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Abstract. Workflows are modeled as hierarchically structured directed
acyclic graphs in which vertices represent computational tasks, referred
to as requests, and edges represent precedent constraints among requests.
Associated with each workflow is a deadline that defines the time by
which all computations of a workflow should be complete. Workflows are
submitted by numerous clients to a scheduler that assigns workflow re-
quests to a cloud of memory managed multicore machines for execution.
A cost function is assumed to be associated with each workflow, which
maps values of relative workflow tardiness to corresponding cost function
values. A novel cost-minimizing scheduling framework is introduced to
schedule requests of workflows so as to minimize the sum of cost func-
tion values for all workflows. The utility of the proposed scheduler is
compared to another previously known scheduling policy.

1 Introduction

The service-oriented architecture (SOA) framework is a viable approach to cloud
computing in which computational requirements of a user are represented by
basic service requests. In this framework, the computational requirements of a
user are modeled as a workflow graph (WFG), which is a directed and acyclic
graph that defines precedence constraints among service requests required by
the user. WFGs can vary greatly in size and structure. For example, a small
WFG may contain just a few requests (i.e., vertices) while a large WFG may
contain thousands of requests. Regarding structure, at one extreme a WFG may
represent a single chain of requests in which no two requests may be executed
in parallel. At another extreme, the structure of a WFG may contain numerous
independent chains of requests in which requests belonging to distinct chains
may be executed in parallel.

For the purposes of this paper, the SOA is supported by a collection of
memory-managed multicore machines. Each machine supports one or more ser-
vices, and associated with each service are a number of supporting operations. A
service request involves the execution of an operation provided by a service. Each
multicore machine in the assumed platform can concurrently execute multiple
service requests because each request is executed as an independent thread on the
machine. The instantaneous performance efficiency of each machine is assumed
to depend on an aggregate measure of CPU loading and heap memory loading

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 435–450, 2009.
Springer-Verlag Berlin Heidelberg 2009



436 N.G. Grounds, J.K. Antonio, and J. Muehring

of all requests executing on the machine. An efficiency-based performance model
for memory-managed multicore machines is adopted in this paper.

In the framework considered here, WFGs are assumed to be submitted by mul-
tiple clients to a scheduler. Associated with each submitted WFG is a deadline
that defines the time by which all requests of the WFG should complete execu-
tion. A cost function is assumed to be associated with each workflow, which maps
values of workflow tardiness to corresponding cost function values. A novel cost-
minimizing scheduling approach is introduced to schedule requests of workflows
so as to minimize the sum of cost function values for all workflows.

The remainder of the paper is organized in the following manner. Section
2 includes an overview of related work. Section 3 describes the assumed cloud
environment, including models and descriptions for the workflow graphs and
the machines that support the cloud’s SOA. Section 4 describes the new cost-
minimizing scheduler. Section 5 provides the results of simulation studies, fol-
lowed by concluding remarks in the final section.

2 Background and Related Work

Previous related work is reviewed in three broad areas: (1) machine modeling and
simulation environments; (2) automatic memory management; and (3) schedul-
ing and load balancing.

Considerable work has been published related to modeling of machines in
distributed environments. Much of the past research in this area has focused
on modeling and predicting CPU performance, e.g., [1, 2]. The machine model
described in the present paper (refer to Section 3.3) relies on assumed knowledge
of the characteristics of the requests (i.e., computational tasks); it is similar in
a sense to the SPAP approach proposed in [1].

In memory managed systems, the effect of long and/or frequent garbage col-
lections can lead to undesirable – and difficult to predict – degradations in system
performance. Garbage collection tuning, and predicting the impact of garbage
collections on system performance, are important and growing areas of research,
e.g., [3, 4, 5, 6, 7]. To estimate the overhead associated with various garbage col-
lectors, experiments were designed and conducted in [4, 5] to compare the per-
formance associated with executing an application assuming automatic memory
management versus explicit memory management. The machine model proposed
here accounts for the overhead associated with automatic memory management.

Formulations of realistic scheduling problems are typically found to be NP-
complete, hence heuristic scheduling policies are generally employed to provide
acceptable scheduling solutions, e.g., refer to [7, 8, 9, 10, 11, 12]. The scheduling
evaluations conducted in the present paper account for the impact that garbage
collection has on a machine’s performance. Examples of other memory-aware
scheduling approaches are described in [7, 13].

