

Copyright 1998, Nikhil D. Gupta

Master’s Thesis

Reconfigurable Computing for Space-Time Adaptive Processing

Nikhil D. Gupta

Department of Computer Science

Texas Tech University

August 1998

Committee Members:

Dr. John K. Antonio (Chairperson)

Dr. Noe Lopez-Benitez

Dr. William M. Marcy

 ii

ACKNOWLEDGEMENTS

Today when I look in retrospect to the last two years I find that there is a lot that I

have learnt. It is just as Plato has said “Those having torches will pass them on to others.”

It is for this learning that I feel deeply indebted to all my teachers.

I would like to express my sincere gratitude and respect to Dr. John K. Antonio,

my committee chairperson, for his invaluable guidance and encouragement. Without his

knowledge and experience I am sure that this research would not have been as successful.

I would also like to thank Dr. Noe Lopez-Benitez and Dr. William M. Marcy for

participating on my committee and for their invaluable guidance and advice.

The successful completion of this thesis is due largely to the support of my

colleagues at High Performance Computing Lab. I thank Jack West, Tim Osmulski, and

Jeff Muehring for constant support, encouragement, and help. I am especially thankful to

Jack for the countless hours he spent adding binary numbers with me. I am thankful to

Jeff for being a faithful friend and a source of encouragement and support and all the help

with Matlab. I am also thankful to Marcelia Sawyers the HPCL secretary for all her help.

This research was supported by DARPA under contract number F30602-97-2-

0297.

 Finally, I would like to thank my parents, Dilip and Manda Gupta, and my

brother Harshal for their constant encouragement and support throughout my life and

making me what I am today.

 iii

CONTENTS

ACKNOWLEDGEMENTS.. ii

ABSTRACT... vi

LIST OF FIGURES .. vii

I.INTRODUCTION ...1

1.1 Motivation for Space-Time Adaptive Processing... 1

1.2 Candidate Computational Technologies for STAP... 2

1.3 Focus of the Thesis ... 4

II.........SPACE-TIME ADAPTIVE PROCESSING ...8

2.1 Introduction... 8

2.2 Radar Fundamentals.. 9

2.3 Space-Time Adaptive Processing ... 12

2.3.1 Fully Adaptive STAP... 13

2.3.2 Partially Adaptive STAP.. 16

III........COMPARISION OF TWO ALGORITHMS FOR ADAPTIVE WEIGHT

COMPUTATION ..18

3.1 Kth-Order Doppler-Factored STAP... 18

3.2 QR-decomposition Method... 21

3.3 Conjugate Gradient Method.. 22

3.3.1 The Initialization Phase.. 23

3.3.2 The Iteration Phase .. 24

3.3.3 Checking for Convergence .. 25

 iv

3.4 Numerical Studies on MCARM STAP data ... 25

3.5 Motivation for Research ... 28

3.6 Conclusion .. 29

IV.OVERVIEW OF THE WILDONE™ RECONFIGURABLE COMPUTING
ENGINE...31

4.1 WildOne™ Reconfigurable Computing Engine ... 32

4.2 WildOne Data Paths.. 33

V.........INNER-PRODUCT CO-PROCESSOR DESIGN...36

5.1 Application Design Methodology... 36

5.1.1 Application Concept .. 37

5.1.2 Problem Partitioning .. 38

5.1.2.1 UML Class Diagrams ... 40

5.1.2.2 Inner-Product Co-Processor UML Statechart Diagram.... 45

5.1.3 VHDL Modeling.. 48

5.1.4 Simulation.. 49

5.1.5 Synthesis .. 50

5.1.6 Place and Route.. 50

5.1.7 Host Program Generation .. 50

5.1.8 System Integration ... 51

5.2 Architectural Details of the Implementations ... 52

5.3 Features of the Two Implementations... 53

VI.ANALYSIS OF THE IMPLEMENTATIONS..56

6.1 Accuracy Experiments .. 56

 v

6.1.1 Analysis of Uniform Data Value Distribution for Zero Order of
Magnitude .. 57

6.1.2 Analysis of Uniform Data Value Distribution for Two Orders of

Magnitude .. 62

6.1.3 Analysis of Uniform Data Value Distribution for Three Orders of
Magnitude .. 64

6.1.4 Analysis of Uniform Data Value Distribution for Four Orders of

Magnitude .. 65

6.1.5 Analysis of Uniform Data Value Distribution for Five Orders of
Magnitude .. 65

6.1.6 Analysis of Non-Uniform Data Value Distribution......................... 69

6.2 Conclusions... 75

VII.CONCLUSIONS AND FUTURE WORK ..77

REFERENCES ... 79

APPENDIX .. 82

 vi

ABSTRACT

The output of space-time adaptive processing (STAP) is a weighted sum of

multiple radar returns, where the weights for each return in the sum are calculated

adaptively and in real-time. The most computationally intensive portion of most STAP

approaches is the calculation of the adaptive weight values. Calculation of the weights

involves solving a set of linear equations based on an estimate of the covariance matrix

associated with the radar return data. The traditional approach for computing the adaptive

weights is based on a direct method called QR-decomposition. This method has a fixed

computational complexity, which depends on the size of the equation matrix and provides

the exact solution. An alternative approach based on an iterative method called Conjugate

Gradient is proposed, which allows for trading off accuracy for reduced computational

complexity. The two approaches are analyzed and compared.

Existing computational strategies for STAP typically rely on the use of multiple

digital signal processors (DSPs) or general-purpose processors (GPPs). An alternative

strategy is proposed, which makes use of Field Programmable Gate Arrays (FPGAs) as

vector co-processors that perform inner product calculations. Two different “inner-

product co-processor” designs are introduced for use with a host DSP or GPP. The first

has a multiply-and accumulate structure and the second uses a reduction-style tree

structure having two multipliers and an adder. The proposed strategies are implemented

and compared to the traditional method.

 vii

LIST OF FIGURES

2.1 The STAP CPI data-cube. 13

2.2 Generic computational phases for fully adaptive STAP. 14

3.1 Space-time snapshot of Kth-order Doppler-factored STAP for K = 3. 19

3.2. Flop count versus tolerance for Lr = 125. 26

3.3. Flop count versus tolerance for Lr = 250. 27

3.4. Relative error versus tolerance for Lr = 125. 28

3.5. Relative error versus tolerance for Lr = 250. 29

4.1 Block diagram of the WildOne™ reconfigurable computing board. 33

5.1 Illustration of application design cycle. 38

5.2 Multiply-and-accumulate strategy. 39

5.3 Multiply-and-add strategy. 40

5.4 Inner-product co-processor UML class diagram. 41

5.5 Block Floating-Point Unit UML class diagram. 42

5.6 Multiplying unit UML class diagram. 43

5.7 Accumulator UML class diagram. 43

5.8 Normalizing unit UML class diagram. 44

5.9 Data input/output system UML class diagram. 44

5.10 Inner-product co-processor statechart diagram. 46

5.11 Multiply-and-accumulate circuit activity diagram. 48

5.12 Multiply-and-add circuit activity diagram. 49

 viii

5.13 Sequence diagram for interaction between WildOne board and the host. 51

5.14 Multiply-and-add circuit clock waveforms. 54

6.1 Histogram of the input vector data values. 59

6.2 Histogram of exponents of the input vector data values. 60

6.3 Accuracy Histogram for the multiply-and-add circuit. 61

6.4 Accuracy histogram for the multiply-and-accumulate circuit. 61

6.5 Histogram of the input vector data values. 62

6.6 Histogram of exponents of the input vector data values. 63

6.7 Accuracy histogram for multiply-and-add circuit. 63

6.8 Accuracy histogram for the multiply-and-accumulate circuit. 64

6.9 Histogram of the input vector data values. 66

6.10 Histogram of the exponents of input vector data values. 67

6.11 Accuracy histogram for the multiply-and-add circuit. 67

6.12 Accuracy histogram for the multiply-and-accumulate circuit. 68

6.13 Histogram of the input vector data values. 68

6.14 Histogram of the exponents of input vector data values 69

6.15 Accuracy histogram for the multiply-and-add circuit. 70

6.16 Accuracy histogram for the multiply-and-accumulate circuit. 70

6.17 Histogram of the input vector data values. 71

6.18 Histogram of the exponents of input vector data values. 71

6.19 Accuracy histogram for the multiply-and-add circuit. 72

6.20 Accuracy histogram for the multiply-and-accumulate circuit. 72

 ix

6.21 Histogram of the input vector data values. 73

6.22 Histogram of the exponents of input vector data values. 73

6.23 Accuracy histogram of the multiply-and-add circuit. 74

6.24 Accuracy histogram of the multiply-and-accumulate circuit. 74

A.1. The Xilinx XC4000 series CLB. 83

A.2. The dedicated fast carry logic in the XC4000. 85

A.3. The XC4000 Input/Output block. 86

A.4. Single length line in the XC4000. 88

A.5 Illustration of double length lines in the XC4000. 89

A.6. Illustration of longlines of the XC4000. 89

A.7. Illustration of the programmable switching matrix of the XC4000. 90

 1

CHAPTER I

INTRODUCTION

1.1 Motivation for Space-Time Adaptive Processing

Modern airborne radar platforms are required to provide long-range detection of

smaller and smaller targets in the presence of severe interference from both natural and

artificial sources. This detection of targets is often performed over land, where ground

clutter can be very high [1], and in the presence of electronic countermeasures such as

jamming [1, 2]. These radar platforms must have the capability to nullify both clutter and

jamming to below the ambient noise level.

The suppression of jamming and clutter has posed a problem to radar engineers

since the beginning of radar. Over the years, many techniques have been developed to try

and eliminate jamming and clutter; however, the problem is difficult because it is

dependent on a number of different inter-related variables. A potential target may be

obscured not only by the mainlobe clutter (i.e., the clutter that originates from the same

angle as the target) but also by the sidelobe clutter (i.e., the clutter that comes from

different angles but has the same Doppler frequency) [2]. Displaced-phase-center-antenna

(DPCA) processing was developed to address the problem of clutter in airborne radar

platforms [3]. The effects of jamming on radar systems can often be successfully

cancelled by adaptive array processing techniques [4].

The above two techniques – DPCA and adaptive array processing – individually

provide a partial solution to the problem of clutter and jamming, respectively. These two

techniques have been effectively combined in a technique known as Space-Time

 2

Adaptive Processing (STAP), which can be viewed as a generalization of DPCA

processing. STAP simultaneously and adaptively combines the signals received on

multiple elements of an antenna array – the spatial domain – and from multiple pulse

repetition periods – the temporal domain.

STAP offers the potential to improve airborne radar performance in several areas.

STAP algorithms can provide improved target detection in the presence of interference

through the adaptive nulling of both ground clutter and signal jamming [5]. It can

improve low velocity target detection through better mainlobe clutter suppression. It can

also be used to detect small targets, which would otherwise be obscured by the presence

of sidelobe clutter. STAP also provides a capability to cancel non-stationary interference.

Thus, STAP combines both spatial and temporal adaptive processing techniques to cancel

out the clutter and interference contained in the radar signals received by an airborne

antenna array.

Another significant feature of STAP is that it improves the performance of the

antenna array while requiring little or no modification to the basic radar design. However,

the computational complexity associated with STAP is generally very high; an extremely

large amount of data needs to be processed in real-time. This in turn requires a large

computational throughput.

