
Design of Steering Vectors for Dynamically Reconfigurable Architectures

Nick A. Mould1, Brian F. Veale2, John K. Antonio3, Monte P. Tull1, and John R. Junger1

1School of Electrical and
Computer Engineering
University of Oklahoma
Norman, OK 73019 USA

{nick_mould, tull, jjunger}
@ou.edu

2 Austin, TX 78729 USA
veale@acm.org

3 School of Computer Science
University of Oklahoma
Norman, OK 73019 USA

antonio@ou.edu

Abstract
An architectural framework is studied that can

perform dynamic reconfiguration. A basic objective is
to dynamically reconfigure the architecture so that its
configuration is well matched with the current
computational requirements. The reconfigurable
resources of the architecture are partitioned into N
slots. The configuration bits for each slot are provided
through a connection to one of N independent busses,
where each bus can select from among K
configurations for each slot. Increasing the value of K
can increase the number of configurations that the
architecture can reach, but at the expense of more
hardware complexity to construct the busses. Our
study reveals that it is often possible for the
architecture to closely track ideal desired
configurations even when K is relatively small (e.g.,
two or four). The input configurations to the collection
of busses are defined as steering vectors; thus, there
are K steering vectors, each having N equal sized
partitions of configuration bits. A combinatorial
approach is introduced for designing steering vectors
that enables the designer to evaluate trade-offs
between performance and hardware complexity
associated with the busses.

1. Introduction

A number of studies have been conducted that
illustrate the potential advantages of dynamic
reconfiguration [1, 2], also called runtime
reconfiguration [3]. The dynamic reconfiguration
approaches devised by such studies are often evaluated
through simulation of the assumed underlying
reconfigurable architecture. Simulation is used
because commercially available reconfigurable
devices generally cannot achieve reconfiguration times

that are small enough to be plausible for applications
and approaches that require highly dynamic
reconfiguration.

In this paper, a framework for a dynamically
reconfigurable architecture is described, which
includes an interconnection scheme between steering
vectors and the reconfigurable resources, described
earlier in [3 – 5]. The framework is relatively generic
and can be applied to model a number of existing
approaches for dynamic reconfiguration. For example,
it is applicable to instruction-level architectures in
which the functional units of a superscalar processor
are assumed to be able to be dynamically reconfigured
[4, 5]. It is also applicable to task-level architectures in
which dynamic reconfiguration is used to support
higher-level computations such as signal processing
[6] or data compression [7].

The next section introduces a parameterized
model for the assumed architectural framework.
Section 3 describes a combinatorial approach to
designing the steering vectors associated with the
assumed framework. The design of steering vectors is
important because it impacts which configurations are
reachable by the architecture. An illustrative example
of applying the proposed approach is provided in
Section 4, followed by some concluding remarks in
Section 5.

2. A Framework for Dynamically
Reconfigurable Architectures

Figure 1 illustrates a conceptual framework for an
architecture that can support dynamic reconfiguration.
The framework has three main components:
reconfigurable resources; an interconnection network;
and steering vectors.

The reconfigurable resources are partitioned into
N slots, as shown in Figure 1 for N = 5. Configuration

K = 2
Steering Vectors

N = 5
Reconfigurable Slots

W

W

W

W

W

5

Mux Select

E1

F1

F2

G1

G2

G1

G2

E1

E1

E1

Figure 1. Conceptual framework for a
dynamically reconfigurable architecture with
K = 2 steering vectors, N = 5 reconfigurable
slots, and busses of width W.

bits are used to define the configuration of each
reconfigurable slot, and these bits are stored in
memory that defines the steering vectors. Each slot
can be reconfigured independently from the other
slots. Thus, it is possible for one or more slots to be
loading new configuration bits (i.e., reconfiguring)
while other slots are performing computations.
Furthermore, adjacent slots can be ganged together to
form a functional unit that spans multiple slots.

