
Scheduling Workflows on a
Cluster of Memory Managed Multicore Machines

Hira K. Shrestha†, Nicolas Grounds‡, Jason Madden‡, Matthew Martin‡,
John K. Antonio†, Jay Sachs‡, Josh Zuech‡, and Carlos Sanchez‡

†School of Computer Science, University of Oklahoma, Norman, OK, USA
‡RiskMetrics Group, 201 David L. Boren Blvd, Suite 300, Norman, OK, USA

Abstract— Workflows are modeled with directed acyclic
graphs in which vertices represent computational tasks,
referred to as requests, and edges represent precedent con-
straints among requests. Associated with each workflow is
a deadline that defines the time by which all computations
of a workflow should be complete. Workflows are submitted
by numerous clients to a centralized scheduler that assigns
workflow requests to a cluster of memory managed multicore
machines for execution. The objective of the scheduler is to
minimize missed workflow deadlines. The characteristics of
workflows are assumed to vary along several dimensions, in-
cluding: arrival rate, periodicity, degree of parallelism, and
number of requests. Five scheduling policies are evaluated;
four of these policies are known from the literature and one
policy is newly proposed. The advantages and disadvantages
of each policy is determined through simulation studies.

Keywords: Workflow Scheduling; Performance Modeling; Sim-
ulation; Automatic Memory Management

1. Introduction
An application supported by a service-oriented architec-

ture (SOA) is modeled in this paper as a workflow graph
(WFG), which is a directed and acyclic graph that defines
precedence constraints among service requests required by
the application. WFGs can vary greatly in size and structure.
For example, a small WFG may contain just a few requests
(i.e., vertices) while a large WFG may contain thousands
of requests. Regarding structure, at one extreme a WFG
may represent a single chain of requests in which no two
requests may be executed in parallel. At another extreme,
the structure of a WFG may contain numerous independent
chains of requests in which requests belonging to distinct
chains may be executed in parallel.

In the framework considered here, WFGs are assumed
to be submitted by multiple sources (i.e., clients) to a
central scheduler. Associated with each submitted WFG is
a deadline that defines the time by which all requests of
the WFG should complete execution. The main objective of
the scheduler is to assign requests of submitted WFGs to
machines of the cluster so as to reduce missed deadlines of
all WFGs.

The remainder of the paper is organized in the following
manner. Section 2 includes an overview of related work.
Section 3 describes the simulation environment developed
to evaluate different scheduling policies. Section 4 describes
specific scheduling policies considered in this paper. Section
5 provides the results of simulation studies, followed by
concluding remarks in the final section.

2. Background and Related Work
Previous related work is reviewed in three broad areas:

(1) machine modeling and simulation environments; (2)
automatic memory management; and (3) scheduling and load
balancing.

Considerable work has been published related to modeling
of machines in distributed environments. Much of the past
research in this area has focused on modeling and predict-
ing CPU performance, e.g., [1], [2]. The machine model
described in the present paper (refer to Section 3.4) relies
on assumed knowledge of the characteristics of the requests
(i.e., computational tasks); it is similar in a sense to the SPAP
approach proposed in [1].

In memory managed systems, the effect of long and/or
frequent garbage collections can lead to undesirable – and
difficult to predict – degradations in system performance.
Garbage collection tuning, and predicting the impact of
garbage collections on system performance, are important
and growing areas of research, e.g., [3], [4], [5], [6], [7].
To estimate the overhead associated with various garbage
collectors, experiments were designed and conducted in [4],
[5] to compare the performance associated with executing an
application assuming automatic memory management versus
explicit memory management. The machine model proposed
here accounts for the overhead associated with automatic
memory management.

Formulations of realistic scheduling problems are typi-
cally found to be NP-complete, hence heuristic schedul-
ing policies are generally employed to provide acceptable
scheduling solutions, e.g., refer to [7], [8], [9], [10], [11],
[12]. The scheduling evaluations conducted in the present
paper account for the impact that garbage collection has on
a machine’s performance. Examples of other memory-aware
scheduling approaches are described in [7], [13].

WFG

Generation

Scheduler

Machine

Model

WFGs

request completion,
machine efficiencies

request –to-machine
assignments

Fig. 1: Major components of the simulation environment.
Fig. 1: Major components of the simulation environment.