1.2 Candidate Computational Technologies for STAP

The computational requirements of STAP algorithms are well suited for execution

on digital signal processors (DSPs), which are special purpose microprocessors optimized

 3

to perform arithmetic operations such as multiplication, addition, and subtraction with

high efficiency. In addition to their increased performance for certain computations,

DSPs are generally silicon conservative, less expensive, and more power efficient than

comparable general-purpose microprocessors. Thus, DSPs are often a better choice than

general-purpose processors for embedded applications that have strict size, weight, and

power (SWAP) restrictions.

Even though DSPs are well-suited for embedded systems, their architectures are

still somewhat generic, which means they may have more silicon complexity than is

absolutely necessary for any given application. For example, an application specific

integrated circuit (ASIC) designed for a given application is generally better matched

(i.e., has less complexity and/or better performance) for that application than does a DSP.

However, some disadvantages of ASICs include their high cost of design, which makes

them ineffective in terms of cost when they need to be produced in small volumes, and

their inflexibility (i.e., they cannot generally be re-used for other applications).

An alternative to both DSPs and ASICs is the use of reconfigurable computing

devices, which can provide performance near ASIC levels while having programming

flexibility similar to DSPs. Reconfigurable computing is usually based on field

programmable gate array (FPGA) technology. Because FPGA chips are commercially

available, reconfigurable systems based on FPGAs can be developed at a fraction of the

cost associated with using ASICs. The recent popularity of reconfigurable systems is

consistent with the growing trend toward utilizing commercial-off-the-shelf (COTS)

hardware in place of custom-designed ASICs for military applications [6]. The feature of

 4

being able to reconfigure FPGAs also allows for the possible use of one system for many

different applications.

An FPGA device typically consists of an array of programmable logic blocks

interconnected by a programmable routing fabric. The task of “programming” an FPGA

is actually similar to that of designing an ASIC in the sense that the programming of an

FPGA is expressed through a hardware description language (HDL) such as VHDL [7].

The designer’s HDL code is compiled into a binary file called the “bit-stream,” which is

targeted for a particular FPGA part. The bit-stream defines the internal programming of

both the logic blocks and routing resources within the FPGA in order to implement the

HDL design.

FPGAs and ASICs are particularly well-suited for embedded applications in

which a stream of input data must be processed. In such applications, the required

computations are often deterministic, primarily involving numerical operations. Thus,

when compared to DSPs, the use of FPGAs and ASICs can provide improvements in

speed and throughput by exploiting parallelism and eliminating the overhead associated

with load/store operations, branch operations, and instruction decoding.

1.3 Focus of the Thesis

The most computationally intensive part of STAP algorithms is typically the

calculation of adaptive weights, which are used in combining the multiple returns (across

both time and space). Traditionally the adaptive weights for STAP are computed using

the QR-decomposition [8] approach, which is a direct matrix solver that gives exact

 5

solutions. QR-decomposition involves a fixed number of floating point operations

determined by the size of the equation matrix. For most applications in radar processing

precise answers may not be required; approximate answers are sufficient. In such cases it

would be very effective in terms of computations and time to compute approximate

answers.

This research involves two distinct objectives for improving the performance of

STAP processing. The first objective is to investigate alternate approaches to compute the

adaptive weights, in which the accuracy of the answers can be traded for the associated

computations. Two approaches are investigated and compared: the traditional QR-

decomposition technique and a newly proposed approach based on the conjugate gradient

(CG) method [8]. The second goal is to use reconfigurable computing platforms to

perform a part of the core computations needed in both the QR and CG approaches;

improving the throughput of the system as well as the overall characteristics (e.g., size,

weight, and power) of the system. The core computation implemented with

reconfigurable computing is the calculation of the inner products.

 The reconfigurable computing platforms usually use FPGAs as the

reconfigurable logic components. The use of reconfigurable hardware maybe divided into

three categories:

1. Logic – where FPGAs are used to implement glue logic.

2. Embedded Computing – where FPGA-based reconfigurable co-processors are

used along with DSP or general-purpose processors (GPPs) to perform computationally

intensive part(s) of an algorithm.

 6

3. General Computing – where completely reconfigurable computing platforms

based on FPGAs are used in a system designed for general purpose computing.

In this thesis, the focus is on the use of the second category. The target FPGA

platform is the WildOne computing engine made by Annapolis Micro Systems,

Annapolis MD [9].

A major challenge of implementing core components of STAP algorithms on

FPGA-based computing engines is determining the architectural requirements to perform

the these computations. The details related to the size and the optimal number of adder

and multiplier circuits are investigated. Because these architectural design details are

flexible, the most appropriate configuration depends on the data characteristics (e.g.,

dynamic range and accuracy) and the data representation used (e.g., floating point vs.

block floating point). A basic goal is to investigate the accuracy that can be achieved with

the use of block floating point operations instead of floating point operations for a given

dynamic range of numbers.

The remainder of this thesis is organized in the following manner. Chapter II

gives an overview of radar signal processing and the computational complexity analysis

of two known STAP algorithms, namely fully-adaptive STAP and partially-adaptive

STAP. Studies conducted to evaluate two different approaches (QR vs. CG) to compute

the adaptive weights associated with partially adaptive STAP algorithm are discussed in

Chapter III. Chapter IV briefly introduces the basic components of the WildOne

reconfigurable computing board that is being used in this work. In Chapter V, two

alternate architectures for GPP/FPGA implementations are illustrated along with the

 7

discussion of a general design methodology for the design of hardware/software co-

system and the use of Unified Modeling Language (UML) [10] to model the system

effectively. The common attribute of both the architectures is that the FPGA component

serves as an inner product co-processor to the GPP. The architectures differ in how the

inner product calculations are performed on the FPGA. Chapter VI presents some

numerical studies conducted on the two architectures. Finally, Chapter VII concludes the

work with a summary of the research completed, the results and the future work.

 8

CHAPTER II

SPACE-TIME ADAPTIVE PROCESSING

2.1 Introduction

The concept of radar dates back to the 1880’s when Hertz first demonstrated that

radio waves reflected from metallic and dielectric objects. However, radar technology did

not come into its own until its widespread development and application during World

War II. Since then, the use of radar has increased phenomenally. Today, radar technology

is being used in a range of military, commercial, and private applications.

Modern airborne radar systems are required to detect smaller and smaller targets

in the presence of clutter and interference. The cancellation of ground clutter and

jamming interference from radar returns has been the topic of research over the years.

STAP algorithms were developed to extract desired target signals from returns comprised

of Doppler shifts (associated with radar platform motion), ground clutter returns, and

jamming interference.

The following sections describe the principles of modern radar systems and the

major components of typical STAP algorithms, giving a brief overview of the different

stages of computation that are generally required. For a more thorough analysis of STAP

algorithms, the reader is referred to [5]. The following section on radar fundamentals

borrows extensively from [11] that gives a more complete overview of radar.

 9

2.2 Radar Fundamentals

The fundamental purpose of radar is to detect the presence of an object of interest

and provide information concerning that object’s range, velocity, angular coordinates,

size, and other parameters [12]. The basic principle of radar is very simple. An

elementary form of radar consists of a transmitting antenna and a receiving antenna.

Radar operates by radiating electromagnetic (EM) energy, oscillating at a predetermined

frequency, f, and duration, τ, into free space through the transmitting antenna. In general,

the radar antenna forms a beam of EM energy that concentrates the EM wave into a given

direction [13]. By effectively rotating and pointing the antenna, the transmitted radar

signal can be directed to a desired angular coordinate.

A portion of the radar’s transmitted energy is intercepted by an object located in

the path of the transmitted beam and is scattered in all directions depending on the

target’s physical characteristics. In general, some of the transmitted energy will be

reflected back in the direction of the radar. This retro-reflected energy is referred to as

backscatter [13]. A portion of the backscattered wave, or echo return, is received by the

radar antenna. The echo returns, which are gathered by a set of sensors, are sampled, and

the resulting data is processed to identify targets and parameter estimation.

The distance to the target is determined by measuring the time taken for the radar

signal to travel to the target and back. Furthermore, the angular position of the target

may be determined by the arrival direction of the backscattered wave. If relative motion

exists between the target and radar, the shift in the carrier frequency of the reflected

 10

wave, also known as the Doppler effect, is a measure of the target’s relative velocity and

may be used to distinguish moving targets from stationary objects [2].

The basic role of the radar antenna is to act as a transducer between the free-space

propagation and guided-wave propagation of the EM wave [14]. The specific function of

the antenna during transmission is to concentrate the radiated energy into a shape beam

directive that illuminates targets in a desired direction. During reception, the antenna

collects the energy from the reflected echo returns. Many varieties of radar antennas

have been used in radar systems. The type of radar antenna selected for a certain

application depends not only on the electrical and mechanical requirements dictated by

the radar design specifications but also on its application. In airborne-radar applications,

radar antennas must generate beams with shape directive patterns that can be scanned.

The properties offered by antenna arrays are quite appealing to airborne radar

systems. Antenna arrays consist of multiple stationary elements, which are fed

coherently, and use phase or time-delay control at each element to scan a beam to given

angles in space [15]. The primary reason for using radar arrays is to produce a directive

beam that can be repositioned electronically. An electronically steerable antenna array,

whose beam steering is inertialess, is drastically more cost effective when the mission

requires surveying large solid angles while tracking a large number of targets [15].

Additionally, arrays are sometimes used in place of fixed aperture antennas because the

multiplicity of elements allows a more precise control of the radiating pattern.

The purpose of moving-target indication (MTI) radar is to reject signal returns

from stationary or unwanted slow-moving targets, such as buildings, hills, trees, sea, rain,

 11

and snow, and retain detection information on moving targets such as aircraft and

missiles [16]. The term Doppler radar refers to any radar capable of measuring the shift

between the transmitted frequency and the frequency of reflections received from

possible targets [17]. Relative motion between a signal source and a receiver creates a

Doppler shift of the source frequency. When a radar system intercepts a moving object

that has a radial velocity component relative to the radar, the reflected signal’s frequency

is shifted.

To illustrate the Doppler effect, consider a radar that emits a pulse of EM energy

that is intercepted by both a building (fixed target) and an airplane (moving target)

approaching the radar. As previously stated, each of the objects will scatter the

intercepted radar signal, which will include a portion of backscatter energy. After the

reflected radar signal returns to the radar in a certain time period, a second pulse of EM

energy is transmitted. The reflection of the second pulse of energy from the building is

returned to the antenna in the same time period as the first pulse. However, the reflection

of the second pulse from the moving aircraft returns to the antenna in less time than the

first pulse because the aircraft is moving towards the radar. This time change between

pulses is determined by comparing the phase of the received signal with the phase of the

reference oscillator of the radar [17]. If the phase of received consecutive pulses change,

the object of interest is in motion.

 12

2.3 Space-Time Adaptive Processing

 The main goal of surveillance radar is to search a specified volume of

space for potential targets. A typical radar system used for surveillance consists of

multiple array elements mounted on an airborne platform. These radar systems have to

detect targets in the presence of clutter and jamming. If the interference is localized in

frequency and comes from a limited number of sources, targets can be detected by using

adaptive spatial weighting of the data from each element of an antenna array [18]. By

applying the computed weights to the data, the effects of interference can be reduced thus

increasing the reception of the reflected signal. Because the platform is in motion the

Doppler spread of the clutter returns is significantly wider, and the clutter characteristics

are highly variable due to the constantly changing ground terrain. Because of the added

dimensionality of received data, the weights must now be adapted from the data in both

the time and space dimensions. This signal processing method is referred to as STAP,

which is an adaptive processing technique that simultaneously combines the signals

received from multiple elements of an antenna array (the spatial domain) and from

multiple pulses (the temporal domain) of a coherent processing interval (CPI) [5].