The width of the data paths, W, as illustrated in
Figure 1, defines the number of configuration bits that
are loaded in parallel on each bus cycle. Thus, at one
extreme, W = 1 represents the case where the hardware
only supports configuration bits being loaded in a bit-
serial fashion. At the other extreme, W could be on the
order of thousands or even hundreds of thousands,
which would drastically reduce the time required to
load configuration bits into the reconfigurable slots.
For dynamic reconfiguration to be practical and useful,
the value of W must be sufficiently large so that the
delay associated with loading configuration bits can be
tolerated. The fundamental issue is that the time
required to reconfigure must be more than
compensated for by the advantage, in terms of
performance, in electing to perform the
reconfiguration.

The interconnection network (i.e., the MUXs in
Figure 1) provides switching action from configuration
bits (stored in the steering vectors) to the
reconfigurable resources. For the study here, the
interconnection network is assumed to be comprised
of N independently controllable busses; however, in
principle, more sophisticated interconnection schemes
can be assumed for this component of the framework.
Each bus assumed here can be independently
controlled to select from among K configurations. As
mentioned above, constructing wider buses has the
advantage of decreasing reconfiguration time, but the

disadvantage of requiring more hardware to
implement. The value of K impacts the number of
overall configurations that can be reached by the
reconfigurable resources: larger values of K generally
afford a larger number of configurations to be reached.
However, larger values of K translate, again, into more
hardware to implement the busses.

The input values associated with each of the N
busses in Figure 1 are the configuration bits stored in
memory, and are defined to be corresponding elements
of K steering vectors. Each of the N elements of a
steering vector stores the configuration bits associated
with a functional unit, or a portion of a functional unit.
In the example shown, there are configuration bits
stored in the steering vectors that represent
configurations for three functional units, denoted by E,
F, and G. The configuration bits for unit E fit into one
slot, and are denoted by E1. Units F and G each
require two slots; thus, their configuration bits require
storage that spans two adjacent elements of a steering
vector, denoted by elements F1,F2 and G1,G2,
respectively.

Two obvious examples of configurations that can
be reached by the steering vectors of Figure 1 are the
two steering vectors themselves, i.e.,

TGGFFE),,,,(21211 and TEEEGG),,,,(11121 .
Furthermore, because the N = 5 busses are
independently controlled, it is possible to reach a
configuration that is a combination of the two steering
vectors, such as TGGEGG),,,,(21121 . Thus, the
architectural framework enables the reconfigurable
slots to be loaded with a mixture of elements from the
steering vectors. In general, there are a total of N log2
K select lines that are available for controlling the
selection lines of the MUXs. For the case shown in
Figure 1 with N = 5 and K = 2, there are five selection
lines.

Based on the steering vectors defined in Figure 1,
observe that it is not possible to reach a configuration
in which there are two copies of unit F, and one copy
of unit E loaded into the reconfigurable resources.
However, if the steering vectors defined in Figure 2
were to be employed instead, then this configuration is
indeed reachable. The question addressed in Section 3
is how to design the steering vectors so that desired
configurations of the reconfigurable resources can be
reached.

An important objective considered in this study is
to utilize a value of K (i.e., number of steering vectors)
that is as small as possible, because large values of K
require greater hardware complexity to implement.
This complexity manifests itself as logic complexity
required to implement the K×1 busses. Note that the

K = 2
Steering Vectors

N = 5
Reconfigurable Slots

W

W

W

W

W

5

Mux Select

F1

F2

E1

G1

G2

G1

G2

E1

F2

F1

Figure 2. Same conceptual framework as
Figure 1, but with modified steering vectors.

configuration bits for each unit only need to be stored
once, and fanned out to the appropriate MUXs. The
overarching theme, therefore, is to design K steering
vectors, with K being as small as possible, to allow the
system to reach those configurations that are known to
be desirable. For example, it is a waste of hardware
complexity to implement a system that supports four
steering vectors, if two steering vectors exist that
enable the architecture to reach all desirable
configurations. In such a case, the complexity saved
by decreasing K from four to two could be re-applied
to increase the bus width, W, and thereby decrease
reconfiguration time.

