as effective. This fact may be used to reduce the 

complexity associated with the traditional approach for computing the adaptive weights. 

Another aspect is the application of reconfigurable computing, which can be used to 

achieve a speedup associated with doing the computations in hardware. An important 

aspect of using reconfigurable computing is that it can be fine-tuned for the application at 

hand, so the same system can be used to perform other kinds of processing. 

The first major part of this research was to find an alternative approach to solving 

for adaptive weights where the accuracy of the answers can be traded for computations. 

This concept was investigated in Chapter III where the CG approach (an iterative 

approach) was compared with the traditional QR-decomposition approach for computing 

adaptive weights. The results illustrated in Section 3.4 show that the conjugate-gradient 

approach reduces the computations needed while losing some accuracy.   
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The second goal of the research was to implement some of the computations 

needed in adaptive weight calculation on a reconfigurable computing system, thereby 

getting an improvement in performance. It was observed that the most frequent operation 

needed in computing adaptive weights was the computation of the inner-product of two 

vectors. It was decided to program the reconfigurable computing system to compute the 

inner-product of two vectors using block-floating-point arithmetic. Two different 

architectures were implemented, each having its own tradeoffs. Numerical studies were 

carried out on the two implementations and the results were presented in Chapter VI. A 

basic conclusion of the study is that acceptable accuracy can be obtained provided that 

the distribution of the data values is relatively uniform. 

The current research implements just a part of the computations needed to 

compute the adaptive weights. This is because of the fact that the number of 

reconfigurable resources on the current system is very limited. As boards with more 

reconfigurable resources become available, the possibility of implementing all adaptive 

weight computation on FPGAs becomes realistic. The current design of the system does 

not perform any reconfiguration of the board on the fly. The reconfiguration of the board 

on the fly would allow the reconfigurable board to toggle between different 

configurations that  work on the processed data from the previous configuration. The 

challenges associated with such dynamic reconfiguration is an excellent area for future 

research. 
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APPENDIX  

THE XILINX 4000 SERIES FPGA 
 

An FPGA device consists of an array of programmable logic cells called 

configurable logic blocks (CLBs) interconnected by wires called routing channels 

running vertically and horizontally, and surrounded by a perimeter of programmable 

Input/Output Blocks (IOBs). The CLBs consist of a number of diverse logic gates and 

registers. The routing channels are connected by programmable elements, which when 

programmed, define the interconnection between the various CLBs and IOBs. Thus, these 

logic resources can be programmed in various ways to define the required logic function. 

The following sections discuss briefly the architectural features of the Xilinx 4000 series 

FPGAs. This material is summarized from [25]. 

 

A.1 The Xilinx 4000 Series 

The Xilinx 4000 series FPGAs are implemented with a regular, flexible, 

programmable architecture of CLBs, interconnected by a powerful hierarchy of versatile 

routing resources and surrounded on the periphery by IOBs. The CLBs provide the 

functional elements for constructing the user logic while the IOBs provide the interface 

between the package pins and the internal signal lines. The programmable interconnect 

resources provide the routing paths to connect the input and outputs of these configurable 

elements to the appropriate networks. The functionality of each circuit block is 

customized during configuration by programming internal static memory cells. The 

values stored in these memory cells determine the logic functions and the 
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interconnections implemented in FPGA. The XC4028 EX FPGA, which will be used in 

this project consists of 32×32 CLB matrix for a total of 1024 CLBs, 2432 logic cells, a 

maximum of 28000 logic gates, 2560 flip-flops and 256 user I/O.  Each of these circuits 

is described in the following sections. 

Figure A.1. The Xilinx XC4000 series CLB. 

A.2 The XC4000 Series Configurable Logic Block 

The Configurable Logic Blocks implement most of the logic in an FPGA. The 

principle elements of a CLB are shown in Figure A.1. Each CLB contains a pair of flip-

flops and two independent 4-input function generators. The two 4-input function 

generators (F and G) offer unrestricted versatility. Most combinatorial logic functions 

need four or fewer inputs. However, a third function generator (H) is provided. The H 

function generator has three inputs. One or both of these inputs can be the outputs of F 
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and G; the other input(s) are from outside the CLB. The CLB can therefore implement 

certain functions of up to nine variables. Each CLB contains two flip-flops that can be 

used to store the function generator outputs. However, the flip-flops and function 

generators can also be used independently. The input labeled DIN can be used as a direct 

input to either of the two flip-flops. H1 can drive the other flip-flop through the H 

function generator.  

Function generator outputs can also be accessed from outside the CLB, using two 

outputs independent of the flip-flop outputs. This versatility increases logic density and 

simplifies routing. Thirteen CLB inputs and four CLB outputs provide access to the 

function generators and storage elements. These inputs and outputs connect to the 

programmable interconnect resources outside the block. 