Load balancing involves techniques for allocating work-
load to available machine(s) in a distributed system as a
means of improving overall system performance. Examples
of both centralized and distributed load balancing approaches
are described in [8]. The scheduling framework developed
in the present paper incorporates aspects of load balancing
in the sense that the scheduler only assigns requests to
machines that have loading factors (for CPU and memory)
that are below defined thresholds.

3. Simulation Environment
3.1 Overview

The block diagram of Fig. 1 illustrates the three major
components of the simulation environment. Each of these
components is described in detail in Subsections 3.2 through
3.4.

3.2 WFG Generation
A WFG is a directed acyclic graph that is composed of

parallel and sequential combinations of request chains (RCs).
An example WFG is shown on the left side of Fig. 2. The
vertices of the graph represent requests and the directed arcs
denote precedence constraints that exist between requests.
This WFG contains five RCs.

A WFG is a hierarchical structure that can be defined in a
recursive manner by introducing the concept of a compound
node. A compound node represents parallel instances of a
common RC. The parallel RCs associated with a compound
node represent instances of the same chain of requests that
are to be executed with different input data sets. The right
side of Fig. 2 represents the WFG using three compound
nodes. The parallel RCs of a compound node could them-
selves be sequences of compound nodes, thus enabling the
representation of WFGs of greater depth than the example
shown in the figure.

The primary function of the component labeled WFG
Generation in Fig. 1 is to provide synthetically generated

Fig. 3: Representation of the WFG of Fig. 2 using compound nodes.

1

2

3

4

5

6

4’

5’

6’

4’’

5’’

6’’

7

8

9

1

2

3

Fig. 2: Sample WFG (left) and its representation as a
sequence of compound nodes (right).

Table 1: Definitions of CPU and heap memory requirements
for request r.

Cr > 0 Cr is the total number of CPU cycles
required to execute r on the fastest
unloaded machine.

Dr ≥ Cr Dr is the ideal execution time duration
of r on the fastest unloaded machine.

Ur = Cr/Dr Ur is the CPU utilization factor of r.
Mr > 0 Mr is the maximum reachable heap

memory requirement of r.
Ar ≥Mr Ar is the total heap space allocated by r.

Gr = Ar/Mr Gr is the garbage generation factor of r.

WFGs to the Scheduler for the purpose of evaluating
scheduling policies. The WFG generation process used in
this paper is probabilistic. Parameters for WFG generation
rates, WFG structure, and CPU and memory requirements of
requests that compose a WFG are defined for each WFG type
generated. Table 1 summarizes the notation and definitions
of basic computational and memory requirements for request
r.

The CPU utilization factor of r, Ur = Cr/Dr, can be no
greater than unity and no less than zero. A request having a
CPU utilization factor of unity is typically referred to as a
CPU-bound request, e.g., refer to [1].

The garbage generation factor of r, Gr = Ar/Mr, is
a relative measure of how much garbage is generated by
request r. The smallest possible value of Gr is unity, which
corresponds to the extreme case in which a request does not
generate garbage. Large values of Gr correspond to requests
that generate garbage at a relatively high rate. This parameter
is defined as the “total allocation to maximum reachable
ratio” in [4], [5].

3.3 Scheduler
The Scheduler component of Fig. 1 takes WFGs as input

and assigns requests of the WFGs to machines of the cluster
for execution. In making assignment decisions, the Scheduler
can make use of computational and memory requirements
assumed to be known and available for each request. Hav-
ing access to such information is realistic in the assumed
dedicated environment in which off-line profiling and/or
historical logging can be performed to collect/estimate these
data. Associated with each WFG is a single timing deadline,
and the Scheduler can also make use of WFG deadline
requirements in making request scheduling decisions.

When a WFG arrives at the scheduler, it is initially placed
in a pool that holds all WFGs that have not yet completed
execution. The compound nodes of each WFG are consid-
ered in order and are expanded by the Scheduler to expose
one or more parallel RCs. At any point during the execution
of a WFG, the requests associated with one or more RCs are
considered by the Scheduler for assignment to machines. The
Scheduler tracks the status of each request (associated with
RCs currently under consideration) according to one of the
following state values: “completed,” “executing,” “ready,” or
“blocked.”

