
Configuration Steering for a Reconfigurable Superscalar Processor 

Brian F. Veale 

School of Computer Science 

University of Oklahoma 

veale@ou.edu

John K. Antonio 

School of Computer Science 

University of Oklahoma 

antonio@ou.edu

Monte P. Tull 

School of Electrical and 

Computer Engineering 

University of Oklahoma 

tull@ou.edu

Abstract

An architecture for a reconfigurable superscalar 
processor is described in which some of its execution 

units are implemented in reconfigurable hardware. The 

overall configuration of the processor is defined 
according to how its reconfigurable execution units are 

configured. An efficient micro-architectural solution to 

configuration management is presented that effectively 
steers the current processor configuration toward a 

configuration that is well matched with the execution unit 

requirements of instructions being scheduled for 
execution. The approach first selects the best matched 

among four steering configurations based on the number 

and type of execution units required by the instructions. 
One of the steering configurations is dynamically defined 

as the current configuration; the other three are statically 

predefined. Once a steering configuration is selected, 
portions of it begin loading on corresponding 

reconfigurable execution units that are not busy. The 
active configuration of the processor is generally the 

overlap of two or more steering configurations. 

1. Introduction and Related Work 

In contrast to a static processor, the architecture of the 

hardware and/or the instructions supported by a 

reconfigurable processor can be changed dynamically. 

This means that the type and quantity of circuitry 

implementing particular instructions, or functionality, can 

be changed after fabrication of the processor and even 

during execution. A main objective of this work is to 

increase the achieved instruction level parallelism of the 

processor by best matching the processor configuration to 

the instructions that are ready to be executed. The 

particular focus of the paper is on the design of a 

configuration manager for a reconfigurable superscalar 

processor. 

There are three main paradigms for the design of 

reconfigurable processors; these paradigms are based on 

how the reconfigurable logic of the processor is interfaced 

with other components of the architecture [1]. The three 

paradigms are: (1) attached processor, (2) co-processor, 

and (3) functional unit.  In the attached processor 

paradigm, the reconfigurable logic is connected to a host 

processor via an I/O bus (e.g., a PCI or OPB bus). A host 

processor controls the operation of the reconfigurable 

logic via the bus; and/or data is transmitted between the 

reconfigurable logic and the host processor using the bus 

[1]. An example of a system that uses the attached 

processor approach is PipeRench [2].  

The co-processor paradigm attaches the reconfigurable 

logic directly to the host processor in a fashion similar to 

a floating-point co-processor [1]. One example of this 

approach is Garp [3].  

The final paradigm, the functional unit approach, 

integrates the reconfigurable logic into the processor as a 

functional unit; reconfigurable function units are referred 

to as RFUs in [1]. OneChip98, SPYDER, and PRISC are 

examples of the RFU paradigm [1, 4, 5]. The architecture 

considered in this paper is in the RFU paradigm. An 

advantage of this paradigm is that it closely models the 

design of a traditional processor and many existing design 

concepts can be applied to such a processor. 

Examples of previous work in the area of applying 

reconfigurable architectures to general-purpose 

computing requirements are SPYDER [4] and PRISC [5]. 

SPYDER uses a single RFU to implement hardware 

synthesized specifically for a program to be executed on 

the processor [4]. A C++ to netlist (a hardware 

description code) compiler that creates the binary 

configuration code used to configure the RFUs must be 

run before a program can be executed on SPYDER [6]. 

Thus, SPYDER requires that source code must be 

available and recompiled. 

PRISC [5] is a reconfigurable processor similar in 

concept to SPYDER. A main difference between the two 

is that the reconfigurable resources in PRISC consist of 

multiple RFUs connected to the data path of the CPU 

along with static functional units [5]; SPYDER does not 

specify static functional units. For programs to utilize the 

reconfigurable resources of PRISC, they must be 

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05) 
1530-2075/05 $ 20.00 IEEE



analyzed by a hardware extraction tool that determines 

what program code should be executed using the 

reconfigurable resources [5]. 

