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Abstract 
An architectural framework is studied that can 

perform dynamic reconfiguration. A basic objective is 
to dynamically reconfigure the architecture so that its 
configuration is well matched with the current 
computational requirements. The reconfigurable 
resources of the architecture are partitioned into N 
slots. The configuration bits for each slot are provided 
through a connection to one of N independent busses, 
where each bus can select from among K 
configurations for each slot. Increasing the value of K 
can increase the number of configurations that the 
architecture can reach, but at the expense of more 
hardware complexity to construct the busses. Our 
study reveals that it is often possible for the 
architecture to closely track ideal desired 
configurations even when K is relatively small (e.g., 
two or four). The input configurations to the collection 
of busses are defined as steering vectors; thus, there 
are K steering vectors, each having N equal sized 
partitions of configuration bits. A combinatorial 
approach is introduced for designing steering vectors 
that enables the designer to evaluate trade-offs 
between performance and hardware complexity 
associated with the busses. 

1. Introduction 

A number of studies have been conducted that 
illustrate the potential advantages of dynamic 
reconfiguration [1, 2], also called runtime 
reconfiguration [3]. The dynamic reconfiguration 
approaches devised by such studies are often evaluated 
through simulation of the assumed underlying 
reconfigurable architecture. Simulation is used 
because commercially available reconfigurable 
devices generally cannot achieve reconfiguration times  

that are small enough to be plausible for applications 
and approaches that require highly dynamic 
reconfiguration.  

In this paper, a framework for a dynamically 
reconfigurable architecture is described, which 
includes an interconnection scheme between steering 
vectors and the reconfigurable resources, described 
earlier in [3 – 5]. The framework is relatively generic 
and can be applied to model a number of existing 
approaches for dynamic reconfiguration. For example, 
it is applicable to instruction-level architectures in 
which the functional units of a superscalar processor 
are assumed to be able to be dynamically reconfigured 
[4, 5]. It is also applicable to task-level architectures in 
which dynamic reconfiguration is used to support 
higher-level computations such as signal processing 
[6] or data compression [7].  

The next section introduces a parameterized 
model for the assumed architectural framework. 
Section 3 describes a combinatorial approach to 
designing the steering vectors associated with the 
assumed framework. The design of steering vectors is 
important because it impacts which configurations are 
reachable by the architecture. An illustrative example 
of applying the proposed approach is provided in 
Section 4, followed by some concluding remarks in 
Section 5. 

2. A Framework for Dynamically 
Reconfigurable Architectures 

Figure 1 illustrates a conceptual framework for an 
architecture that can support dynamic reconfiguration. 
The framework has three main components: 
reconfigurable resources; an interconnection network; 
and steering vectors. 

The reconfigurable resources are partitioned into 
N slots, as shown in Figure 1 for N = 5. Configuration 
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Figure 1. Conceptual framework for a 
dynamically reconfigurable architecture with  
K = 2 steering vectors, N = 5 reconfigurable 
slots, and busses of width W. 

 
bits are used to define the configuration of each 
reconfigurable slot, and these bits are stored in 
memory that defines the steering vectors. Each slot 
can be reconfigured independently from the other 
slots. Thus, it is possible for one or more slots to be 
loading new configuration bits (i.e., reconfiguring) 
while other slots are performing computations. 
Furthermore, adjacent slots can be ganged together to 
form a functional unit that spans multiple slots. 

The width of the data paths, W, as illustrated in 
Figure 1, defines the number of configuration bits that 
are loaded in parallel on each bus cycle. Thus, at one 
extreme, W = 1 represents the case where the hardware 
only supports configuration bits being loaded in a bit-
serial fashion. At the other extreme, W could be on the 
order of thousands or even hundreds of thousands, 
which would drastically reduce the time required to 
load configuration bits into the reconfigurable slots. 
For dynamic reconfiguration to be practical and useful, 
the value of W must be sufficiently large so that the 
delay associated with loading configuration bits can be 
tolerated. The fundamental issue is that the time 
required to reconfigure must be more than 
compensated for by the advantage, in terms of 
performance, in electing to perform the 
reconfiguration.  