3. Steering Vector Design

Up until this point, only architectural examples in
which the steering vectors were already defined have
been considered, e.g., refer to Figures 1 and 2. This
section addresses how to determine, in a systematic
way, the best choices for the number and composition
of steering vectors.

3.1. Mathematical Notation

To precisely formulate the steering vector design
problem, mathematical notation is introduced. Denote
the K steering vectors as s1, …, sK, where each steering
vector is of size N slots and each slot represents a
distinct portion of a functional unit. The ith element of
a steering vector stores configuration bits that are used
(when selected) to configure the ith slot of the
reconfigurable resources.

To model the control of selection for the busses,
define K control vectors c1, …, cK, where each control
vector is of length N. A valid collection of K control
vectors must satisfy the following two conditions:
• The elements of the control vectors can only be zero

or one, i.e., ci ∈ {0,1}N, for all i ∈ {1,2, …, K}.

• The sum of all K control vectors equals a vector
having all elements equal to unity.

For a given collection of control vectors, the
configuration that is loaded into the reconfigurable
resources is denoted by the vector , where

 ∑
=

=
K

i
ii sc

1
 (1)

and the “ ” operator denotes Hadamard (entrywise)
product of two vectors. To illustrate the notation, the
K = 2 steering vectors in Figure 2 are defined by s1 and
s2 as:

=

=

1

2

1

2

1

2

2

1

1

2

1

1 and

E
F
F
G
G

s

G
G
E
F
F

s (2)

An example of two valid control vectors are:

=

=

1
1
1
0
0

 and

0
0
0
1
1

21 cc (3)

Thus, the overall configuration that would be loaded
into the reconfigurable resources is given by:

=

+

=

1

2

1

2

1

1

2

1

2

1

2

1

1

2

1

1
1
1
0
0

0
0
0
1
1

E
F
F
F
F

E
F
F
G
G

G
G
E
F
F

 (4)

Two configurations of the reconfigurable

resources are defined to be equivalent if each
configuration contains the same number of each type
of functional unit. For example, the configuration

TEGGEE),,,,(12111 is equivalent to the

configuration TEEEGG),,,,(11121 . Thus, if one
configuration is a permutation of another, they are said
to be equivalent and are members of the same
equivalence class. As another example, the two
steering vectors defined in Figure 2 belong to the same
equivalence class.

3.2 Design Methodology

For this study, assume that the number of slots, N,
and the number and size of each type of functional unit
are given. In [5], a methodology was developed for
enumerating all equivalence classes of configurations
of reconfigurable resources (given the number of slots
and the number and size of each type of functional
unit).

It is important to note that the methodology of [5]
does not specify the number and composition of
steering vectors, rather, it defines all possible
configurations based on the given number of slots and
the number and sizes of the functional units. In [5], an
example calculation is performed for the case of N = 8
and five functional units in which the first functional
unit is of size one, the second is of size two, the third
is of size two, the fourth is of size three, and the fifth
is of size three. For that particular example, it is shown
in [5] that all possible configurations are represented
by only 36 equivalence classes. Note that, many of the
equivalence classes contain a relatively large number
of permutations.

The present approach first requires the designer to
specify a collection of configurations that are deemed
most important (i.e., should be reachable). For the case
described in the previous paragraph, the designer
specifies which of the 36 equivalence classes must be
reachable. Suppose, for the sake of discussion, that the
designer specifies that only twelve of the 36 possible
equivalence classes need to be reachable. A secondary
specification from the designer is the degree of
importance of each of the configurations that need to
be reachable. Given this input from the designer, the
objective of our approach is to aid the designer in
specifying a minimal set of steering vectors (two is
better than four) that satisfy the designer’s
requirements.