Whenever a request finishes execution, the state of that
request changes from “executing” to “completed.” Upon
completing execution, the request that is the immediate
successor of the now “completed” request changes state from
“blocked” to “ready.” Once a “ready” request is assigned to
a machine, the state of that request changes to “executing.”
The Scheduler also detects when all RCs associated with a
common compound node complete execution, which triggers
the Scheduler to expand the successor compound node in the
WFG.

The time instant that the state of a request r transitions
from “blocked” to “ready” is defined as the request’s birth
time and is denoted by br. The time instant that the state of a
request transitions from “ready” to “executing” is denoted as
the request’s start time and is denoted by sr. The function
of the Scheduler is to define the machine assignment and
start time (sr) for each request r. The machine assignment
of request r is denoted by ar, and its value is equal to the
identification number of one of the machines in the cluster.

3.4 Machine Model
The Machine Model component of Fig. 1 takes as in-

put the request-to-machine assignments and associated start
times provided by the Scheduler. The Machine Model tracks
and updates an efficiency-based model for each machine in
the cluster. The efficiency value for a machine depends on
the aggregate CPU and memory loading due to all requests
executing on the machine. At each simulation clock cycle,
the Machine Model provides the Scheduler with updated
efficiency values for all machines and also notifies the
Scheduler of any requests that have completed execution.

The CPU and memory loading of a given machine changes
with time as new requests are assigned to begin executing
on the machine and existing requests complete execution
on the machine. As a result, the instantaneous efficiency of
a machine varies with time. Generally, the efficiency value
of a machine decreases when new requests begin executing
on the machine, and it increases when request(s) complete
execution on that machine.

The efficiency of machine m at time t, denoted by e(m, t),
has a value between zero and unity. The number of CPU
cycles remaining to complete execution of request r at time
t is denoted by cr(t). The value of cr(t) is defined according
to the following equation:

cr(t) =
{

Cr, t < sr

max {0, cr(t− 1)− e(ar, t)Ur} , t ≥ sr
(1)

The following discussion describes how the value of a
machine’s efficiency (e(ar, t) in Eq. 1) is modeled in the
simulation environment. Throughout this discussion, it is
understood that the efficiency value is related to a particular
machine for a particular time instant. Thus, the value of
efficiency is often referred to as simply e, instead of e(m, t),
to ease notational burden.

CPU and memory resources are the two primary factors
used to characterize machines. In the machine model, the
overall efficiency is defined by the product of two terms:

e = ecem. (2)

The terms on the right hand side of Eq. 2 are defined as
the CPU efficiency and memory efficiency, respectively. The
values of ec and em represent the relative impact on a
machine’s overall efficiency due to loading of the machine’s
CPU and memory resources, respectively.

An idealized function for ec has a value of unity for all
CPU loadings less than the number of cores present in the
machine. For CPU loading values greater than the number
of cores, the idealized function for ec decreases according to
the ratio of the number of cores to the total CPU loading. In
reality, overheads associated with context switching, caching
effects, and other complexities that are difficult to model,
would prevent the idealized efficiency curve from being
realized in practice. Fig. 3 illustrates idealized and typical
curves for ec assuming a quad-core machine.

The memory resource of a machine is defined by two
parameters: (1) total heap memory capacity and (2) average
rate at which the machine’s automatic memory management
system can reclaim un-referenced heap space (i.e., garbage).
For simplicity of discussion, the second parameter is as-
sumed to be the same for all machines in the cluster. This
assumption approximates a cluster configuration in which
all machines implement the same virtual machine and have
identical garbage collection configuration settings.

1

(total CPU loading)

ec

4
0

8 12

idealized

typical

Fig. 3: Ideal and typical curves for ec for quad-core machine.

In the seminal work of Hertz [4], [5], extensive empirical
studies were conducted to measure how the execution time
of an application is affected by the relative size of the
heap memory. The general conclusion drawn from this work
is that execution time is relatively constant provided that
available heap space is sufficiently large. As the relative heap
space is reduced, then execution time begins to increase.
When the heap space is critically small, the execution time
of an application can increase significantly.