The subsections to follow overview two STAP algorithms: the more complex

“fully adaptive” STAP algorithm and the less complex “partially adaptive element space

post-Doppler” STAP algorithm. The complexity associated with these algorithms is also

overviewed. For a more theoretical foundation of STAP, the reader is referred to [5, 18].

 13

2.3.1 Fully Adaptive STAP

Consider an N element antenna array mounted on an airborne platform that

transmits a coherent burst of M pulses at a pulse repetition rate of fr = 1/Tr (where Tr is

the pulse repetition interval - PRI). The time interval over which the waveform returns

are collected is referred to as the coherent-processing interval (CPI). Thus, the length (in

time) of one CPI is equal to MTr. For each PRI, L samples are collected in the temporal

dimension to cover the range interval of the returns. With N channels, M pulses, and L

range bins, the received data for one CPI comprises LMN data samples. This set of data

can be visually represented as a three-dimensional data cube of size LMN ×× as shown

in Fig. 2.1. This data set is referred to as the CPI data-cube.

Figure 2.1 The STAP CPI data-cube.

Let xnml represent the nth array element and the mth pulse at the lth range sample

time. Next, define xm,l to represent an 1×N column vector, or a spatial snapshot,

 14

composed of the return signals from each array element for the mth pulse and the lth range

bin. By combining all of the spatial snapshots at a given range of interest, say l, an

MN × matrix Xl can be formed, where],,,,[,,3,2,1 lMllll xxxxX L= . The shaded plane

in Fig. 2.2, referred to as a range gate, represents the matrix Xl. To detect the presence of

a target in given range gate, a linear adaptive filter is used that combines the MN data

samples to produce a scalar output. This scalar is then compared with a threshold value to

indicate the presence or absence of a target.

Figure 2.2 Generic computational phases for fully
adaptive STAP.

Fully adaptive STAP generally consists of three major phases of computation.

First a set of rules, called the training strategy, is applied to the CPI data. The objective of

the training strategy is to estimate the interference that is present at the range gate of

interest. Because the interference is not known a-priori, it is estimated, adaptively, from

 15

the data comprising the CPI data-cube. Typically, the data from several range gates near

the range gate of interest are used in the training strategy.

The training data determined in the first phase is used as input to calculate the

adaptive weight vector in the second phase. The weight computation phase is the most

computation-intensive portion of the space-time processor. The weight computation

involves the solution of a system of linear equations [5]. The most common weight

computation strategy is called sample matrix inversion (SMI). In an SMI approach, the

weight vector is computed based on the covariance matrix of training data. After the

weight vector is computed, the final third phase of weight application commences.

In the weight application phase, a scalar output is produced by computing the

weighted sum of the elements of the range gate of interest. This scalar output is

compared to a threshold value to determine if a target is present at a specified angle and

Doppler [5]. Because a potential target’s angle and velocity are unknown, the space-time

processor computes multiple weight vectors to cover many different target angles, ranges,

and velocities at which target detection is to be queried [5].

In fully adaptive STAP, a separate adaptive weight is applied to every array

element and pulse of a given range gate. The size of the weight vector for fully adaptive

STAP is therefore MN. In order to compute the weight vector, a system of linear

equations with dimension MN must be solved; thus, computing a single weight vector

requires a O((MN)3) operations [5]. For many conventional radar systems, the product of

MN may vary from several hundred to several thousand with M and N both ranging from

ten to several hundred. Furthermore, a weight vector must be calculated for each training

 16

set used. The sheer computational complexity necessary to compute the weight vectors

for fully adaptive STAP, in real-time, is typically beyond the capabilities of current

embedded computing systems. This fact alone usually renders fully adaptive STAP

impractical and provides adequate motivation for the formulation of alternative heuristic

algorithms.

2.3.2 Partially Adaptive STAP

The goal of partially adaptive STAP algorithms is to break the fully adaptive

problem into a number of reduced-dimension, more manageable adaptive problems while

achieving near optimal performance. These reduced dimension adaptive problems are

then solved to get the desired weight vectors. Instead of computing an MN-dimensional

weight vector for each range gate, weight vectors of size KN are associated with each of

the M returns. Typical values of K range from 1 to 3, whereas M may range from 32 to 64

[18]. Thus, solving M sets of linear equations of size KN has an overall complexity of

O(M(KN)3) [5]. If K << M, this complexity is superior to that of fully adaptive STAP,

which is O((MN)3). Thus, the computational complexity is reduced substantially by

calculating M KN-dimensional weight vectors instead of one MN-dimensional weight

vector. The partially adaptive algorithms are classified according to the type of

preprocessing done first. For instance, in element-space pre-Doppler STAP, Doppler

filtering follows adaptive-processing (see [5] for details on different classifications of

partially adaptive STAP algorithms).

In the next chapter, a particular partially adaptive STAP algorithm is discussed

and two approaches to solving the given problem of calculating the adaptive weights are

 17

proposed. Results of some numerical studies comparing the performance of the two

approaches in terms of floating point operations needed, and the relative error are

presented.

 18

CHAPTER III

COMPARISION OF TWO ALGORITHMS FOR

ADAPTIVE WEIGHT COMPUTATION

The focus of this chapter is the adaptive weight calculation of a partially adaptive

STAP technique called the Kth-order Doppler-factored STAP algorithm [18]. Two

candidate approaches to compute the adaptive weights for this algorithm are described.

The first approach, which is characterized as a direct method, is based on performing a

QR-decomposition [19, 20] on the data used to calculate the covariance matrix. In

contrast to this approach, the second approach uses the CG technique, which is an

iterative method, to compute the adaptive weights.

This chapter is organized as follows. In the next section, the Kth-order Doppler-

factored STAP algorithm is described. Section 3.2 describes the QR-based technique for

computation of the adaptive weights and Section 3.3 describes the conjugate-gradient

approach. Comparisons between the two approaches, based on numerical studies using

actual radar return data, are discussed in Section 3.4.

3.1 Kth-Order Doppler-Factored STAP

The Kth-order Doppler-factored STAP algorithm can be one of the most practical

and effective STAP techniques for clutter and interference suppression. The architecture

of Kth-order Doppler-factored STAP is composed of Doppler processing of data across all

the pulse repetition intervals (PRIs) followed by adaptive filtering [18], i.e., the

 19

calculation and application of the adaptive weights. The adaptive filtering utilizes both

the spatial and the temporal degrees of freedom. The spatial degree of freedom is

provided by the N antenna array channels (Figure 2.1), while the temporal degree of

freedom is provided by using K adjacent Doppler bins centered around the Doppler bin

for which the weights are being calculated (see Figure 3.1). Here, Doppler bin refers to

the dimension along the pulse (PRI) dimension of the data-cube after Doppler processing,

and K indicates the order of the partially adaptive STAP algorithm.

Figure 3.1 Space-time snapshot of Kth-order Doppler-factored
STAP for K = 3.

The adaptive weights for a particular range cell r and Doppler bin k are computed

from the space-time snapshot vector consisting of data across the N channels and K

adjacent Doppler bins kmin through kmax. For Kth-order Doppler-factored STAP

() ()21modmin −−= Kkk M , and (3.1)

 20

() ()21modmax −−= Kkk M , (3.2)

where M is the number of pulses. For example, if M = 32, K = 3, and k = 13, then

kmin = 12 and kmax = 14.

The space-time snapshot vector is then defined as

() () () ()[]T
dddd rkNxrkxrkNxrkxrkx ,,,,1,,,,1),(maxmaxminmin ⋅⋅⋅⋅⋅⋅⋅⋅⋅=

r
, (3.3)

where ()rknxd ,, represents the data sample corresponding to rth range cell, kth Doppler

bin and nth channel, and the superscript “T” denotes matrix transpose1. This space-time

snapshot vector is shown in Figure 3.1 for K = 3. In practice, the range dimension is

divided into non-overlapping segments, called range segments. Let Lr denote the number

of range bins in each range segment, and let B denote the number of range segments;

thus, B = L/Lr. The covariance matrix for the kth Doppler bin and bth range segment,

denoted as ()bk,ψ , is estimated by averaging over the outer product of the snapshot

vectors. That is

∑
+−=

=
r

r

bL

Lbr

H

r

rkxrkx
L

bk
1)1(

),(),(1),(rrψ (3.4)

where k = 1, 2, … M and b = 1, 2, … B. Note that ()bk,ψ is a square matrix of dimension

KN × KN.

An alternate expression for ()bk,ψ can be derived based on the rLN ×ˆ space-time

data matrix, denoted),(bkX , which is defined to be

[]),()1)1(,(),(rr bLkxLbkxbkX rr
⋅⋅⋅⋅⋅⋅+−= . (3.5)

1 Related notation used in this thesis is the superscript “H” for Hermetian transpose of the matrix

and “*” denotes complex conjugate of the matrix.

 21

Based on this definition, the estimate of the covariance matrix of Eq. (3.4) can be

expressed as

),(),(1),(bkXbkX
L

bk H

r

=ψ . (3.6)

Let),(bkwr denote the vector of adaptive weights associated with the kth Doppler bin and

the bth range segment. The value for),(bkwr is determined by solving the following

equation

sbkwbk rr
=),(),(ψ , (3.7)

where sr is a known steering vector. The values of the elements of the steering vector are

dependent on the angle (relative to the radar platform) at which the target is to be

detected and the speed of the target [5]. Thus, the above equation must be solved for each

steering vector (i.e., each target position and speed) of interest.

Substituting Eq. (3.6) into (3.7) gives the following:

sLbkwbkXbkX r
H rr

=),(),(),(. (3.8)

 The following two sections discuss weight computation strategies for the above

system of linear equations. The two different approaches discussed here are the QR-

decomposition method and the Conjugate Gradient method.

3.2 QR-decomposition Method

This method operates by first performing a QR-decomposition on the space-time

data matrix),(bkX T . The QR-decomposition produces a Lr × Lr orthogonal matrix Q ,

and an rLN ×ˆ upper triangular matrix R such that QRbkX T =),(. The matrix R can be

 22

written as]0[1
TR where 1R is a NN ˆˆ × (i.e., KN × KN) full rank upper triangular matrix.

The matrix product (Eq. 3.8) then decomposes to

*
11

**),(),(RRRQQRbkXbkX TTTH == , (3.9)

where the last equality above is due to the orthogonality of Q; i.e., IQQT =* .

Following QR-decomposition, Eq. (3.8) is written as

sLbkwRR r
T r

=),(*
11 , (3.10)

where it should be noted that both TR1 and *
1R are triangular matrices. Letting

),(*
1 bkwRp rr

= , Eq. (3.10) becomes

sLpR r
T rr

=1 ,

which enables the determination of pr using simple forward elimination. Once pr is

known, then),(bkwr is determined with backward substitution based on the definition of

pr :

pbkwR rr
=),(*

1 . (3.11)

3.3 Conjugate Gradient Method

The Conjugate Gradient method provides a general means for solving a system of

linear equations of the form

A x = b,

where A is symmetric and positive definite [19, 20]. This approach can be applied to the

problem of computing the adaptive weights because the covariance matrix is symmetric

and positive definite.