The interconnection network (i.e., the MUXs in 
Figure 1) provides switching action from configuration 
bits (stored in the steering vectors) to the 
reconfigurable resources. For the study here, the 
interconnection network is assumed to be comprised 
of N independently controllable busses; however, in 
principle, more sophisticated interconnection schemes 
can be assumed for this component of the framework. 
Each bus assumed here can be independently 
controlled to select from among K configurations. As 
mentioned above, constructing wider buses has the 
advantage of decreasing reconfiguration time, but the 

disadvantage of requiring more hardware to 
implement. The value of K impacts the number of 
overall configurations that can be reached by the 
reconfigurable resources: larger values of K generally 
afford a larger number of configurations to be reached. 
However, larger values of K translate, again, into more 
hardware to implement the busses. 

The input values associated with each of the N 
busses in Figure 1 are the configuration bits stored in 
memory, and are defined to be corresponding elements 
of K steering vectors. Each of the N elements of a 
steering vector stores the configuration bits associated 
with a functional unit, or a portion of a functional unit. 
In the example shown, there are configuration bits 
stored in the steering vectors that represent 
configurations for three functional units, denoted by E, 
F, and G. The configuration bits for unit E fit into one 
slot, and are denoted by E1. Units F and G each 
require two slots; thus, their configuration bits require 
storage that spans two adjacent elements of a steering 
vector, denoted by elements F1,F2 and G1,G2, 
respectively.  

Two obvious examples of configurations that can 
be reached by the steering vectors of Figure 1 are the 
two steering vectors themselves, i.e., 

TGGFFE ),,,,( 21211  and TEEEGG ),,,,( 11121 . 
Furthermore, because the N = 5 busses are 
independently controlled, it is possible to reach a 
configuration that is a combination of the two steering 
vectors, such as TGGEGG ),,,,( 21121 . Thus, the 
architectural framework enables the reconfigurable 
slots to be loaded with a mixture of elements from the 
steering vectors. In general, there are a total of N log2 
K select lines that are available for controlling the 
selection lines of the MUXs. For the case shown in 
Figure 1 with N = 5 and K = 2, there are five selection 
lines. 

Based on the steering vectors defined in Figure 1, 
observe that it is not possible to reach a configuration 
in which there are two copies of unit F, and one copy 
of unit E loaded into the reconfigurable resources. 
However, if the steering vectors defined in Figure 2 
were to be employed instead, then this configuration is 
indeed reachable. The question addressed in Section 3 
is how to design the steering vectors so that desired 
configurations of the reconfigurable resources can be 
reached. 

An important objective considered in this study is 
to utilize a value of K (i.e., number of steering vectors) 
that is as small as possible, because large values of K 
require greater hardware complexity to implement. 
This complexity manifests itself as logic complexity 
required to implement the K×1 busses. Note that the 
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Figure 2. Same conceptual framework as 
Figure 1, but with modified steering vectors. 

 
configuration bits for each unit only need to be stored 
once, and fanned out to the appropriate MUXs. The 
overarching theme, therefore, is to design K steering 
vectors, with K being as small as possible, to allow the 
system to reach those configurations that are known to 
be desirable. For example, it is a waste of hardware 
complexity to implement a system that supports four 
steering vectors, if two steering vectors exist that 
enable the architecture to reach all desirable 
configurations. In such a case, the complexity saved 
by decreasing K from four to two could be re-applied 
to increase the bus width, W, and thereby decrease 
reconfiguration time.  

3. Steering Vector Design 

Up until this point, only architectural examples in 
which the steering vectors were already defined have 
been considered, e.g., refer to Figures 1 and 2. This 
section addresses how to determine, in a systematic 
way, the best choices for the number and composition 
of steering vectors. 

