
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

THE GOZER WORKFLOW SYSTEM

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

JASON MADDEN
Norman, Oklahoma

2010



THE GOZER WORKFLOW SYSTEM

A THESIS APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY

Dr. John Antonio, Chair

Dr. Amy McGovern

Dr. Rex Page



© Copyright by JASON MADDEN 2010
All rights reserved.



Acknowledgements

I wish to thank my friends and colleagues at RiskMetrics Group, including Nicolas

Grounds, MatthewMartin, Jay Sachs, and Joshua Zuech, for their valuable additions

to the Gozer Workflow System. It wouldn’t be this complete without them. Thanks

also go to the programmers, testers, deployers and operators of Gozer workflows for

their patience in dealing with an evolving system, and their feedback and suggestions

for improvements.

Special thanks go to my manager at RiskMetrics, Jeff Muehring. Without his

initial support (following a discussion consuming most of the duration of a late-night

flight to New York) and ongoing encouragement, the development and deployment

of Gozer could never have happened.

Finally, I wish to express my appreciation for my thesis advisor, Dr. John

Antonio, for keeping me an the right track and guiding me through the graduate

process, and for my committee members, Dr. McGovern and Dr. Page, for their

support and for serving on the committee.

iv



Contents

1 Introduction and Background 1
1.1 Before Gozer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 From XML to Lisp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Gozer Design Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Gozer Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 The Gozer Language 10
2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 The Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Standard Reader Macros . . . . . . . . . . . . . . . . . . . . . 12

2.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Control Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Object Orientation and Data Types . . . . . . . . . . . . . . . . . . . 22
2.3.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2 Java Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.3 Generic Functions . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.4 Java Function Façades . . . . . . . . . . . . . . . . . . . . . . 29
2.3.5 Dynamic Java Access . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.6 Common Data Types . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Condition System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4.1 Programmer Interface . . . . . . . . . . . . . . . . . . . . . . 41
2.4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5 Standard Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.6 Development Environment and Tools . . . . . . . . . . . . . . . . . . 46

3 The Gozer Virtual Machine and Compiler 50
3.1 GVM Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.1 Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 Function Calling Convention . . . . . . . . . . . . . . . . . . . . . . . 53
3.3 Bytecode Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1 Instruction Format . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4 Java Exception Handling . . . . . . . . . . . . . . . . . . . . . . . . . 60

v



3.4.1 Nested Interpreters . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5 The Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.1 Compilation Phases . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Workflows 70
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1.1 Tasks and Fibers . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.1.2 BlueBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.1 Workflow Services . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.2 Non-Blocking Service Requests . . . . . . . . . . . . . . . . . 77
4.2.3 Deflink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2.4 Forking Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.5 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Workflow Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Conclusion 96
5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Appendices

A GVM Bytecodes 104

vi



List of Listings

2.1 Simplified EBNF-Like Syntax Productions . . . . . . . . . . . . . . . 11
2.2 Basic Gozer Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Standard Reader Macros . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 The Map Reader Macro . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Substitution Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Block/Return-From . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7 Catch/Throw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.8 Manual Macro Creation . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.9 Template Macro Creation . . . . . . . . . . . . . . . . . . . . . . . . 21
2.10 Closures for CONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.11 Generic Functions Example . . . . . . . . . . . . . . . . . . . . . . . 28
2.12 Package-based Java Integration . . . . . . . . . . . . . . . . . . . . . 30
2.13 Clojure-style Java Integration . . . . . . . . . . . . . . . . . . . . . . 31
2.14 Type Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.15 Sums-of-Squares Variants . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.16 Condition Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.17 Restart-Case Expansion . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1 Required Argument Assembly . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Optional Argument Assembly . . . . . . . . . . . . . . . . . . . . . . 55
3.3 Keyword Argument Assembly . . . . . . . . . . . . . . . . . . . . . . 56
3.4 Complex Keyword Argument Assembly . . . . . . . . . . . . . . . . . 56
3.5 Simple Nested Interpreter . . . . . . . . . . . . . . . . . . . . . . . . 61
3.6 Nested Interpreter With Restort . . . . . . . . . . . . . . . . . . . . . 63
3.7 Mapcar Simplification Compiler Macro . . . . . . . . . . . . . . . . . 67
3.8 Type Inference Examples . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.1 Sums-of-Squares Variants . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Deflink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3 Distribution Related Vinz Forms . . . . . . . . . . . . . . . . . . . . 83
4.4 Vinz Spawn Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5 Using A Task Variable . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.6 Task Variable Reader Macro . . . . . . . . . . . . . . . . . . . . . . . 88
4.7 Vinz Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

vii



List of Figures

1.1 Gozer Workflow System . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Condition Example Call Tree . . . . . . . . . . . . . . . . . . . . . . 44
2.2 Conceptual Type Hierarchy . . . . . . . . . . . . . . . . . . . . . . . 46
2.3 Gozer Debugger and Inspector . . . . . . . . . . . . . . . . . . . . . . 48

3.1 GVM Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 Gozer Instruction Format . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Process Lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2 Sample Workflow Lifetime . . . . . . . . . . . . . . . . . . . . . . . . 78

viii



Chapter 1

Introduction and Background

The Gozer Workflow System (GWS) is a production workflow authoring and execu-

tion platform that was developed primarily by the author at RiskMetrics Group. It

provides a high-level language and supporting libraries for implementing local and

distributed parallel processes. The GWS was developed with an emphasis on dis-

tributed processing environments in which workflows (complex business processes)

may execute for hours or even days. Key features of the GWS include: implicit

parallelization that exploits both local and distributed parallel resources; survivabil-

ity of system faults/shutdowns without losing state; automatic distributed process

migration; and implicit resource management and control. The Gozer language is a

highly dynamic Lisp dialect designed for the rapid development of complex scripts

that can easily exploit a distributed environment as well as local parallelism. Al-

though fundamentally object-oriented, it supports multiple programming paradigms,

including functional, imperative, object-oriented and generic. The GWS runs on the

Java virtual machine and incorporates ideas from languages such as Common Lisp,

Scheme, and Java, among others.

RiskMetrics Group has more than 150 workflows written in Gozer, many of which

execute every day. The Gozer Workflow System has had several major releases and

1



is constantly incorporating new ideas with the intent of making the language easier

and more productive for workflow developers. The entire GWS implementation

currently consists of approximately 15,000 lines of Java code, and about 10,000

lines in Gozer itself. Work is ongoing, particularly in the areas of improved tool

support.

1.1 Before Gozer

In late 2006, after determining that no existing commercial workflow systems would

meet the needs of RiskMetrics, implementation was begun on a workflow system that

was to be tightly integrated with the “BlueBox” distributed computing environment

(briefly described in Section 4.1.2). The initial version of this workflow system was

heavily influenced by the early BPEL1 specifications, and expressed workflows as

XML documents. At this stage, the workflow system was able to interact with

BlueBox services, and express distributed parallel computations and distributed

loops of identical computations with different data. Running workflows were able

to migrate from machine to machine within the BlueBox environment using basic

native Java serialization. It supported the map step of the map-reduce paradigm

[8]; the reduce step wasn’t directly supported as a loop iteration could produce no

values, only side-effects. Service interaction was written into the XML document as

an XML template used to produce the service’s input.

This XML-based workflow system had no support for variables, only the named

values of previous service interactions. Furthermore, there was no support for sub-

routines or scoping of the named return values. Workflow documents were intended

to express a simple coordination of steps, essentially shuffling data from one service

to another. An explicit design choice was to require all control-flow decisions to be
1The Business Process Execution Languge is a standard designed for specifying interactions

with Web Services.

2



carried out inside a service; thus, the workflow document had no way to express

conditionals.

This workflow document, while rigid, met the needs of the first generation of

workflow processes, with initial delivery in April of 2007, and production use by

August of 2007. One benefit of the rigid structure was that it worked well with off-

the-shelf XML schema-driven editors which could assist workflow authors in creating

well-formed, valid documents. It also lent itself to a variety of static analyses such

as finding incorrect named value references. Running workflow documents was a

relatively simply a matter of traversing the document linearly from top to bottom,

executing the appropriate well-defined action for each node. With no variables,

variable scope, conditionals or subroutines, process migration required only a pointer

to the “current” XML document node and the list of previous service results to

continue the linear traversal.

Over the next few months, as the workflow system showed benefits in process

management and rapid development, it became desired to deliver more and more

complicated workflows on the platform. Four major iterations of the workflow sys-

tem were delivered, each one adding new syntax to the document.

However, as workflow documents became longer and more complex, the limita-

tions of the XML format started to become apparent. Without subroutines, work-

flow authors often resorted to a “copy-and-paste” style of development, resulting in

documents that were difficult to maintain and debug. Because all service interaction

was written out as XML templates, there was a lot to copy, and discrepancies could

easily creep in. One revision of the workflow system added basic support for the

XInclude standard [26] to promote code reuse through placing duplicated XML snip-

pets in separate files and including them multiple times. This effort failed, however,

because there was no way to parameterize anything in the included file.

3



Finally, by November, it was obvious that workflow documents were going to

need true conditionals and subroutines. The top-to-bottom, rigid XML format had

been stretched to its breaking point. Users now needed to be able to write workflow

programs, not just workflow documents.

1.2 From XML to Lisp

The decision to migrate from XML to Lisp was supported by several factors and

observations. A prime observation was that XML’s tree structure and Lisp’s S-ex-

pressions are essentially isomorphic—whatever can be represented in one can be

represented in the other by choosing an appropriate transformation. This was an

important fact, as, by this time, tens of workflow documents were in production use

and would need to be supported, unchanged, by the next version of the workflow

system. A single unified execution engine would reduce overall complexity, and, in

fact, it was apparent that the existing XML execution engine could be generalized

into a primitive tree-walking Lisp interpreter, with its primitive process migration

strategy generalized into serializable continuations.

Another factor supporting the migration to Lisp was the realization that Lisp’s

S-expressions are easy to manipulate and generate programmatically, a feature ex-

ploited through Lisp macros. Lisp macros allow creating very high-level syntax to

concisely express complicated ideas; creating a custom syntax for describing dis-

tributed workflows (much like the custom XML format) would help users write

their workflow programs faster. Moreover, if the first version of the custom syntax

was found to be insufficient, it would be relatively easy to modify it and extend it,

while still maintaining the old syntax (because all these syntax extensions would be

developed as high-level macros and not low-level grammar productions).

Also weighing heavily in favor of pursuing a Lisp-based solution was the existence

of vast numbers of tools and quantities of documentation that had been developed by

4



the Lisp community over its 50-year life and which would be would be immediately

applicable to the new language.

1.3 Gozer Design Philosophy

Thus Gozer was born. Its immediate goal was to be able to express everything the

prior workflow system could, and to ultimately grow to be a nearly general-purpose

language, tailored for writing workflows on the BlueBox platform. A workflow is

mostly a “script” that coordinates efforts among BlueBox services, so this meant

that Gozer would need to support features commonly associated with “scripting lan-

guages,” such as rapid prototyping, interactive development, and quick turnaround

times. The BlueBox platform is based on Java, so Gozer would need to run on the

Java Virtual Machine (JVM), and it would need to provide access to all the existing

Java libraries in use. The Groovy language builds on top of Java and the JVM

to provide scripting language-like features, and was already in use in the BlueBox

platform, so it was natural for Gozer both to make use of Groovy in its implemen-

tation and to expose familiar Groovy features to Gozer programmers. Finally, the

workflow system was already in production with new demands on the horizon, so

the implementation time had to be short and the implementation effort focused

on achieving the most benefit in the limited time available, leading to a pragmatic

decision making process in the style of Richard Gabriel’s “New Jersey approach”

[11].

There are a number of Lisp dialects in broad use today, each with its own se-

mantics. Two dialects that have national or international standards are Scheme and

Common Lisp. Both of these dialects were considered as a base for Gozer’s seman-

tics. Ultimately, Common Lisp would provide the major influence, though Scheme

would contribute several important concepts such as continuations and futures.

Common Lisp’s influence runs deep through the design and implementation of

5



the Gozer platform, which will be seen throughout the rest of this thesis (for exam-

ple, Gozer is a “Lisp2” [12]). However, Gozer is not intended to be a full Common

Lisp implementation, simply to be “close enough” to be able to make use of existing

Common Lisp documents, tutorials and tools. Existing Common Lisp implementa-

tions, both on and off the JVM have served as benchmarks and comparisons, and

when the “right” semantics for an operation have not been clear, the semantics used

by a Common Lisp implementation, typically SBCL2, have been followed.

1.4 Gozer Development

The first implementation of Gozer was delivered in December of 2007. By January

of 2008, it was mature enough to replace the previous workflow system implementa-

tion with the help of an XML-to-S-expression translator developed by Nic Grounds

(which, much enhanced, is still in use today). It was that time that the name “Gozer”

was introduced for the workflow system as a whole, with various layers having more

specific names as the responsibilities became more clearly defined; the developing

language would generally be referred to as just Gozer, and the workflow-specific func-

tionality that integrated with the distributed system would be called “Vinz,” both

in homage to a famous film, and continuing the usage of ghoulish names in BlueBox

(other components have been named Casper and Spectre). Figure 1.1 shows how

the Gozer and Vinz layers relate to each other, to BlueBox, and to the Java and

Groovy platforms.

The Gozer language and implementation continued to evolve rapidly over the

next year. By May 2008, some sophisticated off-the-shelf Common Lisp programs

could be run in Gozer. The Emacs SLIME IDE was supported in July, and by

October of that year, a version of the current bytecode interpreter was in use.
2Steel Bank Common Lisp, an open source derivative of Carnegie Mellon’s CMU CL, can trace

its development back through the 1980s. It is available from http://www.sbcl.org/.

6

http://www.sbcl.org/


Vinz

Groovy

Gozer Language

BlueBox

Java

future

Fibers

for-each

Resource 
Management

Figure 1.1: Gozer Workflow System

The Vinz workflow layer underwent concurrent modification and evolution. Its

process management features became more general and restrictions such as the lack

of return values from distributed loops were removed. The efficiency of the dis-

tributed operations was always a target for improvements, and support for addi-

tional workflow patterns was important too. By September 2010, there had been 20

Vinz workflow feature releases and a dozen Gozer language feature releases put in

production.

1.5 Related Work

There are a variety of Lisp derived languages for the JVM, many of which are

well known or based on existing national or international standards. These include

an implementation of Scheme R4 (JScheme3), Scheme R5 (Kawa Scheme4.), two
3Available from http://jscheme.sourceforge.net/jscheme.
4Available from http://www.gnu.org/software/kawa

7

http://jscheme.sourceforge.net/jscheme
http://www.gnu.org/software/kawa


implementations of Common Lisp (Armed Bear Common Lisp5 and CLforJava [3])

and a new dialect focused on shared-memory concurrency (Clojure [17]). In contrast

to Gozer, which focuses on distributed programming and serializable continuations,

these languages all compile to Java bytecode and are executed directly by the JVM,

accepting both the benefits (speed and interoperability) and limitations that brings

(e.g., Kawa’s continuations are “upward-only” and cannot be re-entered).

Likewise, there are a number of dynamic languages for the JVM, including the

JRuby implementation of Ruby [9] and the Jython implementation of Python [20],

as well as the Groovy language. These too compile to Java bytecode (though some

also feature an interpreter), and none of them provide serializable continuations.

Using continuations to simplify the process and robustness of distributed pro-

gramming has been studied often since the early 2000s in the context of Web pro-

gramming, where the stateless nature of HTTP is abstracted away using continua-

tions [14]. This can be seen as similar to the approach taken in this thesis: Vinz

abstracts away asynchronous service interactions using continuations. Implementa-

tions of this idea are also available for languages such as Scheme [23], Smalltalk [31],

and Common Lisp6. These vary in their design and implementation, depending on

the capabilities of the underlying platform. Some use whole-program continuation-

passing transformations, some are built on top of the native, first class continuations

of the platform, and some require the programmer to delimit the continuations in

code. Some produce serializable continuations while some do not; serializable con-

tinuations are generally considered to be more scalable than the non-serializable

versions [27].

Gozer’s intended use for developing and executing distributed workflows rules
5Available from http://common-lisp.net/project/armedbear/.
6The UnCommon Web framework is available from http://common-lisp.net/project/ucw/,

and WebLocks is available from http://common-lisp.net/project/cl-weblocks/.

8

http://common-lisp.net/project/armedbear/
http://common-lisp.net/project/ucw/
http://common-lisp.net/project/cl-weblocks/


out straightforward compilation to JVM bytecode due to the need for portable, seri-

alizable, re-enterable continuations. Although there are exception-based techniques

that can allow for the creation of (at least some degree of) serializable continuations

in compiled JVM bytecode, these either require compile-time program transforma-

tion [29] or the ability to modify the bytecode as it is loaded (and for best effect, the

bytecode of the entire system) [39]. Therefore, for simplicity and the expedient reuse

of the existing interpreter code, it was decided to use a non-native call stack, similar

to the approach taken by Stackless Python [40] and SISC Scheme [28]. This in turn

provides opportunities to extend the execution model for increased dynamism, with

the goal of making it faster to write and simpler to evolve distributed workflows.

9



Chapter 2

The Gozer Language

As a Lisp dialect, the core of the Gozer language is relatively simple and straight-

forward. This core is extended with features from multiple other Lisp dialects in

order to produce a convenient, functional object-oriented Lisp that runs well on the

Java Virtual Machine. This chapter begins by describing the textual and concep-

tual syntax of the Gozer language, including its support for various kinds of macros.

Following this is a discussion of the evaluation of Gozer programs and a descrip-

tion of the object-oriented features of the language. The condition handling system

(akin to the exceptions of other languages) is described, with particular focus on its

implementation in nearly pure Gozer code. Finally, the standard library is briefly

reviewed.

2.1 Syntax

The basic unit of Gozer syntax is the S-expression (for symbolic expression, com-

monly abbreviated to sexp). An sexp may be a single object (an atom) or a list of

other sexps. Gozer syntax is not defined in terms of its textual representation but

the S-expression tree that may result from parsing a textual representation or may

be programattically constructed.

The ability to programatically construct S-expressions enables the Gozer pro-

10



Listing 2.1: Simplified EBNF-Like Syntax Productions
s i g n = "+" | "−" ;
exponent−marker = "e" | "E" ;
de c ima l−d i g i t = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
a l l− c h a r a c t e r s = ? a l l v i s i b l e c h a r a c t e r s ? ;
wh i t e space = ? wh i t e space c h a r a c t e r s ? ;

i n t e g e r = s i gn , { d e c ima l−d i g i t } ;
exponent = exponent−marker , i n t e g e r ;
r a t i o = i n t e g e r , "/" , { d e c ima l−d i g i t } ;
f l o a t = i n t e g e r , " . " , { d e c ima l−d i g i t } , [ exponent ]

| i n t e g e r , [ " . " , { d e c ima l−d i g i t } ] , exponent ;

numeric−token = i n t e g e r | r a t i o | f l o a t ;
s t r i ng = ' " ' , { a l l− cha ra c t e r s − ' " ' } , ' " ' ;

atom = numeric−token | s t r i n g | { a l l− cha ra c t e r s − whitespace } ;

s−express ion = atom | " ( " , [ whitespace ] , {atom} , [ whitespace ] , " ) " ;

grammer to extend the textual representation of the language to be more convenient.

This can be accomplished with the reader macros discussed in the next section; the

ordinary macros of Section 2.2.2 operate at a higher level by modifying the evalua-

tion rule and transforming one S-expression into another.

2.1.1 The Reader

Like Common Lisp, Gozer provides a component with a programmer-accessible in-

terface called the reader. It is the job of the reader to take textual data (always

encoded in UTF-8) and produce S-expressions. The reader may be extended in

arbitrary ways through the readtable and reader macros ; the rest of this section

describes the standard syntax understood by an uncustomized reader. Listing 2.2

provides examples.

The basic reader understands only a few simple rules, and it operates by trans-

forming a character stream into a sequence of textual tokens, and thence into the

atoms and lists that make up S-expressions. Lists are marked with matching open

and close parenthesis. Inside a list, tokens are delimited with whitespace.

11



Numbers may be integer quantities written in base 10, or rational fractions ex-

pressed in base 10, or they may be floating-point quantities written in base 10. (Only

floating point, rational fractions, and base 10 decimal integers are a fixed part of

the reader. Standard reader macros provide syntax for base 16, base 8 and base 2

integer expressions.)

Strings begin with a double-quote character and proceed until a terminating

double-quote is encountered. Within the string, occurrences of the double-quote

that are not intended to terminate it must be prefixed by escaping them with a

forward slash; this is the only character that requires or allows this treatment. In

this way, literal newlines may be embedded to produce a multi-line string, but there

is no support for writing escaped newlines or other control characters such as tab.

(Individual characters may be expressed with a standard reader macro.)

Any lexical token that cannot be parsed as a string or number is taken to be a

symbol. Surrounding a symbol with vertical bars allows a symbol to include spaces

or other characters that would ordinarily be interpreted specially by the reader.