 23

The Conjugate Gradient method is based on the idea of minimizing the function

bxAxxxf T −=
2
1)(.

The function is minimized when its gradient

bAxf −=∇ ,

is zero, which corresponds to the solution of the original system of linear equations. The

minimization is carried out by generating a succession of search directions pi and

improved minimizers xi, where the subscript i denotes the iteration count. At each

iteration a quantity αi is found that minimizes f(xi + αipi). The value of xi+1 is then

updated to xi + αipi. The values of pi and αi are formed in such a way that xi+1 is also the

minimizer of f over the whole vector space of directions already taken, i.e., {p1,p2,…,pi}.

For this study, the estimate of the covariance matrix as given in Eq. (3.6) takes the

place of A and the known vector sr is used in place of b. Thus, the conjugate gradient

method is to be applied to the system of equations given by Eq. (3.7).

The conjugate gradient method consists of three distinct stages: initialization,

iteration, and checking for convergence.

3.3.1 The Initialization Phase

The initialization phase consists of selecting an initial solution, and setting the

initial direction [20]. The initial solution is typically selected to be the zero vector,

however, a better initial guess may be used if known. Assuming a vector of zeros, the

initial guess for the weight vector is denoted by

 24

00 =wr . (3.13)

The initial direction, 0d
r

, is then defined to be

00 wsd rrr
ψ−= , (3.14)

which is a conjugate of the initial gradient 0gr , i.e.,

00 dg
rr

−= . (3.15)

3.3.2 The Iteration Phase

During the iteration phase, successive direction vectors are generated that are the

conjugates of the successive gradient vectors obtained as the method progresses. Thus,

the directions are not known beforehand but are generated sequentially at each iteration

[20]. At each step the current negative gradient vector is evaluated and a linear

combination of the previous direction vectors is added to it to obtain a new direction

vector along which to move. At each stage a quantity αi is calculated which minimizes f

(wi + αi di). The following operations are performed during each iteration :

i
T
i

i
T
i

i dd
dg
rr

rr

ψ
α = (3.16)

iiii dww
rrr α+=+1 (3.17)

swg ii
rrr

−= ++ 11 ψ (3.18)

i
i

T
i

i
T
i

ii d
dd
dg

gd
r

rr

rr
rr

+−= +

++ ψ
ψ1

11 . (3.19)

The iteration phase continues making progress toward the solution at each step.

 25

3.3.3 Checking for Convergence

After each iteration, a check for convergence is done to determine if the solution

has reached a desired accuracy. Convergence is typically checked by evaluating the

difference between the current and previous values of the solution vector. If the

difference is small enough (i.e., is smaller than a specified tolerance), then the iteration

phase is stopped.

3.4 Numerical Studies on MCARM STAP data

Numerical studies were conducted using Matlab implementations of the QR-

decomposition and the Conjugate Gradient methods on actual STAP data collected by the

Multi-Channel Airborne Radar Measurement (MCARM) system of Rome Lab [21]. This

data consists of one CPI data-cube having 24 channels, 32 pulses, and 2500 range cells

(i.e., the size of the CPI data-cube is 24 × 32 × 2500).

Two cases were considered. In the first case the range cells were segmented into

blocks of 125 (i.e., Lr = 125) while in the second case the range cells were divided into

blocks of 250 (i.e., Lr = 250). The two different approaches – QR-decomposition and

Conjugate Gradient methods – were then used to calculate the adaptive weights. Figure

3.2 shows the number of flops (floating-point operations) needed for each approach for

Lr = 125, and Figure 3.3 shows the number of required flops for Lr = 250. Note that the

number of flops needed decreases for the iterative method as the value of the

convergence tolerance is increased, which implies decreased accuracy.

 26

For Lr = 125 the flop count for the iterative approach is comparable to the flop

count of the QR-decomposition approach when the convergence tolerance is relatively

high. However, for Lr = 250 the flop count for the iterative approach is less than the flop

count for the QR-decomposition approach, even for very high desired accuracy (i.e.,

small convergence tolerance). This is because the complexity of the QR approach

depends on the value of Lr. However, the complexity of the Conjugate Gradient method

is nearly independent of Lr, depending primarily on the dimension of),(bkψ , which is

the same for the two cases considered.

Figure 3.2. Flop count versus tolerance for Lr = 125.

The relative error between the weights obtained by the QR-decomposition and the

weights obtained by the iterative approach (as a function of the tolerance for the iterative

approach) is illustrated in the Figures 3.4 and 3.5 and is defined by

 27

qr

cgqr

w

ww
err r

rr
−

= , (3.20)

where qrwr is the adaptive weight vector calculated using the QR-decomposition method

and cgwr is the adaptive weight vector calculated using the Conjugate Gradient method.

Figure 3.3. Flop count versus tolerance for Lr = 250.

As shown in Figure 3.4, the relative error for a convergence tolerance of 10-8 is

approximately 10-8, and for a convergence tolerance of 10-1 the relative error is

approximately 10-1 (or 10%). The graph for Lr = 250 shown in Figure 3.5 illustrates

similar characteristics. Thus, the Conjugate Gradient method provides for a trade-off

between flops and accuracy. This trade-off may be important for STAP because

reasonable (i.e., not perfect) accuracy may be sufficient in some circumstances,

 28

especially if the hardware required for determining the exact solution is prohibitive.

Another motivation for using an iterative approach is the ease of implementation with

FPGA technology.

Figure 3.4. Relative error versus tolerance for Lr = 125.

3.5 Motivation for Research

A second major focus of this research is to demonstrate that at least some of the

computationally intensive requirements of real-time STAP can be effectively

implemented on a reconfigurable (FPGA-based) computing platform. Of particular

interest is the computation required for determining the adaptive weights. It is proposed

that a reconfigurable computing platform may be used as a “co-processor” to improve the

performance of the host processors (e.g., a DSPs or GPPs). Performance maybe improved

by off-loading some execution cycles to the reconfigurable coprocessor. The regular and

 29

repetitive nature of the iterative Conjugate Gradient approach described above makes it a

prime candidate for implementation on an FPGA-based co-processor.

Figure 3.5. Relative error versus tolerance for Lr = 250.

3.6 Conclusion

In this chapter, the results of studies that compare the computational complexities

of two competing approaches for solving the adaptive weights associated with STAP

were presented. The trade-off between accuracy and the required computations associated

with the Conjugate Gradient method was discussed. The results indicate that significant

performance gains (in terms of required flops) can be realized at the cost of sacrificing

some numerical accuracy. It is also seen that both the above methods for solving for

adaptive weights involve computing a number of vector inner-products. A significant

improvement in performance can be achieved if the inner-product computations can be

 30

off-loaded to the FPGA board while the GPP/DSP is free to do other tasks. While DSPs

like SHARCS can do a single-cycle multiply they cannot perform an add operation very

efficiently. The FPGA on the other hand can be programmed to perform a single-cycle

multiply-and-add/accumulate, which makes it a very attractive for computing vector

inner products.

 31

CHAPTER IV

OVERVIEW OF THE WILDONE™ RECONFIGURABLE

COMPUTING ENGINE

The use of reconfigurable computing platforms based on FPGAs is, in some

instances, becoming more popular approach to implementing application-specific

computing systems than designing special-purpose ASICs. A decade ago, when an

embedded system required special-purpose computing hardware, it was usually designed

into a special chip. However, manufacturing an ASIC is prohibitively expensive if the

number of chips needed is very small, which is often the case with special-purpose

embedded applications. A way to avoid the high cost of ASICs for special applications is

to use relatively general-purpose chips like DSPs, along with application-specific

software. Although DSPs are often well tuned for embedded applications, these devices

are still relatively general in the sense that they are not designed specifically for any one

application. Thus, the performance may not be as good as if ASICs were used in the

implementation.

Reconfigurable computing systems that use FPGAs as the primary logic are

providing a relatively new alternative to both DSP and ASIC based designs. Instead of

application software controlling the processor(s), as is the case in DSP-based systems,

software is actually used to configure the FPGA, thereby defining its functionality. The

software used in this process is typically an encoding expressed using a hardware

descriptor language such as VHDL. The use of FPGAs allows the matching of the

hardware design with the processing needs of the application with the design directly

 32

implemented in hardware. Thus reconfigurable computing devices provide the flexibility

of soft design methodology along with the performance advantage of hardware

implementation.

4.1 WildOne™ Reconfigurable Computing Engine

In recent years, the manufacturers of reconfigurable devices have responded to the

market demand of using reconfigurable hardware for some core components of high

performance computing systems. This has led to improvements in reconfigurable

hardware design to the point that FPGAs are now a viable implementation alternative.

These developments have resulted in a number of reconfigurable computing systems, that

can be used as a plug-in board, being manufactured by many companies with their own

distinctive features. The WildOne reconfigurable computing board that is being used in

this research is made by Annapolis Micro Systems.

The WildOne system offers a variety of configuration options. A high level

diagram of the WildOne reconfigurable computing system is illustrated in Figure 4.1. The

board has two processing elements, processing element 0 (PE0) and processing element 1

(PE1), which are Xilinx 4000 series FPGAs. (See the Appendix for more details of Xilinx

4000 series FPGAs.) These two processing elements (PEs) are connected to the on board

bus through a dual port memory controller or through a FIFO. The FIFOs are each 36 bits

wide and 512 words deep. The dual port memory control allows the access of the

memory to the host as well as the PEs. There are also a number of fixed and

reconfigurable internal data paths on the board to allow communication between the PEs,

 33

or between the PEs and external I/O cards that may include other FPGA boards, DSPs,

ASICs and microprocessors. Section 4.2 describes the various data paths in detail.

Figure 4.1 Block diagram of the WildOne™
reconfigurable computing board.

4.2 WildOne Data Paths

The host system may communicate with the board through the PCI bus. The

communication between the host and the processing elements can be done using the

FIFOs or the dual-port memory controller or through interrupt signals. In addition, the

board can communicate with other boards via the SIMD connector. The SIMD connector

is well-suited for high speed and real-time applications with the data coming directly into

the board from an external transducer or from other boards on the same host system or

PCI BUSPCI BUS

Dual Port Mem
Controller 0

Dual Port Mem
Controller 0

Dual Port Mem
Controller 1

Dual Port Mem
Controller 1

Processing
Element

1

Processing
Element

1

Processing
Element

0

Processing
Element

0 Fifo1Fifo1Fifo0Fifo0

SIMD
Connector

External I/O
Connector

 34

boards on another host. There are also a number of fixed and reconfigurable internal data

paths that allow the processing elements to communicate with each other. One of the

most useful data paths between PE0 and PE1 is the Direct Data bus. This bus is very

useful when the design is partitioned across the two processing elements.

Another useful bus similar in function to the Direct Data bus is the PE1_Right

systolic bus. This bus, in addition to connecting PE0 and PE1, is also present on the

external I/O connectors. This enables external inputs to be sent directly to both

processing elements and allows the outputs to be a combination of signals from either

processing element. Another set of internal signals is the handshaking and the auxiliary

handshaking signals. These signals are called CPE_PE1_Bus and CPE_PE1_AuxBus in

PE0 and PE_CPE_Bus and PE_CPE_AuxBus in PE1. The PE0 is also known as the

controlling processing element (CPE) while the PE1 is also called the processing element

(PE). The signals called CPE_PE1_Bus and CPE_PE1_AuxBus are signal names for the

busses from the CPE or PE0 side while PE_CPE_Bus and PE_CPE_AuxBus are the

signal names visible from PE or PE1 side. These signals are bi-directional and may be

used in whatever mode the user desires. They may be used to for handshaking, starting a

process, signaling process completion etc. For a more complete description of the

WildOne board the reader is referred to [9].