Load balancing involves techniques for allocating workload to available ma-
chine(s) in a distributed system as a means of improving overall system perfor-
mance. Examples of both centralized and distributed load balancing approaches
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are described in [8]. The scheduling framework developed in the present paper
incorporates load balancing in the sense that the scheduler only assigns requests
to machines if doing so is beneficial relative to minimizing a desired cost function.
For simplicity the algorithm assumes every machine can service any request al-
though relaxing this assumption is a straight-forward extension to the approach
described here.

3 Cloud Environment

3.1 Overview

Fig. 1 illustrates the major components of the assumed system in which clients
submit workflow graphs (WFGs) to a cloud environment for execution. Clients
purchase computing services from the cloud, which implements a service-oriented
architecture. Associated with each WFG is a service-level agreement (SLA) [9]
that defines a deadline for finishing all computations of the WFG. An SLA
generally defines cost penalties in the event that the terms of an SLA are not
met, e.g., a deadline is missed. For instance, a cost penalty value increases as a
function of increasing WFG tardiness. The precise terms of an SLA are carefully
constructed for business applications in which timely delivery of computational
results are a critical component of a client process — and not having these results
delivered to the client by the deadline incurs costs.

The next two subsections provide descriptions and models for the WFG and
machine components shown in Fig. 1. Variants of the material presented in
Subsections 3.2 and 3.3 were originally introduced in [14]. A primary contribution
of the present paper is the introduction of the new cost-minimizing scheduler,
which is described in Section 4 and evaluated through simulation studies in
Section 5.

3.2 Workflow Graph (WFG) Model

A WFG is a directed acyclic graph with a hierarchical structure composed of par-
allel and sequential combinations of request chains (RCs). An example WFG is
shown in Fig. 2(a). The vertices of the graph represent requests and the directed
arcs denote precedence constraints that exist between requests, e.g., request 2
in Fig. 2(a) cannot begin executing until request 1 finishes executing.

The hierarchical nature of the WFG of Fig. 2(a) is illustrated by the tree
structure in Fig. 2(b). The leaf nodes of the tree represent the requests of the
WFG. Traversing the tree in a depth-first order defines the structure of the asso-
ciated WFG; non-leaf tree nodes are labeled “S” or “P,” which defines whether
that node’s children must be executed sequentially (S) or may be executed in
parallel (P). The children nodes (sub-trees) of a node labeled P are assumed
to represent independent and identical computational structures executed with
distinct input data. Although all of the children sub-trees of a P node could
potentially be executed in parallel, it may not be possible (or effective) to fully
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the WFG shown in (a).
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exploit all available parallelism associated with all currently executing WFGs
due to resource limitations and/or loading.

When a WFG arrives at the scheduler, it is placed in a pool that holds all
WFGs that have not yet finished execution. Once all requests of a WFG have
finished execution, the entire WFG is defined as finished and removed from the
scheduling pool. The scheduler tracks the status of individual requests according
to the following states: “blocked,” “ready,” “executing,” or “finished.”

The time instant that the state of a request r transitions from “blocked” to
“ready” is defined as r’s birth time and is denoted by br. The finish time of a
request is denoted by fr. The birth time of a request r is defined as the maxi-
mum of all finish times of r’s precedence requests. For example, in Fig. 2(a), b7 =
max{f6, f6′ , f6′′}. The time instant that the state of a request transitions from
“ready” to “executing” is defined as the request’s start time and is denoted by sr.
The start time of a request must be greater than or equal to its birth time, i.e.,
sr ≥ br. The function of the scheduler is to determine the start time sr for each
request r as well as determine r’s machine assignment, denoted by Mr.

The time instant when WFG w arrives at the scheduling pool is defined as
w’s birth time, denoted by bw. The birth time of a WFG is also the birth time of
all requests in the WFG that have no precedence constraints, e.g., the birth time
of the WFG in Fig. 2(a) equals the birth time of request 1. The start time of a
WFG is defined as the minimum start time value of all requests associated with
the WFG. Thus, the start time of w is defined by sw = minr∈w{sr}. The finish
time of w, denoted fw, is defined as the maximum finish time of all requests in
w, i.e., fw = maxr∈w{fr}.