Within (or at the beginning of) a symbol, the colon character may be used to

provide a package qualifier (one colon for exported symbols, two colons for internal

symbols)1

Comments begin with a semi-colon character and continue to the end of the line.

A reader macro provides for multi-line comments.

2.1.2 Standard Reader Macros

The standard reader includes a set of reader macros to make writing certain common

productions easier. A reader macro is a function that defines special syntax for

the reader, consuming characters and producing S-expressions. Earlier, the reader
1Packages, described in Section 2.3.6 are a namespace feature and are represented as objects

accessible to the Gozer programmer. This demonstrates the deep integration of all levels of the
language.

12



Listing 2.2: Basic Gozer Syntax
"This i s a s t r i n g "
; ; This i s a comment
symbol ; ; symbol in curren t package
package : ex t e rna l− s ymbo l ; ; symbol expor ted from package
package : : internal−symbol ; ; symbol i n t e r n a l to package
: keyword−symbol ; ; symbol in keyword package
| symbol w i th spac e s |

1234 ; ; base−ten i n t e g e r
1 . 23 ; ; base−ten f l o a t
1 . 23 e4 ; ; base−ten f l o a t : 12300 . 0
−1 . 23e−4 ; ; base−ten f l o a t : −0 . 000123
3/5 ; ; e xac t r a t i o n a l

( a l i s t ( ne s t ed l i s t )
" conta in ing a mult i− l ine s t r i n g
and a number : "

1234)

macros for numbers were introduced, and, in fact, the double-quote and parenthesis

can be considered reader macros as well. This section describes several other reader

macros, with examples in Listing 2.3.

There are two types of reader macros, single character reader macros and dis-

patching reader macros. The double-quote is an example of the former, and the

octal, hex, and binary number reader macros are examples of the latter. Single char-

acter reader macros are triggered by the occurrence of the character itself, while

dispatching reader macros are triggered by a prefix character which then reads the

next character and dispatches to a function associated with that character.

Other single character reader macros include the single quote, back quote and

comma. The single quote placed in front of a symbol quotes that symbol (see Section

2.2 on quoting). The back quote and comma are forms of quoting and unquoting

entire S-expressions for producing templates in macros. The Vinz module provides

access to single character reader macros for task variables (see Section 4.2.4).

Dispatching reader macros are defined to read literal character values, literal

array values, literal URL and URI values (corresponding to Java’s URL and URI

13



Listing 2.3: Standard Reader Macros
; ; Numeric bases
#o11 ; ; o c t a l i n t e g e r 9
#x11 ; ; hex i n t e g e r 17
#b11 ; ; b inary i n t e g e r 3

; ; Cond i t iona l read ing based an f e a t u r e s
#+f e a t u r e "Only read t h i s i f f e a t u r e i s pre sent "
#−f e a t u r e "Only read t h i s i f f e a t u r e i s absent "

#|
Mu l t i l i n e comments
wi th v e r t i c a l bars
|#

; ; Unique , uninterned symbols
#:uninterned−symbol

; ; Quoting
' quoted−symbol
' ( a quoted l i s t )
`( a backqouted , t emp la t e , @ l i s t )

; ; Unreadable o b j e c t s
#<t r i g g e r s an error>

; ; Characters , by name or s e l f−d e s c r i b i n g
#\Space
#\Newl ine
#\a

; ; Vectors ( arrays )
#(1 2 3)
#(a vector o f symbol s )

; ; A URL and a URI . Their syntax i s v a l i d a t e d by the reader macro func t i on
#Uhttp : // example . org/ f i l e . t x t
#uurn : example . org : i d e n t i f i e r

; ; Readable s t r u c t u r e s
#S( struct−name : s l o t " value " : s l o t2 1234)

; ; Reference to a Java c l a s s , v a l i d a t e d by the reader macro func t i on
#Ljava . l a ng . Object

; ; Java method c a l l , p roper ty acces s
#{ob j e c t . p r op e r t y . method ( )}

; ; A Map
#["key" => " value " "key2" => 1234]

14



Listing 2.4: The Map Reader Macro
( defun %read−hash−tab le ( s c n )
"Read maps l i k e ' key => value ' . "

( l e t ( ( data ( r e a d−d e l im i t e d− l i s t #\] s ) )
( s e t f s ( l i s t ) )
( i 0 ) )

( whi le (< i ( length data ) )
( as se r t (eq '=> ( e l t data (+ i 1 ) ) ) )
( l e t ( ( key ( e l t data i ) ) )
(push `( s e t f ( gethash , key t a b l e ) , ( e l t data (+ i 2 ) ) )

s e t f s ) )
( i n c f i 3 ) )

`( l e t ( ( t a b l e ( make−hash−table ) ) )
, @ s e t f s
t a b l e ) ) )

( se t−d i spatch−macro−characte r #\# #\[ #'%read−hash−tab le )

Listing 2.5: Substitution Rule
(+ 1 2 3 (∗ 2 2) ( i f (= 3 (+ 1 2) ) 5 −5))
(+ 1 2 3 4 ( i f (= 3 (+ 1 2) ) 5 −5))
(+ 1 2 3 4 ( i f (= 3 3) 5 −5))
(+ 1 2 3 4 ( i f T 5 −5))
(+ 1 2 3 4 5)
15

classes), literal hashtables (Listing 2.4), references to Java classes and user-defined

structures. In principle, almost any character could be used as a prefix character

for dispatching macros; in practice, only the octothorp, #, is used in this way.

2.2 Evaluation

The basic evaluation rule for Gozer programs can be stated simply: left-to-right,

inside-out. In general, Gozer evaluation follows the “substitution rule,” where every

S-expression form is replaced with its value in left-to-right, inside-out order. Every

form has a value. That is, there is no distinction between “expressions” that have a

value and “statements” that do not as in languages such as Java or C. (See Listing

2.5.)

Unlike Common Lisp and now Scheme [10], the Gozer language does not distin-

15



guish between compile time, load time, and evaluation time. Loading a file always

results in its compilation, and as each top level expression is encountered and com-

piled, it is evaluated. This makes it easy to implement interactive development,

as the effect of loading from files is the same as typing a REPL (Read-Eval-Print-

Loop). Gozer does follow Common Lisp in distinguishing between extent (duration)

and scope (visibility), and lexical (textual) and dynamic (runtime) environments.

An individual symbol is treated as a variable and evaluates to its most recently

assigned value. Variables may be either lexical (definite extent and lexical scope)

or dynamic (dynamic extent and indefinite scope); all variables are assumed to be

dynamic variables unless otherwise declared lexical. Dynamic variables (also referred

to as global or special variables) are interesting by acting as if they have a stack of

values. Only the top of the stack can be read or assigned. Exiting a scope in which

a dynamic variable was bound restores its value to what it had on entering that

scope, even if the variable was assigned within the scope. A literal such as a string

or number is its own value.

Lists such as (+ 2 3) denote function application. The first element of such a

list is typically a symbol, and the function named by that symbol is applied to the

results of evaluating the other elements in the list. Functions are described in more

detail in Section 2.3.1.

The evaluation rule can be modified in two ways. The first way is through special

forms. A special form is written like a function application, but it is interpreted

differently. Each special form defines its own evaluation rule. An example of a

special form is the if form: ( if predicate then else ). The then form is evaluated

only in the case that the predicate form’s value is true; otherwise the else form (if

present) is evaluated. This is an obvious exception to the substitution rule and

requires special support.

16



Gozer defines a number of special forms that implement various control struc-

tures (Section 2.2.1) (block, catch, go, if, return-from, tagbody, throw, unwind-protect,

while) modify symbol bindings (setq), establish lexical environments (flet, labels, let,

macrolet, symbol-macrolet), create and invoke functions (apply, funcall, lambda), in-

teract with the compiler and runtime (declaim, declare, the), and support parallel

(Section 2.3.6) and distributed (Section 4.2) computing (future, yield). The special

forms are fixed and cannot be added or changed by Gozer programmers, but macros

(Section 2.2.2) allow programmers to define their own evaluation rules.

The second way the evaluation rule can be modified is to bypass it entirely

through quoting. Any form can be quoted by placing it inside the special form

quote. Quoting a symbol results in the symbol itself, not the value bound to it, and

quoting a function application results in the S-expression that defines the function

application (a list of S-expressions). Although this is just an example of a special

form, it is a heavily used example, so heavily used that the standard reader allows

abbreviating it to a single leading ' character. The concept of quoting allows Lisp

code to be treated as data; any expression that could be evaluated could also be

quoted and dealt with as an S-expression. This, in turn, allows for very high-level

and symbolic programming through the use of macros or other types of S-expression

walking programs; since these are generally written in Lisp itself, quoting may be

an example of self-reference.

2.2.1 Control Flow

Common Lisp and Gozer offer very powerful control flow capabilities to the pro-

grammer. These capabilities allow the programmer to develop new abstractions that

would otherwise have to be provided directly by the language implementation. For

example, Java’s try/catch/finally language-level keywords can be implemented

using Gozer’s control flow operators (see Section 2.4).

17



Operator Local Lexical
if Local Lexical
while Local Lexical
unwind-protect Local Lexical

block Non-Local Lexical
return-from Non-Local Lexical

tagbody Non-Local Lexical
go Non-Local Lexical

catch Non-Local Dynamic
throw Non-Local Dynamic

Table 2.1: Control Flow Operator Classification

Gozer’s control flow operators can be classified in two ways. One way is to

consider whether their change is purely local or may have a non-local impact. The

second way is to notice if their actions can be determined based on the lexical

environment, or if the dynamic environment must be considered. Table 2.1 shows

this classification.

The simplest way to modify the control flow of a program is with the conditional

if, which, as in other languages, evaluates a predicate and then directs evaluation to

one of two branches. The while operator provides the most basic looping support,

repeating its body so long as its predicate evaluates to true.

The block/return-from pair allow evaluation of a named lexically-enclosing block

to be prematurely aborted. Instead of resulting in the last value lexically evaluated

in the block, the value given to return-from is the result. These operators are used to

implement early return from functions as well as loops. Although at first they may

seem to be local operators, in fact they are non-local operators because a closure

that’s created when a block is in scope may be used to later return from that same

block. Listing 2.6 shows an example of this. The first invocation of recursive-block

creates a block named B and passes a closure to a second invocation of itself. This

18



Listing 2.6: Block/Return-From
( defun r e c u r s i v e−b l o c k ( fun )

( block B
( i f fun

( f u n ca l l fun )
( r e c u r s i v e−b l o c k ( lambda ( ) ( return−from B : blk ) ) ) )

: fun ) )
( r e c u r s i v e−b l o c k n i l ) ⇒ : blk

invocation also creates a block of that same name, and then calls the closure passed

to it. The return-from in this closure returns from the block established by the first

invocation (it is said to perform a non-local exit from the second invocation).

Somewhat similar to goto in C-derived languages, the tagbody/go pair in Gozer

provide a way to transfer control to arbitrary named locations. The primary differ-

ence is that, like block/return-from, these transfers may be non-local when closures

are involved. In Common Lisp, the standard iteration construct is the do macro,

which is implemented in terms of the tagbody and go special forms. Early Gozer im-

plementations lacked these two very general special forms, so the while special form

was provided for iteration. Later, tagbody and go were added, allowing the addition

of an implementation of Common Lisp’s flexible English-like looping facility and the

condition system (Section 2.4); while is retained for execution efficiency.

The last pair of operators is catch and throw. This pair is the dynamic coun-

terpart of the block/return-from pair. Whereas a return-from lexically (statically)

determines its target, the target of a throw is determined based on the dynamic

call stack. Contrast the results of Listing 2.7 with those of Listing 2.6 to see the

difference in dynamic versus lexical targeting; the throw in the invoked closure in

Listing 2.7 is caught by the dynamically enclosing catch in the recursive execution

of recursive-catch, and the first invocation of that function exits normally with the

value :fun.

Finally, the unwind-protect form evaluates its first form and ensures that the

19



Listing 2.7: Catch/Throw
( defun r e c u r s i v e− c a t c h ( fun )

( catch 'B
( i f fun

( f u n ca l l fun )
( r e c u r s i v e− c a t c h ( lambda ( ) ( throw 'B : catch ) ) ) )

: fun ) )
( r e c u r s i v e− c a t c h n i l ) ⇒ : fun

remainder of the forms are evaluated even if the first form attempted a non-local

exit.

2.2.2 Macros

Macros allow the Gozer programmer to extend the syntax of the Gozer language by

transforming one (implicitly quoted) S-expression into another. Although Gozer, like

Common Lisp, has four types of macros—reader macros, compiler macros, symbol

macros, and standard macros—when the word “macro” is used alone it always refers

to standard macros. Reader macros operate on text; standard macros operate on

S-expressions. All types of macros are function objects (as in Section 2.3.1) that

have particular signatures.

A macro application is written in the same way as a function application, as a list

whose first element is a symbol, but the similarities end there. Instead of being eval-

uated at runtime and returning an arbitrary value, a macro application is evaluated

at compile-time and must return an S-expression which is then evaluated instead of

the original S-expression (possibly another macro application). None of the argu-

ments to a macro are evaluated as they are to a function; instead, the macro receives

the actual S-expressions. While a function provides functional abstraction, a macro

provides syntactical abstraction. Often this abstraction takes the form of producing

boilerplate code for common actions such as iteration or resource acquisition and

release.

Although macros can be written to operate directly on the S-expression parame-

20



Listing 2.8: Manual Macro Creation
( defmacro my−dol i s t (&body body )

( l e t ( ( r e s u l t ( l i s t ' do l i s t ( l i s t ( f i r s t ( f i r s t body ) )
( second ( f i r s t body ) ) ) ) ) )

( do l i s t ( exp ( cd r body ) )
(append ! r e s u l t exp ) )

r e s u l t ) )

Listing 2.9: Template Macro Creation
( defmacro my−dol i s t ( ( va r i t ems ) &body body )

`( do l i s t ( ( , va r , i t ems ) ) , @body ) )

ter and to produce sexps by manually constructing lists in the appropriate patterns,

as in Listing 2.8, this is very tedious and error prone. (However it does offer supreme

flexibility and demonstrates the correspondence between Lisp code and Lisp data.)

Gozer addresses both of these problems by following Common Lisp. First, Gozer

provides automatic destructuring of the argument passed to the macro. For macros

that take regularly structured arguments, this allows the programmer to pass the te-

dium of walking through an S-expression off to Gozer. On the output side, Gozer pro-

vides the backquote reader-macro, `, for template-based creation of S-expressions.

Using these features allows Listing 2.8 to be simplified to Listing 2.9.

Gozer’s macros, like Common Lisp’s and unlike Scheme’s, are not hygienic. This

means that it’s possible for a macro to inadvertently refer to an identifier bound

in its surrounding scope, hijacking it and producing incorrect results [22]. Gozer’s

package system and separate namespace for functions and variables (Gozer is a Lisp2

[12]) reduce the chance for unintended name collisions, and there are some simple

techniques (e.g., the use of gensym and facilities built on top of it) that can reduce

the chances even further. Though not perfect, this has proven to be a reasonable

balance between implementation effort and safety.

21



2.3 Object Orientation and Data Types

This section describes the use of objects in the Gozer language including information

on achieving polymorphism, “duck-typing,” the integration of the Java and Gozer

object models, and how the Groovy runtime is leveraged for dynamic capabilities.

It will also describe in more detail some of the data types used in Gozer and their

behaviours. Centrally, every value in Gozer is an object, from the lists and atoms

that make up S-expressions, to functions, to symbols, to conditions, to numbers,

to classes, to user-defined types. In order to work well on the JVM, these objects

are JVM-level objects; the behaviours that the JVM does not directly support are

introduced with the Gozer (and Groovy) runtimes. Gozer does not provide syntax

for creating and manipulating Java’s primitive types (boolean, char, short, int,

long, float, double); instead, all such values are always manipulated in their

boxed form. Gozer auto-unboxes values passed to Java methods and auto-boxes

results received from Java methods. This is consistent with most modern scripting

languages and user expectations, and simplifies implementation.

What behaviours do JVM objects support? The object model of the JVM, which

directly reflects the object model of the Java programming language, is class-oriented

featuring single inheritance of implementation, but multiple inheritance of interface.

Where inheritance or interfaces are involved, the selection of which code to invoke

only considers the dynamic (runtime) type of the receiver (plus the static (compile-

time) type of the arguments); Java is a single-dispatch language. There is a single

root class called Object from which all other classes descend. Classes themselves are

manifested as Object instances (of class Class), though they are not true first-class

objects (i.e., it is not directly possible to create or manipulate new Class instances

from within the Java language, and Class instances have no methods or behaviour

of their own). Once defined, a class is immutable. Both the Java language and the

22



JVM permit primitive types that are not objects and not instances of a class.

Gozer maintains the single-inheritance, multiple-interface structure of JVM ob-

jects. From Groovy it gets the notion of first-class classes that can be modified at

runtime (through Groovy’s metaclass system [21], to which Gozer provides access).

Ad-hoc polymorphism and multiple dispatch are also added; protocols for objects

to cooperate with the system-provided generic functions (Section 2.3.3) and type

conversion (Section 2.3.5) are developed from this basis.

As a functional language, the primary mechanism for interfacing with objects

in Gozer is, naturally, functions. Following a general description of functions, the

next section describes Clos-derived generic functions and the sections that follow

introduce functional façades over Java objects. After that, some key Gozer data

types are discussed.

2.3.1 Functions

In Gozer, functions are of course first-class objects. They may be passed as argu-

ments and invoked at runtime, and they may be either anonymous or bound to a

symbol that provides their name (lexically or dynamically). Functions are always

created with the lambda special form; the defun macro expands into code to assign

a name with dynamic extent to a lambda expression. Section 2.3.4 shows how Java

static and instance methods can be treated as functions while Section 2.3.3 shows

how functions can be used for object-oriented programming. Functions created in

Gozer directly implement the Java Function interface and may be passed as objects

to, and invoked by, Java classes; this will call back into the GVM to interpret the

Gozer bytecode of the function. Functions may also indirectly be converted to im-

plement other Java interfaces containing one or more methods, as described in the

next section.

If a function is created inside a lexical environment, it may close over existing

23



Listing 2.10: Closures for CONS
( defun cons ( x y )

( lambda ( d &optional n )
( case d

( ca r x )
( cd r y )
( rp laca ( s e t q x n ) ) ) ) )

( defun ca r ( c )
( f u n ca l l c ' ca r ) )

( defun cd r ( c )
( f u n ca l l c ' cd r ) )

( defun rp laca ( c o )
( f u n ca l l c ' rp laca o ) )

( s e t q c ( cons 1 2) ) ⇒ #<FUNCTION LambdaByteWrappedFunction (689292896)>#
( ca r c ) ⇒ 1
( cd r c ) ⇒ 2
( rp laca c 3) ⇒ 3
( ca r c ) ⇒ 3

lexical variables. Abelson’s classic example [1] of creating a traditional Lisp CONS

cell using a closure can be replicated in Gozer (see Listing 2.10). Such closures could

also be used in the implementation of Java interfaces (Listing 2.14 demonstrates a

closure being used to implement a Java UnaryPredicate interface).

Functions fully support the complex lambda lists (arguments) of Common Lisp,

including required positional arguments, optional positional arguments, keyword

(named) arguments, and rest (variardic) arguments. Although support for com-

plex lambda lists complicates the implementation, it supports graceful evolution of

functions and can result in function calls that are self-documenting.

When invoked, functions always return a value. Sometimes it is desirable for

a function to return multiple values. This can be done explicitly by returning a

composite object like a structure (Section 2.3.6) or a sequence, or it can be done

implicitly through the use of the values special form. A function returning values

is said to return a primary value and any number of secondary values. Taken from

Common Lisp, this notion of multiple return values is another way to support the

graceful evolution of functions.

24



2.3.2 Java Interfaces

Gozer is not compiled to Java bytecode, so it is not possible to subclass existing

Java classes from Gozer code. However, Java allows for the implementation of

interfaces without generating Java bytecode through dynamic proxies. Gozer uses

this mechanism to allow Gozer code to implement arbitrary interfaces. In this way

Java code can invoke arbitrary Gozer code as a callback.

To implement an interface of one method (common in Java), Gozer programmers

may simply use any function (often an anonymous lambda) that accepts the requisite

number of arguments. More complicated scenarios, such as implementing multiple

interfaces or multiple methods from a single interface, require the use of the new-

proxy macro. As an example of where this is used, the bulk of the Gozer reader is

implemented in Java. The reader defines a Java interface for reader macros. Gozer

code that wants to implement a reader macro (as in Listing 2.4) is converted into

an implementation of this interface through a call to new-proxy made in set-macro-

dispatch-character.

2.3.3 Generic Functions

A generic function can be thought of as an abstract operation that defines a set of

formal parameters and a set of outputs, but provides no implementation. Methods

are added to a generic function to provide implementations of the operation for

particular input data types or even particular instances; this is referred to as special-

izing the function. At runtime, when the generic function is invoked, it will choose

and execute the most specific method based on the actual types of all arguments.