The board is supported by an application programming interface (API) library that

offers a set of C++ functions that execute low level run-time library functions not visible

to the application programmer. Each board is accessible via a set of API routines, a

corresponding set of data structures and constant definitions.

 35

The next chapter discusses a general design methodology for designing an

application for hardware/software co-system like the WildOne board. Two alternate

architectures for computing the inner products are presented and the use of UML to

model hardware/software co-systems is illustrated. The chapter also describes the

architectural details of the two implementations.

 36

CHAPTER V

INNER-PRODUCT CO-PROCESSOR DESIGN

By definition, methodology is an art that represents an orderly approach in

performing a task or finding a solution to a problem. A good methodology helps in

creating a design that is easy to understand and implement. In this chapter an application

design methodology to design for a hardware/software co-system such as the WildOne

board and its related host software is discussed. The general design methodology is

illustrated first and then the application of this methodology to the problem at hand is

discussed illustrating each step in the design process. The methodology uses UML to

model the system and its components.

5.1 Application Design Methodology

When designing an application for the WildOne boards, it is helpful to divide the

application design cycle into various stages as shown in Figure 5.1. Because the board is

re-programmable, it is best not to attempt to design the entire application before testing,

but rather to design in stages. This incremental design allows the designer to test the

functionality of their design before progressing any further, thus decreasing the amount

of time spent in testing the entire application.

 37

5.1.1 Application Concept

The first step in any design process is to understand what the application is to

accomplish. The designer should outline exactly what needs to be accomplished within

the design. The designer should be familiar with the format of the input and output data

sets, and the processes that need to be performed in order to process the data. The

application should be thoroughly researched and all possible strategies reviewed. In the

application at hand, inner product computations need to be performed on the FPGA

board. Moreover, the computations need to be pipelined in order to perform single-cycle

multiply-and-add operations to meet the throughput requirements needed for applications

like STAP. Considering the limited resources available on an FPGA a block-floating-

point [22] architecture is to be implemented with the mantissa width specified to be 16

bits with the most significant bit indicating the sign of the number and the block exponent

being 8 bits wide. Block-floating-point arithmetic format is a fixed point arithmetic with

one exponent for all data in a common block (i.e., vector). Block-floating-point numbers

provide a compromise between the accuracy of fixed point numbers and the dynamic

range of the floating-point numbers, without the full complexity or speed degradation

associated with full floating-point operations.

Two different strategies are selected for performing this processing on the FPGA

board. The first strategy uses the multiply-and-accumulate operations to reduce two N-

vectors to a fixed number of partial sums (equal to the number of stages in the

accumulate pipe). The host may then add up these few partial sums or may send these

 38

partial sums back to another FPGA for addition. In the second strategy, multiply-and-add

operations reduce two N-vectors to N/2 partial sums, which then need to be added on the

host. The two strategies are shown in Figures 5.2 and 5.3.

Figure 5.1 Illustration of application design cycle.

5.1.2 Problem Partitioning

After the strategy for performing the inner product has been chosen and verified,

it is then partitioned into blocks that are independent of each other. For example, the two

designs may be divided into separate blocks like the Input Block, Data Processing Block,

and Output Block. Each of the individual blocks can then be subdivided into sub-blocks,

e.g., the Input Block may have controllers for getting the data in and out of FIFO and the

memory. The Data Processing Block may be divided into smaller subtasks like

Application
Concept

System
Integration

Working
System

Host Program
Generation

Place and Route

Synthesis

Simulation

VHDL
Modeling

Problem
Partitioning

 39

Multiplying Unit and Accumulator Unit, which may subsequently be broken down into

lower level entities (needed to create higher level designs). This kind of design is known

as top-down design. The designer must also determine how the host system would handle

the data that needs to be sent to the board as well as the processed data from the board.

During this phase the use of UML is also a great help in partitioning and visualizing the

different system components and modeling the system as a whole. Figures 5.4 through

5.8 show the UML class diagram representation of the Data Processing Block, which is

called the Inner Product Co-Processor.

Figure 5.2 Multiply-and-accumulate strategy.

+

O utput Register

a b

 Sign+16 bit
 mantissa

B
U
F
F
E
R

B
U
F
F
E
R

F
P
G
A

B
O
A
R
D

I
N
T
E
R
C
O
N
N
E
C
T
I
O
N

B
U
S

H O ST
PRO C ESSO R

X

 40

Figure 5.3 Multiply-and-add strategy.

5.1.2.1 UML Class Diagrams

The class diagram is one of the core components of a UML model [10]. A class

diagram illustrates the important abstractions in the system including relationships. The

primary elements included on a class diagram are class icons and relationship icons.

Figure 5.4 shows the class diagram of the inner-product co-processor. The rectangular

boxes represent the classes, while the lines connecting the classes signify relationships. A

solid line with a hollow diamond at one end indicates an aggregation relation (i.e., one

object is composed of another object). A solid line represents an association between the

objects. The numbers shown at each end of the association denotes the number of

potential objects participating in that relationship.

X

+

Sign+16 bit
mantissa

I
N
T
E
R
C
O
N
N
E
C
T
I
O
N

B
U
S

HOST
PROCESSOR

B
U
F
F
E
R

B
U
F
F
E
R

F
P
G
A

B
O
A
R
D

X

 41

Figure 5.4 Inner-product co-processor UML class diagram.

The main class Inner-Product Co-Processor in Figure 5.4 is composed of two

classes, the Block-Floating-Point Unit and the Data Input/Output. The Block-Floating-

Point Unit gets its data from the Data Input/Output and also sends data back to the Data

Input/Output when it has finished processing. Figure 5.5 illustrates the UML class

diagram of the Block-Floating-Point Unit. This diagram implies that the floating-point

unit is composed of one Multiplying Unit one and one Accumulator. The multiplying unit

in turn is composed of registers, multiply stages and 4-bit adders while the accumulator is

composed of registers, a 3-bit adder, 4-bit adders, a normalizing unit and a

complementing unit. The class diagrams for the multiplying unit and the accumulator are

shown in Figure 5.6 and 5.7 respectively. The normalizing unit, shown in Figure 5.8, is

composed of a subtractor, a magnitude comparator and a number of registers, which are

Block-Floating Point
Unit

Inner-Product
 Co-Processor

1

1

Data Input/Output

1

1

 42

the lowest level of components in the design. Figure 5.9 shows the class diagram for the

Data Input component. This component consists of a memory controller and FIFO

controller.

Figure 5.5 Block Floating-Point Unit UML class diagram.

After the different components have been defined using the UML class diagram,

the next step is to define the functionality of each component of the system and how it

interacts with the host system or with other components. This can be done by using the

UML statecharts and activity models [10].

Figure 5 9 Class Diagram for the Data Input/Output system

Block Floating
Point Unit

Accumulator

11

1 1

Multiplying Unit

 43

Figure 5.6 Multiplying unit UML class diagram.

Figure 5.7 Accumulator UML class diagram.

Multiplying UnitRegister

4-Bit Adder

Multiply Stage
1

1

132

4

8

Accumulator4-Bit Adder Register

3-Bit Adder

15 1 32

Normalizing Unit

1

1

1

1

Complementing
Unit

 44

Figure 5.8 Normalizing unit UML class diagram.

Figure 5.9 Data input/output system UML class diagram.

Normalizing Unit

SubtractorRegister

Magnitude
Comparator

6

1 1 1

1

1

Data Input/Output

Memory
Controller

FIFO
Controller

1

1 1

1

 45

5.1.2.2 Inner-Product Co-Processor UML Statechart Diagram

The UML statechart models are based on the finite state machines using an

extended Harel state chart notation [10]. A statechart diagram represents a state machine

and illustrates the sequence of states that an object goes through during its life cycle. The

states are represented by a rectangle with rounded corners and arrows connecting the

states represent transitions. The initial state is shown as a small filled dot representing

any transition to the enclosing state [10]. A final state is shown as a small filled dot

enclosed by a circle. In a state chart diagram the occurrence of an event may trigger a

state transition.

A UML activity model is a variation of a state machine in which the states are

activities representing the performance of operations and transitions are triggered by

completion of an operation. Activity diagrams focus on the flows driven by internal

processing. While activity charts are used to model synchronous events a statechart

diagram should model any asynchronous events.

Figure 5.10 shows the statechart diagram for the Inner-Product Co-Processor. The

statechart indicates the events and transitions that occur to get the data from the host to

the FPGA board and the subsequent processing. The statechart represents two distinct

state machines, one on the host system and the other on the FPGA board. The two state

machines are running concurrently and the state transitions in one of the state machines

may be triggered as a result of an event occurring in the other state machine. Dashed lines

between the two state machines shown in Figure 5.10 indicate these events.

 46

Figure 5.10 Inner-product co-processor statechart diagram.

A complex interaction takes place between the FPGA board state machine and the

host system state machine to get the data to the FPGA board where it is processed and

then written back to the host system for further processing. The FPGA state machine

interrupts the host system and requests for the exponent part for performing block-

floating point computations. The host state machine at the same time is waiting for the

interrupt request. When it gets the request, it writes the exponent to the FPGA FIFO and

sends back an interrupt acknowledge signal back to the FPGA board. The FPGA state

machine then reads in this data from its on-board FIFO and then sends in an interrupt

Get Exponent Wait for
Exponent Int

Int Req

Int Ack
Read Exponent

Get Mantissa

Read Mantissa Write Mantissa

Wait for
 Mantissa Int

Write Exponent

Int Req

Int Ack

Multiply-and-
add/accumulate

Write Back

Wait for
Answer Int

Read Back
Answer

Ack = 1

Ack = 0

Req = 1

Req = 0

Req = 1Ack = 1

Ack = 0 Req = 0

Req = 1Done = 1

Req = 0
Processing Sub-System

F
P
G
A

B
o
a
r
d

H
o
s
t

S
y
s
t
e
m

 47

request for the mantissa portion of the data. The host then writes the mantissa parts of the

vectors (whose inner-product is to be found) to the FPGA FIFO and then returns an

interrupt acknowledge signal back to the FPGA board. The FPGA system then reads in

the mantissa data and multiplies the corresponding data in the vectors and either writes

these back to the FIFO memory or keeps on accumulating the partial sums depending on

the algorithm being used. This processing continues until all the data has been read and a

done flag is set. The FPGA state machine then sends an interrupt request to the host

system to indicate that it has finished processing the data and the host system can read

back the processed data. The host then reads back the data from the FPGA memory or the

FPGA FIFO.

The co-processor is a synchronous system with all the operations being performed

synchronously and is best represented by using the activity diagrams instead of the

statechart diagrams. An activity diagram is a special case of a state diagram in which the

states are action states where all (or at least most) of the transitions are triggered by

completion of the action in the source state [10]. The processing is done differently

depending on whether the multiply-and-add algorithm is being used or the multiply-and-

accumulate algorithm is being used. The activity diagrams for both algorithms are shown

in Figures 5.11 and 5.12.

 48

 Figure 5.11 Multiply-and-accumulate circuit activity diagram.