The SPYDER and PRISC processors represent an 

important step in applying reconfigurable computing to 

the realm of general-purpose computing; however, they 

may lack mainstream viability because they are not 

legacy-compatible at the level of binary code. Consider 

the vast amount of legacy software and hardware systems 

that dominate today’s market. 

Our motivation is to study general-purpose 

reconfigurable processors that can execute machine code 

compiled for current or legacy architectures. Research in 

this direction has already been undertaken in [7], where a 

general-purpose reconfigurable processor is proposed and 

modeled. The architecture introduced in [7] is based on a 

set of predefined configurable modules, each of which 

defines a different configuration of the functional units 

available in the architecture. These modules can be 

dynamically loaded at run-time to best match the needs of 

the instructions currently being executed by the processor. 

In order for such an approach to work efficiently, the 

configuration manager portion of the processor must be 

able to quickly determine the best configuration at any 

point in time based on the signature of the instructions in 

the instruction queue that are ready to be executed. 

The work presented in this paper proposes a fast and 

efficient configuration selection circuit that performs the 

task assigned to the configuration manager in the 

architecture proposed in [7]. An overview of the 

architecture defined in [7] and the modifications and 

additions that our work assumes are presented and 

analyzed in Section 2. One aspect of the approach 

proposed here is that it uses a set of predefined modules, 

similar to those proposed in [7], and melds them into 

configurations of the functional units that best match the 

needs of the system at any given time using partial 

reconfiguration. The techniques presented in this paper 

could be applied to other architectures in addition to the 

architecture of [7] and its modified version proposed here. 

2. Overview of the Architecture 

Figure 1 shows the partially run-time reconfigurable 

architecture considered in this paper. This architecture is 

derived from the architecture introduced in [7]. Because 

some of the functional units of the processor are 

reconfigurable, the architecture is within the RFU 

paradigm discussed in the previous section.  A collection 

of five fixed functional units (FFUs) and eight RFU 

“slots” are provided as a basis for the architecture in this 

paper. As the processor executes instructions, it 

reconfigures RFUs that are not busy to best match the 

needs of the instructions that are in the instruction queue 

and are ready to be executed.  

The architecture given in Figure 1 includes three 

predefined configurations for the functional units. The 

RFUs can be reconfigured independently of each other 

using partial reconfiguration techniques, thereby allowing 

the processor to implement a configuration that is a 

hybrid combination of the predefined configurations. 

Thus, the current configuration may or may not 

correspond exactly to one of the predefined 

configurations. Predefined configurations provide a basis 

for selecting a steering vector for the reconfiguration. 

This approach is an extension of [7], where the use of 

partial reconfiguration at the level of functional units was 

not directly addressed. Also, the idea of implementing 

one of each type of functional unit in fixed hardware was 

not specified. However, the basic architectural structure 

assumed in this paper is the same as that assumed in [7]. 

Each predefined configuration specifies zero or more 

integer arithmetic/logic units (Int-ALU), integer 

multiply/divide units (Int-MDU), load/store units (LSU), 

floating-point arithmetic/logic units (FP-ALU), and/or 

floating-point multiply/divide units (FP-MDU). Table 1 is 

a break down of how many functional units of each type 

are provided by each configuration including the number 

of each that is provided as a fixed unit. It should be noted 

that the granularity of the functional units can be 

generalized to be either finer or coarser than what is 

assumed here. For the purposes of this work, it is assumed 

that each instruction is only supported by by one type of 

functional unit. 

In addition to the fixed functional units, other fixed 

modules of the architecture provide separate instruction 

and data memories, a trace cache, an instruction fetch 

unit, an instruction decoder, a register update unit, a 

register file, and the configuration management unit. The 

instruction fetch unit fetches instructions from memory 

and provides them to the configuration management unit, 

which uses a unit decoder similar to the pre-decoder of 

[7] to retrieve the instruction opcodes. The instruction 

opcodes are then used to determine the functional unit 

resources required. The trace cache is used to hold 

instructions that are frequently executed. In [7], the trace 

cache and the pre-decoding unit are used to determine the 

resources required to execute instructions at run time. 