A common example is the system-provided arithmetic functions such as+. These

are generic functions, choosing different implementations (e.g., integer vs floating

point) based on their arguments. It is an obvious step to generalize from system-

25



provided data types and functions into user-provided data types and functions. If

types may be arranged in an inheritance graph, then in this way code may be reused

(a sub-type may provide specialized methods for some generic functions, but leave

the rest of the methods as implemented by the parent type; the specialized methods

may themselves invoke less-specialized methods to perform part of the operation).

Common Lisp provides that generalization in a system called the Common Lisp

Object System (or Clos). Clos is derived from experience with prior Lisp ob-

ject systems, notably Xerox’s Loops and MIT/Symbolic’s Flavors. In contrast to

message passing object systems such as Smalltalk and C++ where the class is the

primary mechanism of object and code organization and the message send is the

primary way of object interaction, in Clos the (generic) function provides these ca-

pabilities. Because Clos is function-based, Lisp style can be maintained and even

code that wasn’t written with objects in mind but with functions (through funcall

and apply) can transparently interact with objects [13].

Gozer provides a subset of the Clos generic function capabilities. All the ways

of specializing a method are supported. Notably missing are support for multiple

method combinations and programmer-defined method combinations, though these

could be added if desired2. Clos generic functions can also be used to implement

what today would be called aspect-oriented programming by providing methods that

run before, after, or around other methods, and Gozer implements this as well3.
2A method combination determines what happens when there are multiple methods that could

be applicable to a set of arguments. The standard method combination that Gozer provides invokes
the most specific method and allows it to invoke less specific methods if desired. Clos provides
other combinations, but these are rarely used.

3As with the flexibility in function arguments and return values, it is expected that the flexibility
provided by aspect-oriented programming will be of great help in evolving and extending Gozer-
based workflows.

26



Types and Structures

Instead of defining its own type system for the purposes of generic functions, Gozer

simply reuses the Java type system and hierarchy. Thus, a method can be specialized

for any Java class or interface and is applicable for instances of that class or any of

its subclasses, or any class that directly or indirectly implements the interface (see

Listing 2.11).

Attaching methods to existing Java classes and interfaces satisfies many use cases

for generic functions, but there are times when it may be desirable and convenient

to group data at the Gozer level without statically creating a Java class. To allow

for this, Gozer fully supports the notion of Common Lisp user-defined structures (or

record types, see Section 2.3.6). Structures may be instances of a Structure class (by

default), or may be based on lists or arrays (for speed or for evolution of older code

where lists were used for prototyping). When the Structure class is used, methods

can be specialized on them (see Listing 2.11 for an example). Structures support

a limited form of single inheritance, which matches the single-inheritance model of

Java classes, making it easy to evolve an implementation from a Gozer structure

into a Java class or vice versa.

Performance

Clos was designed to allow for efficient implementations [13], and some implemen-

tations were very highly optimized [7]. Despite being a highly dynamic system,

some Clos implementations are able to meet or exceed the performance of a static

language such as C++ [42].

Gozer currently has none of these optimizations. Each invocation of a generic

method results in a fresh calculation of the applicable method set and the generation

of objects to represent the effective method combination. Invoking generic functions

27



Listing 2.11: Generic Functions Example
; ; Create a gener i c f unc t i on
( defgener ic f oo ( x y ) )
; ; Add a d e f a u l t method
(defmethod f oo ( x y ) ' bare )

; ; S p e c i a l i z e on a number
(defmethod f oo ( ( x number ) y ) ' number )

; ; S p e c i a l i z e on a s t r i n g
(defmethod f oo ( ( x s t r i ng ) y ) ' s t r i ng )

; ; S p e c i a l i z e on a s t r i n g and a symbol
(defmethod f oo ( ( x s t r i ng ) ( y symbol ) ) ' s t r i ng− s ymbo l )

; ; S p e c i a l i z e on a p a r t i c u l a r in s tance
( defconstant ob j e c t (new ' j a v a . l a ng . Object ) )
(defmethod f oo ( ( x ( eql ob j e c t ) ) y ) ' ob j e c t )

; ; S p e c i a l i z e on a keyword , number , or o ther cons tant
(defmethod f oo ( ( x ( eql :kw) ) y ) 'kw)

( as se r t
; ; The d e f a u l t method
(eq ' bare ( foo ' b l ah ' b l ah ) ) )

( as se r t
(eq ' number ( foo 1 2) ) )

( as se r t
(eq ' s t r i ng ( foo "bar" 123)) )

( as se r t
(eq ' s t r i ng− s ymbo l ( foo "bor" ' sym ) ) )

( as se r t
(eq ' ob j e c t ( foo o b j e c t t ) ) )

( as se r t
(eq 'kw ( foo :kw t ) ) )

; ; S p e c i a l i z e on a Java i n t e r f a c e
(defmethod f oo ( ( x j a v a . u t i l . L i s t ) y ) ' a− l i s t )
(defmethod f oo ( ( x j a v a . u t i l . C o l l e c t i o n ) y ) ' a− c o l l e c t i o n )
( as se r t

(eq ' a− l i s t ( foo ( l i s t ) n i l ) ) )
( as se r t
(eq ' a− c o l l e c t i o n ( foo (new ' j a v a . u t i l . HashSet ) ' hash ) ) )

28



is thus several times slower than invoking ordinary functions. In Gozer’s niche this

has not yet posed a problem, but with wider adoption of generic functions it is likely

that some performance optimization will be required.

2.3.4 Java Function Façades

Gozer is a scripting language hosted on a platform defining its own language and

providing access to a large number of existing libraries. Programmers want to be

able to use those libraries. Unfortunately, those libraries are structured in terms of

classes, interfaces and methods where Gozer is structured in terms of functions. To

ease the impedance mismatch, Gozer recasts Java classes and methods as functions.

This approach was previously taken by Charleston College in their Common Lisp

implementation for the JVM [3].

This begins by taking advantage of one structural element that Java and Gozer

do have in common: packages. A package in both languages is an organizational

technique for system construction (programming in the large). Packages act as

namespaces to prevent the symbol clashes that would otherwise inevitably occur. For

example, the Java platform ships with two classes named Date, one in the java.util

package and another in the java.sql package. Although there are differences—a Gozer

package is a first-class object intimately tied to the Gozer reader, runtime system

and compiler, a Java package is just a namespace—this common ground is enough

to build upon.

The Gozer runtime is made aware of a Java package using the defjavapackage

macro (analogous to the defpackage macro for standard Gozer packages) or the

import-from-java macro. When the compiler encounters a symbol from a Java pack-

age, rather than looking for its definition in the Gozer runtime, the JVM is consulted

instead (actually, Groovy’s dynamic runtime information). If the symbol resolves

to a Java class, a constructor function is returned; a method returns a function that

29



Listing 2.12: Package-based Java Integration
; ; Make the runtime aware o f the package and a s p e c i f i c c l a s s
( import− f rom− java " java . lang " " St r ing " )

; ; Ca l l i n g ins tance , s t a t i c , and cons t ruc t o r methods
( S t r i n g . charAt " s t r i n g " 1) ⇒ \ s
( S t r i n g . va lueOf 1) ⇒ "1"
( S t r i n g "copy" ) ⇒ "copy"

; ; Using in MAPCAR, e t c
(mapcar #' S t r i n g . toUpperCase

' ( " s t r i n g 1 " " s t r i n g 2 " ) ) ⇒ ( "STRING1" "STRING2" )
(mapcar #' S t r i n g

' ( "copyme" "copymetoo" ) ) ⇒ ( "copyme" "copymetoo" )

will invoke either a static or instance method as appropriate; a static (class-level)

field returns the current static value. In this way, a Java method is accessed in the

same way as a Gozer function, by writing an S-expression with the name of the Java

method in the first location and the arguments in the successive locations. New

instances are constructed by using the name of the class as a function (similar to

the Python language). Because this resolution is done at compile-time, the compiler

can perform some checks to catch spelling and other simple errors.

These method and constructors can also be used as literals and passed to mapcar

and other Gozer functions that use apply or funcall. Listing 2.12 gives an example

of this usage.

2.3.5 Dynamic Java Access

The Charleston College style provides a clean functional interface between Gozer and

Java, but it has some limitations. The long names it uses may seem cumbersome,

and although they serve as documentation on the expected type of the first argument,

Gozer’s dynamic typing may cause this to be misleading. Because of this, Gozer

provides another method to access Java classes, methods and fields, modeled after

30



Listing 2.13: Clojure-style Java Integration
; ; Ca l l i n g ins tance , s t a t i c , and cons t ruc t o r methods
( . " s t r i n g " ( charAt 1 ) ) ⇒ \ s
( . ' j a v a . l a ng . S t r i n g ( va lueOf 1 ) ) ⇒ "1"
(new #Ljava . l a ng . S t r i n g "copy" ) ⇒ "copy"

; ; Access ing a proper ty
( . "abcd" by t e s ) ⇒ #(97 98 99 100)

; ; Chaining wi th r e gu l a r and reader macros
( . . ob j e c t p r o p e r t y s e condPrope r t y ( methodOnSecondProperty ) )
#{ob j e c t . p r op e r t y . s e condPrope r t y . methodOnSecondProperty ( )}

; ; Nul l−sa fe cha in ing
( . ? ob j e c t maybeNul l ( method ) )

the approach taken by Clojure, another JVM-based Lisp implementation [17]4.

Clojure-style integration (Listing 2.13) uses the · special form (presumably the

· was chosen for its resemblance to Java source code). This first argument to this

form is either an instance or a class designator (a Class, or a symbol whose name is

a fully-qualified name of a Class). The second argument is either a symbol naming

a property (in the JavaBeans sense [19]), or a list consisting of the method name to

call and the arguments to the method5. This form returns the value of the property

or the return value of the method (a method that returns void results in NIL). New

instances are constructed with the new special form, whose first argument is a class

designator (a Class or the name of a class) and the arguments to be passed to the

Java constructor. A reader macro and a number of regular macros make this way

convenient for the programmer.
4In reality, the Clojure-style came first, predating the implementation of Gozer’s package system.

Both styles enjoy approximately equal popularity in existing Gozer programs.
5The use of symbols to represent Java class, property and method names is the primary reason

that Gozer symbols are case-sensitive, instead of the more common case-insensitivity seen in other
Lisps.

31



Method Selection and Type Conversion

With generic functions, Gozer provides true multiple-dispatch. All the dynamic

types of all the arguments are considered when making a method selection. When

invoking methods on Java classes, however, one argument, the receiver, has a special

place in determining the method to use. In Java, the static type of the arguments,

together with the dynamic type of the receiver would determine the method (i.e.,

methods can be overloaded based on argument types). To help bridge this differ-

ence, Gozer performs multiple-dispatch on all the actual dynamic types of all the

arguments and will heuristically perform type conversions if no matching method

can be found.

Regardless of whether the Charleston College style or Clojure style is used, final

method selection is deferred until runtime (Charleston College style performs some

basic sanity checks at compile time). In a form of ad-hoc polymorphism, a method

of the given name and matching the actual argument types is looked for on the

runtime object or class actually provided; this also permits “duck-typing” or generic

algorithms (for example, both Java’s String and Collection types define an isEmpty

method, but share no common superclass or interface).

If there are multiple method choices due to Java overloading, the method that

requires the fewest, “least-expensive” type conversions from actual arguments to

formal (static) parameter types is used (if such a method can be found). Convert-

ing parameter types when calling into Java works best if at least one side of the

conversion is immutable (or at least treated in an immutable fashion) because the

converted object is generally temporary and not available to the calling Gozer code

(converted parameters are pass-by-value). Java methods that accept primitive pa-

rameters are prepared for this (primitives are pass-by-value) but those that accept

objects may not be (objects are pass-by-reference) For this reason, conversions have

32



Listing 2.14: Type Conversion
; ; ; Algorithms , from Apache Commons−Functor , i s a Java f un c t i o na l l i b r a r y
( l e t ( ( to− f i nd "D" ) )

; ; Java s i gna tu r e : Algori thms . d e t e c t ( I t e r a t o r <X>, UnaryPredicate<X> )
( A lgo r i t hms . d e t e c t

; ; l i s t to I t e r a t o r <Str ing>
' ( "A" "B" "C" :D)
; ; c l o s u r e to UnaryPredicate , symbol to S t r ing
( lambda ( s ) ( s t r i n g− e qua l to− f i nd s ) ) ) ) ⇒ :D

different expenses. Converting to a known immutable class such as String is consid-

ered less expensive than an arbitrary conversion. Likewise, converting from a smaller

integral type to a larger integral type is considered less expensive than performing

an arbitrary object conversion.

This type conversion is convenient and allows for idiomatic style in both Gozer

and Java. For example, Gozer’s list literals can automatically become a specific

type of Java array, and Gozer functions can automatically implement Java callback

interfaces (see Listing 2.14). Many of the libraries that Gozer is used with are

designed with immutable types in mind, so the pass-by-value semantics are rarely

surprising.

In Gozer code, built-in operations are generally polymorphic on as many types

as possible. For example, the indexed sequence accessor, elt, operates on at least

seven disjoint types (and all of their subtypes). In addition, the Java programmer

can make their classes work with elt through a well-defined protocol (add an imple-

mentation of Groovy’s getAt method [21]). This allows the Gozer programmer to

write generic algorithms that work with many different types (arrays and Lists, for

example). These types do not all have to exist at compile time.

Sometimes the programmer wants to limit the dynamic possibilities of the Gozer

language, requiring particular types and bypassing duck-typing. The Gozer declare

special form can be used to require objects of specific types be bound to specific

lexical variables. The runtime enforces this, and the compiler has some limited

33



ability to emit errors and warnings when type declaration can be proved to be, or

are suspected to be, violated.

2.3.6 Common Data Types

As established before, Gozer generally shares the same data types and objects as

the Java platform. There are some differences and extensions, however, and the

following sections describe some of the most important.

Numerics

Arithmetic in Gozer operates on signed quantities, and may either be exact or inex-

act. Arithmetic with Java’s integral types (byte, short, int, long) is exact in all

situations and not subject to overflow or underflow; over or underflows are detected

and automatically produce results in the next larger type. The largest supported

integral type is Java’s BigInteger class, which offers infinite precision and is usable

wherever any other number is. Literal values may be input in any of these types

(either automatically or explicitly).

Java’s floating point types, float and double, do not get this treatment; how-

ever, Java’s BigDecimal class can be used for arbitrary precision decimal arithmetic.

As with the integral types, literal values may be input in any of these types.

Generally the output of numeric functions is widened to match the widest pa-

rameter type; the exception is mixing exact and inexact (binary) floating point

values. Rather than present the illusion of exactness when such is not the case, the

BigDecimal value is shortened to its inexact approximation.

Literal syntax is provided for Gozer’s rational type. Arithmetic with rational

values is exact, and rational results are automatically simplified to integer values

when possible. Rational values may be freely mixed with integral and exact values.

As with BigDecimal, mixing ratios with inexact floating point values yields an inexact

34



result.

Symbols

As in all Lisp dialects, Gozer provides a symbolic data type. Symbols are tokens

that may be directly written in source code and that have a guaranteed identity

(the same symbol written multiple times has a single identity).

In Common Lisp, a symbol conceptually consists of a name, a package, a value,

a function, and a property list. The name of a symbol is its textual representation,

and the package provides a qualifier or namespace to prevent collisions (see Section

2.3.6). In contrast to the name and package name of a symbol, which are immutable,

the property list allows the programmer to associate additional mutable data with

a particular symbol.

The value stores the current dynamic variable binding, and the function stores

the current function binding. The language automatically obtains the value of a

symbol when a symbol is used in a variable location, and it obtains the function

associated with a symbol when a symbol is used to name a function application.

It is these two aspects of a symbol (historically referred to as the value cell and

function cell of the symbol), each of which is used in a different context, that makes

Common Lisp a Lisp2.

Gozer’s symbols have three of these four attributes; the property list is currently

omitted because it is not clear how useful it would be, nor what semantics it should

have with respect to multiple threads.

Boolean

The notion of true and false values is intended to yield semantics that are both

intuitive and expressive. To begin, the Java boolean values true and false and

their object wrappers maintain their truth values in Gozer.

35



In Common Lisp, only the empty list (NIL) is considered to be false. All other

values are considered to be true, with the constant T representing the canonical

truth value.6 In keeping with its unification of collection types (see Section 2.5),

Gozer extends this concept, and any empty sequence (a Java Collection, Iterator,

Enumeration, CharSequence or array) is considered to be false. The Java null value

is mapped to the empty list, and thus is false.

From Groovy comes the idea of having the numeric value 0 be false. While this

matches the behaviour of the C family of languages, it differs from both Common

Lisp and Java. All remaining values are considered to be true as in Common Lisp,

but the programmer can augment this rule for specific classes of his own.

Overall, these rules lead to very expressive code. Predicate functions may return

values that are useful beyond their truth value, and often loops may be written

without worrying about boundary conditions (e.g., an empty collection or a null

reference). Only the treatment of the value 0 can be confusing. When functions

return numeric values (such as the position function), users must remember to check

the numeric value as they would in Java (that is, when checking for the existence

of an item, it is incorrect to write ( if (position . . .) . . .) because 0 is a meaningful

return value; instead one would write ( if (>=0 (position . . .) . . . ))).

Structures

Gozer fully supports the notion of Common Lisp user-defined structures (or record

types).7 Structures may be instances of a Structure class (by default), or may be

based on lists or arrays (for speed or for evolution of older code where lists were

used for prototyping). When the Structure class is used, structure instances can
6In fact, the Java boolean values are mapped to NIL and T in Gozer for printing.
7Structures were originally added to allow Gozer to support an open source implementation of

the Common Lisp LOOP macro, and are also used in the Gozer port of the SWANK package, part
of the Emacs SLIME IDE.

36



participate in Gozer’s generic functions, and can be used in a duck-typing fashion

with other Gozer and Groovy code. Structures support a limited form of single

inheritance.

Packages

One of the most important considerations in the building and evolution of large

systems is name management. Gozer provides a mechanism in the package system

for this. Similar to C++ namespaces and Java packages, Gozer packages provide a

scope for name resolution. Unlike these systems but like Common Lisp, Gozer pack-

ages are fully accessible to the programmer at runtime. While name management is

usually handled by the reader (see Section 2.1), the programmer can interact with

this process.

Every symbol belongs to exactly one package. The symbol is said to be interned

in this package. Symbols can be exported from a package and imported into other

packages, or entire packages can be added to the symbol resolution of other packages.

Naming conflicts are immediately detected by the runtime and result in errors.

One of the ways that Gozer integrates with Java is by making Java packages

available as Gozer packages. See Section 2.3.4 for details.

Gozer’s package system is closely integrated with its module system. Common

Lisp deprecated its under-specified module system for portability reasons, but Gozer,

running on only one platform (the JVM) has no such concerns. A Gozer module

is a high-level way of providing a particular named feature, and a corresponding

high-level way for declaring dependence on that feature. Conventionally, a module

contains a package of the same name.

37



Futures

Parallel operations in Gozer are based upon Java threads and a Java thread pool

(Java’s ExecutorService), the native parallel primitives provided by the underlying

Java platform. Although the Gozer programmer is free to use these primitives,

higher-level operators based upon those from Multilisp [18] are provided. These

operators are all declarative in nature and are designed to help the programmer to

focus on opportunities for achieving concurrency.

The core abstraction is the future. A future is a datatype that represents a

computation that may not have completed yet, and represents a promise to deliver

the value of that computation when required at some future point in time. Until a

future’s computation completes the future is said to be undetermined, after which the

future is determined. Any value that is not a future is always said to be determined.

Futures are used to exploit opportunities for concurrency that exist between the

computation of a value and its ultimate use. For example, when transforming a set

by applying a function to all members of a set, the earliest time that the transformed

value for the first member of that set could be needed is after the transformation

has completed on the last member of the set. An opportunity for concurrency exists

that can easily be expressed with a future, which in Gozer is declared with the

future macro. The function par-sum-squares from Listing 2.15 is an example of this;

concurrency was added to the function seq-sum-squares with the use of a judiciously

placed future macro.

When a computation involves futures, the Gozer programmer generally does not

need to take special precautions. Futures can freely be mixed with other values,

passed to and returned from functions, stored in data structures, and so on. The

GVM is responsible for managing the execution and determination of futures.

The GVM does not provide a guarantee about the sequence in which futures

38



Listing 2.15: Sums-of-Squares Variants
( defun seq−sum−squares ( numbers )

( apply #'+
( loop f o r number i n numbers

c o l l e c t (∗ number number ) ) ) )

( defun par−sum−squares ( numbers )
( apply #'+

( loop f o r number i n numbers
c o l l e c t ( future (∗ number number ) ) ) ) )

are determined. In the case of IO or other side effects, order of operations can

be important. Gozer’s touch and pcall operators allow the programmer to control

sequencing in these cases. The touch operator causes the calling thread to await the

determination of a particular value before proceeding, while pcall applies a function,

but only after all its arguments are determined.