To formalize the approach thus far; given that the
number of slots N is specified and that the number and
size of each functional unit is specified, the first step is
to determine the associated equivalence classes for all
possible configurations. Denote the number of
equivalence classes by Q, and denote representatives
from each of these equivalence classes with the
vectors QVV ,...,1 . Let][iV represent the equivalence

class associated with iV , and |][| iV represent the

number of members (i.e., permutations) in][iV .

Define U as the universe of all possible permutations,
which is the union of all equivalence classes:

 []i
Qi

V
},...,1{∈

= ∪U (5)

Consider a collection of K steering vectors chosen
from the universe U . Let L denote the number of
possible ways to select K steering vectors from the
universe U , thus

!)!(

!
KK

L
−

=
U

U
. (6)

Let US ⊂i denote the ith collection of K steering
vectors selected from the universe, where

},,2,1{ Li …∈ . Construct an QL× matrix M,
where each column in the matrix is associated with an
equivalence class and each row is associated with a set
of steering vectors. The value of matrix element

ijm denotes the number of members (i.e.,

permutations) of equivalence class][jV that can be
reached by employing the collection of steering
vectors associated with iS .

The ith row of the matrix M is associated with the
ith possible selection of K steering vectors, iS . The
values of the elements in the ith row of M correspond
to how many of the members of each equivalence
class can be reached by employing the steering vectors
in iS . Thus, different choices for steering vectors can
be compared across the rows of M. If a particular
equivalent class represents reachable configurations
that are very important to the designer, then a row in
which the corresponding element is non-zero would
matches this requirement, whereas a row in which the
element is zero implies that the corresponding
equivalence class cannot be reached. The more
important a particular equivalence class is to the
designer, the higher the corresponding value in the
row should be. For example, choosing a row (a choice
of steering vectors) in which the value associated with
a particular equivalence class is higher, compared to
another choice, means that there are more ways for the
architecture to arrive at a configuration associated with
the desired equivalence class.

Because equivalence classes are of different sizes,
it could be important to normalize the elements in M
by dividing the elements in each column of M by the
size of the corresponding equivalence class. In so
doing, each element will be normalized to between
zero and one, representing the fraction of the possible
members of each equivalence class that can be reached
by the choice of steering vectors. Thus, an ideal choice
of a row (steering vectors) would correspond to a row
of ones, meaning that all possible permutations are
reachable. In a constrained design, however, it is

desirable for K to be as small as possible, which
inevitably translates to zero entries in the matrix M.
Because it is assumed that the designer knows which
configurations (i.e., equivalence classes) are
important, and which ones are not, these requirements
can be translated into a desired row of values.
Selecting the best collection of steering vectors then
reduces to the problem of finding a row in M that is
equal (or similar) to a row containing the desired
values. Example 1 below shows the calculations
associated with the process described in this section.

Example 1. Assume three functional units of type

A, B, and C, each requiring 1, 2, and 3 slots,
respectively. Also, assume a configuration space size
of N = 4 slots and that it is desired to use K = 2
steering vectors.

First, generate the equivalence class
representatives; in this case there are Q = 4. These can
be determined according to the method presented in
[5]; they are given by:

()
()
()
()T

T

T

T

CCCAV

BBBBV

BBAAV

AAAAV

32114

21213

21112

11111

,,,

,,,

,,,

,,,

=

=

=

=

 (7)

Next, generate the permutations (members) for

each equivalence class to construct the universe U of
all possible permutations:

=

=

1

1

2

1

1

2

1

1

2

1

1

1

2

1

1

1

1

1 ,,][][

A
A
B
B

A
B
B
A

B
B
A
A

V

A
A
A
A

V (8)

 ,][][

1

3

2

1

3

2

1

1

4

2

1

2

1

3

=

=

A
C
C
C

C
C
C
A

V

B
B
B
B

V (9)

Because there are seven total vectors in the

universe []i
Qi

V
},...,1{∈

= ∪U , and we are assuming K = 2

steering vectors are to be employed, there are

21
!2)!27(

!7 =
−

=L possible sets of steering vectors

that need to be considered. For the sake of space, each
independent set is not shown here; instead the
completed matrix is shown in Equation (10).