Associated with each WFG w is a known deadline dw, which defines the
point in time by which w should finish execution. If fw ≤ dw, then w is not
tardy; otherwise (if fw > dw) w is declared to be tardy. By making judicious
choices for request start times and machine assignments, the scheduler attempts
to minimize the cost associated with workflow tardiness. Because each machine
has a finite capacity, assigning too many concurrent requests to the same machine
can degrade the efficiency of that machine, thus extending the finish times of all
requests assigned to that machine. Extending the finish times of requests can
ultimately extend the finish time of the corresponding WFGs, possibly leading
to one or more being tardy.

3.3 Efficiency-Based Machine Model

Each request is assumed to require a fraction of two basic resources available on
each machine of the cloud: CPU cycles and heap memory. Table 1 summarizes the
notation and definitions of basic computational and heap memory requirements
for request r.

The CPU utilization factor of r, Ur, can be no greater than unity and no
less than zero. A request having a CPU utilization factor of unity is typically
referred to as a CPU-bound request, e.g., refer to [1].

The efficiency value for a machine depends on the aggregate CPU and heap
memory loading due to all requests executing on the machine. The CPU and heap
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Table 1. Definitions of CPU and heap memory requirements for request r

Cr > 0 Cr is the number of CPU cycles required to complete r.

Ir ≥ Cr Ir is the execution time duration of r on an ideal machine.

Ur = Cr/Ir Ur is the CPU utilization factor of r.

Hr > 0 Hr is the maximum reachable heap memory requirement of r.

memory loading of a given machine changes with time only when new requests
are assigned and start executing on the machine, or when existing requests finish
execution on the machine. Generally, The efficiency value of a machine generally
decreases when new requests begin executing on the machine, and increases when
request(s) complete execution on that machine.

The machine to which request r is assigned is denoted by Mr. The efficiency
of machine Mr from time instance ti to time instance ti+1, denoted by e(Mr, ti),
has a value between zero and unity. The number of CPU cycles remaining to
complete execution of request r at time instance ti is denoted by cr(ti). The value
of cr(ti+1) is calculated based on cr(ti) according to the following equation:

cr(ti+1) =
{

Cr, ti+1 < sr

max {0, cr(ti) − (ti+1 − ti)e(Mr, ti)Ur} , ti+1 ≥ sr
(1)

For time instants less than r’s start time, the value of cr(t) remains constant
at Cr (see Table 1) because the request has not yet started executing. For time
instants greater than the request’s start time, the value of cr(t) decreases ac-
cording to the difference equation defined by the second case of Eq. 1. The value
deducted from the CPU cycles remaining to complete execution of request r is
proportional to the product of the efficiency of the machine on which the re-
quest is assigned and that request’s CPU utilization factor. Thus, the maximum
possible deduction is ti+1 − ti, which corresponds to a situation in which the re-
quest is executing on a machine with an efficiency of unity and the request has a
CPU utilization factor of unity. The application of the max function in the equa-
tion ensures that the number of CPU cycles remaining to complete execution of
request r is non-negative.

Fig. 3 illustrates how changes in a machine’s efficiency value affects the time
required to execute a request on that machine. From the figure, notice that re-
quest r starts executing on the assigned machine at t = sr. Near the beginning
of the request’s execution, note that the efficiency of the machine is relatively
high, and the slope of the curve for cr(t) is correspondingly steep (refer to Eq. 1).
Throughout the execution of request r, other requests start executing on the ma-
chine (corresponding to decreases in the machine’s efficiency value) and complete
execution on the machine (corresponding to increases in the machine’s efficiency
value). The finish time of r is defined as the first point in time when cr(t) = 0,
indicated by fr in Fig. 3.

The following discussion describes how the value of a machine’s efficiency is
modeled. Throughout this discussion, it is understood that the efficiency value
is related to a particular machine for a particular time instant. Thus, the value
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Fig. 3. Illustration of how a machine’s efficiency value affects the time required to
execute a request on the machine

of efficiency is often referred to as simply e, instead of e(M, t), to ease notational
burden.