In [3], a mathematical analysis is derived for the classic
copying garbage collector. The basic result of the analysis is
that the overhead for this garbage collector grows according
to 1

H−1 , where H is the size of the heap normalized by
the maximum reachable heap memory requirement (defined
as Mr in the present paper). This expression relates to
the number of garbage collections required, which clearly
increases rapidly as H approaches unity. The shape of this
curve associated with this function is fundamentally the same
as the ones determined through extensive empirical studies
in [4], [5].

To estimate how garbage collections impact the overall ex-
ecution time, T , of an application, the following expression
is proposed:

T = K +
1

H − 1
. (3)

The value of the parameter K represents the execution time
when no garbage collections are performed, i.e., when the
heap H is sufficiently large. The value of K is normalized in
terms of the time required to perform a garbage collection.

By dividing the ideal execution time of the application,
i.e., K, by the overall execution time represented by Eq. 3,
an expression for em is derived:

em =
K

K + 1
H−1

. (4)

It is convenient to express em in terms of the memory
loading on the machine, which is defined as the reciprocal
of H .

Total memory loading (M)

0.5

1.0

0
0 0.2 0.4 0.6 0.8 1.0

em

K = 100

K = 10

K = 1

K = 0.1

Fig. 4: Typical curves for em associate with Eq. 5.

em =
K

K + 1
1

M −1

. (5)

For example, a memory loading of M = 0.5 is equivalent
to the system having a heap size that is twice as large as
required by the applications(s), i.e., M = 0.5 in Eq. 5 is
equivalent to H = 2 in Eq. 4. Fig. 4 illustrates em as a
function of total memory loading for several values of K.

Fig. 5 shows a two-dimensional surface plot of e = ecem

derived from the idealized curve for ec depicted in Fig. 3 and
the curve for em shown in Fig. 4 (and Eq. 5) for K = 10.
This is the efficiency function assumed for all the machines
in the cluster for the simulations conducted in Section 5.
From the figure, observe that if total CPU loading of a
machine exceeds its number of cores, then the efficiency
of the machine decreases. Likewise, as the total memory
loading of a machine increases, the efficiency of the machine
decreases due to overhead associated with increased activity
of the virtual machine’s automatic memory management
system. From the figure, observe that if a machine’s CPU and
memory resources are both lightly loaded, then the efficiency
of the machine will be at or near its maximum value.

4. Scheduling Policies
As described in Subsection 3.3, at each simulation clock

cycle the Scheduler must decide which, if any, of the “ready”
requests (associated with RCs currently under consideration)
should be assigned to machines and start execution. The
scheduling policies considered in this paper define a prior-
itization by specifying the order in which “ready” requests
are considered for assignment and execution on a limited
number of available machines. The five scheduling polices
considered are named: First Come First Serve (FCFS); First
Come Last Serve (FCLS); Earliest Deadline First (EDF);
Least Laxity First (LLF); and Proportional Least Laxity First
(PLLF).

The FCFS and FCLS policies use the value of the time
instant that a WFG arrives at the scheduler to define the pri-
ority for all requests associated with the WFG. To illustrate,
assume WFG A arrives at the scheduler before WFG B. In

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.71.42.12.83.54.24.95.66.37

7.7

0.9-1

0.8-0.9

0.7-0.8

0.6-0.7

0.5-0.6

0.4-0.5

0.3-0.4

0.2-0.3

0.1-0.2

0-0.1

memory loading

CPU loading

machine efficiency

Fig. 5: Derived machine efficiency surface based on the
idealized curve for ec in Fig. 3 and the em curve for K = 10
in Fig. 4.

this case, the FCFS policy will assign a higher priority to all
requests associated with WFG A (compared to the priority
of all requests associated with WFG B). In contrast, for this
same scenario, the FCLS policy will assign a higher priority
to all requests in WFG B. The FCFS and FCLS policies are
the simplest of the policies considered; they can make poor
decisions because they do not consider the deadline of the
WFGs in assigning priorities. The FCFS and FCLS policies
are included here primarily to serve as baselines upon which
the other more sophisticated policies are compared.

The EDF policy [12] prioritizes all requests of a WFG
using the deadline associated with the WFG. Recall from
Section 3.3 that a deadline is associated with each WFG, and
this information is assumed to be known by the scheduler.