Another way in which sequencing can be controlled is through the use of agents

(based on those found in Clojure). An agent has a state (some user supplied data)

and atomically updates that state by applying a user supplied function to it. State

updates are guaranteed to be carried out in the order in which they are submitted

(via the send function), and they are also guaranteed to be carried out in only one

thread at a time. Agents make use of futures in their implementation (so they ex-

ploit parallelism), but unlike futures, which are tightly integrated into the GVM and

automatically determine their values, the programmer is responsible for requesting

the state of an agent when needed (using the deref function). The programmer can

choose futures or agents based upon the needs of the problem: plain futures work

well for transparently adding parallelism to existing functional, side-effect free code

but become more cumbersome when sequence is important; agents easily support

mutating state and sequential ordering, but are never transparent to the program-

mer.

39



2.4 Condition System

Many languages, including C++ and Java, support the notion of exceptions. Excep-

tions are a form of non-local control flow in which one portion of the program can

throw an exception which is caught by one of its dynamic callers. Intermediate call

frames are unceremoniously unwound and exited. Java includes a mechanism (the

finally block) that allows frames being unwound to perform some action (often

resource cleanup) as they are being exited. In object-oriented languages, exceptions

are invariably arranged in a class hierarchy that allows callers to selectively catch

particular types of exceptions.

As the name suggests, exceptions are generally reserved for exceptional condi-

tions, most often error handling. Although exceptions are undoubtedly an improve-

ment over the C-style of error handling (through function return values that are often

ignored), they are relatively inflexible due to their unconditional stack-unwinding

and two-part division into something that throws an exception and something that

catches it. Common Lisp offers a superset of this functionality in its condition sys-

tem. Flexibility is increased by dividing the responsibilities into three parts: signal-

ing a condition, handling it, and restarting [37]. Gozer provides an implementation

of the Common Lisp condition system that incorporates Java exceptions along with

named conditions and is continuation-safe for the distributed programming case.

A condition is any circumstance that a called portion of the program would like

to communicate to its dynamic callers. It does not necessarily represent an error, it

could be a warning or merely informative. It is said that the condition is signaled

to the callers. The act of signaling itself does not cause the stack to unwind. The

condition is passed to each applicable handler that has been established by the

dynamic callers in turn (from most recent to least recent caller) until one handler

chooses to handle the condition. (If no handler handles the condition, the results

40



depend upon the type of signal. What it means to handle a condition is explained in

Section 2.4.2.) The signaler may provide options to its handlers by defining restarts,

and a handler may choose to handle a condition by invoking a restart.

2.4.1 Programmer Interface

The main programmer interface to the condition system consists of just a few func-

tions and macros, plus the definition of a condition itself. In Gozer, conditions are

represented as objects. They may either be Java Throwable objects, in which case

the Java class hierarchy is used to determine handler applicability, or they may

be XML namespace-qualified names, QNames such as {urn:BlueBox}InvalidSession

[4]. The use of QNames allows the Gozer programmer to define, signal, and handle

his own conditions without dropping into Java to write new Throwable subclasses.8

This is similar to the use of strings as exceptions in earlier versions of the Python

programming language.

The basic function for signaling a condition is called signal. Given a condition,

this function simply determines all the applicable active handlers and invokes each

one in turn. If no handler handles the condition, this function returns normally

with no additional action. Built on top of signal are the more semantic functions

warn and error. The former function is like signal, but if no handler handles the

condition, it is printed as a warning. The latter function is again like signal, but

differs in that if the condition is unhandled, the debugger is invoked (if the program

is running interactively) or the program is terminated (if the program is running

non-interactively); error can never return normally.

Handlers are simply functions. Handlers are established using the handler-bind

macro, which allows the programmer to specify an ordered list of condition types

or names that will be active during the dynamic execution of the body and the
8It also has uses in distributed workflows as discussed in Section 4.2.5.

41



function (often an anonymous function) in invoke when the matching condition is

signaled. For the common case of handling a signal (an error) by unwinding the

stack and executing some code defined at the point the handler was established, the

handler-case macro is provided.

The real power of the condition system comes from its separation of condition

handling from error recovery. As mentioned, the handler-case macro ties these two

steps back together to allow for Java-style try/catch error recovery, but sometimes

that’s not the best way to handle errors. By unwinding the stack, all the interme-

diate work-in-progress is lost, work that might be painful or infeasible to recreate.

The notion of a restart allows high-level code to direct the error recovery process

using options provided by lower level code without unwinding the stack. The code

that wishes to provide alternatives does so by establishing named restarts using the

macro restart-bind (or its higher-level cousin restart-case). Like handlers, restarts

are simply functions. During the dynamic execution of the body of these forms,

these restarts may be invoked by name using the invoke-restart function. Invoking a

restart is a way to handle a condition and control is returned from the restart-case

form with the value returned by the restart function.

Listing 2.16 shows a function that does computationally expensive things (the

function do-expensive-stuff), but may sometimes signal an error. The highest level of

code (the function high-level) needs to have this expensive computation done with

different parameters that are calculated by an intermediate function. The inter-

mediate function cannot know the best way to handle the failure of the expensive

computation—sometimes it might have been critical to have every correct answer,

sometimes a faster approximation or other value might do—so it establishes a restart

called use-value. The highest level of code can then determine the policy of error

handling. In the example, the high level code chooses to ignore the error and re-

42



Listing 2.16: Condition Example
( defun do−expens i v e− s tu f f ( i )

"Does expens ive work . May s i g n a l an e r r o r . "
( i f (= 3 i )

( e r ro r " Fa i l ed on 3" )
i ) )

( defun expens i v e− l o op (max)
"Does expens ive s t u f f `max ' t imes with d i f f e r e n t parameters . "
( loop f o r x from 0 upto max

c o l l e c t ( restart−case ( do−expens i v e− s tu f f x )
( use−va lue ( v a l u e ) v a l u e ) ) ) )

( defun h i g h− l e v e l ( )
"When an e r r o r i s s i gna l ed , uses a r e s t a r t "
( handler−bind ( ( e r ro r ( lambda ( e ) ( i n v o k e− r e s t a r t ' use−va lue

' f rom−h igh− l eve l ) ) ) )
( expen s i v e− l o op 5 ) ) )

( h i g h− l e v e l ) ⇒ (0 1 2 ' f rom−h igh− l eve l 4 5)

place the missing computation with a distinguished value. In this way, all of the

computations that do complete successfully are collected and no work is wasted.

The function call tree for Listing 2.16 is visualized in Figure 2.1.

2.4.2 Implementation

Gozer conditions are implemented almost entirely in ordinary Gozer code. The only

special support required from the Gozer Virtual Machine is in bridging exceptions

thrown by Java code into signals that Gozer can then handle, and correct operation

in the face of nested GVMs (see Section 3.4). Ordinary functions, closures, the

control-flow operators tagbody/go and block/return-from, and dynamic variables are

enough to implement the entire condition system.9 Knowing that, we can answer

the two unanswered questions of condition system implementation.

First, if handlers are just functions, and conditions are signaled by calling a

function such as error which never returns, what does it mean to handle a condition?
9Obviously, such an approach doesn’t admit as many optimization opportunities as an approach

integrated with the Virtual Machine, but signal handling is believed to never be a bottleneck.

43



high-level

expensive-loop

do-expensive-stuff

error

high-level:lambda

invoke-restart

expensive-loop:use-value

Figure 2.1: Condition Example Call Tree

Handling a condition simply means making a non-local exit out of the dynamic scope

of the signaling function. A macro such as restart-case uses a tagbody to create

targets to which a non-local exit can jump using a go command. It further creates

closures within that tagbody that jump to those targets. When invoke-restart comes

along later and invokes that closure, the closed-over target (presumably somewhere

up the call tree) is found and the non-local exit arrives there. A simplified version

of the macroexpansion of the restart-case contained in Listing 2.16 is presented in

Listing 2.17.

Second, what does it mean to establish a restart or handler, and how are the

active restarts and handlers tracked? This is actually the simpler question as the

stack-like behaviour of Gozer’s dynamic variables completely handles this. A linked

list of the active restart and handler functions (together with some metadata about

them such as a handlers applicability) are each contained in a dynamic variable.

Establishing a handler or restart means creating a new binding for the respective

44



Listing 2.17: Restart-Case Expansion
( block #:block−G1371

( tagbody ( r e s t a r t−b i n d ( ( use−va lue
( lambda ( &rest r e s t )

( s e t q ∗ rest−temp∗ r e s t )
( go #:tag−G1372 ) ) ) )

( return−from #:block−G1371
( do−expens i v e− s tu f f x ) ) )

#:tag−G1372
( return−from #:block−G1371

( apply ( lambda ( v a l u e ) v a l u e ) ∗ rest−temp ∗ ) ) ) )

variable with let and pushing the new handler or restart on the front of this binding.

At any point in time, examining these variables will yield their current bindings

and thus the active handlers or restarts. As with all dynamic variables, exiting the

binding scope automatically restores the previous value.

2.5 Standard Library

A Gozer programmer immediately has access to all the classes and functions pro-

vided by the immense Java standard library, as well as the additions provided by

the Groovy runtime. The goal of the Gozer standard library, then, is to provide

convenient ways to exploit Gozer’s capabilities. For example, Java provides the

overloaded static method Collections.sort to destructively sort a List, and nine over-

loaded versions of the static method Arrays.sort (one for each primitive type plus

references) to destructively sort arrays. Groovy allows these to be used as instance

methods on any Collection or array to non-destructively sort the instance. Gozer’s

single unified sort function applies Gozer’s type conversion rules to be able to sort

not just Collections and arrays but also Maps, Iterators and anything else that can be

treated an iterable sequence. Figure 2.2 shows how many different Java interfaces

(ovals) and classes (rectangles) are able to be treated as iterable; the dashed lines

indicate conceptual relationships not present in the Java inheritance hierarchy.

Currently, the standard library consists of about 400 functions, macros and

45



Iterable

Map Sequence

Range

Array Collection

ListCharSequence

String StringBuffer

Figure 2.2: Conceptual Type Hierarchy

special forms (in comparison, the Common Lisp standard provides 752 functions,

macros and special forms). Approximately 60 of those are implemented in Java,

with the rest being implemented in about 4,000 lines of Gozer code. Much of the

standard library is based on that of Common Lisp, but implemented in a more

general way (for instance, the Common Lisp sort function is only specified to work

on vectors and proper lists). Functions are provided for working with sequences,

inspecting the runtime environment, type handling, string manipulation and regu-

lar expression matching, reading and printing Gozer data and code, etc. Most of

the macros are for defining entities (like defun), provide control constructs (like it-

eration), or capture common patterns of resource usage. The standard library has

grown organically, with Common Lisp or Gozer-specific functionality being added

on demand and as time permits.

2.6 Development Environment and Tools

An important factor in the usability of a language is the suite of tools that are

available to work with it. In particular, when working in a Lisp-derived language,

46



a competent programmer’s editor is a necessity. Fortunately, the open source and

widely available GNU Emacs10 editor has a long history as a Lisp editor [5] and offers

many generic packages for editing Lisp code of any dialect; one powerful example

is Paredit11, a package that provides semantic S-expression editing (as opposed to

simple text editing). Gozer programmers can take advantage of these editing tools

in much the same way they were able to use XML editors in the previous workflow

system. However, the expanded capabilities of a programming language are often

better served with an interactive development environment (IDE).

Here again, the capabilities of GNU Emacs proved valuable. A mature open

source package named Slime12 exists to provide GNU Emacs with a Lisp IDE pos-

sessing features such as configurable, context-sensitive completion, a powerful REPL,

runtime inspection capabilities, documentation and hyperlinked source lookup, and

more. Slime is designed to be portable across different Lisp implementations, and

to this end it is cleanly divided into two layers: one that runs in Emacs and man-

ages user interaction and one (known as Swank) that executes in the target Lisp

implementation and provides access to the Lisp’s capabilities. The two layers com-

municate by exchanging simple S-expressions (operating as Remote Procedure Calls

or RPC), and, because Slime is designed with portability in mind, only a small core

of features is mandatory in order to begin using Slime; it is possible to incrementally

support more and more features.

Developing a Swank implementation for Gozer seemed to be a natural way to

quickly provide Gozer programmers with IDE support. The Gozer Swank imple-

mentation consists of approximately 2,500 lines of code, all written in Gozer, that

implement some of the most important Swank functionality. This includes full sup-
10Available from http://www.gnu.org/software/emacs/.
11Available from http://mumble.net/~campbell/emacs/paredit.el.
12Available from http://common-lisp.net/project/slime/.

47

http://www.gnu.org/software/emacs/
http://mumble.net/~campbell/emacs/paredit.el
http://common-lisp.net/project/slime/


Figure 2.3: Gozer Debugger and Inspector

48



port for the REPL, “compiling” source files and annotating them with errors and

warnings reported by the compiler, a rudimentary debugger and object inspector (see

Figure 2.3), cross-referencing functions, and source and documentation browsing—

both for Gozer code and Java classes and methods it interacts with, even when

packaged inside a standard Java Archive (JAR) file. Slime’s open source develop-

ment proceeds rapidly, which often leads to changes in the required RPC functions.

This, unfortunately, means that Gozer programmers are frequently required to use

an older version of Slime until such time as Gozer’s Swank implementation adapts

to the changes.

Partially to compensate for this characteristic lag and partly to demonstrate

Gozer programming, a separate Web-based documentation searching and browsing

application was developed by Matthew Martin. This entire application requires only

about 400 lines of code. Additionally, an application for generating static HTML

documentation for an entire Gozer system, in the spirit of Java’s Javadoc, was

developed by Matthew Martin and Joshua Zuech and occupies about 200 lines of

code.

The standard library, Gozer tooling, the Vinz distributed workflow functionality,

and all user-written Gozer code, requires a runtime environment. This environment

is provided by the Gozer Virtual Machine, described in the next chapter.

49



Chapter 3

The Gozer Virtual Machine and Compiler

The Gozer Virtual Machine (GVM) implements the runtime semantics of the Gozer

programming language using a bytecode interpreter running on top of the Java

Virtual Machine. The bytecode is produced by a compilation process implemented

jointly in Java and Gozer. The GVM itself is implemented in Java code, and it makes

heavy use of support functions provided by the Groovy runtime. No tree-walking

interpreter is supplied, and code is always compiled for execution (even expressions

passed to the eval function are first compiled). This chapter will first describe the

virtual machine before moving on to the compiler.

3.1 GVM Architecture

The GVM implements a stack-oriented architecture, in many ways similar to the

JVM’s architecture. The bytecode provides instructions for pushing values onto the

stack, and function calls consume arguments from, and leave results on, the stack.

The need for transparent process migration across machines is a key factor guiding

many design decisions.

Lexical variables may be accessed by indexing into an array associated with

the runtime stack frame, with the compiler mapping from programmer symbols

to bytecode indexes. To support lexical closures, a garbage-collected “heap” may

50



also be used for variables1; since the heap is much slower to access than function-

local storage, the compiler only uses it when primitive escape analysis shows that

a variable may be closed over.2 Global (dynamic) variables are always allocated in

their own heap. The Gozer language semantics for variables allow the same variable,

local or global, to be assigned different values within nested lexical scopes, and the

GVM supports this directly through deep binding of heap-allocated variables. The

compiler uses different indexes to simulate shallow binding when achieving this for

local variables [2].3

Compiled code is divided into segments of up to 64K bytecode instructions. Each

segment is associated with a constant pool of up to 64K objects referenced from the

code segment.4 There is usually a one-to-one correspondence between a compilation

unit such as a file and a code segment. Once created, segments are immutable,

which allows them to be effectively cached in memory on multiple machines during

process migration.

3.1.1 Image

Most Lisp implementations, like Smalltalk, are image-based, and Gozer is no excep-

tion. An image is simply all the programmer-visible state at any given time, includ-

ing current global variable bindings, current function bindings, the set of loaded

modules and packages, etc. Images can usually be saved to persistent storage and
1Some Lisp systems are able to use indexes for closed-over variables as well, by capturing

the array associated with the stack frame in the closure. The Gozer runtime is not yet this
sophisticated.

2If the compiler throws away symbol names and translates them to index numbers, this makes
debugging more difficult and also interferes with the ability for low-level functions to access vari-
ables by name, so, with declare or declaim, the compiler may be instructed to use the heap for all
variables.

3As a side effect of this, a particular value may have an active reference long after the program-
mer considers it dead. This interferes with garbage collection and potentially process migration,
so the compiler inserts specific instructions to remove this extra reference. These instructions may
be omitted in speed optimized code.

4The 64K limit comes from the use of 16-bit quantities to represent bytecode offsets and constant
pool indexes as detailed in Section 3.3.1.

51



Function Call Stack
Lo

ca
l V

ar
ia

bl
es

...

...

...

C
od

e

C
on

st
an

t P
oo

l

Code Segments

Lexical Bindings Heap

Global Bindings Heap

O
pe

ra
nd

 S
ta

ck
C

od
e

C
on

st
an

t P
oo

l

C
od

e

C
on

st
an

t P
oo

l

Figure 3.1: GVM Concepts

later be loaded again to continue from the saved state. A Gozer image can be saved

together with a snapshot of the active function call stack and migrated to another

machine, whereupon execution can continue.

A Gozer image is initially created through a bootstrapping process. Java code

creates a set of empty data structures and populates them with a small set of func-

tions and variable bindings, just enough to start reading, compiling, and executing

the most basic Gozer code. The infant GVM is then handed Gozer expressions and

told to begin executing them. After each expression is compiled and evaluated, the

image is a little more complete and able to evaluate more complicated expressions.

As described previously in the section on evaluation (Section 2.2), the Gozer

language does not distinguish between compile time, load time, and evaluation time.

Loading a source file always results in its compilation, and as each top level ex-

pression is encountered and compiled, it is evaluated. Thus, there are no special

52



contortions (Common Lisp’s eval-when) necessary to arrange for defun to properly

register a function when a file is loaded—the evaluation of the top level defun accom-

plishes that as a side effect, altering the state of the image. This model simplifies

both the current implementation and a programmer’s intuition (a file is simply a

list of executable statements, processed from top to bottom), but it does complicate

the idea of individually compiling a file into a unit that can then be loaded into

an arbitrary other Gozer image (e.g., Common Lisp’s “FASL” files). Fortunately,

Gozer’s use cases are compatible with always distributing and loading the source

code.

3.2 Function Calling Convention

The Gozer calling convention allows for required positional arguments, optional

positional arguments (which may have a default value that is an evaluated expression,

and may bind a second local variable to indicate if the value was given to the function

call or computed by default), optional named arguments (keyword arguments, which

may also have default values and may bind an indicator variable), and variable-arity

argument lists (rest arguments, which collect all remaining arguments into a list).

The argument types may be freely mixed.

Conceptually, to call a function, the caller first pushes the arguments to the

function onto the operand stack in a left-to-right order. When the function call

instruction is encountered, the GVM pops the indicated number of arguments off

the stack, pushing them into another stack (a different Java object) which it then

places in the argument register before passing control to the called function.

The called function begins with a sequence of instructions (its prologue) that

operate on the stack in the argument register, binding arguments to local lexical

variables.

In principle, an argument is popped from the argument register onto the operand

53



Listing 3.1: Required Argument Assembly
; ; Required Argument ( opt imized f o r speed )
( lambda ( x ) ( d e c l a r e ( op t im i z e ( speed 3) ( s a f e t y 0 ) ) x )
; ; In termed ia te
( beg in

( a l l o c a t e− l o c a l 1)
(%pop−and−bind x 0)
(no−op )
( push− l o ca l x 0 ) )

; ; Required Argument ( opt imized f o r s a f e t y )
( lambda ( x ) ( d e c l a r e ( op t im i z e ( speed 0) ( s a f e t y 3 ) ) x )
; ; In termed ia te
( beg in

(%pop−arg )
( b ind−var x n i l )
(%pop−no−args )
( push−var x ) )

stack, and then any of the normal binding instructions can be used to assign it to

a lexical variable. In practice, because argument passing and binding is such a

common operation, the GVM provides one macro instruction for the most common

case of binding a required argument to a local register index. The GVM provides

an instruction that tests for the existence of a remaining argument, and this is

combined with standard jump and binding instructions to implement optional posi-

tional arguments. Likewise, standard jump and binding instructions together with

an instruction to test for and extract a named parameter are employed to imple-

ment keyword arguments. An instruction transforms the remaining contents of the

argument register into a list and is combined with a binding instruction for rest

arguments.

The instructions dealing with required arguments raise an error if there are not

enough arguments provided (i.e., if the argument stack is prematurely empty). The

final instruction in the prologue makes sure that all arguments have been consumed,

raising an error if too many arguments were provided.5 In cases where the target
5In optimized code, this instruction may be omitted.