5.1.3 VHDL Modeling

After the design has been partitioned into blocks and their functionality

determined the implementation of the design begins. Because the same VHDL is used for

both simulation and synthesis, it is important that the code be written for synthesis, i.e.,

the designs should be synchronous and the designer should avoid using constructs that

are not synthesizable. As it is easy to test a design in stages it is important to design an

application in stages. Each stage needs to be tested thoroughly and independently of the

other stages of the design. The design implementation usually begins by developing the

lower level entities first. The design is then built up on these components in a bottom-up

fashion.

Compare Count [Count = Threshold]

Read Two
Operands

Multiply

Accumulate

[Count ≠ Threshold]

Write to MemoryFeedback SumIncrement Count

Set Done flag

 49

Figure 5.12 Multiply-and-add circuit activity diagram.

5.1.4 Simulation

After each component of the design is implemented in VHDL, it is very important

that the code be simulated using a VHDL simulator to verify the component’s

functionality. This saves a lot of time when trying to test the design on the board.

Although simulation is reasonably accurate it generally cannot give an exact

representation of how the system will actually respond, since it does not contain any

information about timing internal to the design. If any major problem in functionality is

seen in the simulation a redesign becomes necessary.

Compare Count [Count = Threshold]

Read Two
Operands

Multiply

Add

[Count ≠ Threshold]

Read Next
Two Operands

Multiply

Write to Memory

Increment Count Set Done flag

 50

5.1.5 Synthesis

The synthesis tools define the gate level logic for the target architecture from the

VHDL implementation. It is useful to synthesize often, even if the design is not yet ready

for the place and route step, because the synthesis tool provides preliminary estimates of

the resource utilization and speed, which can be used to determine if the current design

approach is viable or not. If the design is not going to meet the timing requirements or is

too large to fit in the available real estate, then redesign becomes necessary. Many

iterations of the above process are needed for a fair sized project.

5.1.6 Place and Route

After the design has been verified, the next stage is the place and route where the

gate level logic generated during the synthesis stage is used to configure the FPGA. The

output of this process is a binary file, which is sent to the WildOne board to program the

processing elements.

5.1.7 Host Program Generation

Once the processing element images have been generated, the next step is to write

a C++ program that allows the host system to communicate with the WildOne board.

This program makes use of the WildFire API functions to communicate with the board.

While writing the host program the synchronization points between the board and the

host program must be defined. The interaction between the host program and board is as

shown in the sequence diagram shown in Figure 5.13.

 51

Figure 5.13 Sequence diagram for interaction between
WildOne board and the host.

5.1.8 System Integration

The application is now ready to execute on the WildOne system. In this stage the

simulation results are verified with the actual system results. Once the host code has been

verified sections are added piece by piece to the design incrementally and the results

verified with the simulation results. The design process proceeds through this design

cycle until a complete working system is achieved.

Host Program Wild-One

Open board

Program the board with the image

Interrupt for Exponent

Exponent written to FIFO

Interrupt for Mantissa

Mantissa written to the FIFO

Processing Done answer ready in FIFO/Memory

Read back the answer

Close the board

T
I
M
E

MESSAGES

 52

5.2 Architectural Details of the Implementations

The previous sections in this chapter discussed the different entities and their

relationships. This section discusses the architectural details of the two implementations.

The multipliers in both the units are 15-bit multipliers, i.e., the multiplier unit takes in

two 15-bit numbers to produce a 30-bit result. Because the block-floating-point format is

being used, all the numbers to the multipliers have the same exponent. Thus, the

exponent of the result is two times the input exponent. The implementation of the

pipelined multipliers is based on the implementation discussed in [23] and has 13

pipeline stages.

The accumulation unit in the multiply-and-accumulate circuit consists of a

normalizing unit and a 23-bit pipelined adder. The mantissa in IEEE floating point

numbers is 23-bit wide. To make the output compatible with the IEEE representation the

adder and the accumulator units are 23 bits wide with another 8 bits for the exponent and

one bit for the sign. The normalizing unit is necessary because the answer is being

accumulated and it is possible that the exponent of the accumulated sum changes. If the

exponent of the accumulated sum becomes greater than the incoming operand, then the

incoming operand needs to be shifted a certain number of bits (equal to the difference in

the exponents of the two numbers) to the right. If the exponent of the incoming number is

greater than the exponent of the accumulated sum then the accumulated sum is shifted to

the right. The 23-bit pipelined adder is implemented using five stages of 4-bit fast adders

[24] and one stage of 3-bit fast adder. It should also be noted here that the output of the

multiplying unit is 30-bit wide, however, the width of the adders is only 24-bits.

 53

Therefore the result of the multiplier is truncated to 23-bits before entering the adder

circuit.

The addition unit in the multiply-an-add circuit has exactly the same architecture

as the adder unit in the accumulation circuit. However, the normalizing unit is not needed

in this implementation because the exponents of all the operands coming in are the same.

The output of both implementations is in the IEEE floating-point format.

5.3 Features of the Two Implementations

The two implementations perform part of the computations for computing the

vector inner products in hardware. The multiply-and-accumulate circuit takes in two N-

vectors as input and gives out 17 (the number of pipeline stages in the accumulation

circuit) partial sums, which then need to be added on the host to get the final inner-

product. The accumulator pipe needs to be flushed [24] when all the operands have been

added. This circuit takes in two operands and performs two operations per clock cycle

(multiply and an accumulate) after which the sum is fed back to the accumulator to be

added to the new product coming into the accumulator. The multiply-and-add circuit

takes in two N-vectors and gives out N/2 partial sums, which then need to be added on the

host. The multiply-and-add circuit takes in four operands and performs three block-

floating-point operations (two multiplies in and an addition) per clock cycle. Consider the

operation of each circuit at 40 MHz, which implies a throughput of 80 block-floating-

point-operations per second for the multiply-and-accumulate circuit and 120 block-

floating-point operations for the multiply-and-add circuit. The multiply-and-accumulate

 54

circuit however, needs less work to be done on the host side than the multiply-and-add

circuit. Thus, although this circuit has a slower peak throughput, it can perform more of

the computations than the multiply-and-add design.

Both the circuits contain components that are common to both circuits. The

multipliers used in both the circuits are based on an implementation proposed in [23].

The adders used are carry-look-ahead adders discussed in [24]. An important aspect of

the multiply-and-add circuit, however, was how to get four 16-bit operands into the

circuit because only 32 input pins were available. This problem was solved by clocking

the state machine, which inputs the data to the processing circuit, at twice the frequency

of the clock used to clock the actual processing circuit. This is illustrated in Figure 5.14.

So at each falling edge of the data processing clock, all the four operands are available.

 Figure 5.14 Multiply-and-add circuit clock waveforms.

2f

f

Data for
First

M ultiplier

Data for
Second

M ultiplier

Unit
clocked

here

Data Input
Clock

Data Processing
Clock

 55

This chapter overviewed the design methodology for the design with FPGA

board. The various steps of this methodology were discussed and the application of the

same to the designs at hand helped visualize its functionality. In the next chapter the

results of numerical studies carried out to analyze the two circuit implementations are

presented.

 56

CHAPTER VI

ANALYSIS OF THE IMPLEMENTATIONS

An important aspect of this research is the determination of the accuracy of the

two FPGA inner product implementations described in the previous chapter. Some

accuracy is sacrificed as a result of a block-floating-point implementation as compared

with a full floating-point implementation of the same computation. However, the block-

floating-point implementation was necessary because of the limited resources available

on the FPGA. In this chapter, the accuracy of the two FPGA implementations of the

inner-product computation, which use a block-floating-point format, are compared with

the inner-product computation performed on the host machine, where full floating-point

arithmetic is utilized.

6.1 Accuracy Experiments

The implemented circuits were tested for accuracy by sending a set of test vectors

to each of the two FPGA implementations. The output of the two circuits were then

compared with the results for the same data set obtained from the host machine, which

performed the computation using full floating-point arithmetic. The accuracy is measured

by dividing the answer returned by the FPGA board by the corresponding answer

computed by the host machine. Because the elements of the test vector were positive

values, the output of the inner product circuits were always positive. Furthermore,

because the widths of the block-floating-point mantissas were 15 bits compared to 23 bits

 57

for the full floating-point numbers, the block-floating-point numbers are always less than

or equal to the full floating-point numbers. This implies that the ratio of final answers –

those computed using block-floating-point representation and those computed using full

floating-point arithmetic are always less than or equal to one.

 The following cases present the accuracy and the dynamic range of the FPGA

implementations. The data sets consist of two vectors, each having 512 elements. All the

numbers are generated using a pseudo-random number generator with a uniform

distribution over a specified range of values.

6.1.1 Analysis of Uniform Data Value Distribution
for Zero Order of Magnitude

Figure 6.1 shows the histogram of the distribution of the data values for the range

of 0 to 1. The figure shows a relatively uniform distribution over the entire range.

Because the block-floating-point format is being used, it is interesting and insightful to

look at the exponent space of the data values as well. This is because the exponent values

dictate how many bits are shifted out of any number and thus the accuracy of the final

answer. The number of bits shifted out of a given vector element is the difference

between the maximum exponent value for all vector elements and the given element.

Thus, if a given element has an exponent of 126 and the maximum exponent is 128, then

two least significant bits would be shifted out of the mantissa of the given element.

Figure 6.2 shows the histogram of the exponents for the numbers associated with

the distribution of Figure 6.1. As shown in Figure 6.2, the maximum exponent is 128 and

the minimum is 118. (All the exponents are in the excess 127 format [25].) This implies

 58

that the maximum number of bits that are shifted out of any element is 10 (128 – 118).

However, most of the exponents are closer to the maximum exponent value. This results

in a very good accuracy for most elements. It should also be noted here that the FPGA

implementations use a 15-bit mantissa; therefore, because the numbers are originally in

the IEEE floating-point format, which has a 23-bit mantissa, the lower 8 bits of the

mantissas of all the numbers are always truncated. This effect by itself introduces some

inaccuracy in the answer.

Figures 6.3 and 6.4 show the accuracy histograms achieved by the two FPGA

implementations relative to the answers provided by the host machine, which utilizes the

IEEE floating-point arithmetic.

Figure 6.1 Histogram of the input vector data values.

Data Histogram

0
5

10
15
20
25
30
35
40
45
50

Data Values (zero order of magnitude)

 59

Figure 6.3 shows the accuracy for the multiply-and-add circuit that produces 256

partial sums. As can be seen from this figure, the least accurate answer returned by the

circuit is about 99.84% accurate. The multiply-and-accumulate circuit outputs 17 partial

sums. Figure 6.4 shows the accuracy of the multiply-and-accumulate circuit as compared

to the answer computed by the host processor. As can be seen from the figure all the

answers are above 99.98% accurate.

Figure 6.2 Histogram of exponents of the
input vector data values.

Exponent Histogram

0

100

200

300

400

500

600

Exponent Values (zero order of magnitude)

 60

Figure 6.3 Accuracy Histogram for the
multiply-and-add circuit.

Figure 6.4 Accuracy histogram for the
multiply-and-accumulate circuit.