The LLF policy [12] prioritizes “ready” requests of a
WFG according to their laxity, which is defined as the dif-
ference between the deadline of the WFG and the estimated
finish time of the WFG. The rationale for giving requests
with smaller values of laxity priority over larger values is
because smaller values of laxity correspond to WFGs that
are currently closer to missing their deadlines. Laxity values
can be negative, and negative laxity values have priority over
positive laxity values because negative laxity is an indication
that the WFG deadline will likely be missed.

The PLLF policy is an enhancement of the LLF policy that
uses a “proportional” laxity value to prioritize ready requests
of a WFG. The proportional laxity value is defined as the
laxity value divided by the ideal execution of the WFG.

Unlike the FCFS, FCLS, and EDF scheduling policies,
which assign a static priority value upon the arrival of
a WFG, the priority values assigned by LLF and PLLF
generally vary with time. At each simulation cycle, an
estimate of each WFG’s finish time is first calculated. This
estimated finish time is then subtracted from the WFG’s

11 12 240

1st Epoch 2nd Epoch 3rd Epoch

Fig. 6: Time-line illustrating the three epochs.

deadline, which yields the WFG’s laxity value at that time
instant.

For all policies considered in this paper, a “ready” request
can only be assigned to a machine that is declared to be
“available.” The availability of a machine is determined
using defined threshold values associated with the machine’s
current CPU and memory loadings. Specifically, a machine
is declared to be “available” only if its CPU and memory
loadings are both below defined threshold values. For all
simulation results reported in the next section, the mem-
ory loading threshold used was 0.8 and the CPU loading
threshold used was of 4. This pair of threshold values were
shown to be superior to five other alternative pairs that were
evaluated through extensive simulations: (0.8, 6), (0.8, 8),
(0.5, 4), (0.5, 6), (0.5, 8).

5. Simulation Studies
Three types of WFGs are characterized: Batch, Webser-

vice, and Interactive. The arrival times of Batch WFGs gen-
erally have daily periodicity, which distinguishes them from
the other WFG types. Furthermore, Batch WFGs generally
have a larger number of requests compared to the other two
WFG types. The Webservice WFGs generally have more
requests than Interactive WFGs. In addition to differences
in arrival processes and number of requests, the different
WFG types have differences related to their structure and
their deadline characteristics.

The performance of the five scheduling polices are eval-
uated for a WFG generation scenario representing a one
day period that is divided into three consecutive epochs.
These three epochs are associated with WFG generation
characteristics for a typical operational business day. The
first epoch is from time = 0 to time = 11 hours; the second
epoch is from time = 11 to time = 12 hours; and the third
epoch is from time = 12 to time = 24 hours (refer to
Fig. 6). During the first and third epochs, only Interactive and
Webservice WFGs are generated. During the second epoch,
all three types of WFGs are generated. The first and third
epochs represent periods of time before and after a relatively
short epoch in which Batch WFGs arrive. The start and end
times of the second epoch are defined by terms of service-
level agreements (SLAs) [9] related to timing of Batch WFG
submission and execution. Typical terms of SLAs specify
that daily Batch WFGs submitted within a specified time
period will be completed by an agreed upon deadline.

Table 2: Parameter values for simulation studies.
Parameter Interactive WFG Webservice WFG Batch WFG

Case 1: ∗Avg. Inter-Arrival Time (secs) 60 120 60
Case 2: ∗Avg. Inter-Arrival Time (secs) 10 20 60
Start – End Times (hours) 0 – 24 0 – 24 11 – 12

+[Min, Max] Compound Nodes [1, 1] [1, 3] [3, 5]
+[Min, Max] Parallel RCs [1, 2] [2, 3] [5, 20]
+[Min, Max] Requests for RCs [5, 8] [5, 8] [3, 8]
+[Min, Max] Request Duration (secs), Dr [1, 5] [10, 30] [50, 250]
+[Min, Max] CPU Utilization, Ur [0.5, 1.0] [0.5, 1.0] [0.5, 1.0]
+[Min, Max] Heap Memory, Mr [0.05, 0.1] [0.05, 0.1] [0.05, 0.15]
Parallelization Factor 2 2 2

+[Min, Max] Deadline Factor [1.1, 1.2] [1.3, 1.5] [1.3, 1.5]
∗Poisson process. +Uniform distribution.