54



Listing 3.2: Optional Argument Assembly
; ; Opt iona l Argument
( lambda ( x &optional y ) y )
; ; In termed ia te
( beg in

( a l l o c a t e− l o c a l 2)
(%pop−and−bind x 0)
(%pop− i f−next )
( jump− i f−true #<Label@2089263258># fo rwa rd )
( push−constant n i l )
( goto #<Label@742465109># fo rwa rd )
( l a b e l #<Label@2089263258># n i l )
( no−op )
( l a b e l #<Label@742465109># n i l )
( s e t− l o c a l y n i l 1)
(%pop−no−args )
( push− l o ca l y 1 ) )

function is known at compile-time, the compiler can also perform these checks, but

they can only be advisory because late-binding means a different function may

actually be called at runtime.

Function calling is, perhaps, the most frequent operation in a Lisp-like language,

so it makes sense to design the virtual machine and instruction set to make function

calling as fast as possible. Early iterations of the GVM did not provide an argument

register nor the instructions that operate on it, instead passing all arguments via a

single Object array placed on the operand stack; sequences of ordinary instructions

were then used to inspect this array and extract values from it. The introduction

of the argument register and related instructions reduced bytecode size and had a

significant runtime performance impact.

Function arguments are pushed onto the operand stack in a left-to-right manner,

but the called function needs to operate on them in a FIFO manner. That is, the

called function needs to find the first passed argument on the top of its argument

register.6 This can be accomplished by popping from one stack and pushing on
6In early versions of the GVM, arguments were evaluated and pushed right-to-left and so this

property arose naturally. This violated programmer expectations, however, and the Gozer language
specification was changed to use the more common left-to-right order

55



Listing 3.3: Keyword Argument Assembly
; ; Keyword argument
( lambda ( x &key y ) y )
; ; In termed ia te
( beg in

( a l l o c a t e− l o c a l 2)
(%pop−and−bind x 0)
(%pop−kw : y )
( jump− i f−true #<Label@439695831># fo rwa rd )
( push−constant n i l )
( goto #<Label@476602290># fo rwa rd )
( l a b e l #<Label@439695831># n i l )
( no−op )
( l a b e l #<Label@476602290># n i l )
( s e t− l o c a l y n i l 1)
(%pop−no−args )
( push− l o ca l y 1 ) )

Listing 3.4: Complex Keyword Argument Assembly
; ; Keyword wi th d e f a u l t va lue and suppl ied−p param
( lambda ( x &key ( y " d e f au l t " y−sup−p ) ) y )
; ; In termed ia te
( beg in

( a l l o c a t e− l o c a l 3)
(%pop−and−bind x 0)
(%pop−kw2 : y )
( jump− i f−true #<Label@1593598058># fo rwa rd )
( push−constant \" d e f au l t \")
( goto #<Label@186515422># forward )
( l a b e l #<Label@1593598058># n i l )
(no−op)
( l a b e l #<Label@186515422># n i l )
( s e t− l o c a l y n i l 1)
(no−op)
( s e t− l o c a l y−sup−p n i l 2)
(%pop−no−args )
( push− local y 1 ) )

56



FlagsOpcode

C

Immediate Data

O
31 23 15 0

Figure 3.2: Gozer Instruction Format

another (as in the conceptual description), but to make this process more efficient—

and particularly to avoid allocating temporary memory—the GVM simply reverses

the apparent direction of a portion of the operand stack. In this way, the argument

register stack becomes simply a reversed window onto the main operand stack, and

function calling overhead is minimized.

3.3 Bytecode Design

In designing the bytecode for a virtual machine, as in designing the instruction set

for a physical machine, tradeoffs must be made. The Gozer bytecode emphasizes

ease of interpretation and compilation through a very regular instruction format.

This comes at the expense of some degree of compactness, and, for rare instruction

sequences, some potential performance degradation.

The design of the Gozer bytecode reflects some ideas found in the GNU CLisp

bytecode [16], as well as some ideas found in the Scheme interpreter developed in

[30].

Notably absent from the Gozer bytecode are arithmetic and logic instructions.

In Lisp, arithmetic is written as a function application like any other, and, in fact,

Gozer implements arithmetic using functions. This is not as slow as it might seem,

for reasons which will be explained shortly.

3.3.1 Instruction Format

A Gozer bytecode is a 32-bit quantity. The leftmost 8 bits specify the opcode or

unit of dispatch, the next 8 bits are used for opcode dependent flags which modify

the behaviour of the operation, and the remaining 16 bits are always taken as an

unsigned integer.

57



Within the opcode, the leftmost bit is used as a flag to indicate that the low

16 bits should be interpreted as the index of a constant in the constant pool. The

second bit is used as a flag that the low 16 bits are an offset in the bytecode stream.

These two flags are a convenience in the instruction decoder, but are primarily used

to make disassembly of the bytecode simpler—the disassembler uses them to display

constant values and textual labels in a generic fashion, without having to understand

the format of each individual instruction. These two bits worth of flags mean that

the number of possible distinct opcodes is reduced from 256 (28) to 64 (26). Half of

these are currently defined. These opcodes are described in Appendix A.

Function Call Opcodes

Almost half of the defined bytecodes are related to function calling. Four of them

are different ways to call functions, and the remainder are the argument parsing

opcodes described in Section 3.2. Each of the function calling opcodes uses its flag

byte to encode the number of arguments the function is being called with. For

implementation simplicity, Java’s primitive byte type, which is signed, is used in

the instruction decoding phase, thus limiting the maximum number of arguments

to a function to be 127.

The JSR (Jump SubRoutine) opcode is used when one Gozer function calls an-

other Gozer function. Gozer is late-bound, so functions are usually called by name,

and the constant index refers to the symbol that names the function. Function

lookup proceeds using this name and control is passed to the located function. For

system-provided functions, however, the constant index may actually refer directly

to the function object, and the name lookup step is skipped for improved perfor-

mance.

The JPRIMITIVE (Jump Primitive) opcode is used to implement certain low-

level functions (including arithmetic) and special forms. The constant is a reference

58



to a system-provided function object that implements the required functionality.

JPRIMITIVE is used in Gozer where other systems might typically add additional

special-purpose bytecodes. Because primitive functions have full access to the Gozer

environment, and effectively serve as extensions to the interpreter, they raise the

level of Gozer’s virtual machine interface [32].

Integration with arbitrary Java or Groovy methods (see Section 2.3.4) is provided

through the JJAVA opcode. This opcode directly corresponds to the Gozer language

· special form, and is also emitted when symbols from imported Java packages are

used in the function place of a form. The constant entry for this opcode is only

a reference to the name of the method to call. The actual method is found at

runtime using the type of the provided ‘this’ object and the types of the provided

parameters. This makes interaction with Java extremely dynamic and facilitates

code evolution and “duck-typing,” but it does extract a performance penalty. In the

future, the compiler might support declarations that tell it to resolve Java references

statically,and the constant index would then refer to an actual Java Method object.

The final function call opcode defined is also the most special purpose. JRECUR

was initially added to support recursive local functions defined with the labels special

form. Local functions created this way must shadow any global function of the same

name, so they cannot be found by name. Furthermore, local functions are closures

created on-demand, so they also cannot be placed in the constant pool and called

with that form of JSR. Instead, JRECUR looks on the runtime function call stack to

locate the actual function object currently executing, and passes control back to

(a new invocation of) it. This proved to be a worthwhile optimization to make for

general recursive functions as well.7

7This means that recursive functions are not late bound to themselves, making it impossible to
trace them.

59



3.4 Java Exception Handling

In Gozer, errors are signaled and handled through the condition system of Section

2.4. Java, on the other hand, uses the try/catch system of exception handling.

The responsibility of integrating the two disparate systems falls to the GVM. The

integration must function in both directions, allowing Gozer code that invokes Java

code to handle Java exceptions, and allowing Java code that invokes Gozer code to

catch Gozer signals.

Arbitrary Java code is invoked when interpreting an JPRIMITIVE instruction,

and especially when interpreting an JJAVA instruction, so arbitrary Java exceptions

(subclasses of Java’s Throwable) may be thrown at those times. The GVM interpreter

loop catches all these exceptions by catching Throwable. In the catch block, the

GVM constructs a new stack frame containing a call to Gozer’s error function8, with

the caught exception as the top argument on the argument stack. This frame is

pushed onto the evaluation stack, and the loop continues its next iteration. In

effect, it is as if the Java code itself had called error. In this way, a Java exception

is seamlessly transformed into a Gozer signal. Of course, the Java stack has already

unwound and so Java code cannot supply Gozer restarts; however Gozer code that

called Java can.

When the error function is invoked, either directly by Gozer code or indirectly by

the GVM in response to an exception, it does not return normally. It must either

transfer control to a handler function, invoke a debugger, or, when no debugger is

available, terminate Gozer execution (unwinding the stack as appropriate) and prop-

agate the exception (throw it) to the calling Java code. In order to cause execution

to terminate, the running Gozer error function must be able to communicate with
8If the error function is not bound, as may be the case if an exception is thrown early in the

bootstrap process, the exception is simply allowed to propagate.

60



Listing 3.5: Simple Nested Interpreter
; ; ; pseudo−code demonstrat ing how nes ted i n t e r p r e t e r s
; ; ; a r i s e and how con t ro l− t r an s f e r must pass from a nes ted
; ; ; i n t e r p r e t e r to the outer i n t e r p r e t e r
( handler−case

; ; gozer code e s t a b l i s h e s handler ,
; ; then c a l l s Java
t r y {

//Java c a l l s back in to Gozer
// wi th in a t r y / catch b l o c k
( c a l l− i n t o−goz e r )

}
f i n a l l y {

impor tan tC l eanup ( ) ;
}

( e r ro r ( e ) . . . ) )

the GVM interpreter in which it is running. Although an opcode could be provided

for this purpose, the fixed limit on potential opcodes made it desirable to use a more

general mechanism. Also, there are times when Java primitive functions would like

to communicate with the running GVM, and they cannot use an opcode (or the

return value, which was already used). Java exceptions are used to implement this

more general mechanism, together with the Java primitive function %throw. The

GVM defines a subclass of Throwable, VMOnlyException, which is caught and han-

dled specially by the GVM, before the general error-handling mechanism. To cause

execution to cease, the error function throws (using %throw) a VMOnlyException

which the GVM catches and then re-throws to Java. In this way, Java code is able

to catch and handle Gozer signals that are not handled within Gozer.

3.4.1 Nested Interpreters

A particularly subtle case arises when there are nested interpreters running and the

nested interpreter catches a Java exception.9 That is, when Gozer code calls Java

code that in turn calls back into Gozer code which ultimately throws a exception.
9Actually, this case arises for any signal raised by a nested interpreter but the treatment is the

same and involves the support of the GVM.

61



This happens, for example, when Gozer code supplies an implementation of a Java

callback interface through new-proxy or automatic function coercion. The nested

interpreter is running the same image as the enclosing interpreter, so any Gozer

signal handlers established will be visible, including those that would transfer control

“above” the nesting. Yet if the nested interpreter itself allowed this control transfer,

the interpreter would still be nested and any cleanup established through finally

blocks by the Java code would not execute and any Java catch blocks that should

catch the exception before propagating it to the caller would be bypassed. When

the nested interpreter ultimately did complete execution, the Java code would likely

be in an inconsistent state, as would the outer interpreter.

Listing 3.5 shows a simple pseudocode example of this situation. For simplicity,

the example illustrates only one level of nesting; however, nesting of any depth is

possible. Further complications arise if the nested Gozer interpreters introduced

unwind-protect forms that must be honored, and if the enclosing interpreter wants

to handle the exception not by unwinding the stack but by invoking a restart estab-

lished in the nested interpreter (Listing 3.6). The GVM properly handles nesting to

arbitrary depths and correctly unwinds the Gozer stack when a transfer of control

occurs across nesting levels, but it does not yet correctly handle the case of a restart

(or other non-local control flow forms encountered while unwinding the stack), as-

suming instead that the stack should always be unwound to the handler. In practice,

this has been adequate as complex signal handling is usually relatively localized and

unlikely to cross interpreter boundaries.

Handling nested Gozer/Java calls is the single most complicated area of the Gozer

condition system. There are four parts involved in handling nested interpreters.

The first is knowing whether or not the current interpreter is nested, and thus

whether or not an unhandled exception should be propagated or passed to the

62



Listing 3.6: Nested Interpreter With Restort
( handler−bind ( ( e r ro r ( lambda ( e ) ( i n v o k e− r e s t a r t ' continue ) ) ) )

; ; gozer code e s t a b l i s h e s handler ,
; ; then c a l l s Java
t r y {

//Java c a l l s back in to Gozer
// wi th in a t r y / catch b l o c k .
//Gozer e s t a b l i s h e s a r e s t a r t
( restart−case ( r a i s e− e r r o r )

( continue ( ) n i l ) )
}
f i n a l l y {

impor tan tC l eanup ( ) ;
})

enclosing interpreter. The GVM does this by tracking its nesting depth using a

Java thread-local counter. Each entry into the GVM increments the depth, and

each exit decrements it. The second part is handling the Gozer stack unwinding at

the correct time and in the correct interpreter. This is also accomplished through

the use of a thread-local variable, with each nested interpreter contributing any

necessary cleanup items to be executed by the handler. Third, determining whether

an exception is handled by code that has executed within the nested interpreter

requires not just the simple search of handler bindings performed in the non-nested

case, but a search of handler bindings only back to the depth established upon

entry to the nested interpreter, which requires knowledge of how handler bindings

are established in the environment. Finally, when a transfer of control from one

interpreter to another is required, a GVM-only exception (OneLevelUp) is thrown

and Java unwinds the stack from one interpreter to the container.

3.5 The Compiler

The compiler is an important component of the Gozer system, occupying as much

or more code than the GVM’s bytecode interpreter. Like the reader, the compiler is

a very programmable piece of the system, potentially interacting with programmer-

63



provided code during the compilation process. Beyond simply transforming Gozer

S-expressions into GVM bytecode, the compiler has a few other responsibilities. The

remainder of this chapter describes the compilation process; the term compiler is

used generically to refer to all the components involved in this process (e.g, the

assembler and the optimizer).

3.5.1 Compilation Phases

Compilation begins when the reader passes an S-expression it has produced and

expanded any macros present in it (which themselves were previously compiled and

were then executed by the GVM to produce the expansion)10 to the compiler. The

intermediate output of the compiler is an S-expression representing the primitive

operations supported by the GVM, a form of assembly language. Each primitive

operation is represented as a list, usually corresponds to one GVM opcode, and

is analogous to an instruction mnemonic in machine assembly. This S-expression

is finally assembled into bytecodes by resolving labels, encoding constants, and

producing a finished instruction stream.

The initial S-expression is recursively traversed until the process reaches a lit-

eral constant value, a symbol, or a special form—anything that remains must be

a function application. Following the evaluation rules, constant values in incoming

S-expressions simply become constant values in the assembly.

Symbols are variable references (or constants imported from Java packages), and

primitive assembly for either a lexical (heap or indexed) or dynamic variable ac-

cess must be output. In order to produce the correct primitive, the compiler must

keep track of the names and locations of known lexical variables and imported con-

stants (anything else is assumed dynamic). The GVM keeps track of imported Java
10As a practical matter, this expansion is handled by some of the same code that handles the

later phases so that logic about name resolution, in particular, lexical macros, can be shared.

64



constants (through side effects of the import-from-java macro), but lexical variable

bookkeeping is handled by the let special form itself.

Special Forms and Functions

Special forms are found in the first position in a list, the same as function appli-

cations. This allows the compiler to use the same mechanism to resolve functions

as it does special forms. A special form is represented by an implementation of a

particular Java interface (and special forms are always implemented in Java). The

compiler delegates the compilation of such a form to the special form Java object.

Sometimes, the special form object will modify the state of the current compiler

(as with the declare form when variables are given types or functions are depre-

cated). More often, the special form will create a second, nested, compiler that

contains new information and use this new compiler instance to recursively compile

its body, before returning the result to the original compiler. In the case of let, for

example, the special form will create a new compiler with knowledge of the newly

introduced lexical variables and this compiler will be able to reference the correct

lexical locations for the variables. Likewise, the lexical function and macro binding

special forms (macrolet, flet and labels) will use a nested compiler that has altered

name lookup rules. This recursive process is elegant and matches the structure of

the code itself.

When all the arguments in a list have been evaluated and the first position

contains a name that is not a special form, the compiler will emit a function call

primitive. Depending on the name lookup rules in place, this may be a direct call

to a function object, or a late-bound, name-based call as described in Section 3.3.1.

65



Compiler Macros and Symbol Macros

The description in the previous section assumes that the programmer has not in-

stalled any symbol or compiler macros, two concepts that Gozer includes from Com-

mon Lisp. Symbol macros can be installed by the programmer to change the mean-

ing of a bare symbol (i.e., not in the function-application place in a list). Instead of

being taken as a variable reference or a constant, the symbol instead expands into

an arbitrary S-expression that is then compiled in place of the original symbol. This

capability is typically used to provide shorthand notation for commonly repeated

actions, is usually used with a normal macro, and is limited to lexical scope. An

example is the Clos-inspired macro with-slots for quick access to the properties of

an object. Therefore, when a bare symbol occurs, the compiler may need to execute

programmer provided code before continuing.

Compiler macros apply to any function or macro application and are associated

with the name in the application place. Although they can have many uses [24],

in Gozer they are most often used to provide optimization advice to the compiler,

at the S-expression function or macro optimization level. Due to the nature of the

Gozer language and libraries, it is often easier to implement such optimizations in

Gozer itself rather than in Java. For example, Listing 3.7 shows the compiler macro

for transforming the (relatively expensive) functional iteration method mapcar into

a simple loop when the iteration function is a compile-time constant. Again, this

means that at any function or macro application site the compiler may be required to

execute programmer provided code before continuing. Compiler macros and symbol

macros that cause the compiler to run programmer provided code can be likened to

Java’s annotation processors.

66



Listing 3.7: Mapcar Simplification Compiler Macro
; ; ; I t e r a t i o n s over a cons tant number o f l i s t s can be opt imized
; ; ; This example shows only 1 l i s t and only l i t e r a l lambda exp r e s s i on s
( def ine−compi le r−macro mapcar (&whole w fn &rest l i s t s )

( i f (= 1 ( length l i s t s ) )
; ; r e p l a c e wi th the e q u i v a l e n t d o l i s t form .

( cond
; ; l i t e r a l lambda exp r e s s i on s can be i n l i n e d .
; ; (mapcar ( lambda ( x ) . . . ) l i s t ) ⇒
; ; ( l e t ((% res ( l i s t ) ) ) ( d o l i s t ( x l i s t ) ( append ! %res . . . ) ) )
((% lambdap fn )

`( l e t ((% r e s ( l i s t ) ) )
( do l i s t ( , ( f i r s t ( second f n ) ) , ( f i r s t l i s t s ) )

(append ! %r e s ( progn ,@( cd r ( cd r fn ) ) ) ) )
%r e s ) )

. . . )
w) )

Code Analysis for Warnings and Optimizations

The compiler has a few other responsibilities, including emitting warnings, tracking

types, and optimizing the generated assembly. These tasks require the compiler

to have a certain level of semantic understanding of the source code, as well as to

interact closely with the GVM and the state of the Gozer image.

The programmer can ask the compiler to emit warnings with the declaim special

form. Warnings can be emitted for suspected type violations, invocations of Java

classes, properties or references that might not be satisfied, application of functions

that are not known to be defined, and usage of deprecated features. Both Gozer-level

deprecations and Java-level deprecations are respected. When a warning is emitted,

it is done using the standard condition system, meaning that the programmer is

able to capture specific warnings (or all warnings) and take action as desired.

The compiler performs a limited version of type inference and propagation. This

information is used primarily to output diagnostics and warnings to the programmer

and for generating documentation. The compiler can become aware of type infor-

mation in three ways: a compile-time constant has a known type, a non-ambiguous

67



Listing 3.8: Type Inference Examples
; ; Functions o f de f ined type
(− 1) ⇒ Number
(+ 1 2 (∗ 3 4) ) ⇒ Number

; ; Un−ambiguous Java methods
( j a v a . l a ng : : Thread . ho ld sLock 1) ⇒ Boolean

; ; A v a r i a b l e whose va lue beg in s as a cons tant
( l e t ( ( x 1 . 2) ) x ) ⇒ Double
; ; Assignments propagate the type
( l e t ( ( y 1 . 2) x )

( s e t q x y )
x ) ⇒ Double

; ; Then un i f y to a genera l number f o l l ow i n g a func t i on
; ; t h a t r e turns on ly a number
( l e t ( ( x 1 . 2) )

( s e t q x (1+ x ) )
x ) ⇒ Number

; ; F ina l l y , a f t e r an assignment whose on ly common type
; ; i s Object , t h a t becomes the i n f e r r e d type
( l e t ( ( x 1 . 2) )

( s e t q x ' f oo )
x ) ⇒ Object

Java method is invoked on an object of a known type, or the programmer supplies

type information (for a variable or the result of a function) using declare. If the

programmer supplies variable type declarations, and the compiler can prove the

declarations are violated (with rudimentary linear flow analysis), an error is emit-

ted; otherwise, extra runtime checks are inserted using the CHECK_VAR instruction.