A c c u r a c y H is to g r a m

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

% A c c u r a c y (z e r o o r d e r o f m a g n itu d e)

Accuracy Histogram

0

1

2

3

4

5

6

7

8

0.999855 0.99986375 0.9998725 0.99988125 0.99989

% Accuracy (zero order of magnitude)

 61

6.1.2 Analysis of Uniform Data Value Distribution
for Two Orders of Magnitude

Figures 6.5 through 6.8 are analogous to Figures 6.1 through 6.4 with the

exception that the uniform data range is over two orders of magnitude (approximately 0

to 100). Figure 6.5 shows the uniform distribution of the data over this range. Figure 6.6

shows the corresponding distribution of the exponents. As can be seen from this

distribution, the maximum exponent is 135, and the minimum exponent is 119. Thus the

maximum number of bits shifted out is (135 – 119 = 16). So, the mantissa associated with

the exponent value of 119 is completely shifted out, i.e., it is normalized to zero. Figure

6.7 shows the accuracy of the multiply-and-add circuit. As can be seen, the circuit is still

very accurate with the least accurate result being 99.39% accurate. Figure 6.8 shows the

accuracy of the multiply-and-accumulate circuit. This circuit also is very accurate with a

lowest accuracy of 99.89%.

Figure 6.5 Histogram of the input vector data values.

D ata H istogram

0
5

10
15
20
25
30
35
40
45
50

D ata V alues (tw o orders of m agnitude)

 62

Figure 6.6 Histogram of exponents of the
input vector data values.

Figure 6.7 Accuracy histogram for multiply-and-add circuit.

Exponent H istogram

0

50

100

150

200

250

300

350

400

450

500

Exponent Values (two orders of m agnitude)

Accuracy H istogram

0

50

100

150

200

250

% Accuracy (two orders of m agnitude)

 63

Figure 6.8 Accuracy histogram for the
multiply-and-accumulate circuit.

6.1.3 Analysis of Uniform Data Value Distribution
for Three Orders of Magnitude

Figures 6.9 through 6.12 show the distribution of the data values, the

corresponding distribution of the exponents and the accuracy of the results of the two

implementations for three orders of magnitude dynamic range. As can be seen from the

accuracy histogram of the two implementations, the accuracy decreases as compared with

previous experiments. This is because of the number of bits being shifted out of vector

elements is increased.

Accuracy H istogram

0

1

2

3

4

5

6

7

0.999893 0.9999015 0.99991 0.9999185 0.999927

% Accuracy (two orders of magnitude)

 64

6.1.4 Analysis of Uniform Data Value Distribution
for Four Orders of Magnitude

Figures 6.13 through 6.16 show the distribution of the data values, the

corresponding distribution of the exponents, and the accuracy of the results of the two

implementations for four orders of magnitude dynamic range. As can be seen from the

accuracy histogram for the multiply-and-add circuit (Figure 6.15), the accuracy for a

small number of the partial results is less than 50%. However the value of these numbers

themselves are relatively very small compared to some of the larger values and their

effect on the overall accuracy of the final result is negligible. For example, if two

numbers 0.0001 and 1000 are multiplied together, the result is 0.1. Consider two other

numbers, say 10 and 1000, then the result of multiplication is 10000. Now, 0.1 is

relatively small compared to 10000 and if it is added to 10000 the percentage change in

the final answer is negligible. Thus approximating 0.1 to zero is reasonable in this

context. This is also indicated by the accuracy histogram of the multiply-and-accumulate

circuit (Figure 6.16) which does not show any significant degradation in performance for

the same data set. The degradation in accuracy for some individual partial sums (Figure

6.15) that are relatively very small is expected because of the number of bits being shifted

out.

6.1.5 Analysis of Uniform Data Value Distribution
for Five Orders of Magnitude

Figures 6.17 through 6.20 show the distribution of the data values, the

corresponding distribution of the exponents, and the accuracy of the results of the two

 65

implementations for the data range of five orders of magnitude. It can be seen that some

of the partial sums are again very inaccurate; some of them being zero percent accurate.

Again, it should be pointed out that these numbers are relatively small compared to some

of the larger numbers and their effect on the overall accuracy of the final result is

generally negligible. This is also indicated by the accuracy histogram of the multiply-

and-accumulate circuit (Figure 6.20), which again does not show any significant

degradation in performance.

Figure 6.9 Histogram of the input vector data values.

D ata value H istogram

0
5

10
15
20
25
30
35
40
45
50

Data Values (three orders of m agnitude)

 66

Figure 6.10 Histogram of the exponents of
input vector data values.

Figure 6.11 Accuracy histogram for the
multiply-and-add circuit.

Exponent Histogram

0

100

200

300

400

500

600

Exponent Values (three orders of magnitude)

Accuracy H istogram

0

50

100

150

200

250

300

% Accuracy (three orders of m agnitude)

 67

Figure 6.12 Accuracy histogram for the
multiply-and-accumulate circuit.

Figure 6.13 Histogram of the input vector data values.

Accuracy H istogram

0
1
2

3
4

5
6
7

8
9

10

0.999861 0.99987475 0.9998885 0.99990225 0.999916

% Accuracy (three orders of magnitude)

Data Value Histogram

0
5

10
15
20
25
30
35
40
45
50

Data Values (four orders of magnitude)

 68

 Figure 6.14 Histogram of the exponents of input
vector data values.

6.1.6 Analysis of Non-Uniform Data Value Distribution

All of the previous cases had a very uniform distribution of data over the entire

range of the bounding data values. Now consider a case where the data value distribution

is not very uniform. In particular, consider a “worst case” situation in which most of the

data is grouped together and there is one outlying number that is much greater that all the

other numbers. This type of data distribution is shown in Figure 6.21 and its

corresponding exponent distribution is shown in Figure 6.22. This is a worst case

scenario because virtually all of the data values have most of their bits shifted out in

accordance with the maximum exponent value.

Exponent Histogram

0

50

100

150

200

250

300

350

400

450

Exponent Values (four orders of m agnitude)

 69

Figure 6.15 Accuracy histogram for the
 multiply-and-add circuit.

Figure 6.16 Accuracy histogram for the
multiply-and-accumulate circuit.

A ccuracy H istogram

0

50

100

150

200

250

300

% A ccuracy (four orders of m agnitude)

Accuracy Histogram

0

1

2

3

4

5

6

7

8

9

0.999889 0.99989925 0.9999095 0.99991975 0.99993

% Accuracy (four orders of magnitude)

 70

Figure 6.17 Histogram of the input vector data values.

Figure 6.18 Histogram of the exponents of input
vector data values.

Data Value Histogram

0
5

10
15
20
25
30
35
40
45
50

Data Values(five orders of magnitude)

Exponent H istogram

0

100

200

300

400

500

600

700

800

119 121 123 125 127 129 131 133 135 137 139 141 143

Exponent Values (five orders of m agnitude)

 71

Figure 6.19 Accuracy histogram for the
multiply-and-add circuit.

Figure 6.20 Accuracy histogram for the
multiply-and-accumulate circuit.

Accuracy Histogram

0

50

100

150

200

250

300

% Accuracy (five orders of magnitude)

Accuracy H istogram

0

1

2

3

4

5

6

7

8

0.999912 0.99991875 0.9999255 0.99993225 0.999998

% A ccuracy (five orders of m agnitude)

 72

Figure 6.21 Histogram of the input vector data values.

Figure 6.22 Histogram of the exponents of input
vector data values.

Data Values histogram

0

200

400

600

800

1000

1200

Data Values (outlyer experiment)

Exponent H istogram

0

100

200

300

400

500

600

Exponent Values (outlyer experim ent)

 73

Figure 6.23 Accuracy histogram of the
multiply-and-add circuit.

Figure 6.24 Accuracy histogram of the
multiply-and-accumulate circuit.

A ccu racy H istogram

0

5

10

15

20

25

30

35

40

45

50

% A ccuracy (outlyer experim ent)

A ccuracy H istogram

0

2

4

6

8

10

12

0.593067 0.6398925 0.686718 0.7335435 0.78369

% Accuracy (outlyer experim ent)

 74

6.2 Conclusions

 As demonstrated in the numerical studies described above, it is seen that the

circuits produce excellent accuracy results for data distributions that are uniformly

distributed. Poor results are obtained for the case where one or a few of the elements are

much larger than the rest of the numbers. This is because of the block-floating-point

architecture being used to implement these circuits. The block-floating-point architecture

normalizes all the exponents to the maximum exponent by shifting out the least

significant bits so that all the exponents are equal and then all the operations are integer

arithmetic operations, which are much easier to perform than the floating point

operations. The shifting out of the bits produces an inaccuracy in the computations. For

all the ranges of numbers considered, if the numbers are uniformly distributed, then the

exponent distribution has an increasing exponential shape with a majority of the numbers

close to the maximum value in the exponent domain. This results in a smaller number of

bits from the mantissas of the numbers being shifted out, on the average. Another

important point is that the multiply implementation uses a 15-bit mantissa, which implies

that the mantissa of the input floating-point number is truncated to 15 bits from 23 bits,

thereby introducing some inaccuracies.

 75CHAPTER VII

 76

CONCLUSIONS AND FUTURE WORK

The computational complexity associated with STAP can easily overwhelm the

computational capabilities of processors used on current airborne platforms. The typical

computational throughput required by a third-order Doppler-factored STAP is 39.81

billion floating-point operations per second (Gflops/s) [18]. The most computationally

intensive part of the STAP algorithm is the computation of the adaptive weights, and

constitutes approximately 91% of all the computations needed in adaptive processing

[18]. For some applications in radar processing, precise answers may not be required but

a close approximation will be as effective. This fact may be used to reduce the

complexity associated with the traditional approach for computing the adaptive weights.

Another aspect is the application of reconfigurable computing, which can be used to

achieve a speedup associated with doing the computations in hardware. An important

aspect of using reconfigurable computing is that it can be fine-tuned for the application at

hand, so the same system can be used to perform other kinds of processing.

The first major part of this research was to find an alternative approach to solving

for adaptive weights where the accuracy of the answers can be traded for computations.

This concept was investigated in Chapter III where the CG approach (an iterative

approach) was compared with the traditional QR-decomposition approach for computing

adaptive weights. The results illustrated in Section 3.4 show that the conjugate-gradient

approach reduces the computations needed while losing some accuracy.

 77

The second goal of the research was to implement some of the computations

needed in adaptive weight calculation on a reconfigurable computing system, thereby

getting an improvement in performance. It was observed that the most frequent operation

needed in computing adaptive weights was the computation of the inner-product of two

vectors. It was decided to program the reconfigurable computing system to compute the

inner-product of two vectors using block-floating-point arithmetic. Two different

architectures were implemented, each having its own tradeoffs. Numerical studies were

carried out on the two implementations and the results were presented in Chapter VI. A

basic conclusion of the study is that acceptable accuracy can be obtained provided that

the distribution of the data values is relatively uniform.

The current research implements just a part of the computations needed to

compute the adaptive weights. This is because of the fact that the number of

reconfigurable resources on the current system is very limited. As boards with more

reconfigurable resources become available, the possibility of implementing all adaptive

weight computation on FPGAs becomes realistic. The current design of the system does

not perform any reconfiguration of the board on the fly. The reconfiguration of the board

on the fly would allow the reconfigurable board to toggle between different

configurations that work on the processed data from the previous configuration. The

challenges associated with such dynamic reconfiguration is an excellent area for future

research.

 78

REFERENCES

[1] M. I. Skolnik, Introduction to Radar Systems, McGraw Hill Inc., New York, NY,

1962.

[2] J. C. Toomay, Radar Principles for the Non-Specialist, Van Nostrand Reinhold,
New York, NY, 1989.

