
The Gozer Workflow System

Jason Madden∗, Nicolas G. Grounds∗, Jay Sachs∗, and John K. Antonio†

∗RiskMetrics Group, 201 David L. Boren Blvd, Suite 300, Norman, OK, USA
†School of Computer Science, University of Oklahoma, Norman, OK, USA

Abstract

The Gozer workflow system is a production workflow
authoring and execution platform that was developed at
RiskMetrics Group. It provides a high-level language and
supporting libraries for implementing local and distributed
parallel processes. Gozer was developed with an emphasis
on distributed processing environments in which workflows
may execute for hours or even days. Key features of Gozer
include: implicit parallelization that exploits both local
and distributed parallel resources; survivability of system
faults/shutdowns without losing state; automatic distributed
process migration; and implicit resource management and
control. The Gozer language is a dialect of Lisp, and the
Gozer system is implemented on a service-oriented architec-
ture.

1. Introduction
Gozer names both a platform for developing and executing

complex distributed and parallel processes called workflows
as well as the high-level language used to encode workflow
computations. A primary goal of the platform is to make it
easy to take advantage of a distributed system.

The Gozer platform is built on top of the Java platform.
It runs within the (proprietary) BlueBox environment, a
distributed, message-passing cluster based on a service-
oriented architecture. Service instances communicate by
placing XML messages on a message queue (the Java
Message Service) which distributes the messages to available
nodes. Each service describes the operations it offers with
an XML document called a WSDL. The Gozer platform
exploits the asynchronous nature of the message queue
and its ability to load-balance across multiple instances
of a single service to achieve distributed concurrency and
fault tolerance, i.e., survivability. The underlying BlueBox
platform provides monitoring and management features.

The Gozer language is a Lisp dialect that could be
described as a “scripting language” due to its support for
interactive development, rapid prototyping, and tight integra-
tion with existing Java libraries and BlueBox services. Its
primary influence is Common Lisp, but it includes elements
from other languages such as Clojure [1] and Groovy
[2]. Although the Gozer language and BlueBox platform

are currently mostly used for the processing of financial
data, they can be considered general-purpose. The Gozer
language is executed by a custom bytecode-based Gozer
virtual machine and runtime layered on top of the JVM
(Java Virtual Machine). This virtual machine (the GVM),
described in Section 4.1, provides support for the futures
used to implement the local thread-based parallelism of
Section 2 and the continuations required by the distributed
concurrency of Section 3. Lisp’s simple evaluation model
and the ease with which a runtime VM could be developed
for it drove the decision to use Lisp.

Listing 1 shows example functions for computing
the sum of squares in map/reduce style. The function
loc-sum-squares performs the computation entirely
locally using Gozer’s sequential loop construct for the map
step (squaring the numbers) and a sequential application of
addition for the reduce step. Section 2 describes how the
function par-sum-squares allows for a degree of local
parallelism in the map step. Finally, as detailed in section 3.5,
the function dist-sum-squares distributes the map step
across available nodes and then performs the reduce step in
a single local process, after all the squares have been com-
puted. Notice the similarity among the three variants, which
highlights the simplicity of expressing parallel/distributed
computations using Gozer.

2. Local Parallelism
Local (shared-memory) parallel operations in Gozer are

based upon threads and a thread pool, the native parallel
primitives provided by the underlying Java platform. Al-
though the Gozer programmer is free to use these primitives,
higher-level operators based upon those from Multilisp [3]
are provided by the Gozer language. These operators are all
declarative in nature and are designed to allow the program-
mer to focus on opportunities for achieving concurrency,
rather than the implementation details.

A key abstraction provided by Gozer for expressing local
parallelism is the future. A future represents a computation
that may not have completed yet, and represents a promise
to deliver the value of that computation when required, at a
future point in time. Until a future’s computation completes,
the future is said to be undetermined, after which the future
is determined. Any value that is not a future is always said to

be determined. Futures are used to exploit opportunities for
concurrency that exist between the computation of a value
and its ultimate use. For example, when transforming a set
by applying a function to all members of a set, the earliest
time that the transformed value for the first transformed
member of that set could be used is after the transformation
has completed on the last member of the set. An opportunity
for concurrency exists that can easily be expressed with
a future, which in Gozer is declared with the future
macro. The function par-sum-squares from Listing 1
illustrates an example of this usage.