Listing 3.8 shows some expressions and the resulting type the compiler is able to

infer.

The Gozer compiler performs only the simplest of analyses and cannot be truly

considered an optimizing compiler. Nonetheless, there are certain differences in

the final generated assembly that depend on the optimization preferences in effect.

Thees differences may arise as code is being compiled into assembly, or during a final

peephole optimization pass at the end of compilation. Two of Common Lisp’s four

standard optimization axes are supported, execution speed and safety, each taking

68



on values between 0 (low) and 3 (high). These axes may be influenced locally with

declare or more globally with declaim.

When low safety levels are requested, the CHECK_VAR instruction is omitted, as

is the instruction that checks that all arguments are consumed by a function call

(as mentioned in Section 3.2). Higher safety levels result in the addition of instruc-

tions to explicitly clear references to local variables when exiting a lexical scope for

improved garbage collection and process migration.

When higher execution speed is requested, the if special form (to which most

control-flow macros ultimately expand) performs dead-code elimination and con

omit jumps. The usage of an array for local lexical variables is a more important op-

timization enabled by higher safety levels, as is the combination of multiple argument

binding instructions into the single LL_POP_AND_BIND instruction. The combination

of two sequential accesses to lexical variables into a single PUSH_LOCAL_VAR instruc-

tion is also enabled at higher optimizations and can improve function call speed. The

first two of these optimizations are performed during assembly generation, while the

last two are performed during peephole optimization.

This concludes the discussion of the Gozer language and implementation. The

next chapter covers the primary application of the Gozer language, its use in the

Gozer Workflow System.

69



Chapter 4

Workflows

Although Gozer performs well as a general purpose scripting language, its intended

use case is the implementation of complex business processes called workflows. The

component of the Gozer Workflow System that provides workflow functionality is

called the Vinz module, and it runs within the “BlueBox” distributed computing

environment. It is the goal of Vinz to make it easy to implement these complex

business processes, and to make it easy to monitor and manage them in operation

while also being robust and capable of handling partial systems failures.

There is great diversity in the workflows that Vinz is required to support. Work-

flows may be either long running (hours or days) batch processes or quick interac-

tive processes (seconds). They may be initiated by external events or repeated on a

schedule. Workflows may accept thousands of input files and produce gigabytes of

results or accept only one input and produce only one result. In all of these cases,

it is the responsibility of the workflow system to make the best possible use of the

computing cluster’s resources, keeping in mind that the workflows are not the only

resource consumers.

70



Listing 4.1: Sums-of-Squares Variants
( defun loc−sum−squares ( numbers )

( apply #'+
( loop f o r number i n numbers

c o l l e c t (∗ number number ) ) ) )

( defun par−sum−squares ( numbers )
( apply #'+

( loop f o r number i n numbers
c o l l e c t ( future (∗ number number ) ) ) ) )

( defun dist−sum−squares ( numbers )
( apply #'+

( for−each ( number i n numbers )
(∗ number number ) ) ) )

4.1 Overview

Gozer’s distribution facilities, and in general its integration with the BlueBox plat-

form, are provided in a module known as Vinz. Vinz offers a simplified set of

abstractions to workflow authors intended to make writing fully distributed, concur-

rent workflows as similar to writing local, sequential programs as possible. As with

local parallelism, opportunities for distribution are written in a declarative fashion,

and the details of implementation are provided by the platform.

Listing 4.1 shows example functions for computing the sum of squares in map/re-

duce style. The function loc-sum-squares performs the computation entirely locally

using Gozer’s sequential loop construct for the map step (squaring the numbers)

and a sequential application of addition for the reduce step.

The function par-sum-squares allows for a degree of local parallelism in the map

step by using the GVM-supported future construct, as described in Section 2.3.6.

However, shared-memory thread-based local parallelism has a number of disadvan-

tages for the construction of large, complex, evolving processes. First, it doesn’t

scale well beyond a single physical machine. The potential for side-effects makes it

challenging to evolve a local process over time or to integrate code from multiple

71



authors. Any robustness in the case of machine failure such as the saving and resum-

ing of intermediate states must be programmed explicitly for each process. Finally,

especially in the case of long running processes, it may be desirable to “suspend” a

process in order to allow a higher-priority process to use scarce resources such as

memory; such suspension would similarly require explicit handling in the design of

each process. Gozer’s distributed workflows automatically overcome these difficul-

ties by allowing a single process to span multiple machines, by using a fork/join

paradigm that limits or prohibits side-effects, by automatically creating and main-

taining persistent checkpoints, and by using non-blocking, zero-resource consuming,

event-driven processing.

The function dist-sum-squares demonstrates the simplicity and advantages of dis-

tributed programming with Vinz. Choosing an appropriate level of concurrency,

distributing work to available nodes, gathering results, and continuing the computa-

tion when all concurrent work is completed are all automatically handled by Vinz.

Importantly, waiting for computations to complete is event driven and consumes no

resources. Even though conceptually dist-sum-squares blocks awaiting the for-each

results, no actual blocking occurs because the (distributed) process state is saved to

persistent storage and is restored only after all necessary results are available. This

type of distribution may be nested to an arbitrary depth and the results of each

step may be arbitrarily complex.

4.1.1 Tasks and Fibers

A running instance of a particular Vinz workflow is called a task. Every task contains

one or more fibers. A task is to an operating system process as a fiber is to a thread.

A fiber represents a Gozer flow of control that may be advancing in only a single

Java thread in the distributed environment at any given time. Fibers may be halted

at any point permitted by the GVM. When halted, a fiber is saved to persistent

72



Intermediate 
Steps SuccessNS:BEGIN

NS:END

NS:FAILURE
No

Yes

Repeat

Figure 4.1: Process Lifetime

storage, and it can resumed at some later date, possibly on a different machine or

within a different Java Virtual Machine.

Every fiber is uniquely identified by a ProcessID. A fiber may have one parent

and zero or more children. A fiber is in some state starting with NS:BEGIN and

ultimately terminating with either NS:END or NS:FAILURE; other possible states

between these two are user defined (see Figure 4.1).

An external entity called the NotificationService is responsible for creating the

unique ProcessIDs identifying fibers (and other processes, all of which start in the

NS:BEGIN state and terminate in either the NS:END or NS:FAILURE state), and

tracking their states. When a process terminates, the NotificationService may inform

other entities of this fact.

The for-each and parallel macros described in Section 4.2.4 create and manage

fibers automatically. The relatively recent fork-and-exec and join-process forms of

Section 4.2.4 allow advanced users to manually create and wait for their own fibers.

4.1.2 BlueBox

Vinz was implemented within the existing BlueBox distributed system and service

framework, and this system’s properties influenced much of the design and implemen-

tation of Vinz. This service framework is an implementation of a service-oriented

architecture, or SOA, intended to support both interactive usage and batch process-

ing. The goal of an SOA is to achieve modularity and scalability in the system

by dividing responsibilities among well-defined services. Each service publishes and

73



adheres to an interface that defines the set of related operations the service provides.

The service is invoked by clients who provide the input (request) to the operation

and process its results (response). The implementation of a service is free to evolve

as long as the interface remains compatible with existing clients. To allow for re-

dundancy and load balancing, there may be many running instances of a service

spread across some number of the nodes that make up the distributed system (clus-

ter). These instances all provide the same interface; thus, service clients need not

be concerned with which instance processes any given operation.

In the BlueBox SOA, clients and services are logically disconnected from each

other. They interact by sending well-defined messages (even when physically run-

ning within the same JVM). These messages take the form of an XML document

that adheres to the description in the service’s interface definition, itself also an

XML document known as a WSDL. The developer of the service provides an im-

plementation of each operation defined in the interface and provides metadata with

the service allowing the service framework to route incoming requests to the desired

implementation for processing.

Conceptually in BlueBox, a client places a request message on the enterprise

service bus, which is then responsible for delivering the message to some instance of

the desired service, or even buffering the message if no instance is currently available

to handle the request, due to high load or system downtime. For BlueBox, the service

bus is an implementation of the Java Message Service (JMS) message queue; the two

terms are used interchangeably. The service bus load balances among all instances

by keeping track of the number of requests that are in progress within any given JVM

and not allowing that number to exceed preset limits, and by giving precedence to

higher-priority requests (e.g., interactive requests have a higher priority than batch

requests). The service bus is also responsible for handling the failure of an instance

74



when processing a request, transparently re-directing the request to another available

instance. Once some instance has processed the request, the response is also placed

on the service bus for delivery to the calling client. The BlueBox service framework

handles the details of interacting with the service bus, including the creation and

addressing of messages. The service is the primary unit of deployment, configuration,

and operational management within the BlueBox service framework, but individual

operations within a service may be monitored and configured for load balancing

purposes as well.

4.2 Distribution

A distributed workflow is written as a Gozer program (or script) which may make

requests of BlueBox services or execute Java or Gozer code and which may contain

constructs intended to take advantage of distributed parallelism. It is the job of Vinz

to take this program and make it possible to run it on the nodes of the BlueBox

cluster, automatically handling all the details related to distribution and robustness.

This section describes how this is accomplished, beginning with how Gozer programs

can be deployed and run on the BlueBox service framework before moving on to

specific aspects of workflows.

4.2.1 Workflow Services

The BlueBox service framework (and much of its supporting infrastructure) operate

at the level of the service. It is the service that is deployed to the Bluebox nodes,

and it is only through the operations provided in a service’s interface that clients

can interact with services, or services can interact with other services. It is natural,

then, that the way in which a Gozer program is presented to the BlueBox service

framework is as a service. Such a service is called a workflow service, and although

the service author can provide his own operations (and their implementations) as

75



Operation Description
Start Asynchronously begin execution of a workflow, immediately

returning its id. Used for batch processing.
Run Synchronously execute a workflow, returning its id when com-

plete. Used for interactive processing where the workflow’s
side-effects matter most.

Call Synchronously execute a workflow, returning its last result.
Used to treat an entire workflow as a value-returning service
operation.

Terminate Management operation to asynchronsly terminate any run-
ning workflow.

RunFiber Begin execution of a portion of the workflow on this instance.
AwakeFiber Resume a suspended parent fiber when a child fiber has com-

pleted.
ResumeFromCall Resume a suspended fiber when a remote operation completes.
JoinProcess Resume a suspended fiber when any arbitrary process has

completed.

Table 4.1: Vinz Service Operations

with any other service, Vinz always provides a standardized set of operations that

are used to manage the functionality of distributed workflows. These operations are

enumerated in table 4.1. The implementation code for these operations is the same

across all workflow services (in fact, it is contained in an extension to the BlueBox

service framework itself); the only thing that differs is the Gozer program.1

Execution of a workflow is commonly initiated by invoking the Start operation

with a set of workflow-defined parameters. This causes the creation of a task and its

corresponding ProcessID, which uniquely identifies that particular running instance

of the workflow (a particular workflow service may have many outstanding tasks at

any one time). Every task contains one or more uniquely identified fibers (initially

one). As mentioned previously, a fiber encapsulates a Gozer flow of control that

may be advancing on only a single node at any given time. A task is somewhat
1Combining this fact with the eval capability of the Gozer language and the ability to provide pa-

rameters to a workflow service leads to the interesting ability to define and execute new distributed
workflows on the fly simply by writing Gozer scripts and using that as input to a workflow service
which evals them. This is useful for testing purposes, but is not used in production because it
complicates monitoring.

76



analogous to an operating system process, while a fiber is analogous to a thread

within that process.

Once Start has created a task and fiber, it prepares the environment in which

the main fiber will execute, and, with the support of the GVM, saves its initial

continuation (state) to persistent storage. The Start operation then issues an asyn-

chronous invocation of the RunFiber operation with a parameter identifying the

newly created fiber. Its job complete, Start now returns the task’s ID to the caller,

often (indirectly) the system operator, who can use it to monitor the progress of the

task. The Run and Call operations proceed similarly, postponing the returning of

results until the entire workflow task is complete, thus allowing the caller to treat a

workflow as a synchronous service invocation.

When the message queue delivers a RunFiber request to an instance of a Vinz

workflow service, the fiber’s continuation is loaded from persistent storage, and

the GVM begins executing that continuation. The GVM continues to run until

the program has been completed, or until the next continuation is requested, at

which point the fiber is halted and its state stored for later execution. At this time,

continuations are always implicitly or explicitly requested by the Gozer program,

but they could also be requested by the system operators for management purposes.

While running, a fiber can create and execute (via RunFiber) other fibers. These

fibers are children of the first fiber. The for-each and parallel macros described in

Section 4.2.4 create and manage fibers automatically. The fork-and-exec and join-

process forms of Section 4.2.4 allow advanced programmers to manually create and

wait for their own fibers.

4.2.2 Non-Blocking Service Requests

In practice, Vinz workflows largely consist of requests to other BlueBox services. In

a traditional synchronous service invocation, the sender is blocked until its request

77



Start

RunFiber

for-each

AwakeFiber

Loop-1 Loop-2 Loop-3

ResumeFrom
Call

Figure 4.2: Sample Workflow Lifetime

has been delivered by the message queue, the service has completed processing,

and the results are returned by the message queue. During this time, the sender

is consuming resources (physical memory and a BlueBox request “slot”) without

making any progress; in essence, those resources are being wasted. An ordinary

asynchronous request does no better unless the sender can find other work to do, a

situation that is complex to achieve.

Vinz workflows address the problem of wasted resources by automatically exe-

cuting a Gozer yield statement when a fiber makes a service request. The request

message is sent asynchronously, and the message queue is instructed to deliver the re-

sponse to any workflow service instance by means of its ResumeFromCall operation,

not necessarily to the sending thread or instance (as with a traditional approach).

While the service request is being delivered and processed, the sending fiber’s state

is saved to persistent storage. Later, when the response message is available and

78



delivered to some service instance’s ResumeFromCall operation, the fiber’s state is

restored and processing is resumed in that instance.

Overall, this allows many more tasks to be in progress at any one time. Wall-

clock time, CPU resources and memory that would otherwise have been wasted

blocking can now be used by a different task to make progress. Because the message

queue is constantly load balancing in-progress requests and making decisions based

on priority, this also helps to improve interactive usage (interactive requests are

less likely to be held up by individual long-running batch workflows). In addition,

together with the entire state of the task being regularly persisted to stable storage

and the message queue providing buffering and re-delivery of messages in case of

instance failure, this makes for a highly robust system: one in which the failure of any

instance will result in minimal delays as other instances automatically compensate.

There are some cases where the service operation is expected to execute very

quickly, and therefore the relative overhead of the aforementioned task migration

might be considerable. In these cases, the programmer can, statically or dynamically,

choose to require Vinz to make a traditional synchronous request. Another situation

that calls for the synchronous approach is when a service request is attempted from

a future’s background processing thread. It’s generally not possible for process

migration to occur for a single future (what state should be persisted? what about

other futures, or the main fiber thread?) so Vinz detects this and automatically

makes a traditional synchronous request from that thread.

4.2.3 Deflink

Vinz takes advantage of the dynamic code-generation features of Gozer macros and

the published service interfaces to make it easy for a workflow to interact with any

service. A macro called deflink provides this functionality. This macro requests a

service’s interface in the form of an XML document, parses it, and then generates

79



a set of functions to invoke each operation the service publishes, together with the

appropriate placement of yield statements to make the request non-blocking. The

XML message structure is flattened into a set of parameters for the function, and

the function is capable of coping with complex XML trees by using corresponding

Gozer data structures.

As part of the source code for the workflow, each deflink is evaluated when the

source code for the workflow is loaded. This ensures that the functions generated will

be appropriate for the service version currently operating, which provides protection

against minor version incompatibilities. If for some reason an operation cannot be

interacted with from a Gozer function, deflink instead generates a Gozer macro

that signals an error. In this way, if and only if the workflow tried to invoke that

operation, a compile-time error will occur and the workflow will not be loaded, thus

avoiding runtime errors.

Listing 4.2 shows an example invocation of the deflink macro, and some of the

generated functions (edited for size). Notice that the documentation specified in

the interface document is preserved for the Gozer programmer. The function SM-

ListSessions-Method provides the high-level interface using named keyword function

arguments. The function SM-ListSessions actually invokes the service, handling the

case of background threads as well as using Gozer’s condition system to provide

optional restarts in the event of error (see Section 4.2.5 for more on error handling).

4.2.4 Forking Fibers

As discussed earlier, the fundamental unit of computation in a Vinz workflow is a

fiber. A fiber can be running at most once on one node in the BlueBox environ-

ment, and every workflow begins with a single fiber created by the Start operation.

Therefore, in order for workflow processing to take advantage of multiple nodes in

the cluster, multiple fibers must be created.

80



Listing 4.2: Deflink
( de f l i n k SM : wsdl "urn : secur ity−manager−service "

: port "SecurityManager " ) ⇒

( defun SM−ListSessions−Method
(&key F i l t e rPa r ams WithinRealm )

"Returns a l i s t o f s e s s i o n s v i s i b l e to the . . . "
( l e t ( ( msg ( create−message "SM−ListSessions " ) ) )

( . msg ( set "Fi l terParams " F i l t e rPa r ams ) )
( . msg ( set "WithinRealm" WithinRealm ) )
( SM−Li s tSess ions : message msg ) ) )

( defun SM−Li s tSess ions (&key message )
"Returns a l i s t o f s e s s i o n s v i s i b l e to the . . . "

( restart−case
( l e t ( ( r e s pon s e

( cond
((% i s− f i b e r− t h r e a d )
( ca l l−wsd l−ope ra t i on−async
: soap−action " . . . : L i s tSes s i ons "
: message message )

( y i e l d ) )
( o t h e rw i s e
( c a l l−wsd l−ope r a t i on
: soap−action " . . . : L i s tSes s i ons "
: message message ) ) ) ) )

( parse−wsd l− response r e s pon s e ) )
( i g n o r e ( ) ( log " Ignor ing an except ion " ) )
( r e t r y ( ) ( SM−Li s tSess ions : message message ) ) ) )

81



Fiber creation requires a parent fiber and a user provided function (often an

anonymous lexical closure is used to pass information to the new fiber). This parent

fiber and all of its state is first cloned to create a new child fiber. The child fiber’s

Gozer function call stack is replaced with a call stack invoking the user provided

function, and it receives a new ProcessID. (These operations are combined in the

primitive function fork-and-exec.) Finally, the newly created child fiber is scheduled

for execution by placing a RunFiber request on the message queue.

Fiber creation is somewhat analogous to Unix process creation with the fork sys-

tem call. Although the programmer visible values, objects, and variables in the child

fiber start out equivalent to those of the parent, subsequent changes by either fiber

will not be visible to its counterpart. This eliminates any burden of synchronization

when mutating variables and values, thus simplifying the programming model both

for the workflow author and the Vinz implementation, and it drastically reduces the

amount of distributed coordination that Vinz must perform.

Workflow authors have direct access to the ability to create new fibers through

the fork-and-exec function, which returns to the parent fiber the ProcessID of the

child fiber, while executing a supplied function in the child. A fiber can wait for any

other fiber to terminate using the join-process function (analogous to the Unix wait

function). A fiber that calls join-process ultimately invokes yield and so relinquishes

its resources until such time that the requested fiber terminates. If called from

a future’s background processing thread, join-process only suspends that thread,

leaving the rest of the fiber unaffected.

For-Each and Parallel

The fork-and-exec function, together with the join-process function are enough to

implement many useful distribution strategies. However, they are very low-level

and as such may be error-prone. Vinz provides two macros that are conceptually

82



Listing 4.3: Distribution Related Vinz Forms
( defun fork−and−exec ( f u n c t i o n &key f iber−name argument )

"Runs func t i on in a new f i b e r , r e tu rn ing i t s ProcessID" )

( defun j o i n−p r o c e s s ( p roce s s− i d )
"Causes t h i s f i b e r to block un t i l the f i b e r at process− id has completed" )

( defmacro for−each ( ( i tem ' i n i t ems &key t e s t name chunk ) &body body )
"Executes the exp r e s s i on s in body with the va r i ab l e at
item bound to each subsequent value returned from items
( that pass the te s t , i f g iven ) , each in a new f i b e r . Returns
a l i s t o f the l a s t va lue generated by each i t e r a t i o n . " )

( defmacro p a r a l l e l (&body body )
"Runs each expr e s s i on in body in a new f i b e r . Returns
a l i s t o f the l a s t va lue generated by each expr e s s i on . " )

layered on top of these functions that capture commonly used distribution patterns.2

The most commonly used of these macros is for-each, which implements the map

step of the map/reduce paradigm. Listing 4.1 provides an example of using for-each.