Table 3: Statistics for simulation of Case 1 on 8 and 10 quad-core machines. “Avg. Tardy” and “Max Tardy” are in minutes.

FCFS FCLS LLF EDF PLLF FCFS FCLS LLF EDF PLLF FCFS FCLS LLF EDF PLLF

No. WFGs

Tardy WFGs 0 0 0 0 0 0 0 0 0 0 - - - - -

Avg. Tardy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - - - -

Max Tardy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - - - -

No. WFGs

Tardy WFGs 58 58 58 58 58 29 29 4 4 3 33 37 35 30 35

Avg. Tardy 494.87 157.82 0.14 0.13 0.14 492.45 554.64 0.23 0.18 0.15 325.58 474.64 211.85 213.53 222.63

Max Tardy 1037.27 1106.79 0.54 0.46 0.54 1016.33 1128.00 0.65 0.37 0.18 757.09 926.05 367.62 392.25 390.60

No. WFGs

Tardy WFGs 721 718 721 720 720 361 23 162 137 174 - - - - -

Avg. Tardy 767.12 0.12 88.94 49.33 0.39 762.48 0.30 208.90 149.64 8.73 - - - - -

Max Tardy 1036.58 1.19 363.09 290.18 2.65 1034.21 1.15 364.97 312.56 30.11 - - - - -

FCFS FCLS LLF EDF PLLF FCFS FCLS LLF EDF PLLF FCFS FCLS LLF EDF PLLF

No. WFGs

Tardy WFGs 0 0 0 0 0 0 0 0 0 0 - - - - -

Avg. Tardy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - - - -

Max Tardy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - - - -

No. WFGs

Tardy WFGs 58 58 58 58 58 27 26 2 2 1 27 31 25 23 25

Avg. Tardy 387.16 0.64 0.12 0.10 0.11 411.11 444.47 0.28 0.27 0.09 223.17 353.01 78.56 78.12 82.87

Max Tardy 811.16 3.36 0.27 0.30 0.33 807.13 873.85 0.50 0.42 0.09 550.80 675.18 144.92 168.10 160.61

No. WFGs

Tardy WFGs 721 714 720 716 721 361 28 136 84 154 - - - - -

Avg. Tardy 528.72 0.11 26.12 4.88 0.23 523.88 0.29 74.18 31.67 4.72 - - - - -

Max Tardy 810.65 0.71 136.64 80.35 1.06 808.38 1.66 141.60 88.38 15.88 - - - - -

FCFS FCLS LLF EDF PLLF FCFS FCLS LLF EDF PLLF FCFS FCLS LLF EDF PLLF

No. WFGs

Tardy WFGs 0 0 0 0 0 0 0 0 0 0 - - - - -

Avg. Tardy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - - - -

Max Tardy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - - - -

No. WFGs

Tardy WFGs 56 56 55 56 56 27 24 2 1 0 20 29 3 2 1

Avg. Tardy 318.34 0.49 0.11 0.11 0.11 328.77 354.31 0.21 0.02 0.00 160.40 237.91 3.50 10.82 5.50

Max Tardy 669.07 2.93 0.39 0.39 0.39 657.07 720.23 12.60 1.14 0.00 404.63 515.68 7.75 16.56 5.50

No. WFGs

Tardy WFGs 721 717 708 713 712 361 21 27 23 56 - - - - -

Avg. Tardy 370.31 0.11 0.12 0.10 0.11 365.43 0.23 0.25 0.24 0.49 - - - - -

Max Tardy 668.36 0.73 2.06 0.40 0.90 665.62 1.13 1.00 1.86 2.65 - - - - -

FCFS FCLS LLF EDF PLLF FCFS FCLS LLF EDF PLLF FCFS FCLS LLF EDF PLLF

No. WFGs

Tardy WFGs 0 0 0 0 0 0 0 0 0 0 - - - - -

Avg. Tardy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - - - -

Max Tardy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - - - -

No. WFGs

Tardy WFGs 56 56 56 55 56 27 22 2 2 1 10 20 0 0 0

Avg. Tardy 218.11 0.33 0.09 0.10 0.10 227.19 228.10 0.08 0.10 0.13 99.34 121.87 0.00 0.00 0.00