When a computation involves futures, the Gozer program-
mer generally does not need to take special precautions.
Futures can freely be mixed with other values, passed to
and returned from functions, stored in data structures, and
so on. The GVM is responsible for managing the execution
and determination of futures.

The GVM does not provide a guarantee about the se-
quence in which futures are determined. In the case of IO
or other side effects, order of operations can be important.
Gozer’s touch and pcall operators allow the programmer
to control sequencing in these cases. The touch operator
causes the calling thread to await the determination of a
particular value before proceeding, while pcall applies a
function, but only after all its arguments are determined.

3. Transparently Distributed Workflows
3.1. Overview

Shared-memory thread-based local parallelism has a num-
ber of disadvantages for the construction of large, complex,
evolving processes. First, it doesn’t scale well beyond a
single physical machine. The potential for side-effects makes
it challenging to evolve a local process over time or to
integrate code from multiple authors. Any robustness in the
case of machine failure such as the saving and resuming of
intermediate states must be programmed explicitly for each
process. Finally, especially in the case of long running pro-
cesses, it may be desirable to “suspend” a process in order to
allow a higher-priority process to use scarce resources such
as memory; such suspension would similarly require explicit
handling in the design of each process. Gozer’s distributed
workflows are designed to overcome these difficulties by
allowing a single process to span multiple machines, by
using a fork/join paradigm that prohibits side-effects, by au-
tomatically creating and maintaining persistent checkpoints,
and by using non-blocking, zero-resource consuming, event
driven processing.

Gozer’s distribution facilities, and in general its integra-
tion with the BlueBox platform, are provided in a separate
module known as Vinz. Vinz offers a simplified set of ab-
stractions to workflow authors intended to make writing fully
distributed, concurrent workflows as similar to writing local,
sequential programs as possible. As with local parallelism,

Listing 1. Sum-of-Squares Variants
(defun loc−sum−squares (numbers)

(apply # '+
(loop f o r number i n numbers

c o l l e c t (* number number))))

(defun par−sum−squares (numbers)
(apply # '+

(loop f o r number i n numbers
c o l l e c t (f u t u r e (* number number)))))

(defun dis t−sum−squares (numbers)
(apply # '+

(for−each (number i n numbers)
(* number number))))

opportunities for distribution are written in a declarative
fashion, and the details of implementation are provided by
the platform.

Listing 1’s function dist-sum-squares demonstrates
distributed programming with Vinz. Choosing an appropriate
level of concurrency, distributing work to available nodes,
gathering results, and continuing the computation when all
concurrent work is completed are all automatically handled
by Vinz. Importantly, waiting for computations to complete
is event driven and consumes no resources. Even though
conceptually dist-sum-squares blocks awaiting the
for-each results, no actual blocking occurs because the
(distributed) process state is saved to persistent storage and
is restored only after all necessary results are available. This
type of distribution may be nested to an arbitrary depth and
the results of each step may be arbitrarily complex.

A distributed workflow begins as a Gozer program. Vinz
takes this program and makes it available for running on the
nodes of the BlueBox cluster. This is done by wrapping the
Gozer program up as a distinct BlueBox service. Operations
are the only way to interact with a service in BlueBox
and the only way instances of services can interact with
each other, so this new service provides a standardized set
of operations (see Table 1) that may be invoked on some
available instance of the workflow service by placing the
appropriate messages in the message queue.

The GVM allows a Gozer program (specifically, a flow
of control within the program) to request a continuation
at any point by executing the yield or push-cc special
forms. A continuation represents the completion of the same
flow of control (compare to a future, which represents the
completion of a different flow of control). Additionally, the
yield form causes the GVM to return control to its own
caller. Using the operations in Table 1 and GVM continu-
ations requested at opportune moments, Vinz automatically
distributes and migrates workflows

Execution of a workflow is typically initiated by invoking
the Start operation with a set of workflow-defined param-
eters. This causes the creation of a task, which uniquely

Table 1. Vinz Service Operations

Operation Description
Start Asynchronously begin execution of a workflow, returning its id.
Run Synchronously execute a workflow, returning its id.
Call Synchronously execute a workflow, returning its last result.
Terminate Management operation to asynchronsly terminate any running workflow.
RunFiber Begin execution of a portion of the workflow on this instance.
AwakeFiber Resume a suspended parent fiber when a child fiber has completed.
ResumeFromCall Resume a suspended fiber when a remote operation completes.
JoinProcess Resume a suspended fiber when any arbitrary process has completed.

identifies that particular running instance of the workflow.
Every task contains one or more uniquely identified fibers
(initially one). A fiber encapsulates a Gozer flow of control
that may be advancing on only a single node at any given
time. A task is somewhat analogous to an operating system
process, while a fiber is analogous to a thread within that
process.