This macro takes as input a sequence of values, and for each value in that sequence,

executes the same body of statements. The results of these executions are collected

and returned to the parent fiber. The parent fiber was “blocked” (as with yield) until

all the executions were complete. The for-each macro completely abstracts away the

operations involved in setting up concurrent fibers and awaiting their completion.

Optionally, for-each may take additional arguments that modify its behaviour.

The :test argument, if provided, specifies a function predicate that will be applied

to each item. Only those items for which this predicate returns a true result will

be given to a fiber, allowing the programmer to dynamically filter the sequence.

The :name argument, if provided, can either be a string or a unary function that

returns a string, and is used to allow the programmer to provide meaningful names

for the fibers. Finally, the :chunk argument, if provided and non-nil, allows the
2Actually, these two macros, for-each and parallel, were implemented before the general fork-and-

exec support was available. Originally, they had to be implemented as complex Gozer primitives
(special forms) but over time the model has been generalized enough that now they can just be
simple macros while fork-and-exec is a function.

83



Listing 4.4: Vinz Spawn Limit
( l e t ( ( parent−p id ( get−process− i d ) )

( c h i l d r e n ( l i s t ) )
( func ( lambda ( number )

(∗ number number )
( awake parent−p id ) ) ) )

(append ! c h i l d r e n ( fork−and−exec func : argument 1) )
(append ! c h i l d r e n ( fork−and−exec func : argument 2) )
(append ! c h i l d r e n ( fork−and−exec func : argument 3) )
( y i e l d )
(append ! c h i l d r e n ( fork−and−exec func : argument 4) )
( y i e l d )
(append ! c h i l d r e n ( fork−and−exec func : argument 5) )
( y i e l d )
( y i e l d )
( y i e l d )
( c o l l e c t− c h i l d− r e s u l t s c h i l d−p i d s ) )

programmer to control the “chunking” of items from the sequence. Instead of using

one fiber for every item, items are grouped together into a chunk and processed

by a single fiber. The programmer may specify that items are to be processed in

parallel (using futures) or sequentially within a chunk, and, in the sequential case,

whether the first unhandled condition will halt the fiber or whether all items should

be processed. For items that will be processed with very short duration, chunking

can be more efficient by reducing fiber-management overhead, but it also potentially

reduces the robustness of the process.

Less frequently used is the parallel macro. This macro simply executes each of

the forms in its body as new fibers. The result of each form is collected and returned

to the parent fiber (which was again blocked).

If for-each or parallel is used from a background thread, it cannot yield the fiber

for the same reasons that a non-blocking service call cannot. The solution in this

case is to have the background thread fork a new fiber which in turn executes the

for-each or parallel code. The background thread synchronously (without yielding)

awaits the termination of this fiber.

The for-each macro in particular may result in an arbitrarily large number of

84



new fibers (a number equal to the number of values in the sequence) and their

corresponding RunFiber requests on the service bus. In order for cluster resources to

be shared among workflows in the desired way (not necessarily fairly), these macros

introduce a configurable throttling mechanism. Called the spawn limit this control

prevents any individual macro invocation from resulting in more than the configured

number of concurrently executing fibers at one time. The spawn limit may be

dynamically adjusted by the workflow. Listing 4.4 shows a simplified example3 of

what the macro in Listing 4.1 might expand as given the numbers from one to five,

if the spawn limit was three. The total number of yield forms will be equal to the

number of child fibers created, but their distribution will differ depending on the

spawn limit.

Listing 4.4 shows that the parent fiber must wait for each child fiber to awaken it

before moving on. The child fiber awakens the parent fiber by placing a message for

AwakeFiber on the service bus. This is more efficient than having the parent fiber

invoke join-process for each child fiber created since the child fibers may finish in any

order and in a for-each the order does not matter; only that the total number of yield

operations match the total number of AwakeFiber messages matters. While this is

simple and robust, it is also a fairly heavy-handed way of achieving parent/child

communication, however, and can introduce artificial bottlenecks and very bursty

behaviour.

Although the spawn limit addresses an operational problem, its implementation

currently is sub-optimal. Consider the case where the spawn limit is absent or very

high relative to the number of workflow service instances available, n, and suppose

that each child fiber is going to execute in approximately the same amount of time.
3In particular, awaking parent fibers is not performed by a function call the child fiber executes.

For reliability, it’s actually a property of the fiber itself. The fibers created by fork-and-exec do not
notify their parent of termination, but the fibers created by these macros do.

85



Initially, n child fibers will be executing concurrently. When they finish, n Awake-

Fiber messages will be placed on the message queue and delivered for execution. A

fiber can be executing on at most one instance at a time, so n − 1 of those Awake-

Fiber operations will be forced to wait while a single instance reads and updates

the persistence information. Each AwakeFiber instance will proceed in turn, but for

some period of time all n instances will be unavailable to process other activity such

as other RunFiber requests (and because instances are often shared across services,

even unrelated service operations may be blocked, something that Vinz seeks to

avoid). To partially counteract this problem, AwakeFiber requests are specified to

be low-priority, and a running AwakeFiber places a strict limit on how long it will

wait for its turn to execute the fiber before giving up and placing itself back on the

message queue for later delivery.

When the spawn limit is low (and especially if the spawn limit is low but the

number of child fibers is high), the overhead of sending an AwakeFiber message

for permission to spawn the next child can be high. It would be better if, as the

child fiber terminated, it could simply spawn whatever sibling fiber is next without

involving the parent. The main difficulty here is synchronizing access to the parent

so that it continues only when all of its children ultimately complete. Further work

is needed in this area.

Task Variables

Because fibers are cloned copies of their parents, side effects like variable or value

mutation are not visible between fibers. Child fibers created with the macros dis-

cussed in the previous section communicate to their parents by their return values

in a very functional fashion, which is a good fit for Gozer’s semi-functional nature.

In some cases, though, a distributed algorithm can be greatly simplified if some

mutable values could be globally shared between all fibers.

86



Listing 4.5: Using A Task Variable
( d e f t a s k v a r e x i t− f l a g

"A g l oba l f l a g . When t h i s becomes true , stop . " )

( defun dist−sum−squares ( numbers )
( for−each ( number i n numbers )

( un less ^e x i t− f l a g^
; ; don ' t do anyth ing i f the f l a g i s s e t
( i f (= −1 number )

; ; t e l l everybody to s top working !
( s e t f ^e x i t− f l a g^ t )
(∗ number number ) ) ) ) )

Vinz supports this mutable sharing through a concept know as task variables. A

task variable is declared at the top-level of the workflow program with the deftaskvar

macro, similar to the basic Gozer defvarmacro for defining global variables. All fibers

within a task of that workflow may access and update that variable. Vinz guarantees

that each fiber will see a self-consistent value for that variable and will always see

the latest value for that variable. Stronger promises such as access order or atomic

read-modify-update sequences are not provided.

Gozer global variables are conventionally given names that start and end with the

∗ character (“earmuffs”). Similarly, Vinz task variables are given names that start

and end with the ^ character, although this is a requirement, not just a convention.

In order to provide the desired semantics for task variable access, Vinz needs to

replace each read or write of the variable with a function call that performs the

steps of checking for a stale local cache, reading the most recent value from the

persistence store, taking out appropriate locks, etc. Vinz does this by hooking into

the Gozer source parser (the reader) using a reader macro defined on the ˆ character

(see Listing 4.6). Each occurrence of a task variable such as ^exit−flag^ in the source

file is read as if it were the form (%get−task−var '^exit−flag^).

87



Listing 4.6: Task Variable Reader Macro
( set−macro−character
#\^
( lambda ( the−stream c )

( d e c l a r e ( i g n o r e c ) )
; ; ^foo^ −> (%get−task−var ' foo )
( l e t ( ( var−name ( read the−stream t n i l t ) )

( va r− s t r ( symbol−name var−name ) ) )
( un less ( . va r− s t r ( endsWith "^" ) )

( e r ro r "Task vars must be wrapped in ^" ) )
; ; s t r i p the c l o s i n g ^ so t ha t we only wind up with one symbol t ha t
; ; we need to export , the same th ing g iven to d e f t a s k v a r . Make sure
; ; i t ' s in the same package as the o r i g i n a l

`(%get−task−var ' , ( i n t e r n ( subseq va r− s t r 0 (1− ( length va r− s t r ) ) )
( symbol−package var−name ) ) ) ) )

t )

4.2.5 Error Handling

An important part of a robust system is error handling, or, more generally, condition

handling. Vinz provides workflow authors with some convenient extensions built on

Gozer’s very general condition system, described in Section 2.4.4

At the core of these extensions is the concept of a named handler which is

created by the macro defhandler and utilized by the with-handler macro (Listing 4.7).

A handler associates a list of conditions (whether Java classes or QNames) with

an action (usually) provided by Vinz, making it possible to centralize condition-

handling logic. Instead of repeating the list of conditions every time the programmer

wants to take a certain action to handle a condition (in handler-bind forms spread

throughout the program), the programmer can define a handler once and use it

repeatedly in with-handler.

Vinz provides four actions (an action is just a function, so the workflow author

is free to define additional actions). Two actions, retry and ignore, just invoke an

active restart of the same name. The functions created by deflink bind these restarts,
4Before Gozer’s condition system was fully implemented, this same functionality had to be

provided with custom code.

88



Listing 4.7: Vinz Error Handling
( d e f h a n d l e r i gno r e−hand l e r

: java ( " java . lang . Throwable" )
: act ion i g n o r e )

( d e f h a n d l e r r e t r y−hand l e r
: java ( " java . net . SocketExcept ion " )
: code ( "{urn : s e r v i c e }Connet"

"{urn : s e r v i c e }Transmit" )
: act ion r e t r y
: count 5)

( w i th−hand le r i gno r e−hand l e r
( w i th−hand le r r e t r y−hand l e r

( op t i ona l− s o ck e t−ope r a t i on ) ) )

and the programmer can also bind them. The retry restart is intended to be used

to deal with possibly transient errors such as network connectivity failures without

the programmer being forced to write an explicit loop. Ignoring a condition can

be used to allow “optional” operations such as generating debugging data to fail

without impacting the workflow.

The remaining actions are break and terminate. These actions interact with Vinz

fibers and tasks. The former action is named for the Java keyword of the same

name. Intended to be used around a for-each distributed loop, the break action

causes the currently executing fiber to immediately terminate cleanly and return nil

to the parent fiber. In contrast, terminate terminates both the current fiber and the

entire task with an error status. Any other fibers that are currently running or are

queued by the service bus will notice that the task has terminated in short order

and also terminate in error.

Both local and distributed conditions can be handled with these extensions.

When a function created by deflink invokes a service, the response from the ser-

vice might be an error, conveniently expressed as an XML QName. The function

arranges for this QName to be signaled as an error, thus integrating distributed

error conditions into Vinz handling.

89



4.2.6 Implementation

Futures And Continuations

Continuations are not natively supported by the JVM (there is no way to capture

a JVM call stack and re-enter it later). This implies that the JVM’s operand stack

and function calling operations could not be directly used (without some sort of

exception-based transformation that may introduce its own limitations [39]). In-

stead, the GVM implements its own stack-oriented architecture, in many ways simi-

lar to the JVM’s architecture. The GVM call stack consists of ordinary Java objects

representing function calls together with arguments and local variables. These ob-

jects are used to create the continuations requested by yield. This is similar to the

approach taken by Stackless Python [40] and SISC Scheme [28]. Compilation to

bytecode (as opposed to a tree-walking interpreter) was introduced primarily as an

optimization for Vinz persistence.

In contrast with continuations, the JVM does provide the concept of futures

through its ExecutorService. The challenge for the GVM here was to make them

transparent to the programmer, completely managing their execution and determi-

nation, while allowing Vinz to integrate them into its distributed workflows (it is

problematic to migrate a fiber from one machine to another while some of its futures

were still running on the first machine). To do this, the GVM adopts the rule that

passing any future to a Java library or a BlueBox service will cause that future to

be determined. In addition, when capturing a continuation, futures referenced from

that continuation are determined (the continuation doesn’t become available until

all futures have completed). Finally, the BlueBox platform provides an ExecutorSer-

vice that integrates with its native load balancing heuristics, and Vinz configures

futures to be created using this implementation.

90



Workflow Distribution

The BlueBox service framework provided most of the tools required to build dis-

tributed workflows: an SOA architecture, access to the defined interfaces of services,

a service bus with individually addressable services, a global process tracking service,

and so on. Only a few additional features were required, as described here.

One clear need was a way to persist a fiber’s state and data so that one instance

could write it, and another instance could later read it and resume execution. The

Java platform defines a built-in way to externalize in-memory objects called seri-

alization, and so building on this support was the obvious approach. Vinz thus

writes a fiber’s state and data using Java serialization, with many customizations

for efficiency and to broaden what can be successfully serialized. One instance is

able to access the data persisted by a different instance because all persisted data

is written to files on a shared NFS filesystem; the introduction of what might look

like a single point of failure into a distributed system was averted by utilizing very

highly-available (and highly-expensive) NFS servers.

Much time was spent optimizing Vinz serialization for performance. A series

of tests determined that compressing the serialized data before writing it to NFS

was a net win by reducing IO costs considerably, even though the Java serializa-

tion format is computationally expensive to compress with standard deflate-based

compression techniques. It was also discovered that plain deflate can be made to

perform approximately 30% better than the more robust and space-efficient gzip

format for this data. Analysis of serialized data resulted in the introduction of a

custom serialization format that stored the most commonly serialized objects more

efficiently. Even after all this, reconstituting a fiber from its persisted state is still

relatively slow and so a cache of recently seen fibers is maintained in the memory

of each instance. Vinz executes no control over where a fiber will be asked to run

91



however, leaving that decision in the hands of the message queue. As a result, the

cache is only approximately 18% effective for mutable data (for immutable data, the

cache is up to 66% effective). Further work is needed in this area (current cache

effectiveness actually decreases as the cluster incorporates more nodes), perhaps by

devising a way to move the processing work to the last location of the data as is

done, for example, in the Swarm system [6].

Some way to prevent the same fiber from being run by different JVMs at the

same time was a key need (for example, in the AwakeFiber case discussed above).

Within a single JVM, the usual thread locks suffice for this, but distributed locks

would be required. Because the persistence information was being shared using an

NFS filesystem, the natural choice was to use file locks on the NFS files. This was

simple and mostly effective, but completely opaque, and coping with quirks of the

various implementations of NFS in use required a great deal of code, and prohib-

ited some performance optimizations. To remedy this, a custom distributed lock

implementation based on the Apache ZooKeeper distributed coordination system5

has been developed, completely replacing all NFS lock usage. This same locking

and persistence infrastructure is used to implement task variables.

The enterprise service bus is currently completely responsible for load balancing

and prioritizing messages. Each task starts and runs to completion independently

of any other tasks that may be operating, subject only to the capacity limits of the

system. In effect, task scheduling is first-come-first-serve, which has been shown

to be suboptimal [38]. Work is in progress to develop more efficient and proactive

scheduling policies utilizing historical and current information about the state of

the entire cluster (shared using ZooKeeper) and tasks in process based on research

presented in [15].
5Available from http://hadoop.apache.org/zookeeper/.

92

http://hadoop.apache.org/zookeeper/


4.3 Workflow Patterns

In the same way that software design patterns have been developed for general soft-

ware engineering, specialized workflow patterns have been developed for the discus-

sion of common problems and solutions in workflow applications. One well-known

set of patterns has been developed by a the Eindhoven University of Technology

working with the Queensland University of Technology. Beginning with a set of

20 control-flow patterns published in 2003 [41], this work has expanded over time

to include more advanced and revised control-flow constructs [33], data patterns

[34], resource representation patterns [36], and exception or error handling patterns

[35]. This group has also evaluated many commercial and freely available workflow

engines with respect to their capabilities in this system of workflow patterns. The

Gozer Workflow System (GWS) is not intended to implement every possible pattern

(indeed, some are mutually exclusive), but the work of this group has been useful

as a standard comparison and a source of possibilities.

The original 20 control-flow patterns are divided into five groups (these groups

have been much revised and extended in subsequent work): Basic, Advanced Branch-

ing and Synchronization, Multiple Instance, State Based and Cancellation. Being

built on top of a complete language has advantages for the control-flow patterns,

and the Gozer Workflow System directly implements 14 of the 20, while providing

enough support for workflow programmers to implement at least three of the re-

maining six. This is detailed in Table 4.2. (In general, the more shared state or

synchronization is required, the harder it is to implement a control pattern in the

GWS.)

The 40 data patterns of [34] have to do with data internal to the workflow as well

as data stored externally and are divided into four groups: Data Visibility, Data In-

teraction, Data Transfer and Data-Based routing. Again, being built on a language

93



Pattern Status
Basic

1 Sequence Implemented
2 Parallel Split Implemented
3 Synchronization Implemented
4 Explicit Choice Implemented
5 Simple Merge Implemented

Advanced Branching and Synchronization
6 Multi-Choice Implemented
7 Structured Synchronizing Merge Implemented
8 Multi-Merge Implemented
9 Structured Discriminator Unsupported

Multiple Instance
12 Multiple Instances without Synchronization Implemented
13 Multiple Instances with a Priori Design-Time Knowledge Implemented
14 Multiple Instances with a Priori Run-Time Knowledge Implemented
15 Multiple Instances without a Priori Run-Time Knowledge Implemented

State-based
16 Deferred Choice Supported
17 Interleaved Parallel Routing Supported
18 Milestone Unsupported

Cancellation and Force Completion
19 Withdraw Task Unsupported
20 Cancel Case Supported

Iteration
10 Arbitrary Cycles Implemented

Termination
11 Implicit Termination Implemented

Table 4.2: Original Control Pattern Support in Gozer

94



with full support for lexical and global variables simplifies the implementation of

these patterns, and together with Vinz task variables, the GWS is easily able to sup-

port 31 of the 40 patterns, and most of the remainder could be built with further

support from BlueBox services.

Workflow resource patterns are concerned with the people, machines and other

assets needed to execute a workflow. Seven areas comprising 43 patterns have been

identified in [36]. These areas are Creation, Push, Pull, Detour, Auto-Start, Visibil-

ity, and Multi-Resource. Resource allocation and utilization is generally determined

by the BlueBox system and can only be marginally controlled or extended at the

workflow level, so some entire groups (those not currently possible in the BlueBox

architecture) are not possible or applicable to the GWS, notably the Pull and Vis-

ibility groups. Of the remaining 35 patterns, support for 27 is provided by the

GWS.

Exception handling is less strictly structured into groups and numbered patterns

[35]. Instead a matrix of exception types (for expected exceptions; unexpected ex-

ceptions are left unclassified), exception handling level and possible recovery actions

is created. Once again due to the GWS’s basis in a complete language with a robust

condition system, the vast majority of this matrix can be considered to be filled by

the GWS.

95



Chapter 5

Conclusion

The previous chapters described the Gozer Workflow System (GWS), including its

parallel and distributed processing support, the highly-dynamic Lisp dialect in which

workflows are written, and the implementation of these features. The remainder of

this chapter provides a summary of the contributions of this work and suggests some

areas for future work.

5.1 Contributions

Although still evolving to meet upcoming needs and extend current capabilities,

the GWS addresses key requirements associated with processing a vast number and

type of workflow computations submitted by, or on behalf of, numerous clients. The

workflow requirements vary greatly in terms of computational complexity, overall

duration, and terms defined by service-level agreements. Gozer’s ability to easily

exploit local and distributed resources through implicit parallelization together with

its high-level language approach to workflow authoring have allowed the rapid de-

velopment of scores of high-volume production workflows at RiskMetrics Group. A

typical 24-hour period will see around 10,000 new top-level tasks comprising about

45,000 individual fibers. Tasks during this period may run for as long as 12 hours or

as little as 20 milliseconds, with the average being about a minute. If these 10,000

96



tasks were run back-to-back, they would require about 190 hours to complete [25].

It is this entire production-level workflow system that is the main contribution

of this work. There exist other workflow systems, and other distributed systems,

and other Lisp dialects for the JVM, and other dynamic languages, and other uses

of continuations. The effective combination of these ideas that creates the GWS,

however, may be unique.

In that same vein, the Gozer language itself can be seen as a combination of

concepts from other languages. There is little truly new and unique in the Gozer

language; this is by conscious choice (language design is hard and mistakes are

costly). Rather, the focus was on starting with a stable base (Common Lisp and

Java) and carefully combining that with selected ideas (e.g., Mutlilisp’s futures and

Groovy’s dynamism) in a way that resulted in a practically useful language with a

pragmatic degree of self-consistency and elegance.

A system in production use is never truly finished. The next section describes

some possible ways that the GWS may evolve over time.

5.2 Future Work

Something with the responsibilities the GWS shoulders has many directions in which

to contemplate additions and refinements. Some ideas for relatively major enhance-

ments are discussed here. The layered design of the workflow system suggests a

way to categorize these enhancements, beginning with the concepts of distributed

programming and working down to the implementation of the core language.