Section 3 provides a configuration selection system that 

matches instructions that are ready to be executed with 

the functional units they require and (partially) 

reconfigures the functional units of the processor to match 

the needs of these instructions. This system can be used 

(to fulfill the requirements) for the pre-decoders and 

configuration manager envisioned in [7]. 

The register update unit collects decoded instructions 

from the instruction queue and dispatches them to the 

various functional units configured in the processor. This 

unit also resolves all dependencies that occur between 

instructions and registers. A dependency buffer is 
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included in the register update unit that keeps track of the 

dependencies between instructions and registers. This unit 

writes computation results back to the register file during 

the write-back stage of instruction execution. 

Furthermore, the register update unit allows the processor 

to perform out-of-order execution of instructions, in-order 

completion of instructions, and operand forwarding [7]. 

3. Configuration Selection and Loading 

3.1. Configuration Selection 

The configuration selection unit is shown in Figure 2. 

This unit inspects the instructions in the instruction queue 

that are ready to be executed and chooses one of the four 

configurations of functional units specified in the 

architecture. Three of these are the predefined steering 

configurations; the remaining represents the currently 

active configuration (see Table 1). The current 

configuration may or may not correspond exactly to one 

of the predefined steering configurations because partial 

reconfiguration is employed when transitioning between 

configurations. Thus, the current configuration may be a 

hybrid combination of two or more predefined steering 

configurations. The configuration selection unit considers 

the possibility that the current configuration may be better 

matched to the instructions requesting resources than any 

of the predefined steering configurations. In fact, 

achieving a stable and well-matched current configuration 

is desirable because it implies that the architecture has 

settled into a configuration state that matches the 

requirements of the code. 

The configuration selection unit consists of four 

stages: (1) the unit decoders, (2) resource requirements 

encoders, (3) configuration error metric generators, and 

(4) a minimal error selection unit.  The inputs to the 

selection unit are the instruction queue and the number of 

each type of functional units currently configured in the 

processor. The output of the unit is a two-bit value that 

indicates which of the four configurations (three 

predefined RFU configurations or the current 

configuration) should be configured next. 
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Figure 1. A partially run-time reconfigurable architecture, derived from [7]. 

Table 1. Number of each type of functional unit provided in the fixed and reconfigurable portions of the 
processor, and their encodings. 

 Int-ALU Int-MDU LSU FP-ALU FP-MDU 

FFUs 1 1 1 1 1 

RFUs – Configuration 0 (Current) 0 - 2 0 - 3 0 - 4 0 - 1 0 - 1 

RFUs – Configuration 1 1 1 4 0 0 

RFUs – Configuration 2 0 0 2 1 1 

RFUs – Configuration 3 2 2 0 0 0 

Resource Type Encoding, t 0002 0012 0102 0112 1002
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Figure 2. Configuration selection unit.

The unit decoders serve the same purpose as the pre-

decoders of the original architecture specified in [7]. 

These decoders retrieve the opcode of each instruction in 

the instruction queue that is ready for execution. The 

output of each unit decoder is a one-hot vector that 

indicates the functional unit required by the instruction 

whose opcode the unit decoded. This information is 

collected from all decoders and transformed into a three-

bit binary value by the resource requirements encoder that 

indicates how many functional units of each type (Int-

ALU, Int-MDU, LSU, FP-ALU, and FP-MDU) are 

required to execute all of the instructions in the 

instruction queue. The configuration error metric 

generators then determine how close each of the three 

predefined configurations and the current configuration 

are to providing the resources required by the instructions 

in the instruction queue.  Finally, the minimal error 

selection unit uses the error of each configuration to 

choose the configuration that most closely meets the 

needs of the instructions in the instruction queue. 