3.1. Mathematical Notation 

To precisely formulate the steering vector design 
problem, mathematical notation is introduced. Denote 
the K steering vectors as s1, …, sK, where each steering 
vector is of size N slots and each slot represents a 
distinct portion of a functional unit. The ith element of 
a steering vector stores configuration bits that are used 
(when selected) to configure the ith slot of the 
reconfigurable resources.  

To model the control of selection for the busses, 
define K control vectors c1, …, cK, where each control 
vector is of length N. A valid collection of K control 
vectors must satisfy the following two conditions:  
• The elements of the control vectors can only be zero 

or one, i.e., ci ∈ {0,1}N, for all i ∈ {1,2, …, K}. 

• The sum of all K control vectors equals a vector 
having all elements equal to unity.  

For a given collection of control vectors, the 
configuration that is loaded into the reconfigurable 
resources is denoted by the vector , where 
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and the “ ” operator denotes Hadamard (entrywise) 
product of two vectors. To illustrate the notation, the 
K = 2 steering vectors in Figure 2 are defined by s1 and 
s2 as: 

 























=























=

1

2

1

2

1

2

2

1

1

2

1

1  and 

E
F
F
G
G

s

G
G
E
F
F

s  (2) 

 
An example of two valid control vectors are: 
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Thus, the overall configuration that would be loaded 
into the reconfigurable resources is given by: 
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Two configurations of the reconfigurable 

resources are defined to be equivalent if each 
configuration contains the same number of each type 
of functional unit. For example, the configuration 

TEGGEE ),,,,( 12111  is equivalent to the 

configuration TEEEGG ),,,,( 11121 . Thus, if one 
configuration is a permutation of another, they are said 
to be equivalent and are members of the same 
equivalence class. As another example, the two 
steering vectors defined in Figure 2 belong to the same 
equivalence class. 



 

 

3.2 Design Methodology 

For this study, assume that the number of slots, N, 
and the number and size of each type of functional unit 
are given. In [5], a methodology was developed for 
enumerating all equivalence classes of configurations 
of reconfigurable resources (given the number of slots 
and the number and size of each type of functional 
unit).  

It is important to note that the methodology of [5] 
does not specify the number and composition of 
steering vectors, rather, it defines all possible 
configurations based on the given number of slots and 
the number and sizes of the functional units. In [5], an 
example calculation is performed for the case of N = 8 
and five functional units in which the first functional 
unit is of size one, the second is of size two, the third 
is of size two, the fourth is of size three, and the fifth 
is of size three. For that particular example, it is shown 
in [5] that all possible configurations are represented 
by only 36 equivalence classes. Note that, many of the 
equivalence classes contain a relatively large number 
of permutations. 

The present approach first requires the designer to 
specify a collection of configurations that are deemed 
most important (i.e., should be reachable). For the case 
described in the previous paragraph, the designer 
specifies which of the 36 equivalence classes must be 
reachable. Suppose, for the sake of discussion, that the 
designer specifies that only twelve of the 36 possible 
equivalence classes need to be reachable. A secondary 
specification from the designer is the degree of 
importance of each of the configurations that need to 
be reachable. Given this input from the designer, the 
objective of our approach is to aid the designer in 
specifying a minimal set of steering vectors (two is 
better than four) that satisfy the designer’s 
requirements. 

To formalize the approach thus far; given that the 
number of slots N is specified and that the number and 
size of each functional unit is specified, the first step is 
to determine the associated equivalence classes for all 
possible configurations. Denote the number of 
equivalence classes by Q, and denote representatives 
from each of these equivalence classes with the 
vectors QVV ,...,1 . Let ][ iV  represent the equivalence 

class associated with iV , and |][| iV represent the 

number of members (i.e., permutations) in ][ iV . 