CPU loading and heap memory loading are the two primary factors used to
characterize a machine’s relative efficiency. In the machine model, the overall
efficiency of a machine is defined by the product of two terms:

e = eceh. (2)

The terms on the right hand side of Eq. 2 are defined as the CPU efficiency
and heap efficiency, respectively. The values of ec and eh represent the relative
impact on a machine’s overall efficiency due to loading of the machine’s CPU
and heap resources, respectively. The specific functions assumed in the present
paper are given by Eq. 3 and Eq. 4.

ec =
{

1, �c < 4
(4/�c), �c ≥ 4 (3)

eh =
10

10 + 1
(1/�h)−1

(4)

Derivations of these two functions are provided in [14]. The CPU efficiency func-
tion of Eq. 3 models a quad-core machine with a CPU loading factor of �c ≥ 0.
The value of �c is assumed to equal the sum of the Ur’s (CPU utilization factors)
of all requests executing on the machine. The heap efficiency function of Eq. 4
models the efficiency of the machine’s memory managed system as a function
of a normalized heap loading factor, 0 < �h < 1. The specific function of Eq. 4
assumes the time required for a single (full) garbage collection is 10 times less
than the execution time of the typical request execution time.
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Fig. 4. Derived machine efficiency surface based on the functions for ec in Eq. 3 and
eh in Eq. 4

Fig. 4 shows a two-dimensional surface plot of e = eceh, which is the product
of the formulas given in Eqs. 3 and 4. This efficiency function surface is assumed
for each machine for the simulations conducted in Section 5.

4 Cost-Minimizing Scheduler

4.1 Notation

Let W denote the set of all WFGs to be scheduled for execution. For each w ∈ W
there is assumed to be a cost function, �w(τw), which maps a normalized measure
of w’s tardiness, τw, to a cost value. The total cost of the system, denoted by
�(τ ), is defined by summing the costs of all WFGs:

�(τ ) =
∑
w∈W

�w(τw), (5)

where τ = [τw]w∈W .
The normalized tardiness of WFG w is defined by the follow equation:

τw =
fw − dw

dw − bw
. (6)

The numerator of the expression, fw − dw, represents the actual tardiness of w.
The denominator of the expression, dw − bw, represents the maximum desired
amount of time allocated for executing w, and is by definition positive. The
numerator can be either positive or negative. Thus, τw ≤ 0 indicates that w is
not tardy and τw > 0 indicates w is tardy.

Because τw is normalized, it is straightforward to compare the relative tardi-
ness values of WFGs of different sizes and/or expected durations. For instance,
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an actual tardiness of fw− dw = 10 seconds is relatively insignificant if the over-
all allocated duration is dw − bw = 1 hour, i.e., τw = 10

3600 = 0.0028. However, a
tardiness of 10 seconds could be quite significant if the overall allocated duration
is defined to be 40 seconds, i.e., τw = 10

40 = 0.25.
In order to derive an effective cost-minimizing scheduler, it is convenient to

assume that the WFG functions �w(τw) are non-decreasing functions. This is
a reasonable assumption in practice because a sensible SLA should not allow
greater tardiness to be less costly than any lesser tardiness.

4.2 Cost-Minimizing Scheduling Algorithm (CMSA)

The function of CMSA is to decide which, if any, of the “ready” requests present
in the scheduling pool should be assigned to a machine to begin execution.
Scheduling decisions are implemented only at discrete points in time defined as
scheduling instances. Two events can trigger a scheduling instance: (1) when a
request finishes execution or (2) when a new WFG arrives in the scheduling
pool. During the time period between two consecutive scheduling instances, the
currently executing requests continue executing and the states of the requests in
the scheduling pool do not change. Also, based on the machine model described
in the previous section, the efficiency value, e, of each machine does not change
during the time period between consecutive scheduling instances.

At each scheduling instance, and for each ready request in the scheduling
pool, CMSA decides whether to start a request on a machine, based on the
outcome of cost function analysis. Specifically, the scheduler estimates the cost
associated with starting a ready request now (at the current scheduling instance)
or holding the request in the pool until a future scheduling instance. Central
to the algorithm’s decision-making process is the ability to estimate the costs
associated with competing scheduling options. A primary source of uncertainty
in estimating a WFG’s cost, �w(τw), is estimating the finish time, fw, of the
WFG. Recall from Eq. 6 that τw is directly proportional to fw.

Predicting the exact value of fw (before w has finished execution) is generally
not possible because all scheduling decisions, including those yet to be made,
ultimately affect the values of fw for all WFGs. As is apparent from Fig. 3,
the issue of how to best estimate the finish time of even a single request is not
obvious because the value of fr depends on factors in addition to the request’s
start time sr, including how the efficiency of the machine on which it is executing
varies with time.