The configuration error metric generators calculate a 

value that indicates the “closeness” of the number and 

type of functional units required to execute the 

instructions in the instruction queue relative to each of the 

four configurations including the FFUs. The function that 

each error metric unit implements is defined by the 

equation given in Figure 3(a). 

The configuration error metric (CEM) circuit of Figure 

3(b) accepts the quantified configuration resources for the 

three predefined configurations, as well as the current 

configuration. The CEM circuit shown in Figure 3(b) 

implements the equation of Figure 3(a) to produce the 

error metric for each of the four configurations. The barrel 

shifters for the three predefined configurations can be 

arranged with hard-wired shift control inputs to divide by 

4, 2, or 1. The shifters for the current configuration use 

shift control inputs that represent the upper two bits of the 

quantity of currently configured functional units. Figure 

3(c) shows how the upper two bits are treated to 

approximate division of the functional unit requirement 
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using 4, 2, or 1 as the divisor. A more accurate divider 

circuit could be implemented, if desired, at the expense of 

increased complexity and latency. Because the total 

number of functional units required cannot exceed seven 

(the instruction queue is assumed to hold seven 

instructions), three-bit adders are sufficient for summing 

the total error metric. 

The configuration selection unit chooses a 

configuration that achieves a minimal error by outputting 

a two-bit binary value that represents the configuration 

that should begin loading. The novelty in this process is 

handling the case where an RFU is executing a multi-

cycle instruction, which is accomplished by only 

reconfiguring the RFUs that are not busy. 

In cases where the configuration errors are equal, the 

minimal error selection circuit is designed to identify the 

configuration that requires the least amount of 

reconfiguration. Thus, the current configuration is always 

favored over any predefined steering configuration that 

has the same error metric value. 

3.2. Configuration Loading 

The configuration selection unit of Figure 2 determines 

the configuration that should be loaded into the processor 

to execute the instructions in the instruction queue that 

have not been scheduled. If the configuration selection 

unit chooses the current configuration, then the system 

will not reconfigure any of the RFUs. Additionally, the 

configuration loader tracks what type of functional unit is 

configured into each slot of reconfigurable logic. This is 

handled by storing a resource allocation vector that 

contains this information. Each of the functional unit 

types supported by the architecture (Int-ALU, Int-MDU, 

LSU, FP-ALU, FPU-MDU) are given a three-bit 

encoding, specified in Table 1. Because each functional 

unit can occupy one or more slots of reconfigurable logic 

available in the processor, a special encoding is used to 

indicate that a slot contains a portion of a functional unit 

that spans two or more slots. The first entry of the 

resource allocation vector for a unit that spans multiple 

slots contains that block’s encoding, and the following 

entries contain the special encoding of 1112.

Once a configuration is chosen, the configuration 

loader will determine which RFUs need to be 

reconfigured by determining the difference (XOR) 

between the chosen configuration and the current 

configuration using the resource allocation vector. The 

loader will then choose which RFUs to reconfigure on the 

basis of their availability.  If an RFU is executing a multi-

cycle instruction, the RFU cannot be reconfigured until 

the instruction finishes execution and is retired. (And by 

the time it is available for reconfiguration, a different 

configuration may have been selected.) To accommodate 

this approach, each slot has an available port that is 

asserted when the unit it implements is available. The 

configuration loader can determine if an RFU can be 

reconfigured by inspecting this output from the 

corresponding slot.  
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Figure 3. Configuration error metric generation. 
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If the unit is available and it must be reconfigured to 

implement a new configuration, then the configuration 

loader will reconfigure the RFU to implement the 

functional unit specified by the chosen configuration. The 

RFU will not be reconfigured if it already implements the 

specified functional unit (i.e., the type of the unit 

currently implemented in the RFU matches the type 

specified in the chosen configuration). This 

reconfiguration is performed using partial reconfiguration 

techniques, such as those discussed in [8]. 