For example, the steering vectors associated with
the last row of M can only reach the two members of

][4V .

2000
1100
1100
1010
1010
0110
1010
1010
0120
0020
1010
1010
0120
0121
0020
1001
1001
0121
0011
0011
0011

=M

(10)

Observe that if a collection of two steering vectors

existed that could reach at least one member of every
equivalence class, there would be a row in M with all
non-zero entries. Thus, because there is no such row, it
is clear that all possible choices of two steering vectors
are unable to reach at least one configuration in every
equivalence class. As mentioned above, the final
choice (last row of M) of steering vectors can reach
only configurations in equivalence class][4V . The

third row of the matrix corresponds to a choice of
steering vectors that can reach a maximum number of
configurations; however, this choice cannot reach
configurations associated with the equivalence class

][4V . Observe that if K is defined to be three or four
(instead of two), then the number of rows in M would
increase. If K is four, there will exist a row in the
matrix in which the four steering vectors are from each
of the four equivalence classes; these four steering
vectors would able to reach all equivalence classes.
But recall that allowing K to be large increases the
hardware complexity associated with constructing the
busses. The aim is to keep K as small as possible, and
still arrive at a choice of steering vectors that enable
the architecture to reach desirable configurations. So,
for the current example, if the configuration associated
with][4V is never needed, then the steering vector
choices associated with the fourth or eighth rows
would be good design choices.

4. Case Study

A general-purpose processor architecture with
dynamically reconfigurable functional units was
proposed in [3]. This basic concept was studied further
and extended in [4] and [5]. For the case study
presented in this section, it is assumed that the
reconfigurable processor has N = 5 slots and that the
objective is to design K = 2 steering vectors that are
well matched to the configurations determined to be
important. The specific objective is to exploit as much
instruction-level parallelism as possible by being able
to reach important configurations, i.e., those
configurations that enable as many instructions to be
executed in parallel as possible. For example, if it is
the case that multiplication instructions can never (or
rarely) be executed in parallel, but parallel addition
instructions can often be executed in parallel, then the
choice of steering vectors should comprehend this
reality and enable configurations with two or more
adder units to be reachable.

For the purposes of this study, the practical, yet
application specific, techniques of code execution
profiling and tracing are employed to identify
important configurations. This approach is a practical
off-line design strategy in which the implemented
system has extreme performance requirements.

To identify the desired configurations for this
study, a benchmark program is traced and potential
instruction-level parallelism is analyzed by simulating
the execution of the benchmark. In particular, the
Susan benchmark from the Automotive and Industrial
Control category of the MiBench set of embedded
benchmarks was traced and analyzed [8].

Four functional units are considered that can be
loaded in the reconfigurable resources. This collection
of functional units is assumed to be capable of
executing all of the instructions required by the
benchmark. The functional unit descriptions and
relative sizes are:
• Integer Arithmetic Logic (IAL) Unit of size 1;
• Integer Multiply Divide (IMD) Unit of size 2;
• Floating Point Arithmetic Logic (FAL) Unit of

size 2; and
• Floating Point Multiply Divide (FMD) Unit of

size 3.
In this simulation, instructions are placed in an

instruction buffer that can hold eight instructions. On
each clock cycle, the instruction buffer is analyzed;
instructions that have no dependencies are removed
from the buffer and assigned to a functional unit. The
simulation assumes ideal availability of the functional
units required to exploit all of the parallelism present
in the instruction buffer during each cycle.