For the purposes of the present discussion, an estimate is assumed to be
available for w’s finish time at scheduling instance ti, and this estimate is denoted
by f̃w(ti). A description of the particular method used to calculate f̃w(ti) in the
simulation studies is provided in Section 5.

Let M denote the set of machines and M(ti) denote the set of requests cur-
rently executing on machine M ∈ M at scheduling instance ti. Let R(ti) denote
the set of ready requests in the scheduling pool at scheduling instance ti, and
let w(r) denote the WFG associated with request r.
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Basic Scheduling Decision: A basic decision made by the scheduling algo-
rithm involves deciding whether to start executing a ready request at a current
scheduling instance or to wait until a future scheduling instance. This basic de-
cision assumes a candidate ready request and a candidate machine are specified.

For ready request r ∈ R(ti) and machine M ∈ M, determine whether
it is less costly to start r on M at the current scheduling instance ti or
wait until a future scheduling instance tM > ti.

The value of tM is defined to be the next scheduling instance generated by
machine M due to the completion of one of M ’s executing requests. The value
of tM is itself dependant upon whether a particular ready request r∗ is started
at instance ti. The formulas for the two possible values of tM , denoted twait

M and
tstartM , are given by:

twait
M = ti + min

r∈M

{
cr(ti)
Ur

1
ewait

}
(7)

tstartM = ti + min
r∈M∪{r∗}

{
cr(ti)
Ur

1
estart

}
, (8)

where ewait = e(M(ti), ti) and estart = e(M(ti) ∪ {r∗}, ti).
For convenience, define Δtwait = twait

M − ti and Δtstart = tstartM − ti. The cost
associated with waiting until twait

M to begin executing r∗ on M is defined by:

�
wait
r∗,M = �w(r∗)

(
f̃w(r∗) + Δtwait − dw(r∗)

dw(r∗) − bw(r∗)

)
+

∑
r∈M

�w(r)

(
f̃w(r) − dw(r)

dw(r) − bw(r)

)
. (9)

The cost associated with starting r∗ on M at time ti is defined by:

�
start
r∗,M =

∑
r∈M∪{r∗}

�w(r)

(
f̃w(r) + Δtstart

(
1

estart − 1
ewait

) − dw(r)

dw(r) − bw(r)

)
. (10)

For each ready request r ∈ R(ti) and each machine M ∈ M, the cost-minimizing
algorithm computes the difference in costs Δ�r,M = �

start
r,M −�

wait
r,M . If Δ�r,M > 0

for all r ∈ R(ti) and for all M ∈ M, then the scheduler will not start any
request now (at scheduling instance ti). However, if there exists one or more
combinations of requests and machines for which Δ�r,M ≤ 0, then the scheduler
will start the request on the machine having the smallest starting penalty, defined
as follows:

�
penalty
r,M = Δ�r,M + �w(r)

(
f̃w(r) + Δtwait − dw(r)

dw(r) − bw(r)

)
. (11)
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Fig. 5 provides the precise description of CMSA. For a given scheduling instance
ti, CMSA first performs computations for all combinations of ready requests and
machines, refer to lines 3 through 11. After completing this phase of computa-
tion, CMSA then determines whether there exists a request that can be started
on a machine. If the answer is no, then the algorithm exits, refer to lines 12
and 13. However, if the answer is yes, then the selected request is assigned to
the selected machine (line 14), the selected request is removed from the set of
ready requests (line 15), and the algorithm again performs computations for all
combinations of ready requests and machines (line 16). The complexity associ-
ated with performing computations for all combinations of ready requests and
machines is O(|R(ti)||M|). Because it is possible that these computations may
be performed up to |R(ti)| times, the worst case computational complexity of
CMSA is O(|R(ti)|2|M|).

Note that if the system is highly loaded, then |R(ti)| will tend to be large. This
is because a highly loaded system implies there are limited machine resources
available to assign ready requests, thus ready requests will tend to accumulate in
the scheduling pool. Because of this, it is likely that CMSA will exit soon under
the highly loaded assumption, meaning that while |R(ti)| is large, the actual
complexity of CMSA may be closer to O(|R(ti)||M|) than O(|R(ti)|2|M|). On
the other hand, if the system is lightly loaded, then |R(ti)| will tend to be
small. This is because a lightly loaded system implies there are ample machine
resources available to assign ready requests, thus ready requests will tend to
be removed quickly from the scheduling pool. Thus, in the lightly loaded case,
the complexity of CMSA tends to be characterized by O(|R(ti)|2|M|). However,
because |R(ti)| is relatively small, the actual complexity for the lightly loaded
case may be comparable to, or even less than, the complexity of CMSA under
high loading.