Once Start has created a task and fiber, it prepares the
environment in which the main fiber will execute, and, with
the support of the GVM, saves its initial continuation (state)
to persistent storage. The Start operation then issues an
asynchronous invocation of the RunFiber operation with
a parameter identifying the newly created fiber. Its job
complete, Start now returns the task’s ID to the caller, who
can use it to monitor the progress of the task.

When the message queue delivers a RunFiber request
to an instance of a Vinz workflow service, the fiber’s
continuation is loaded from persistent storage, and the GVM
begins executing that continuation. The GVM continues to
run until the program has been completed, or until the next
continuation is requested, at which point the fiber is halted
and its state stored for later execution.

While running, a fiber can create and execute (via Run-
Fiber) other fibers. These fibers are children of the first
fiber. The for-each and parallel macros described
in Section 3.5 create and manage fibers automatically. The
fork-and-exec and join-process forms of Section
3.4 allow advanced programmers to create and wait for their
own fibers.

3.2. Non-Blocking Service Requests

In practice, Vinz workflows largely consist of requests to
other BlueBox services. In a traditional synchronous service
invocation, the sender is blocked until its request has been
delivered by the message queue, the service has completed
processing, and the results are returned by the message
queue. During this time, the sender is consuming resources
(physical memory and a BlueBox request “slot”) without
making any progress; in essence, those resources are being
wasted. An ordinary asynchronous request does no better
unless the sender can find other work to do, a situation that
is both rare and complex to manage.

Vinz workflows solve the problem of wasted resources
by automatically executing a Gozer yield statement when

Start

RunFiber

for-each

AwakeFiber

Loop-1 Loop-2 Loop-3

ResumeFrom
Call

Figure 1. Sample Workflow Lifetime

a service request is made. The request message is sent
asynchronously, and the message queue is instructed to
deliver the response not to the sending instance (as with
a traditional system) but instead to any workflow service
instance by means of its ResumeFromCall operation. While
the service request is being delivered and processed, the
Gozer state is saved to persistent storage. Later, when
the results are available, the Gozer state is restored and
processing is resumed.

Overall, this allows many more tasks to be in progress at
any one time. Wall-clock time, CPU resources and memory
that would otherwise have been wasted blocking can now
be used by a different task to make progress. Because
the message queue is constantly load balancing in-progress
requests and making decisions based on priority, this also
helps to improve interactive usage (interactive requests are

less likely to be held up by individual long-running batch
workflows). In addition, together with the entire state of the
task being regularly stored to stable storage and the message
queue providing buffering and re-delivery of messages in
case of instance failure, this makes for a highly robust
system, one in which the failure of any instance will result
in only minimal delays as other instances automatically
compensate.

Of course, there are some cases where the service oper-
ation is expected to be very fast, and therefore the relative
overhead of the aforementioned task migration might be
considerable. In these cases, the programmer can, statically
or dynamically, choose to require Vinz to instead make
a standard synchronous request. If a service request is
attempted from a future’s background processing thread, it’s
generally not possible for process migration to occur (what
state should be persisted? what about other futures?) so Vinz
detects this and automatically makes a standard synchronous
request.

3.3. Deflink

Vinz takes advantage of the dynamic code-generation fea-
tures of Gozer macros and the published service interfaces
to make it easy for a workflow to interact with any service.
A macro called deflink provides this functionality. This
macro requests a service’s interface in the form of an XML
document, parses it, and then generates a set of functions to
invoke each operation the service publishes, together with
the appropriate placement of yield statements to make
the request non-blocking. The XML message structure is
flattened into a set of parameters for the function, and the
function is capable of coping with complex XML trees by
using corresponding Gozer data structures.

As part of the source code for the workflow, each
deflink is evaluated when the source code for the work-
flow is loaded. This ensures that the functions generated will
be appropriate for the service version currently operating,
which helps smooth over minor version incompatibilities.
If for some reason an operation cannot be interacted with
from a Gozer function, deflink instead generates a Gozer
macro that signals an error. In this way, if and only if the
workflow tried to invoke that operation, a compile-time error
will occur and the workflow will not be loaded, thus avoiding
runtime errors.