Due to the possibility that some RFU’s may not be 

reconfigured to implement a functional unit defined by 

the chosen configuration, certain instructions may not be 

able to execute for several cycles. This problem would be 

compounded if FFUs were not provided as a part of the 

architecture and the processor entered a state where 

certain functional units were not implemented for long 

periods of time. Because the FFUs implement units for all 

instructions, every instruction is guaranteed to execute. 

4. Instruction Scheduling and Execution 

An integral challenge in the design of a dynamically 

partial reconfigurable processor is the scheduling, 

execution, and retirement of instructions. As the processor 

changes the configuration of its RFUs to best match the 

instructions being executed, the processor must be able to 

determine what resources are available to support the 

execution of instructions. If the processor chooses to 

schedule instructions for which there are not enough 

resources, then those instructions’ execution can be 

delayed waiting for the required resources to become 

available.

To solve this problem, we employ a scheduling 

approach that uses a wake-up array that allows 

instructions to “wake up” when the necessary functional 

units are available and required results from previous 

instructions are available [9]. This section discusses the 

basic approach and presents how the availability of RFUs 

can be dynamically determined. Note that [9] presents a 

more sophisticated scheduling approach than discussed 

here; however, our approach can be extended using the 

same techniques that are employed in [9]. 

4.1. Scheduling using Wake-Up Arrays 

A wake-up array contains information that allows the 

scheduling logic to match the functional units that are not 

busy to instructions that are ready to execute. This 

includes determining if the instruction requires results 

from any previous instructions and verifying that the 

results from those previous instructions are available. 

Specifically, the wake-up array consists of a set of 

resource vectors that encode which functional unit an 

instruction requires and the instructions that must produce 

results before the instruction can be executed [9]. An 

example of a dependency graph for a set of instructions 

and the corresponding wake-up array are presented in 

Figures 4 and 5. Note that there must be a “result required 

from” column in the array for each row (instruction entry) 

of the array. 

In the example of Figures 4 and 5, the Load instruction 

(Entry 5) only requires a load-store unit, so only the 

resource bit for the LSU is set on the row for the Load 

instruction. Additionally, the Load instruction does not 

depend on the result of any other instructions, so the 

column entries for the other instructions in the array are 

not set. Recall that for the RISC architecture assumed 

here, an instruction will never require more than one 

functional unit. The Multiply instruction (Entry 4) uses an 

integer multiplier (Int-MDU) and requires a result from 

the Subtract instruction (Entry 3); therefore, the bits for 

Entry 4 are set in the columns for the Int-MDU unit and 

Entry 3. 

Figure 6 shows the logic associated with the wake-up 

array of Figure 5 that determines if the instruction 

represented by each entry of the wake-up array should be 

considered for release by the scheduling logic. The wake-

up logic only determines when an instruction is ready for 

execution and generates an execution request for those 

instructions that are ready and does not actually determine 

if an instruction is scheduled because multiple 

instructions could require the same resources. This 

contention between instructions must be handled by the 

scheduler after multiple instructions that use the same 

resources request execution. 

The “available” lines shown in Figure 6 indicate 

whether the corresponding resource or the results of the 

corresponding entry in the array are available; the value 

of each line is high if the resource/result is available. 

These lines pass through every entry in the array and 

enter an OR gate that checks if the resource/result is 

needed and available [9].  If the resource is not required, 

then the output of the OR gate must be high in order for 

the entry to be scheduled when the resources/entries that 

are required are available. Each of these results are 

ANDed together to ensure that every resource and entry 

required is available [9]. The logic required to compute 

resource availability in a static processor is more 

straightforward than for a reconfigurable processor, where 

the logic that determines the availability of a resource 

must consider not only if the resource is busy but also if 

the resource is currently configured into the system. This 

logic is discussed in Subsection 4.2. 