Max Tardy 457.03 2.12 0.26 0.33 0.27 454.04 513.93 0.11 0.19 0.13 257.51 299.27 0.00 0.00 0.00

No. WFGs

Tardy WFGs 552 525 509 512 506 274 13 8 9 7 - - - - -

Avg. Tardy 246.86 0.09 0.09 0.09 0.09 244.28 -1.48 0.07 0.16 0.10 - - - - -

61 30 60

721 361 0

361 0

661 331 0

Batch

331 0

Webservice

30 60

Interactive

61

Batch

0

Batch

60

721 0

2
nd

3
rd

(d) Case 1 executing on 16 quad-core machines.

Epoch Statistics
Interactive Webservice

(a) Case 1 executing on 8 quad-core machines.

Epoch Statistics
Interactive Webservice Batch

721

331 0

61 30 60

1
st

361 0

661 331

61 30

1
st

2
nd

361

1
st

2
nd

3
rd

(b) Case 1 executing on 10 quad-core machines.

661

Epoch Statistics

3
rd

(c) Case 1 executing on 12 quad-core machines.

Interactive Webservice

1
st

2
nd

3
rd

Epoch Statistics

661

721

The parameter value ranges and distributions associated
with the simulation studies are summarized in Table 2. The
table defines parameters related to the structural characteris-
tics for each type of WFG, which are all assumed to be two-
levels deep. Also provided in the table are CPU and memory
characteristics of the requests associated with each WFG
type. The parallelization factor is needed in determining a

base deadline for each generated WFG; it defines the degree
of parallelism assumed for executing parallel RCs associated
with a common compound node. Once a base deadline is
determined for a WFG, it is multiplied by the Deadline
Factor (last row in the table) to define actual deadline for
the WFG.

Two main cases are considered: Case 1 in which the inter-

arrival times of the Interactive and Webservice WFGs are
60 secs and 120 secs, respectively; and Case 2 in which the
inter-arrival times of the Interactive and Webservice WFGs
are 10 secs and 20 secs. For both cases, the inter-arrival time
of the Batch WFGs are assumed to be 60 secs during the
second time epoch from hour 11 to hour 12; Batch WFGs
do not arrive outside this one-hour interval.

The results for the simulation study of Case 1 are summa-
rized in Table 3. The rows labeled “No. WFGs” represent the
number of each type of WFG generated during each epoch.
The rows labeled “Tardy WFGs” represent the number of
WFGs that missed their deadline. The average and maximum
tardiness statistics are calculated only for positive values of
tardiness (i.e., only for WFGs that missed their deadline)
and are reported in minutes.

From Table 3 observe that all policies perform well
during the first epoch. This is because the loading of the
system resources is so low during this time period that the
choice of scheduling policy is not critical. The large Batch
WFGs arrive during the second epoch, which represents a
significant load on the cluster. Thus, the choice of scheduling
policy has a significant impact during the second and third
epochs (even though Batch WFGs do not arrive during the
third epoch, requests from most Batch WFGs are still being
executed well into the third epoch).

As would be expected, the FCFS and FCLS policies
do not perform well under heavy loading because neither
of these policies utilize deadline information in making
scheduling decisions. The EDF, LLF, and PLLF policies
deliver performances that are similar to each other, but the
PLLF policy generally produces more desirable statistics.

Consider the simulation results for a cluster of 10 quad-
core machines. In this situation, the tardiness statistics for
the Batch WFGs for EDF, LLF, and PLLF are comparable
to each other. However, note that the tardiness statistics
during the third epoch are significantly better for PLLF than
those associated with EDF and LLF. Simulations were also
performed for Case 1 for 12 and 16 quad-core machines, but
the numerical results are not included here because as the
number of machines is increased, the performance of EDF,
LLF, and PLLF become virtually the same.

Statistics associated with simulations for Case 2 (not
included here) trend similarly to those of Case 1. The major
difference in the two cases is that approximately 50% more
machines are required for Case 2 to achieve performance
that is comparable to Case 1. This is because the arrival
rates for Interactive and Webservice WFGs are significantly
higher in Case 2 than they are in Case 1.