Listing 2 shows an example invocation of the deflink
macro, and some of the generated functions (edited for
size). Notice that the documentation specified in the interface
document is preserved for the Gozer programmer. The func-
tion SM-ListSessions-Method provides the high-level
interface using named keyword function arguments. The
function SM-ListSessions actually invokes the service,
handling the case of background threads as well as using
Gozer’s condition system to provide optional restarts in the
event of error (see Section 3.7 for more on error handling).

Listing 2. Deflink
(d e f l i n k SM : wsdl ” urn : s e c u r i t y−m a n a g e r− s e r v i c e ”

: p o r t ” S e c u r i t y M a n a g e r ”) ==>

(defun SM−ListSessions−Method
(&key F i l t e r P a r a m s WithinRealm)

” R e t u r n s a l i s t o f s e s s i o n s v i s i b l e t o t h e . . . ”
(l e t ((msg (c rea t e−message ” SM−Lis tSess ions ”)))

(. msg (s e t ” F i l t e r P a r a m s ” F i l t e r P a r a m s))
(. msg (s e t ” WithinRealm ” WithinRealm))
(SM−Lis tSess ions : message msg)))

(defun SM−Lis tSess ions (&key message)
” R e t u r n s a l i s t o f s e s s i o n s v i s i b l e t o t h e . . . ”

(r e s t a r t−c a s e
(l e t ((r e s p o n s e

(cond
((% i s− f i b e r− t h r e a d)

(ca l l−wsd l−ope ra t ion−async
: soap−ac t i on ” . . . : L i s t S e s s i o n s ”
: message message)

(y i e l d))
(o t h e r w i s e

(c a l l−w s d l−o p e r a t i o n
: soap−ac t i on ” . . . : L i s t S e s s i o n s ”
: message message)))))

(parse−wsdl− response r e s p o n s e))
(i g n o r e () (l o g ” I g n o r i n g an e x c e p t i o n ”))
(r e t r y () (SM−Lis tSess ions : message message)))

3.4. Forking Fibers

As discussed earlier, the fundamental unit of computation
in a Vinz workflow is a fiber. A fiber can be running
at most once on one node in the BlueBox cluster, and
every workflow begins with a single fiber created by the
Start operation. In order for workflow processing to take
advantage of multiple nodes in the cluster, then, multiple
fibers must be created.

Fiber creation is similar to the creation of processes in
the Unix model. A parent fiber, including all its state, is
first cloned with a fork call. The newly created fiber
then continues its execution by executing a different code
path than its parent. In practice this different code path is
always calling a user-supplied function and so the primitive
operation combines this fork of a new fiber and exec of
a function into a single step. The newly created child fiber
is scheduled for execution by placing a RunFiber request on
the message queue.

Although this combination of the fork and exec operations
into a single step is the model commonly used for threads
that run within the same process, the initial cloning of
the parent fiber means that the analogy to Unix processes
is a better fit. Although the variables in the child fiber
start out identical to those in the parent, changes either
fiber makes will not be visible to its clone. This eliminates
any burden of synchronization when mutating variables and
values, thus simplifying the programming model both for
the workflow author and the Vinz implementation, and it

drastically reduces the amount of distributed coordination
that Vinz must perform.

Workflow authors have direct access to the ability to create
new fibers through the fork-and-exec function which
returns to the parent fiber the id of the child fiber, while ex-
ecuting a supplied function (often an anonymous lambda)
in the child. A fiber can wait for any other fiber to termi-
nate using the join-process function (analogous to the
Unix wait function). A fiber that calls join-process
ultimately invokes yield and so relinquishes its resources
until such time that the requested fiber terminates. If called
from a background processing thread, join-process
only suspends that thread, leaving the rest of the fiber
unaffected.

3.5. For-Each and Parallel

The fork-and-exec function, in combination with
the join-process function, is enough to implement
many useful distribution strategies. However, these functions
are very low-level and as such may be error-prone. Vinz
provides two macros that are conceptually layered on top
of fork-and-exec that capture the most commonly used
distribution patterns.

The most frequently used of these macros is for-each,
which implements the map step of the map/reduce paradigm.
Listing 1 provides an example of using for-each. This
macro takes as input a sequence of values, and for each
value in that sequence, executes the same body of statements.
The results of these executions are collected and returned to
the parent fiber. The parent fiber was “blocked” (as with
yield) until all the executions were complete. Optionally,
for-each may group the values into “chunks” which may
then be handled in a locally-parallel fashion, for a combi-
nation of distributed and local concurrency. The for-each
macro completely abstracts away the operations involved in
setting up concurrent fibers and awaiting their completion.