Distributed programming abstractions Support for ever higher-level abstrac-

tions over distributed and parallel programming will help workflow authors

implement their desired processes in the shortest amount of time. For exam-

ple, a partial distributed implementation of “actors” (cooperating sequential

97



processes) built on top of fibers is already available, and should be completed.

At the same time as higher-level abstractions are created, however, it is im-

portant to allow for the possibility of penetrating or customizing these ab-

stractions to meet the needs of advanced programmers and more complicated

processes.

Performance optimizations of distributed implementation Although the cur-

rent implementation techniques are adequate and functioning in production,

processing volumes are always going up and there’s always a desire to “do

more with less.” The obvious inefficiencies in caching (Section 4.2.6) and the

spawn limit (Section 4.2.4) should be corrected. What’s more, the intelligent

placement of fibers (near their data) and improved system-wide load balanc-

ing, possibly including the automatic suspension of actively running workflow

tasks of low priority, should be investigated.

Language façades and tools Not every programmer is familiar with Lisp or has

the desire to learn it. Continuing to improve tool support (such as introducing

a Gozer development plugin for the Eclipse IDE, in addition to Emacs) only

goes so far. The audience of workflow programmers could be broadened if

a more conventional syntax was supported. Javascript seems like an ideal

candidate (some language with native dynamic capabilities would lessen the

impedance mismatch and still allow taking advantage of facilities like deflink).

This would involve a new parser and probably some new libraries, but hopefully

would be able to reuse much of the existing compiler and interpreter.

Another approach would be to extend the interpreter (possibly via a translator)

to support some subset of the JVM bytecodes, thus allowing the use of Java

as a workflow authoring language. There would be more restrictions involved

98



in this technique due to the static nature of the language.

GVM implementation optimizations At the GVM level, optimizations can be

targeted in many different directions, not just runtime speed. For example, op-

timizations for debugging could include the ability to step backward through

the program or capture and inspect the program’s state at particular times;

these capabilities are now being seen in some mainstream language/IDE com-

binations (e.g., Microsoft’s Visual Studio 2010) and might be relatively easy

with the use of persisted continuations.

Runtime performance optimizations might include the ability to compile “leaf”

functions into Java bytecode.

99



Bibliography

[1] Abelson, H., and Sussman, G. J. Structure And Interpretation Of Com-
puter Programs, second ed. MIT Press, Cambridge, 1996.

[2] Baker, Jr., H. G. Shallow binding in lisp 1.5. Communications of the ACM
21, 7 (1978), 565–569.

[3] Boetje, J. Common lisp for java: An intertwined implementation. In ILC
’05: Proceedings of the 25th Annual International Lisp Conference (Stanford,
June 2005).

[4] Bray, T., Hollander, D., Layman, A., and Tobin, R. Namespaces in
xml 1.0. Recommendation, W3C (World Wide Web Consortium), August 2006.

[5] Ciccarelli, E. An introduction to the emacs editor. AI Memo 447, Mas-
sachusetts Institute of Technology Artificial Intelligence Labratory, January
1978.

[6] Clarke, I. Swarm: Distributed computation in the cloud. In P2P 09:
IEEE Ninth International Conference On Peer-to-Peer Computing (Seattle,
WA, September 2009).

[7] Cyphers, D. S., and Moon, D. A. Optimizations in the symbolics Clos
implementation. Tech. rep., Symbolics Inc, 1990.

[8] Dean, J., and Ghemawat, S. Mapreduce: simplified data processing on
large clusters. Communications of the ACM 51, 1 (2008), 107–113.

[9] Edelson, J., and Liu, H. JRuby Cookbook. O’Reilly Media, November 2008.

[10] Findler, R. B., and Matthews, J. Revised6 report on the algorithmic
language scheme. Tech. rep., Scheme Steering Committee, 2007.

[11] Gabriel, R. P. Lisp: Good news, bad news, how to win big. Tech. rep., Lucid,
Inc, 1991.

[12] Gabriel, R. P., and Pittman, K. M. Technical issues of separation in
function cells and value cells. Tech. rep., Lucid, Inc. and Stanford University
and Symbolics, Inc., 2001.

100



[13] Gabriel, R. P., White, J. L., and Bobrow, D. G. Clos: Integrating
object-oriented and functional programming. Communications of the ACM 34
(1991), 28–38.

[14] Graunke, P., Krishnamurti, S., Hoeven, S. V. D., and Felleisen, M.
Programming the web with high-level programming languages. In European
Symposium on Programming (2001), Springer-Verlag, pp. 122–136.

[15] Grounds, N., Antonio, J. K., and Muehring, J. Cost-minimizing schedul-
ing of workflows on a cloud of memory managed multicore machines. In Proceed-
ings of the 1st International Conference on Cloud Computing (CloudCom 2009),
in Lecture Notes in Computer Science 5931 (December 2009), pp. 435–450.

[16] Haidle, B., Stoll, M., and Steingold, S. Implementation Notes for GNU
CLISP. GNU, 2008, ch. 37. The CLISP bytecode specification.

[17] Halloway, S. Programming Clojure. Pragmatic Bookshelf, 2009.

[18] Halstead, Jr., R. H. Multilisp: a language for concurrent symbolic compu-
tation. ACM Trans. Program. Lang. Syst. 7, 4 (1985), 501–538.

[19] Hamilton, G., Ed. JavaBeans Specification. Sun Microsystems, Mountain
View, CA, 1997.

[20] Juneau, J., Baker, J., Ng, V., Soto, L., and Wierzbicki, F. The
Definitive Guide to Jython: Python for the Java Platform. Springer-Verlag,
2010, ch. 1. Language and Syntax.

[21] Koenig, D., Glover, A., King, P., Laforge, G., and Skeet, J. Groovy
in Action, first ed. Manning, 2007.

[22] Kohlbecker, E., Friedman, D. P., Felleisen, M., and Duba, B. Hy-
gienic macro expansion. In LFP ’86: Proceedings of the 1986 ACM confer-
ence on LISP and functional programming (New York, NY, USA, 1986), ACM,
pp. 151–161.

[23] Krishnamurthi, S. The continue server (or, how i administered padl 2002
and 2003). In Symposium on the Practical Aspects of Declarative Languages
(2003), Springer-Verlag, pp. 2–16.

[24] Leitāo, A. M. Increasing readability and efficiency in common lisp. In Pro-
ceedings of the European Lisp User Group Meeting (1999), Instituto Superior
Tecnico.

[25] Madden, J., Grounds, N. G., Sachs, J., and Antonio, J. K. The
gozer workflow system. In Proceedings of the 24th International Parallel and
Distributed Processing Symposium (April 2010), IEEE.

101



[26] Marsh, J., Orchard, D., and Veillard, D. Xml inclusions (xinclude)
version 1.0. Recommendation, W3C (World Wide Web Consortium), November
2006.

[27] McCarthy, J. A. The two-state solution: Native and serializable continua-
tions accord. In 2010 ACM International Conference on Systems, Programming,
Languages and Applications (Reno, Nevada, October 2010), vol. 12, ACM.

[28] Miller, S. G., and Radestock, M. SISC for Seasoned Schemers. sisc-
scheme.org, 2007.

[29] Pettyjohn, G., Clements, J., Marshall, J., Krishnamurthi, S., and
Felleisen, M. Continuations from generalized stack inspection. SIGPLAN
Not. 40, 9 (2005), 216–227.

[30] Queinnec, C. Lisp In Small Pieces. Cambridge University Press, Cambridge,
United Kingdom, 1996, ch. 7. Compilation.

[31] Rennggli, L., and Lienhard, A. Seaside: Web application toolkit for
squeak. In Smalltalk Join Event (Douahi, France, August 2002), European
Smalltalk Users Group.

[32] Romer, T. H., Lee, D., Voelker, G. M., Wolman, A., Wong, W. A.,
loup Baer, J., Bershad, B. N., and Levy, H. M. The structure and perfor-
mance of interpreters. In In Architectural Support for Programming Languages
and Operating Systems (ASPLOS-VII) (1996), ACM Press, pp. 150–159.

[33] Russell, N., Hofstede, A. H. M. T., and Mulyar, N. Workflow control
flow patterns: A revised view. Tech. rep., BPM Center, 2006.

[34] Russell, N., ter Hofstede, A. H. M., Edmond, D., and van der
Aalst, W. M. P. Workflow data patterns: Identification, representation and
tool support. In Proceedings of the 25th International Conference on Conceptual
Modeling (2005), Springer.

[35] Russell, N., van der Aalst, W. M. P., and ter Hofstede, A. H. M.
Workflow exception patterns. In Proceedings of 18th CAiSE (2006), vol. 400,
Springer, pp. 288–302.

[36] Russell, N., van der Aalst, W. M. P., ter Hofstede, A. H. M., and
Edmond, D. Workflow Resource Patterns: Identification, Representation and
Tool Support, vol. 3520 of Lecture Notes in Computer Science. Springer Berlin,
Heidelberg, 2005, ch. 16, pp. 216–232–232.

[37] Seibel, P. Practical Common Lisp. Apress, Berkeley, CA, 2005, ch. 19. Beyond
Exception Handling: Conditions and Restarts.

102



[38] Shrestha, H. K., Grounds, N., Madden, J., Martin, M., Antonio,
J. K., Sachs, J., Zuech, J., and Sanchez, C. Scheduling workflows on
a cluster of memory managed multicore machines. In Proceedings of the In-
ternational Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA ’09) (July 2009).

[39] Tao, W. A portable mechanism for thread persistence and migration. PhD
thesis, The University of Utah, 2001. Adviser-Lindstrom, Gary.

[40] Tismer, C. Continuations and stackless python. In Proceedings Of The Eighth
International Python Conference (Arlington, Virginia, January 2000).

[41] Van Der Aalst, W. M. P., Ter Hofstede, A. H. M., Kiepuszewski,
B., and Barros, A. P. Workflow patterns. Distrib. Parallel Databases 14, 1
(2003), 5–51.

[42] Verna, D. Clos efficiency: instantiation. In ILC ’09: Proceedings of the 27th
Annual International Lisp Conference (MIT, Cambridge, Massachusetts, USA,
Mar. 2009), Association of Lisp Users, pp. 76–90.

.

103

http://www.alu.org


Appendix A

GVM Bytecodes

This appendix provides an informal description of all of the individual bytecodes

implemented by the Gozer Virtual Machine. The general ideas behind the design

of the bytecodes were laid out in Section 3.3. The opcode values were originally

chosen so that related opcodes had related values (generally sequential within a

group). This property has not been maintained over time as opcodes have been

added and repurposed, so some groups include values that may appear arbitrary.

Each of the opcodes is self-contained, with the exception of ENTER_BLOCK and

PUSH_LAMBDA (see Table A.5) which may (depending on flags) access the operand

stack; the mnemonics for these instructions expand into more than one primitive op-

code. This preserves the property that every instruction consumed by the interpreter

can be represented in a single 32-bit integer, and offsets are simple to calculate.

In the following tables, the mnemonics use n and i to mean a positive 7-bit

unsigned integer, name is a symbol (possibly NIL) and keyword is a keyword symbol,

while object is any Java object.

The function call opcodes in Table A.2 are described in more detail in Section 3.3.

All of the argument-passing opcodes described in Table A.4 operate on the implicit

current function and (with the exception of the last one) are conceptually found as

104



the binding forms inside a let form that encloses the entire function body. Their

design is motivated by the discussion of Section 3.2, which also provides examples.

105



Name Mnemonic Value Comments
CHECK_VAR (check-cast class)

(check-nil)
022 The object on the top of the

operand stack is checked for va-
lidity, either that it is an in-
stance of a given Java class
(which includes nil) or that it
is not nil at all. The stack is
left unchanged, except that the
object on top may have been
a future that was resolved or
had its type converted if re-
quired. Generated by the spe-
cial form the or variable assign-
ment if declarations were ap-
plied to the variable and code
is being compiled for safety.

NOOP (no-op) 000 Takes no action, modifies no
state. Inserted for padding pur-
poses by the compiler, and of-
ten ultimately removed by op-
timization.

YIELD (yield) 004 Causes execution of the GVM
to halt and return (to the
Java caller) a continuation that
can be used to resume execu-
tion. Available to the Gozer
programmer as a special opera-
tor with the same mnemonic.

GET_CC (get-cc) 003 Returns a continuation that
can be inspected for debug-
ging purposes. Available to
the Gozer programmer as spe-
cial operator with the same
mnemonic.

Table A.1: Miscellaneous Opcodes

106



Name Mnemonic Value Comments
JJAVA (call-java-name

n name)
(push-java-property name)

017 Implements the · special form
by either calling a Java method
or accessing a Java bean prop-
erty (which ends up being a
method call). The high bit of
the flags is set for the later,
which always has one argu-
ment, the object on which to
find the property. Otherwise,
the flags specifies the number
of arguments as usual.

JPRIMITIVE (call-constant n func-
tion)

015 Calls a function known at com-
pile time to be a low-level func-
tion (a GVM extension func-
tion and one that does not pro-
duce a continuable state). The
call is bound at compile time
to the object that implements
the function, which is inserted
into the constant pool.

JRECUR (call-recur n nil) 011 Recursively calls the same func-
tion as is currently executing.
The flet function binding form,
which allows redefining func-
tions in a lexical environment
that can access the global func-
tion, does not emit this op-
code (in contrast with the la-
bels form).

JSR (call n object) 016 The most general function call
mechanism. The object can
either be a symbol naming a
function which will be dynam-
ically bound at runtime (the
usual case) or a function object
(possibly a low-level function
object). The compiler will pro-
duce function object references
at high speed optimization lev-
els.

Table A.2: Function Call Opcodes

107



Name Mnemonic Value Comments
GO (non-local-goto tag) 021 Unwinds the call stack to the

point at which the matching
tag was established. Used
by the implementation of tag-
body when lambda functions
are involved (and the control
flow cannot be reduced to local
jumps).

GOTAG (label tag non-local? ) 020 Inserts a non-local go tag that
may be jumped to with the GO
opcode; functionally the same
as NOOP otherwise. The same
mnemonic is used with a false
argument when creating assem-
bler targets for jumps.

JMP (goto label direction) 001 Unconditionally jumps to the
location in the bytecode of the
label, which may be before or
after the location of this op-
code, depending on the direc-
tion flag (the flag compensates
for the fact that bytecode loca-
tions are always positive, but a
PC relative jump may need to
go backwards, i.e., a negative
increment to the PC). Gener-
ated by the if, while and tag-
body special forms.

JMPNZ (jump-if-true label di-
rection)

002 Pops the top value from the
operand stack (resolving a fu-
ture if needed), and, if the
value is non-nil, jumps to the
location of the label. Gener-
ated by the if special form.

JMPZ (jump-if-false label di-
rection)

003 Pops the top value from the
operand stack (resolving a fu-
ture if needed), and, if the
value is nil, jumps to the lo-
cation of the label. Generated
by the if special form when the
predicate expression is negated
with not.

Table A.3: Control Flow Opcodes
108



Name Mnemonic Value Comments
LL_POP_ARG (%pop-

arg)
030 Consumes the next argument and pushes it

onto the operand stack, raising an error if
there is no unconsumed argument. Followed
by a binding opcode.

LL_POP_AND_BIND (%pop-
and-bind
name i)

031 A speed and code-size optimization, con-
sumes the next argument and binds it into
the local lexical variable of the function at
index i, raising an error if there are no un-
consumed arguments.

LL_POP_IF_NEXT (%pop-if-
next)

032 If there is an unconsumed argument, con-
sumes it and pushes it onto the operand
stack. Used simultaneously as both the pred-
icate and consequent of an if and followed by
a binding opcode for the implementation of
optional arguments with or without a default
value.

LL_POP_IF_NEXT2 (%pop-if-
next2)

033 If there is an unconsumed argument, con-
sumes it and pushes it onto the operand
stack; also pushes either T or NIL to indi-
cate the presence of an unconsumed argu-
ment. Similar to LL_POP_IF_NEXT, but uses
two binding opcodes to implement supplied-
p arguments.

LL_POP_KW (%pop-kw
keyword)

034 If there is an unconsumed argument named
by the keyword, consumes it (and the key-
word) and pushes the value onto the argu-
ment stack. Similar to LL_POP_IF_NEXT but
for keyword arguments.

LL_POP_KW2 (%pop-
kw2 key-
word )

035 If there is an unconsumed argument func-
tion named by the keyword, consumes it
(and the keyword) and pushes the value
onto the argument stack; also pushes ei-
ther T or NIL to indicate the presence of a
matching unconsumed argument. Similar to
LL_POP_IF_NEXT2, but for keywords.

LL_POP_REST_ARG (%pop-
rest-arg)

036 Consumes any remaining arguments and
pushes a list containing their values onto the
operand stack. Followed by a binding op-
code.

LL_ASSERT_EMPTY (%pop-no-
args)

037 Emitted only when code is optimized for
safety, raises an error if there are remaining
unconsumed arguments.

Table A.4: Argument Binding Opcodes
109



Name Mnemonic Value Comments
ALLOCATE_LOCAL (allocate-local i) 042 Allocates space for i indexed vari-

ables within a particular block (usu-
ally a function).

ENTER_BLOCK (enter-block name
len-label cleanup-
label)

010 Enters a new named block. Blocks
are used for the implementation of
the unwind-protect form as well as
the return-from form and possibly
the let form. The ENTER_BLOCK
opcode (along with PUSH_LAMBDA
is unique in that certain less-
commonly used functionality is
pushed onto the operand stack and
then consumed by the opcode itself.

POP (pop object) 013 Pops and discards values from the
operand stack. If the object is NIL,
pops only one item, otherwise pops
until an identical object is found on
the stack. Used to cleanup the stack
following certain special operators
including while, progn and unwind-
protect.

PUSH_LAMBDA (push-lambda
name doc ll)

012 Creates and pushes onto the operand
stack a function whose bytecode im-
mediately follows the current PC,
and increments the PC to the in-
struction after the lambda’s code.
This opcode may produce closures
or top-level functions and may be
followed by a function binding form.
As with ENTER_BLOCK, certain op-
tional values may first be pushed
onto the operand stack.

RET (return-from
name)

014 Used to implement the special form
of the same name, unwinds the call
stack through the most recent lex-
ically enclosing (and thus active)
block entered with ENTER_BLOCK and
a matching name. The top of the
block’s operand stack is transferred
to the outer block’s operand stack.

Table A.5: Block Opcodes

110



Name Mnemonic Value Comments
PUSH_CONSTANT (push-constant

object)
025 Pushes an object from the constant

pool onto the operand stack.
PUSH_IMMEDIATE (push-constant

object)
026 Pushes numeric immediate data

(as stored in the final two bytes)
onto the stack. The flags spec-
ify the Java class that should be
used (Long, Integer, BigInteger)
and whether the value should be
negated. The mnemonic is the
same as for general constants, and
the assembler choose to use this
opcode of the object can be repre-
sented as immediate data.

PUSH_LOCAL_VAR (push-local i1 i2 ) 041 Pushes the value of a local variable
having index i1 onto the stack. If i2
is given, this index is encoded in the
flag and the corresponding variable
is also pushed onto the stack; this is
a speed and code size optimization.

PUSH_VAR (push-special-
var name)
(push-var name)

024 Pushes the current value of either
a special (global) or heap-allocated
lexical variable onto the operand
stack. The flag encodes special ver-
sus lexical access.

SET_LOCAL_VAR (set-local i return? ) 040 Sets the value of a local variable
having index i to a value popped
off the operand stack. If return? is
non-nil, then the value is (concep-
tually) pushed back on the stack
for subsequent access. The special
form let can produce this and sets
return? to NIL whereas the special
form setq must set it to T.

SET_VAR (bind-var
name return? )
(replace-var name return? )
(replace-special-var
name return? )
(set-special-var name return? )

023 Changes the value of a special or
heap-allocated lexical variable hav-
ing the supplied name. The value is
obtained from and returned to the
stack as with SET_LOCAL_VAR.

Table A.6: Variable and Data Opcodes

111


	Introduction and Background
	Before Gozer
	From XML to Lisp
	Gozer Design Philosophy
	Gozer Development
	Related Work

	The Gozer Language
	Syntax
	The Reader
	Standard Reader Macros

	Evaluation
	Control Flow
	Macros

	Object Orientation and Data Types
	Functions
	Java Interfaces
	Generic Functions
	Java Function Façades
	Dynamic Java Access
	Common Data Types

	Condition System
	Programmer Interface
	Implementation

	Standard Library
	Development Environment and Tools

	The Gozer Virtual Machine and Compiler
	GVM Architecture
	Image

	Function Calling Convention
	Bytecode Design
	Instruction Format

	Java Exception Handling
	Nested Interpreters

	The Compiler
	Compilation Phases


	Workflows
	Overview
	Tasks and Fibers
	BlueBox

	Distribution
	Workflow Services
	Non-Blocking Service Requests
	Deflink
	Forking Fibers
	Error Handling
	Implementation

	Workflow Patterns

	Conclusion
	Contributions
	Future Work

	GVM Bytecodes