1 for scheduling instance ti

2 minPenalty ← ∞, rmin ← ∞, Mmin ← ∞
3 for each r ∈ R(ti)
4 for each M ∈ M
5 compute Δ�r,M = �

start
r,M − �

wait
r,M

6 compute �
penalty
r,M

7 if Δ�r,M ≤ 0

8 if �
penalty
r,M < minPenalty

9 minPenalty ← �
penalty
r,M

10 rmin ← r
11 Mmin ← M
12 if minPenalty = ∞
13 exit
14 assign request rmin to machine Mmin

15 R(ti) ← R(ti) − {rmin}
16 goto line 2

Fig. 5. Pseudocode for CMSA
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5 Simulation Studies

CMSA is evaluated through simulation studies for a realistic scenario in which
different types of WFGs are submitted to the cloud (refer to Fig. 1) by clients
from three primary regions: Americas; Europe; and Asia. Furthermore, WFGs of
three different types are submitted by clients: Batch, Webservice, and Interac-
tive. Batch WFGs generally have a larger number of requests and requests with
greater CPU and memory heap requirements compared to the other two WFG
types. The Webservice WFGs generally have more requests than and requests
with more requirements than Interactive WFGs.

In addition to differences in number and sizes of requests, the different WFG
types are characterized by different arrival rates. The studies conducted were
modeled from a typical 24 hour period observed in a live system. Webservice
WFGs arrive uniformly over the 24 hours. Interactive WFGs arrive at constant
rates only during three 8 hour periods that are partially overlapping. These
periods represent interactive use by clients during normal working hours for the
three client regions. The bulk of Batch WFGs arrive at hour seven and the arrival
rate exponentially decays afterward. The arrival rates over a 24 hour period for
the three types of WFGs are illustrated graphically in Fig. 6.

The parameter value ranges and distributions associated with the simulation
studies are summarized in Table 2. The table defines parameters related to the
structural characteristics for each type of WFG, which are all assumed to have a
level of depth as the example in Fig. 2. Also provided in the table are CPU and
heap memory characteristics of the requests associated with each WFG type. In
all cases, a parallelization factor of two is used in determining a base deadline for
each generated WFG; it defines the degree of parallelism assumed for executing
parallel RCs from a common WFG. Once a base deadline is determined for a
WFG, it is multiplied by the Deadline Factor (last row in the table) to define
actual deadline for the WFG.

In making assignment decisions, the Scheduler can make use of computa-
tional and heap memory requirements assumed to be known and available for
each request. Having access to such information is realistic in the assumed envi-
ronment in which off-line profiling and/or historical logging can be performed to
collect/estimate these data. Also associated with each WFG is a single timing
deadline, and the Scheduler can also make use of WFG deadline requirements
in making request scheduling decisions.

0 2 4 6 8 10 12 14 16 18 20 22 24

Hour

Interactive Webservice Batch

Fig. 6. Arrival rate of WFGs by type over a 24-hour period
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Table 2. WFG parameter value ranges, [Min, Max], taken from uniform distributions
for simulation studies

Parameter Interactive Webservice Batch
WFG WFG WFG

Compound Nodes [1, 1] [1, 3] [3, 5]

Parallel RCs [1, 2] [2, 3] [5, 20]

Requests in RCs [5, 8] [5, 8] [3, 8]

Request Ideal Duration (secs), Ir [1, 5] [10, 30] [50, 250]

Request CPU Utilization, Ur [0.5, 1.0] [0.5, 1.0] [0.5, 1.0]

Request Heap Memory, Hr [0.05, 0.1] [0.05, 0.1] [0.05, 0.15]

WFG Deadline Factor [1.1, 1.2] [1.3, 1.5] [1.3, 1.5]

As described in Section 4, an estimate of each WFG’s finish time, denoted
as f̃w(ti), is necessary for the CMSA. The following formula is used to estimate
WFG finish time in the simulation studies:

f̃w(ti) = ti + (ti − sw)