Less frequently used is the parallel macro. This macro
simply executes all the forms in its body in new fibers. The
result of each form is collected and returned to the parent
fiber (which was again blocked).

If for-each or parallel is used from a background
thread, it cannot yield the fiber for the same reasons that
a non-blocking service request cannot. The solution in this
case is to have the background thread fork a new fiber which
in turn executes the for-each or parallel code. The
background thread synchronously joins this fiber.

The for-each macro in particular may result in an
arbitrarily large number of new fibers (a number equal to the
number of values in the sequence) and their corresponding
RunFiber requests on the message queue. In order for
cluster resources to be shared among workflows in the
desired way (not necessarily fairly), these macros introduce
a configurable throttling mechanism. Called the spawn limit,
this throttle prevents any individual macro invocation from

Listing 3. Vinz Spawn Limit
(l e t ((p a r e n t−p i d (ge t−process− i d))

(c h i l d r e n (l i s t))
(f unc (lambda (number)

(* number number)
(awake p a r e n t−p i d))))

(append ! c h i l d r e n (fork−and−exec func : a rgument 1))
(append ! c h i l d r e n (fork−and−exec func : a rgument 2))
(append ! c h i l d r e n (fork−and−exec func : a rgument 3))
(y i e l d)
(append ! c h i l d r e n (fork−and−exec func : a rgument 4))
(y i e l d)
(append ! c h i l d r e n (fork−and−exec func : a rgument 5))
(y i e l d)
(y i e l d)
(y i e l d)
(c o l l e c t− c h i l d− r e s u l t s c h i l d−p i d s))

resulting in more than the configured number of concurrently
executing fibers at one time. The spawn limit may be
dynamically adjusted by the workflow. Listing 3 shows a
simplified example1 of what the macro in Listing 1 might
expand to given the numbers from one to five, if the spawn
limit was three. The total number of yield forms will
be equal to the number of child fibers created, but their
distribution will differ depending on the spawn limit.

Listing 3 shows that the parent fiber must wait for
each child fiber to awaken it before continuing. The child
fiber awakens the parent fiber by placing a message for
AwakeFiber on the message queue. This is more efficient
than having the parent fiber invoke join-process for
each child fiber created since the child fibers may finish in
any order and in a for-each the order does not matter;
only that the total number of yield operations match the
total number of AwakeFiber messages matters. While this
is simple and robust, it is also a fairly heavy-handed way
of achieving parent/child communication, and can introduce
artificial bottlenecks and very bursty behaviour (discussed
further in Section 5).

3.6. Task Variables

Because fibers are cloned copies of their parents, side
effects like variable or value mutation are not visible be-
tween fibers. Child fibers created with the macros discussed
in the previous section communicate to their parents by their
return values in a very functional fashion, which is a good fit
for Gozer’s semi-functional nature. In some cases, though,
a distributed algorithm can be greatly simplified if some
mutable values could be globally shared between all fibers.

Vinz supports this mutable sharing through a concept
know as task variables. A task variable is declared at the
top-level of the workflow program with the deftaskvar

1. In particular, awaking parent fibers is not performed by a function call
the child fiber executes. For reliability, it’s actually a property of the fiber
itself. The fibers created by fork-and-exec do not notify their parent
of termination, but the fibers created by these macros do.

Listing 4. Using A Task Variable
(d e f t a s k v a r e x i t− f l a g

”A g l o b a l f l a g . When t h i s becomes t r u e , s t o p . ”)

(defun dis t−sum−squares (numbers)
(for−each (number i n numbers)

(u n l e s s ˆ e x i t− f l a g ˆ
; ; don ' t do a n y t h i n g i f t h e f l a g i s s e t
(i f (= −1 number)

; ; t e l l e v e r y b o d y t o s t o p work ing !
(s e t f ˆ e x i t− f l a g ˆ t)
(* number number)))))

Listing 5. Task Variable Reader Macro
(s e t−macro−cha rac t e r

#\ ˆ
(lambda (the− s t r eam c)

(d e c l a r e (i g n o r e c))
; ; ˆ f o o ˆ −> (%get− task−var ' f o o)
(l e t ((var−name (r e a d the− s t r eam t n i l t))

(v a r− s t r (symbol−name var−name)))
(u n l e s s (. v a r− s t r (endsWith ” ˆ ”))

(error ” Task v a r s must be wrapped i n ˆ ”))
`(% get− t ask−var ' , var−name))

t)

macro, similar to the basic Gozer defvar macro for defin-
ing global variables. All fibers within a task of that workflow
may access and update that variable. Vinz guarantees that
each fiber will see a self-consistent value for that variable
and will always see the latest value for that variable. Stronger
promises such as access order or atomic read-modify-update
sequences are not provided.