Define U as the universe of all possible permutations, 
which is the union of all equivalence classes: 

 [ ]i
Qi

V
},...,1{∈

= ∪U  (5) 

Consider a collection of K steering vectors chosen 
from the universe U . Let L denote the number of 
possible ways to select K steering vectors from the 
universe U , thus  
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Let US ⊂i  denote the ith collection of K steering 
vectors selected from the universe, where 

},,2,1{ Li …∈ . Construct an QL×  matrix M, 
where each column in the matrix is associated with an 
equivalence class and each row is associated with a set 
of steering vectors. The value of matrix element 

ijm denotes the number of members (i.e., 

permutations) of equivalence class ][ jV  that can be 
reached by employing the collection of steering 
vectors associated with iS . 

The ith row of the matrix M is associated with the 
ith possible selection of K steering vectors, iS . The 
values of the elements in the ith row of M correspond 
to how many of the members of each equivalence 
class can be reached by employing the steering vectors 
in iS . Thus, different choices for steering vectors can 
be compared across the rows of M. If a particular 
equivalent class represents reachable configurations 
that are very important to the designer, then a row in 
which the corresponding element is non-zero would 
matches this requirement, whereas a row in which the 
element is zero implies that the corresponding 
equivalence class cannot be reached. The more 
important a particular equivalence class is to the 
designer, the higher the corresponding value in the 
row should be. For example, choosing a row (a choice 
of steering vectors) in which the value associated with 
a particular equivalence class is higher, compared to 
another choice, means that there are more ways for the 
architecture to arrive at a configuration associated with 
the desired equivalence class.  

Because equivalence classes are of different sizes, 
it could be important to normalize the elements in M 
by dividing the elements in each column of M by the 
size of the corresponding equivalence class. In so 
doing, each element will be normalized to between 
zero and one, representing the fraction of the possible 
members of each equivalence class that can be reached 
by the choice of steering vectors. Thus, an ideal choice 
of a row (steering vectors) would correspond to a row 
of ones, meaning that all possible permutations are 
reachable. In a constrained design, however, it is 



 

 

desirable for K to be as small as possible, which 
inevitably translates to zero entries in the matrix M. 
Because it is assumed that the designer knows which 
configurations (i.e., equivalence classes) are 
important, and which ones are not, these requirements 
can be translated into a desired row of values. 
Selecting the best collection of steering vectors then 
reduces to the problem of finding a row in M that is 
equal (or similar) to a row containing the desired 
values. Example 1 below shows the calculations 
associated with the process described in this section.  

 
Example 1. Assume three functional units of type 

A, B, and C, each requiring 1, 2, and 3 slots, 
respectively. Also, assume a configuration space size 
of N = 4 slots and that it is desired to use K = 2 
steering vectors. 

First, generate the equivalence class 
representatives; in this case there are Q = 4. These can 
be determined according to the method presented in 
[5]; they are given by: 
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Next, generate the permutations (members) for 

each equivalence class to construct the universe U  of 
all possible permutations: 
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Because there are seven total vectors in the 

universe [ ]i
Qi

V
},...,1{∈

= ∪U , and we are assuming K = 2 

steering vectors are to be employed, there are 

21
!2)!27(

!7 =
−

=L  possible sets of steering vectors 

that need to be considered. For the sake of space, each 
independent set is not shown here; instead the 
completed matrix is shown in Equation (10). 

For example, the steering vectors associated with 
the last row of M can only reach the two members of 

][ 4V .  
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Observe that if a collection of two steering vectors 

existed that could reach at least one member of every 
equivalence class, there would be a row in M with all 
non-zero entries. Thus, because there is no such row, it 
is clear that all possible choices of two steering vectors 
are unable to reach at least one configuration in every 
equivalence class. As mentioned above, the final 
choice (last row of M) of steering vectors can reach 
only configurations in equivalence class ][ 4V . The  
 



 

 

third row of the matrix corresponds to a choice of 
steering vectors that can reach a maximum number of 
configurations; however, this choice cannot reach 
configurations associated with the equivalence class 

][ 4V . Observe that if K is defined to be three or four 
(instead of two), then the number of rows in M would 
increase. If K is four, there will exist a row in the 
matrix in which the four steering vectors are from each 
of the four equivalence classes; these four steering 
vectors would able to reach all equivalence classes. 
But recall that allowing K to be large increases the 
hardware complexity associated with constructing the 
busses. The aim is to keep K as small as possible, and 
still arrive at a choice of steering vectors that enable 
the architecture to reach desirable configurations. So, 
for the current example, if the configuration associated 
with ][ 4V  is never needed, then the steering vector 
choices associated with the fourth or eighth rows 
would be good design choices. 