6. Conclusions and Future Work
A new simulation environment is introduced for modeling

the execution of workflows (WFGs) on a cluster of memory-
managed multicore machines. The machine model proposed

comprehends the reality that the efficiencies of memory-
managed machines are impacted by the loading of their heap
memories as well as the loading of their CPU resources.

The results of the simulation studies indicate that the
newly proposed PLLF scheduling policy generally performs
better than the other four policies evaluated. Specifically,
the PLLF policy seems to handle bursts of heavy loads
(the second epoch in the simulation studies) better than the
other policies. Future research will be conducted to explain
precisely why the PLLF policy achieves better performance
for the cases considered. One hypothesis is that PLLF
achieves more non-tardy Batch completion times that are
close to being “just-in-time” than do the other policies.

References
[1] M. Beltrán, A. Guzmán, and J. L. Bosque, “A new cpu availability

prediction model for time-shared systems,” IEEE Transactions on
Computers, vol. 57, no. 7, pp. 865–875, July 2008.

[2] Y. Zhang, W. Sun, and Y. Inoguchi, “Predicting running time of grid
tasks on cpu load predictions,” Proceedings of the 7th IEEE/ACM In-
ternational Conference on Grid Computing, pp. 286–292, September
2006.

[3] A. W. Appel, “Garbage collection can be faster than stack allocation,”
Information Processing Letters, vol. 25, no. 4, pp. 275–279, June
1987.

[4] M. Hertz, Quantifying and Improving the Performance of Garbage
Collection. Ph.D. Dissertation, University of Massachusetts,
Amherst, 2006.

[5] M. Hertz and E. D. Berger, “Quantifying the performance of garbage
collection vs. explicit memory management,” Proceedings of the
Object-Oriented Programming Systems, Languages and Applications
(OOPSLA 2005), October 2005.

[6] R. Jones and R. Lins, Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. John Wiley & Sons, New York, NY,
1996.

[7] H. Koide and Y. Oie, “A new task scheduling method for distributed
programs that require memory management,” Concurrency and Com-
putation: Practice and Experience, vol. 18, pp. 941–945, 2006.

[8] S. Dhakal, M. M. Hayat, J. E. Pezoa, C. Yang, and D. A. Bader,
“Dynamic load balancing in distributed systems in the presence
of delays: A regeneration-theory approach,” IEEE Transactions on
Parallel & Distributed Systems, vol. 18, no. 4, pp. 485–497, April
2007.

[9] D. Dyachuk and R. Deters, “Using sla context to ensure quality of
service for composite services,” IEEE Transactions on Computers,
vol. 57, no. 7, pp. 865–875, July 2008.

[10] J. K. Kim, S. Shivle, H. J. Siegel, A. A. Maciejewski, T. Braun,
M. Schneider, S. Tideman, R. Chitta, R. B. Dilmaghani, R. Joshi,
A. Kaul, A. Sharma, S. Sripada, P. Vangari, and S. S. Yellampalli,
“Dynamic mapping in a heterogeneous environment with tasks having
priorities and multiple deadlines,” 12th Heterogeneous Computing
Workshop (HCW 2003), in Proceedings of the 17th International
Parallel and Distributed Processing Symposium (IPDPS 2003), April
2003.

[11] S. H. Oh and S. M. Yang, “A modified least-laxity-first scheduling
algorithm for real-time tasks,” Proceedings of the 5th International
Workshop on Real-Time Computing Systems and Applications (RTCSA
’98), pp. 31–36, October 1998.

[12] V. Salmani, M. Naghibzadeh, A. Habibi, and H. Deldari, “Quantitative
comparison of job-level dynamic scheduling policies in parallel real-
time systems,” Proceedings TENCON, 2006 IEEE Region 10 Confer-
ence, November 2006.

[13] Y. Feizabadi and G. Back, “Garbage collection-aware utility accrual
scheduling,” Real-Time Systems, vol. 36, no. 1-2, pp. 3–22, July 2007.

[14] M. L. Dertouzos and A. K. l Mok, “Multiprocessor on-line scheduling
of hard-real-time tasks,” IEEE Transactions on Software Engineering,
vol. 15, no. 12, pp. 1497–1506, December 1989.