Gozer global variables are conventionally given names
that start and end with the * character (“earmuffs”). Sim-
ilarly, Vinz task variables are given names that start and end
with the ˆ character, although this is a requirement, not just
a convention. In order to provide the desired semantics for
task variable access, Vinz needs to replace each read or write
of the variable with a function call that performs the steps
of checking for a stale local cache, reading the most recent
value from the persistence store, taking out appropriate locks,
etc. Vinz does this by hooking into the Gozer source parser
(the reader) using a reader macro defined on the ˆ character
(see Listing 5). Each occurrence of a task variable such as
ˆ exit−flag ˆ in the source file is read as if it were the form
(%get−task−var 'ˆexit−flag ˆ) .

3.7. Error Handling

An important part of a robust system is error handling,
or, more generally, condition handling. Gozer provides an
implementation of the very general Common Lisp condition
system which goes above and beyond exception handling by
not requiring the stack to unwind to handle conditions [4]. In
turn, Vinz provides workflow authors with some convenient
extensions built on Gozer’s condition system.

The core of these extensions is the concept of a named

Listing 6. Vinz Error Handling
(defhandler i g n o r e−h a n d l e r

: j a v a (” j a v a . l a n g . Throwable ”)
: a c t i o n i g n o r e)

(defhandler r e t r y−h a n d l e r
: j a v a (” j a v a . n e t . S o c k e t E x c e p t i o n ”)
: code (”{ urn : s e r v i c e }Connet ”

”{ urn : s e r v i c e }T r a n s m i t ”)
: a c t i o n r e t r y
: count 5)

(with−handler i g n o r e−h a n d l e r
(with−handler r e t r y−h a n d l e r

(o p t i o n a l− s o c k e t−o p e r a t i o n)))

handler which is created by the macro defhandler and
utilized by the with-handler macro (Listing 6). A han-
dler associates a list of conditions (whether Java classes or
XML QNames [5]) with an action (usually) provided by
Vinz, making it possible to centralize condition-handling
logic. Instead of repeating the list of conditions every time
the programmer wants to take a certain action to handle a
condition (in handler-bind forms spread throughout the
program), the programmer can define a handler once and
use it repeatedly in with-handler.

Vinz provides four actions (an action is just a function,
so the workflow author is free to define additional actions).
Two actions, retry and ignore, invoke an active restart
of the same name. The functions created by deflink
bind these restarts, and the programmer can also bind
them. The retry restart is intended to be used to deal
with possibly transient errors such as network connectivity
failures without the programmer being forced to write an
explicit loop. Ignoring a condition can be used to allow
“optional” operations such as generating debugging data to
fail without impacting the workflow.

The two remaining actions are break and terminate.
These actions interact with Vinz fibers and tasks. The former
action is named for the Java keyword of the same name.
Intended to be used around a for-each distributed loop,
the break action causes the currently executing fiber to
immediately terminate cleanly and return nil to the parent
fiber (other fibers are unaffected). In contrast, terminate
terminates both the current fiber and the entire task with an
error status. Any other fibers that are currently running or
are queued by the message queue will notice that the task
has terminated in short order and also terminate in error.

Both local and distributed conditions can be handled with
these extensions. When a function created by deflink
invokes a service, the response from the service might be
an error, conveniently expressed as an XML QName. The
function arranges for this QName to be signaled as an
error, thus integrating distributed error conditions into Vinz
handling.

4. Implementation
4.1. Futures And Continuations

The futures and continuations described in this paper are a
fundamental part of the Gozer programming language. They,
and the rest of the runtime semantics of the Gozer language,
are implemented by a bytecode interpreter called the Gozer
Virtual Machine (GVM), which runs on top of the Java
Virtual Machine (JVM).