The versatility of the CLB function generators significantly improves the system 

speed. In addition, the design software tools can deal with each function generator 

independently thus improving cell usage. Each of the function generators F and G in a 

CLB contain dedicated arithmetic logic for the fast generation of carry and borrow 

signals. Figure A.2 shows the fast carry logic present within each CLB. This extra output 

is passed on to the next CLB function generator above or below. The carry chain is 

independent of normal routing resources. Dedicated fast carry logic greatly increases the 

efficiency and performance of adders, subtracters, accumulators, comparators and 

counters. The two four input function generators can be configured as a 2-bit adder with 

built-in hidden carry that can be expanded to any length. This dedicated carry circuitry is 
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so fast and efficient that conventional speed-up methods like carry generate/propagate are 

generally meaningless even at the 16-bit level, and of marginal benefit at the 32-bit level. 

Figure A.2. The dedicated fast carry logic in the XC4000.  

A.3 The XC 4000 Series Input/Output Blocks 

The user-configurable input/output blocks (IOBs) in the XC4000 series provide 

the interface between external package pins and the internal logic. Each IOB controls one 

package pin and can be defined for input, output, or bi-directional signals. Figure A.3 

shows a simplified block diagram of the XC4000 IOB. Two paths, labeled I1 and I2, 

bring input signals into the array. Inputs also connect to an input register that can be 

programmed as either an edge-triggered flip-flop or a level-sensitive transparent-low 

latch. The I1 and I2 signals that exit the block can each carry either the direct or 

registered input signal. The input and output storage elements in each IOB have a 

common clock enable input, which through configuration can be activated individually 
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for the input or output flip-flop or both. This clock enable operates exactly like the EC 

pin on the XC4000E CLB. It cannot be inverted within the IOB. 

Figure A.3. The XC4000 Input/Output block. 

A.4 The XC4000 Series Programmable Interconnect 

The programmable interconnect consists of structured, hierarchical matrix of 

routing resources running vertically and horizontally between the CLBs to achieve 

efficient automated routing. All the internal connections are composed of metal segments 

with programmable switching points and switching matrices to implement the desired 

routing. The number of routing channels is scaled to the size of the array; i.e., it increases 

with the array size. The CLB inputs and outputs are distributed on all four sides of the 

block, providing additional routing flexibility (see Figure A.4).   

There are four main types of interconnect, three are distinguished by the relative 

length of their segments: single-length lines, double-length lines and longlines. In  
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addition, eight global buffers drive fast, low-skew nets most often used for clocks or 

global control signals. The single-length lines are a grid of horizontal and vertical lines 

that intersect at a switch matrix between each block. Figure A.4 illustrates the single-

length interconnect surrounding one CLB in the array. Each switch matrix consists of 

programmable n-channel pass transistors used to establish connection between the single-

length lines. For example, a signal entering on the right side of the Switch Matrix can be 

routed to a single-length line on the top, left or bottom sides, or any combination thereof. 

Single-length lines are normally used to conduct signals within a localized area and to 

provide the branching for nets with fanout greater than one. The function generator and 

control inputs to the CLB (F1-F4, G1-G4, and C1-C4) can be driven from any adjacent 

single-length line segment. The CLB clock (K) input can be driven from one-half of the 

adjacent single-length lines. Each CLB output can drive several of the single-length lines, 

with connections to both the horizontal and vertical longlines. 

The doubled-length lines shown in Figure A.5 consists of a gird of metal 

segments twice as long as the single-length lines; i.e., a double-length line runs past two 

CLBs before entering a switch matrix. Double-length lines are grouped in pairs with the 

switch matrices staggered so that each line goes through a matrix switch at every other 

CLB location in that row or column. As with single-length lines, all the CLB inputs 

except K can be driven from any adjacent double-length line, and each CLB output can 

be drive by nearby double-length lines in both the vertical and horizontal planes. Double-

length lines provide the most efficient implementation of intermediate length, point-to-

point interconnections.  
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Figure A.4. Single length line in the XC4000. 

Longlines form a grid of metal interconnects that run the entire length or width of 

the array. Special global buffers can drive additional vertical longlines, designed to 

distribute clocks and other high fanout control signals throughout the array with minimal 

skew. Longlines are intended for high fanout, time-critical signal nets. Each longline has 

a programmable splitter switch at its center, which can separate the line into two 

independent routing channels, each running half the width or height of the array. CLB 

inputs can be driven from a subset of the adjacent longlines. CLB outputs are routed to 

the longlines via tri-state buffers or the single-length interconnected lines. The XC 4000 

long lines are shown in Figure A.6. The horizontal and vertical single and double length  
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Figure A.5 Illustration of double length lines in the XC4000. 

Figure A.6. Illustration of longlines of the XC4000. 
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lines intersect at a box called the programmable switch matrix (PSM). Each switch matrix 

consists of programmable pass transistors used to establish connections between the lines. 

The programmable switch matrix is shown in Figure A.7. For more details about the 

XC4000 the reader is referred to [26]. 

Figure A.7. Illustration of the programmable switching  
matrix of the XC4000.  

 