[3] F. M. Staudaher, “Airborne MTI,” Chapter 16, Radar Handbook, editor M.I.
Skolnik, McGraw-Hill, New York, NY, 1990.

[4] R. J. Mailloux, Phased Array Antenna Handbook, Artech House, Boston, MA,
1993.

[5] J. Ward, Space-Time Adaptive Processing for Airborne Radar, Technical Report
1015, Massachusetts Institute of Technology, Lincoln Laboratory, Lexington,
MA, 1994.

[6] Title3 – Executive Order 12931 of October 13, 1994, Section 1, paragraph (d);
available Fed. Reg. Vol. 59, No. 199, Monday, October 17, 1994.

[7] K. Skahill, VHDL for Programmable Logic, Addison-Wesley, Menlo Park, CA,
1996.

[8] G.H. Golub and F.V. Charles, Matrix Computations, 2nd Edition, John Hopkins
University Press, Baltimore, MD, 1989.

[9] WildOne Hardware Reference Manual 11927-0000 Revision 0.1, Annapolis
Micro Systems Inc., MD, 1997.

[10] G. Booch, I. Jacobson, and J. Rumbaugh, “The Unified Modeling Language for
Object Oriented Development,” Documentation Set Version 1.1, September 1997.

 79

[11] J. M. West, Simulation of Communication time for a Space-Time Adaptive
Processing Algorithm on a Parallel Embedded System, Section 2.3.1, Masters
Thesis, Texas Tech University, August 1998.

[12] A. W. Rihaczek, Principles of High-Resolution Radar, McGraw Hill Inc., New
York, NY, 1969.

[13] J. L. Eaves and E. K. Reedy, Principles of Modern Radar, Van Nostrand
Reinhold, New York, NY, 1987.

[14] M. I. Skolnik, Radar Handbook, Second Edition, McGraw Hill Inc., New York,
NY, 1990.

[15] G. V. Morris, Airborne Pulsed Doppler Radar, Artech House, Norwood, MA,
1988.

[16] P. K. Rowe, COTS Radar and Sonar Systems Solutions, Multiprocessor
Toolsmiths Inc., Kanata , ON Canada, 1996.

[17] D. Taylor and C. H. Westcott, Principles of Radar, Cambridge University Press,
London, 1948.

[18] K. C. Cain, J. A. Torres, and R. T. Williams, “Real-Time Space-Time Adaptive
Processing Benchmark”, Mitre Technical Report: MTR 96B0000021, Mitre,
Center for Air Force C3 Systems, Bedford, MA, February 1997.

[19] W. H. Press, S. A. Teukolsky, W. T. Vellerling, B. P. Flannery, Numerical
Recipes in C, The Art of Scientific Computing, Cambridge University Press,
London, 1993.

[20] D. G. Luenberger, Linear and Nonlinear Programming, Second Edition, Addison-
Wesley, Reading, MA, 1984.

[21] Real-Time MCARM Data Sets, http://sunrise.oc.rl.af.mil, Rome Laboratory.

 80

[22] W. W. Smith, Handbook of Real-Time Fast Fourier Transforms, IEEE Press,
Piscataway, NJ, 1995.

[23] T. T. Do, H. Kropp, M. Schwiegershausen, and P. Pirsch, “Implementation of
Pipelined Multipliers on Xlinix FPGAs,” Proceedings of the 7th International
Workshop Field-Programmable Logic and Applications, W. Luk, P. Y. K.
Cheung, M. Glesner, eds., Springer Verlag, September 1997.

[24] M. M. Mano, Digital Logic and Computer Design, Prentice Hall Inc., Englewood
Cliffs, N.J., 1992.

[25] M. M. Mano, Computer System Architecture, Third Edition, Prentice Hall Inc.,
Englewood Cliffs, N.J., 1993.

[26] Xilinx XC4000E and XC4000X (XC4000EX/XC4000XL) FPGA Series Datasheet,
v1.4, http://www.xilinx.com, 1997.

 81

APPENDIX

THE XILINX 4000 SERIES FPGA

An FPGA device consists of an array of programmable logic cells called

configurable logic blocks (CLBs) interconnected by wires called routing channels

running vertically and horizontally, and surrounded by a perimeter of programmable

Input/Output Blocks (IOBs). The CLBs consist of a number of diverse logic gates and

registers. The routing channels are connected by programmable elements, which when

programmed, define the interconnection between the various CLBs and IOBs. Thus, these

logic resources can be programmed in various ways to define the required logic function.

The following sections discuss briefly the architectural features of the Xilinx 4000 series

FPGAs. This material is summarized from [25].

A.1 The Xilinx 4000 Series

The Xilinx 4000 series FPGAs are implemented with a regular, flexible,

programmable architecture of CLBs, interconnected by a powerful hierarchy of versatile

routing resources and surrounded on the periphery by IOBs. The CLBs provide the

functional elements for constructing the user logic while the IOBs provide the interface

between the package pins and the internal signal lines. The programmable interconnect

resources provide the routing paths to connect the input and outputs of these configurable

elements to the appropriate networks. The functionality of each circuit block is

customized during configuration by programming internal static memory cells. The

values stored in these memory cells determine the logic functions and the

 82

interconnections implemented in FPGA. The XC4028 EX FPGA, which will be used in

this project consists of 32×32 CLB matrix for a total of 1024 CLBs, 2432 logic cells, a

maximum of 28000 logic gates, 2560 flip-flops and 256 user I/O. Each of these circuits

is described in the following sections.

Figure A.1. The Xilinx XC4000 series CLB.

A.2 The XC4000 Series Configurable Logic Block

The Configurable Logic Blocks implement most of the logic in an FPGA. The

principle elements of a CLB are shown in Figure A.1. Each CLB contains a pair of flip-

flops and two independent 4-input function generators. The two 4-input function

generators (F and G) offer unrestricted versatility. Most combinatorial logic functions

need four or fewer inputs. However, a third function generator (H) is provided. The H

function generator has three inputs. One or both of these inputs can be the outputs of F

 83

and G; the other input(s) are from outside the CLB. The CLB can therefore implement

certain functions of up to nine variables. Each CLB contains two flip-flops that can be

used to store the function generator outputs. However, the flip-flops and function

generators can also be used independently. The input labeled DIN can be used as a direct

input to either of the two flip-flops. H1 can drive the other flip-flop through the H

function generator.

Function generator outputs can also be accessed from outside the CLB, using two

outputs independent of the flip-flop outputs. This versatility increases logic density and

simplifies routing. Thirteen CLB inputs and four CLB outputs provide access to the

function generators and storage elements. These inputs and outputs connect to the

programmable interconnect resources outside the block.

The versatility of the CLB function generators significantly improves the system

speed. In addition, the design software tools can deal with each function generator

independently thus improving cell usage. Each of the function generators F and G in a

CLB contain dedicated arithmetic logic for the fast generation of carry and borrow

signals. Figure A.2 shows the fast carry logic present within each CLB. This extra output

is passed on to the next CLB function generator above or below. The carry chain is

independent of normal routing resources. Dedicated fast carry logic greatly increases the

efficiency and performance of adders, subtracters, accumulators, comparators and

counters. The two four input function generators can be configured as a 2-bit adder with

built-in hidden carry that can be expanded to any length. This dedicated carry circuitry is

 84

so fast and efficient that conventional speed-up methods like carry generate/propagate are

generally meaningless even at the 16-bit level, and of marginal benefit at the 32-bit level.

Figure A.2. The dedicated fast carry logic in the XC4000.

A.3 The XC 4000 Series Input/Output Blocks

The user-configurable input/output blocks (IOBs) in the XC4000 series provide

the interface between external package pins and the internal logic. Each IOB controls one

package pin and can be defined for input, output, or bi-directional signals. Figure A.3

shows a simplified block diagram of the XC4000 IOB. Two paths, labeled I1 and I2,

bring input signals into the array. Inputs also connect to an input register that can be

programmed as either an edge-triggered flip-flop or a level-sensitive transparent-low

latch. The I1 and I2 signals that exit the block can each carry either the direct or

registered input signal. The input and output storage elements in each IOB have a

common clock enable input, which through configuration can be activated individually

 85

for the input or output flip-flop or both. This clock enable operates exactly like the EC

pin on the XC4000E CLB. It cannot be inverted within the IOB.

Figure A.3. The XC4000 Input/Output block.

A.4 The XC4000 Series Programmable Interconnect

The programmable interconnect consists of structured, hierarchical matrix of

routing resources running vertically and horizontally between the CLBs to achieve

efficient automated routing. All the internal connections are composed of metal segments

with programmable switching points and switching matrices to implement the desired

routing. The number of routing channels is scaled to the size of the array; i.e., it increases

with the array size. The CLB inputs and outputs are distributed on all four sides of the

block, providing additional routing flexibility (see Figure A.4).

There are four main types of interconnect, three are distinguished by the relative

length of their segments: single-length lines, double-length lines and longlines. In

 86

addition, eight global buffers drive fast, low-skew nets most often used for clocks or

global control signals. The single-length lines are a grid of horizontal and vertical lines

that intersect at a switch matrix between each block. Figure A.4 illustrates the single-

length interconnect surrounding one CLB in the array. Each switch matrix consists of

programmable n-channel pass transistors used to establish connection between the single-

length lines. For example, a signal entering on the right side of the Switch Matrix can be

routed to a single-length line on the top, left or bottom sides, or any combination thereof.

Single-length lines are normally used to conduct signals within a localized area and to

provide the branching for nets with fanout greater than one. The function generator and

control inputs to the CLB (F1-F4, G1-G4, and C1-C4) can be driven from any adjacent

single-length line segment. The CLB clock (K) input can be driven from one-half of the

adjacent single-length lines. Each CLB output can drive several of the single-length lines,

with connections to both the horizontal and vertical longlines.

The doubled-length lines shown in Figure A.5 consists of a gird of metal

segments twice as long as the single-length lines; i.e., a double-length line runs past two

CLBs before entering a switch matrix. Double-length lines are grouped in pairs with the

switch matrices staggered so that each line goes through a matrix switch at every other

CLB location in that row or column. As with single-length lines, all the CLB inputs

except K can be driven from any adjacent double-length line, and each CLB output can

be drive by nearby double-length lines in both the vertical and horizontal planes. Double-

length lines provide the most efficient implementation of intermediate length, point-to-

point interconnections.

 87

Figure A.4. Single length line in the XC4000.

Longlines form a grid of metal interconnects that run the entire length or width of

the array. Special global buffers can drive additional vertical longlines, designed to

distribute clocks and other high fanout control signals throughout the array with minimal

skew. Longlines are intended for high fanout, time-critical signal nets. Each longline has

a programmable splitter switch at its center, which can separate the line into two

independent routing channels, each running half the width or height of the array. CLB

inputs can be driven from a subset of the adjacent longlines. CLB outputs are routed to

the longlines via tri-state buffers or the single-length interconnected lines. The XC 4000

long lines are shown in Figure A.6. The horizontal and vertical single and double length

 88

Figure A.5 Illustration of double length lines in the XC4000.

Figure A.6. Illustration of longlines of the XC4000.

 89

lines intersect at a box called the programmable switch matrix (PSM). Each switch matrix

consists of programmable pass transistors used to establish connections between the lines.

The programmable switch matrix is shown in Figure A.7. For more details about the

XC4000 the reader is referred to [26].

Figure A.7. Illustration of the programmable switching
matrix of the XC4000.