Continuations are not supported by the JVM (there is
no way to capture a call stack and re-enter it later). This
implies that the JVM’s operand stack and function calling
operations could not be used. Instead, the GVM implements
its own stack-oriented architecture, in many ways similar to
the JVM’s architecture. The stack consists of ordinary Java
objects representing function calls together with arguments,
local variables, etc. These objects are used to create the
continuations requested by yield and push-cc. This
is similar to the approach taken by Stackless Python [6].
Compilation to bytecode (as opposed to a tree-walking
interpreter) was introduced as an optimization for Vinz
persistence.

In contrast with continuations, the JVM does provide the
concept of futures through its ExecutorService. The
challenge for the GVM here was to make them transparent
to the programmer, completely managing their execution
and determination, while allowing Vinz to integrate them
into its distributed workflows (it is problematic to migrate
a fiber from one machine to another while some of its
futures were still running on the first machine). To do
this, the GVM adopts the rule that passing any future to
a Java library or a BlueBox service will cause that future to
be determined. In addition, when capturing a continuation,
futures referenced from that continuation are determined
(the continuation doesn’t become available until all futures
have completed). Finally, the BlueBox platform provides an
ExecutorService that integrates with its native load
balancing heuristics, and Vinz configures futures to be
created using this implementation.

4.2. Workflow Distribution

The BlueBox service framework provided many of the
tools required to build distributed workflows: a service-
oriented architecture, a message queue with addressable
services, a global process tracking service, etc. Only a few
additional features were required.

One clear need was a way to persist a fiber’s state
and data so that one instance could write it, and another
instance could later read it and resume execution. The Java
platform defines a built-in way to externalize in-memory
objects called serialization, and so building on this support
was the obvious approach. Vinz thus writes a fiber’s state
and data using Java serialization, with many customizations
for efficiency and to broaden what can be successfully

serialized. A shared NFS filesystem provides all instances
with read and write access to this data. To prevent this
filesystem from becoming a single point of failure in the
distributed system, very highly-available network attached
storage (NAS) servers running on purpose-built enterprise
hardware are utilized.

Much time was spent optimizing Vinz serialization for
performance. A series of tests determined that compressing
the serialized data before writing it to NFS was a net win
by reducing IO costs considerably, even though the Java se-
rialization format is computationally expensive to compress
with standard deflate-based compression techniques. It was
also discovered that plain deflate can be made to perform
approximately 30% better than the more robust and space-
efficient gzip format for this data. Analysis of serialized
data resulted in the introduction of a custom serialization
format that stored the most commonly serialized objects
more efficiently. Even after all this, reconstituting a fiber
from its persisted state is still relatively slow and so a cache
of recently seen fibers is maintained in memory on each
instance. Because Vinz executes no control over where a
fiber will be asked to run (leaving that in the hands of
the message queue), the cache is only somewhat effective.
Empirical measurements show cache hit rates of about 18%
and 66% for mutable and immutable data, respectively.

Another obvious requirement was a way to prevent a
single fiber from being run by different JVMs at the same
time (for example, in the AwakeFiber case discussed above).
Within a single JVM, the usual thread locks suffice for this,
but distributed locks would be required. Since the persistence
information was being shared using an NFS filesystem, the
natural choice was to use file locks on the NFS files. This
was simple and, thanks to the enterprise NFS servers in
production use, effective, but it was completely opaque.
Moreover, the need to be able to test in environments using
different NFS servers required the development of code to
cope with each implementation’s unique quirks. To remedy
these problems, a custom distributed lock implementation
based on the Apache ZooKeeper distributed coordination
system2 is being developed as a replacement for NFS file
locks. This same locking and persistence infrastructure is
used to implement task variables.

5. Future Work and Conclusion
The Gozer workflow system is in high-volume production

usage at RiskMetrics Group. A typical 24-hour period will
see around 10,000 new top-level tasks comprising about
45,000 individual fibers. Tasks during this period may run
for as long as 12 hours or as little as 20 milliseconds,
with the average being about a minute. If these 10,000
tasks were run back-to-back, they would require about 190
hours to complete. Based on this production usage and

2. http://hadoop.apache.org/zookeeper/

experience, a number of improvements in monitoring and
management, development effort, and runtime efficiency
have been identified.

One area for future work is to have Vinz automatically
learn which requests and loops do or do not benefit from task
migration and to enable or disable it appropriately, instead
of requiring the programmer to decide, and often guess.
The for-each chunking function should also dynamically
optimize chunk sizes based on the processing time of the
body.