⎛
⎜⎝∑

r∈w

Cr −
∑
r∈w

fr<ti

Cr

⎞
⎟⎠

/⎛
⎜⎝ ∑

r∈w
fr<ti

Cr

⎞
⎟⎠ . (12)

The CMSA is evaluated against a previously known algorithm, proportional least
laxity first (PLLF) [14], which prioritizes scheduling requests with the least esti-
mated proportional laxity, which is equivalent to the greatest normalized tardiness
defined in Eq. 6. PLLF does not make use of any cost function, but only defines
the order in which requests are considered for scheduling and relies on a separate
policy to decide what machine to start the request on or when to forego schedul-
ing ready requests. In the studies presented PLLF is combined with an algorithm
that selects the machine based on the one that will have the largest values of estart,
which is defined as the efficiency that results if the request is started on that ma-
chine at the current time instance. PLLF elects to forego scheduling requests if all
machines’ values of estart are below a prescribed threshold value.

Two sets of simulation studies were conducted, one with a sigmoid cost func-
tion and the other with a quadratic cost function. Fig. 7 shows the percentage of
workflows whose normalized tardiness is at or below the given value of normalized
tardiness. For example, only about 30% of workflows scheduled using PLLF had a
normalized tardiness of zero or less (met their deadline or were early). In contrast,
over 90% of the workflows scheduled by CMSA (using the sigmoid cost function)
met their deadline. Also illustrated for reference are the sigmoid and quadratic
cost functions. Fig. 8 shows the cumulative running cost of workflows by born time
across the 24 hour simulated study period for both cost functions. Although PLLF
does not explicitly use a cost function, it was evaluated using the same cost func-
tion used by CMSA. The cumulative running cost of both algorithms coincide dur-
ing the zero to seven hour period, which represented a period when the system is
lightly loaded. However, after this point the PLLF algorithm makes very different
scheduling decisions than CMSA.
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Table 3. Summary of results of simulation studies

Measure Sigmoid Quadratic
PLLF CMSA PLLF CMSA

Cumulative Cost 3,121.7 135.8 13,935.7 3,432.5

% Workflows Late 70.7 8.4 70.7 22.2
% Interactive WFGs Late 74.9 14.0 74.9 37.6
% Batch WFGS Late 96.6 41.5 96.6 57.6
% Webservice WFGs Late 64.3 0.1 64.3 2.3

Normalized Tardiness 95th percentile 1.45 0.10 1.45 0.35

Normalized Tardiness 99th percentile 1.73 0.61 1.73 0.75

Maximum Normalized Tardiness 2.09 5.10 2.09 1.85
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Table 3 gives a quantitative summary of all results. From the table, the
scheduling produced by PLLF is relatively closer to CMSA for the case of a
quadratic cost function (13, 935.7/3, 432.5 ≈ 4 < 3, 121.7/135.8 ≈ 23). This is
because PLLF elects to work on WFGs that are estimated to be most tardy and
CMSA ultimately does as well due to the unbounded increasing nature of the
quadratic cost function.

In the case study using the sigmoid cost function the CMSA achieves lower
normalized tardinesses for the vast majority of WFGs due to the fact that the
sigmoid cost function limits the cost of WFGs with normalized tardiness values
greater than 0.5. Refer to the table data for the normalized tardiness values of
the 95th and 99th percentiles, as well as the maximum normalized tardiness for
each policy.

6 Conclusions

A new cost-minimizing scheduling algorithm (CMSA) is introduced for schedul-
ing requests of multi-level workflows of various types and degrees of complex-
ity. The algorithm assumes a cost function is provided, and operates by making
scheduling decisions in order to minimize the estimated value of cumulative cost.
The performance of the new algorithm is evaluated through realistic simulation
studies and compared to a previously best-known scheduling heuristic named
PLLF, which is a priority-based scheduler that attempts to minimize maximum
normalized tardiness. The simulation studies show that for both sigmoid and
quadratic cost functions, CMSA results in maximum normalized tardiness val-
ues less than those for PLLF for over 99% of the workflows. Using the sigmoid
cost function with CMSA, only about 8% of the workflows were tardy; in con-
trast, for the same scenario, over 70% of the workflows were tardy using the
PLLF policy.
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