4. Case Study 

A general-purpose processor architecture with 
dynamically reconfigurable functional units was 
proposed in [3]. This basic concept was studied further 
and extended in [4] and [5]. For the case study 
presented in this section, it is assumed that the 
reconfigurable processor has N = 5 slots and that the 
objective is to design K = 2 steering vectors that are 
well matched to the configurations determined to be 
important. The specific objective is to exploit as much 
instruction-level parallelism as possible by being able 
to reach important configurations, i.e., those 
configurations that enable as many instructions to be 
executed in parallel as possible. For example, if it is 
the case that multiplication instructions can never (or 
rarely) be executed in parallel, but parallel addition 
instructions can often be executed in parallel, then the 
choice of steering vectors should comprehend this 
reality and enable configurations with two or more 
adder units to be reachable.  

For the purposes of this study, the practical, yet 
application specific, techniques of code execution 
profiling and tracing are employed to identify 
important configurations. This approach is a practical 
off-line design strategy in which the implemented 
system has extreme performance requirements.  

To identify the desired configurations for this 
study, a benchmark program is traced and potential 
instruction-level parallelism is analyzed by simulating 
the execution of the benchmark. In particular, the 
Susan benchmark from the Automotive and Industrial 
Control category of the MiBench set of embedded 
benchmarks was traced and analyzed [8].  

Four functional units are considered that can be 
loaded in the reconfigurable resources. This collection 
of functional units is assumed to be capable of 
executing all of the instructions required by the 
benchmark. The functional unit descriptions and 
relative sizes are: 
• Integer Arithmetic Logic (IAL) Unit of size 1; 
• Integer Multiply Divide (IMD) Unit of size 2; 
• Floating Point Arithmetic Logic (FAL) Unit of 

size 2; and 
• Floating Point Multiply Divide (FMD) Unit of 

size 3. 
In this simulation, instructions are placed in an 

instruction buffer that can hold eight instructions. On 
each clock cycle, the instruction buffer is analyzed; 
instructions that have no dependencies are removed 
from the buffer and assigned to a functional unit. The 
simulation assumes ideal availability of the functional 
units required to exploit all of the parallelism present 
in the instruction buffer during each cycle. 

Ideal availability of functional units is equivalent 
to being able to reach any configuration necessary for 
exploiting the available instruction-level parallelism. 
Simulation of the temporal evolution of the instruction 
buffer is used to determine which configurations of 
functional units provide the greatest advantage in 
terms of clock cycle time. Further analysis of available 
instruction-level parallelism at each clock cycle 
provides a means of determining the global 
importance of each configuration.  

Table 1 shows the number of clock cycles during 
which each configuration must be utilized in order to 
exploit all of the available instruction-level 
parallelism. Note that Table 1 does not report the total 
number of cycles required to execute the program 
using a single configuration, i.e., all of the 
configurations listed in Table 1 were required for 
exploiting all of the instruction-level parallelism. The 
summation of values listed in the “Utilization” column 
of Table 1 represents the total number of cycles 
required to execute the program (assuming ideal 
parallelism). Furthermore, the values reported do not 
account for clock cycles devoted to reconfiguration 
time.  

In Table 1, the available instruction-level 
parallelism associated with the first seven 
configurations are all satisfied by the configuration 
containing one FAL, one IMD, and one IAL. For 
example, the first configuration does not make parallel 
use of functional units; however, the single unit 
requirement (one FAL unit) is indeed a subset of the 
seventh configuration, which has three units and 
utilizes all N = 5 slots of the reconfigurable resources. 
Thus, the configuration vector V1 = (FAL1, FAL2, 
IMD1, IMD2, IAL1)T represents configuration number 



 

 

7 in Table 1, which covers the first seven entries in the 
table.  