The cache effectiveness mentioned in the previous section
is less than ideal. Further work is needed in this area, perhaps
by devising a way to move the processing work to the last
location of the data as is done, for example, in the Swarm
system presented at IEEE P2P ’09 in Seattle3.

Task variables, although useful, have a very high syn-
chronization overhead for mutation. Workflow authors have
requested lighter-weight cross-process communication mech-
anisms.

Although the spawn limit solves an operational problem,
its implementation currently is sub-optimal. Consider the
case where the spawn limit is absent or very high relative
to the number of workflow service instances available, n,
and suppose that each child fiber is going to execute in
approximately the same amount of time. Initially, n child
fibers will be executing concurrently. When they finish,
n AwakeFiber messages will be placed on the message
queue and delivered for execution. Since a fiber can be
executing on at most one instance at a time, n − 1 of
those AwakeFiber operations will be forced to wait while a
single instance reads and updates the persistence information.
Each AwakeFiber instance will proceed in turn, but for
some period of time all n instances will be unavailable
to process other activity such as other RunFiber requests
(and because instances are often shared across services, even
unrelated service operations may be blocked, something that
Vinz seeks to avoid). To partially counteract this problem,
AwakeFiber requests are specified to be low-priority, and a
running AwakeFiber places a strict limit on how long it will
wait for its turn to execute the fiber before giving up and
placing itself back on the message queue for later delivery.

When the spawn limit is low (and especially if the spawn
limit is low but the number of child fibers is high), the
overhead of sending an AwakeFiber message for permission
to spawn the next child seems high. It would be better if, as
the child fiber died, it could simply spawn whatever sibling
fiber is next without involving the parent. The difficulty here
is synchronizing access to the parent so that it continues only
when all of its children ultimately complete. Further work
is needed in this area.

Finally, the enterprise message queue is currently com-
pletely responsible for load balancing and prioritizing mes-

3. http://vimeo.com/6614042

sages. Each task starts and runs to completion independently
of any other tasks that may be operating, subject only to the
capacity limits of the system. In effect, task scheduling is
first-come-first-serve, which has been shown to be subopti-
mal in the presence of deadlines [7]. Work is in progress
to develop more efficient and proactive scheduling policies
utilizing historical and current information about the state
of the entire cluster (shared using ZooKeeper) and tasks in
process based on scheduling research presented in [8].

Although still evolving to meet upcoming needs and
extend current capabilities, Gozer addresses key require-
ments associated with processing a vast number and type
of workflow computations submitted by, or on behalf of,
numerous clients. The workflow requirements vary greatly
in terms of computational complexity, overall duration, and
terms defined by service-level agreements. Gozer’s ability to
easily exploit local and distributed resources through implicit
parallelization together with its high-level language approach
to workflow authoring have allowed the rapid development
of dozens of production workflows.

References
[1] S. Halloway, Programming Clojure. Pragmatic Bookshelf,

2009.

[2] D. Koenig, A. Glover, P. King, G. Laforge, and J. Skeet, Groovy
in Action, 1st ed. Manning, 2007.

[3] R. H. Halstead, Jr., “Multilisp: a language for concurrent
symbolic computation,” ACM Trans. Program. Lang. Syst.,
vol. 7, no. 4, pp. 501–538, 1985.

[4] P. Siebel, Practical Common Lisp. Berkeley, CA: Apress,
2005, ch. 19. Beyond Exception Handling: Conditions and
Restarts.

[5] T. Bray, D. Hollander, A. Layman, and R. Tobin, “Namespaces
in xml 1.0,” W3C (World Wide Web Consortium),
Recommendation, August 2006. [Online]. Available:
http://www.w3.org/TR/2006/REC-xml-names-20060816

[6] C. Tismer, “Continuations and stackless python,” in Proceed-
ings Of The Eighth International Python Conference, Arlington,
Virginia, January 2000.

[7] H. K. Shrestha, N. Grounds, J. Madden, M. Martin, J. K.
Antonio, J. Sachs, J. Zuech, and C. Sanchez, “Scheduling work-
flows on a cluster of memory managed multicore machines,”
in Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA
’09), July 2009.

[8] N. G. Grounds, J. K. Antonio, and J. Muehring, “Cost-
minimizing scheduling of workflows on a cloud of memory
managed multicore machines,” in Proceedings of the 1st Inter-
national Conference on Cloud Computing (CloudCom 2009),
in Lecture Notes in Computer Science 5931, December 2009,
pp. 435–450.