Ideal availability of functional units is equivalent
to being able to reach any configuration necessary for
exploiting the available instruction-level parallelism.
Simulation of the temporal evolution of the instruction
buffer is used to determine which configurations of
functional units provide the greatest advantage in
terms of clock cycle time. Further analysis of available
instruction-level parallelism at each clock cycle
provides a means of determining the global
importance of each configuration.

Table 1 shows the number of clock cycles during
which each configuration must be utilized in order to
exploit all of the available instruction-level
parallelism. Note that Table 1 does not report the total
number of cycles required to execute the program
using a single configuration, i.e., all of the
configurations listed in Table 1 were required for
exploiting all of the instruction-level parallelism. The
summation of values listed in the “Utilization” column
of Table 1 represents the total number of cycles
required to execute the program (assuming ideal
parallelism). Furthermore, the values reported do not
account for clock cycles devoted to reconfiguration
time.

In Table 1, the available instruction-level
parallelism associated with the first seven
configurations are all satisfied by the configuration
containing one FAL, one IMD, and one IAL. For
example, the first configuration does not make parallel
use of functional units; however, the single unit
requirement (one FAL unit) is indeed a subset of the
seventh configuration, which has three units and
utilizes all N = 5 slots of the reconfigurable resources.
Thus, the configuration vector V1 = (FAL1, FAL2,
IMD1, IMD2, IAL1)T represents configuration number

7 in Table 1, which covers the first seven entries in the
table.

It is assumed here that important configurations
can be identified based on the number of clock cycles
required of a specific configuration, and that each
functional unit is required to appear in at least one
position among the steering vectors. The
combinatorial technique presented in Section 3 can be
used to design a set of steering vectors to operate on
the Susan benchmark.

Equation (11) is one example set of steering
vectors obtained with the combinatorial technique
introduced in Section 3, for K = 2 steering vectors and
N = 5 reconfigurable slots.

IAL
IAL

FMD
FMD
FMD

IAL
IMD
IMD
FAL
FAL

1

1

3

2

1

2

1

2

1

2

1

1

=

= ss (11)

Generation of these steering vectors was

performed using execution times from Table 1,
assuming that the goal of the design is to maximize
possible instruction-level parallelism.

The combinatorial techniques presented in Section
3 provide a powerful method of generating steering
vectors from specific design constraints. In addition,
alternative methods of identifying the important
configurations lend themselves well to this approach,
as generation of the steering vector sets do not depend
on the method used to assign importance to a
configuration, i.e., rather than selecting configurations
based solely on execution time and exploitation of
parallelism, one could integrate the cost of
reconfiguration in terms of power and/or time.

5. Conclusions

In this paper, we have extended the work in [3],
[4] and [5] by generalizing a framework for
reconfiguration that considers the challenge of
designing steering vectors with respect to specific
hardware constraints; namely, constraints related to
the interconnection network (MUXs) between the
reconfigurable resources and the steering vectors, and
the size of the steering vectors. We have demonstrated
a method by which a designer can determine the best
possible set of steering vectors given the functional
unit information, the steering vector size, and the sizes
of the multiplexers used in the interconnection
network, i.e., K, the number of steering vectors

Table 1. Simulation results showing cycle
counts associated with configurations to
exploit available parallelism. Configurations
utilizing < 5 slots are noted with “-” and those
requiring > 5 slots are noted with a “+”.

of Units of Each Type Configuration
Number FMD FAL IMD IAL

Utilization
(Cycles)