It is assumed here that important configurations 
can be identified based on the number of clock cycles 
required of a specific configuration, and that each 
functional unit is required to appear in at least one 
position among the steering vectors. The 
combinatorial technique presented in Section 3 can be 
used to design a set of steering vectors to operate on 
the Susan benchmark. 

Equation (11) is one example set of steering 
vectors obtained with the combinatorial technique 
introduced in Section 3, for K = 2 steering vectors and 
N = 5 reconfigurable slots. 
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Generation of these steering vectors was 

performed using execution times from Table 1, 
assuming that the goal of the design is to maximize 
possible instruction-level parallelism. 

The combinatorial techniques presented in Section 
3 provide a powerful method of generating steering 
vectors from specific design constraints. In addition, 
alternative methods of identifying the important 
configurations lend themselves well to this approach, 
as generation of the steering vector sets do not depend 
on the method used to assign importance to a 
configuration, i.e., rather than selecting configurations 
based solely on execution time and exploitation of 
parallelism, one could integrate the cost of 
reconfiguration in terms of power and/or time. 

5. Conclusions 

In this paper, we have extended the work in [3], 
[4] and [5] by generalizing a framework for 
reconfiguration that considers the challenge of 
designing steering vectors with respect to specific 
hardware constraints; namely, constraints related to 
the interconnection network (MUXs) between the 
reconfigurable resources and the steering vectors, and 
the size of the steering vectors. We have demonstrated 
a method by which a designer can determine the best 
possible set of steering vectors given the functional 
unit information, the steering vector size, and the sizes 
of the multiplexers used in the interconnection 
network, i.e., K, the number of steering vectors 

Table 1. Simulation results showing cycle 
counts associated with configurations to 
exploit available parallelism. Configurations 
utilizing < 5 slots are noted with “-” and those 
requiring > 5 slots are noted with a “+”. 
 

# of Units of Each Type Configuration 
Number FMD FAL IMD IAL 

Utilization
(Cycles)

1- 0 1 0 0  14,687,394

2- 0 0 1 0 8,073,949

3- 0 0 0 1 5,305,970

4- 0 1 0 1 4,831,781

5- 0 1 1 0 3,927,892

6- 0 0 1 1 2,197,350

7 0 1 1 1 1,761,679

8- 0 2 0 0 1,345,299

9- 0 1 0 2 999,982

10- 0 0 0 2 392,283

11+ 0 1 1 2 317,736

12- 0 0 0 3 314,990

13- 1 0 0 0 202,321

14 0 2 0 1 88,724

15+ 0 2 0 2 81,216

16+ 0 2 0 3 43,320

17- 0 0 2 0 21,387

18- 0 0 0 4 16,528

19 0 0 2 1 14,273

20+ 2 0 0 0 8,378

21- 1 0 0 1 7,426

22 1 1 0 0 5,219

23+ 1 1 0 1 3,577

24+ 0 3 0 1 2,952

25+ 1 2 0 0 1,908

26+ 1 1 0 2 1,890

27 1 0 0 2 1,704

28+ 0 3 0 0 1,476

29 1 0 1 0 840

30+ 2 0 0 1 830

31+ 1 2 0 1 636

32- 0 0 1 2 635

33 0 0 1 3 395

34+ 1 0 0 3 388

35 0 1 0 3 323

36+ 0 0 2 2 287

37+ 3 0 0 0 31

38 0 0 0 5 19

39+ 0 0 0 6 15

40+ 0 0 1 4 3

41+ 0 1 0 4 1



 

 

that can be supported. 
The approach taken here is combinatorial and 

provides a consistent view of the configurable space, 
and as a measure of that space, the number of 
configurations that can be reached with the selection 
of a given set of steering vectors. Future work includes 
approaching this problem with optimization 
techniques, which may yield results without 
exhaustive combinatorial techniques.  
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