The scheduled bit, shown in Figure 6, is required to 

keep an instruction from requesting execution once it has 

been scheduled, since instructions may take several cycles 

to complete [9]. Instruction entries in the wake-up array 

are not removed until the instruction is retired to keep 

instructions that rely on the result(s) of the instructions 

currently being executed from requesting execution too 
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early. After an instruction receives an execution grant, its 

corresponding available line is asserted at the time that its 

result will be available. This is handled using a count 

down timer that is set to the latency of the instruction. If 

the instruction has a latency of N cycles, the count down 

timer will be set to N – 1; if the instruction has a one-

cycle latency, the available line is asserted immediately. 

An instruction’s timer will start once the instruction 

receives an instruction grant and the instruction’s 

available line is asserted once the time reaches a count of 

one. Once an instruction finishes execution and is retired, 

every wake-up array entry associated with the instruction 

is cleared to keep new instructions that are added to the 

wake-up array from incorrectly becoming dependent on 

the retired instruction. This approach also handles the 

case of an instruction being removed from the array 

before its dependent instructions are scheduled by 

allowing these instructions to request execution without 

considering a dependence on the retired instruction. If an 

instruction must be rescheduled, then the schedule bit is 

de-asserted using the reschedule input of the scheduled bit 

[9]. 
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4.2. Computation of Resource Availability 

In order to use the wake-up array approach to 

scheduling instructions, the processor must include logic 

that determines which functional units (resources in the 

wake-up array) are available. This can be handled by 

allowing each resource to assert whether it is available. If 

there are multiple resources of the same type, then their 

availability assertions must be ORed to ensure that the 

availability line in the wake-up logic for the resource is 

asserted. Determining if a resource is available is more 

difficult in a reconfigurable processor because of the 

dynamic nature of which resources can be configured into 

the processor at any given point in time. 

The availability of a resource is a function of the 

allocation of the resource and availability of each copy of 

the resource that is configured into the processor. The 

availability of each resource can be determined using a 

signal from each slot of reconfigurable logic that indicates 

if the functional unit it implements is busy or available. 

This availability signal is asserted when the functional 

unit is available. Equation 1 defines the calculation of an 

available function that determines if a functional unit of a 

particular type is available using the availability signal of 

each slot and the resource allocation vector provided by 

the configuration loader that specifies the type of 

functional unit implemented by each RFU and FFU 

provided in the processor. In Equation 1, type(i) refers to 

the encoding of a functional unit of type t, specified in 

Table 1. 

)(

))()(()(
]2,0[

 vectorallocation
resource

ityavailabili

itypettypetavailable
b

bb

i
 (1) 

Some functional units require more than one 

reconfigurable slot. From Figure 1, we assume that LSUs 

require one slot, Int units require two slots each, and each 

type of FP unit requires three slots. If a functional unit 
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spans more than one reconfigurable slot, only one of the 

entries in the resource allocation vector will contain the 

encoding of the functional unit and the other entries will 

contain the encoding 1112 ensuring that the availability of 

the functional unit is only considered once in the 

calculation of the available function. Equation 1 can be 

realized in hardware using the circuit of Figure 7. 

In Figure 7, each bit of the resource allocation vector 

and the corresponding availability signal are applied to 

the product, )())()((
]2,0[

ityavailabiliitypettype
b

bb
,

computed by Equation 1. 

5. Conclusions

An approach to configuration management is 

introduced for a superscalar reconfigurable architecture 

having both fixed and reconfigurable functional units. 

The technique proposed matches current requirements 

with a collection of predefined steering configurations 

and the current configuration. By employing partial 

configuration at the level of functional units, the approach 

effectively steers the current configuration in the direction 

specified by the best-matched steering configuration. 

Designing the predefined steering configurations to be 

relatively orthogonal to one another may form the basis 

necessary to permit a large set of actual configurations 

that are actually realized, perhaps close to the entire set of 

possible processor configurations. The authors are 

currently investigating how to formulate an optimal basis, 

as well as, the separate problem of being able to 

dynamically reconfigure without using predefined 

configurations. 
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