1- 0 1 0 0 14,687,394

2- 0 0 1 0 8,073,949

3- 0 0 0 1 5,305,970

4- 0 1 0 1 4,831,781

5- 0 1 1 0 3,927,892

6- 0 0 1 1 2,197,350

7 0 1 1 1 1,761,679

8- 0 2 0 0 1,345,299

9- 0 1 0 2 999,982

10- 0 0 0 2 392,283

11+ 0 1 1 2 317,736

12- 0 0 0 3 314,990

13- 1 0 0 0 202,321

14 0 2 0 1 88,724

15+ 0 2 0 2 81,216

16+ 0 2 0 3 43,320

17- 0 0 2 0 21,387

18- 0 0 0 4 16,528

19 0 0 2 1 14,273

20+ 2 0 0 0 8,378

21- 1 0 0 1 7,426

22 1 1 0 0 5,219

23+ 1 1 0 1 3,577

24+ 0 3 0 1 2,952

25+ 1 2 0 0 1,908

26+ 1 1 0 2 1,890

27 1 0 0 2 1,704

28+ 0 3 0 0 1,476

29 1 0 1 0 840

30+ 2 0 0 1 830

31+ 1 2 0 1 636

32- 0 0 1 2 635

33 0 0 1 3 395

34+ 1 0 0 3 388

35 0 1 0 3 323

36+ 0 0 2 2 287

37+ 3 0 0 0 31

38 0 0 0 5 19

39+ 0 0 0 6 15

40+ 0 0 1 4 3

41+ 0 1 0 4 1

that can be supported.
The approach taken here is combinatorial and

provides a consistent view of the configurable space,
and as a measure of that space, the number of
configurations that can be reached with the selection
of a given set of steering vectors. Future work includes
approaching this problem with optimization
techniques, which may yield results without
exhaustive combinatorial techniques.

6. References

[1] Hauser, J.R. and Wawrzynek, J., “Garp: A MIPS
Processor with a Reconfigurable Coprocessor,” Proceedings
of the 5th Annual IEEE Symposium on Field Programmable
Custom Computing Machines, 1997, pp. 12-21.

[2] C. Iseli and E. Sanchez, “Beyond Superscalar Using
FPGAs,” Proceedings of the 1993 IEEE International
Conference on Computer Design: VLSI in Computers and
Processors, 1993, pp. 486-490.

[3] Niyonkuru, A. and Zeidler, H.C., “Designing a Runtime
Reconfigurable Processor for General Purpose
Applications,” Reconfigurable Architectures Workshop
(RAW 2004), Proceedings of the 18th International Parallel
and Distributed Processing Symposium (IPDPS 2004), pp.
143–149, Apr. 2004.

[4] Veale, B.F., Antonio, J.K., and Tull, M.P.,
“Configuration Steering for a Reconfigurable Superscalar
Processor,” 12th Reconfigurable Architectures Workshop
(RAW 2005), Proceedings of the 19th International Parallel
and Distributed Processing Symposium (IPDPS 2005), Apr.
2005.

[5] Mould, N.A., Veale, B.F., Tull, M.P., and Antonio, J.K.,
“Dynamic Configuration Steering for a Reconfigurable
Superscalar Processor,” 13th Reconfigurable Architectures
Workshop (RAW 2006), Proceedings of the 20th
International Parallel and Distributed Processing
Symposium (IPDPS 2006), Apr. 2006.

[6] Cardoso, J.M.; Simoes, J.B.; Correia, C.M.B.A.; Combo,
A.; Pereira, R.; Sousa, J.; Cruz, N.; Carvalho, P.; Varandas,
C.A.F., “A high performance reconfigurable hardware
platform for digital pulse processing,” IEEE Transactions on
Nuclear Science, June 2004, pp. 921-925.

[7] Bishop, S.L.; Rai, S.; Gunturk, B.; Trahan, J.L.;
Vaidyanathan, R., “Reconfigurable Implementation of
Wavelet Integer Lifting Transforms for Image
Compression,” IEEE International Conference on
Reconfigurable Computing and FPGAs, Sept. 2006.

[8] Guthaus, M. R., Ringenberg, D. E., Austin, T. M., et al,
“MiBench: A Free, Commercially Representative Embedded
Benchmark Suite,” Proceedings of the 4th Annual IEEE
Workshop on Workload Characterization, Dec. 2001, pp. 3-
14.

