
Configuration Steering for a Reconfigurable Superscalar Processor

Brian F. Veale

School of Computer Science

University of Oklahoma

veale@ou.edu

John K. Antonio

School of Computer Science

University of Oklahoma

antonio@ou.edu

Monte P. Tull

School of Electrical and

Computer Engineering

University of Oklahoma

tull@ou.edu

Abstract

An architecture for a reconfigurable superscalar
processor is described in which some of its execution

units are implemented in reconfigurable hardware. The

overall configuration of the processor is defined
according to how its reconfigurable execution units are

configured. An efficient micro-architectural solution to

configuration management is presented that effectively
steers the current processor configuration toward a

configuration that is well matched with the execution unit

requirements of instructions being scheduled for
execution. The approach first selects the best matched

among four steering configurations based on the number

and type of execution units required by the instructions.
One of the steering configurations is dynamically defined

as the current configuration; the other three are statically

predefined. Once a steering configuration is selected,
portions of it begin loading on corresponding

reconfigurable execution units that are not busy. The
active configuration of the processor is generally the

overlap of two or more steering configurations.

1. Introduction and Related Work

In contrast to a static processor, the architecture of the

hardware and/or the instructions supported by a

reconfigurable processor can be changed dynamically.

This means that the type and quantity of circuitry

implementing particular instructions, or functionality, can

be changed after fabrication of the processor and even

during execution. A main objective of this work is to

increase the achieved instruction level parallelism of the

processor by best matching the processor configuration to

the instructions that are ready to be executed. The

particular focus of the paper is on the design of a

configuration manager for a reconfigurable superscalar

processor.

There are three main paradigms for the design of

reconfigurable processors; these paradigms are based on

how the reconfigurable logic of the processor is interfaced

with other components of the architecture [1]. The three

paradigms are: (1) attached processor, (2) co-processor,

and (3) functional unit. In the attached processor

paradigm, the reconfigurable logic is connected to a host

processor via an I/O bus (e.g., a PCI or OPB bus). A host

processor controls the operation of the reconfigurable

logic via the bus; and/or data is transmitted between the

reconfigurable logic and the host processor using the bus

[1]. An example of a system that uses the attached

processor approach is PipeRench [2].

The co-processor paradigm attaches the reconfigurable

logic directly to the host processor in a fashion similar to

a floating-point co-processor [1]. One example of this

approach is Garp [3].

The final paradigm, the functional unit approach,

integrates the reconfigurable logic into the processor as a

functional unit; reconfigurable function units are referred

to as RFUs in [1]. OneChip98, SPYDER, and PRISC are

examples of the RFU paradigm [1, 4, 5]. The architecture

considered in this paper is in the RFU paradigm. An

advantage of this paradigm is that it closely models the

design of a traditional processor and many existing design

concepts can be applied to such a processor.

Examples of previous work in the area of applying

reconfigurable architectures to general-purpose

computing requirements are SPYDER [4] and PRISC [5].

SPYDER uses a single RFU to implement hardware

synthesized specifically for a program to be executed on

the processor [4]. A C++ to netlist (a hardware

description code) compiler that creates the binary

configuration code used to configure the RFUs must be

run before a program can be executed on SPYDER [6].

Thus, SPYDER requires that source code must be

available and recompiled.

PRISC [5] is a reconfigurable processor similar in

concept to SPYDER. A main difference between the two

is that the reconfigurable resources in PRISC consist of

multiple RFUs connected to the data path of the CPU

along with static functional units [5]; SPYDER does not

specify static functional units. For programs to utilize the

reconfigurable resources of PRISC, they must be

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

analyzed by a hardware extraction tool that determines

what program code should be executed using the

reconfigurable resources [5].

The SPYDER and PRISC processors represent an

important step in applying reconfigurable computing to

the realm of general-purpose computing; however, they

may lack mainstream viability because they are not

legacy-compatible at the level of binary code. Consider

the vast amount of legacy software and hardware systems

that dominate today’s market.

Our motivation is to study general-purpose

reconfigurable processors that can execute machine code

compiled for current or legacy architectures. Research in

this direction has already been undertaken in [7], where a

general-purpose reconfigurable processor is proposed and

modeled. The architecture introduced in [7] is based on a

set of predefined configurable modules, each of which

defines a different configuration of the functional units

available in the architecture. These modules can be

dynamically loaded at run-time to best match the needs of

the instructions currently being executed by the processor.

In order for such an approach to work efficiently, the

configuration manager portion of the processor must be

able to quickly determine the best configuration at any

point in time based on the signature of the instructions in

the instruction queue that are ready to be executed.

The work presented in this paper proposes a fast and

efficient configuration selection circuit that performs the

task assigned to the configuration manager in the

architecture proposed in [7]. An overview of the

architecture defined in [7] and the modifications and

additions that our work assumes are presented and

analyzed in Section 2. One aspect of the approach

proposed here is that it uses a set of predefined modules,

similar to those proposed in [7], and melds them into

configurations of the functional units that best match the

needs of the system at any given time using partial

reconfiguration. The techniques presented in this paper

could be applied to other architectures in addition to the

architecture of [7] and its modified version proposed here.

2. Overview of the Architecture

Figure 1 shows the partially run-time reconfigurable

architecture considered in this paper. This architecture is

derived from the architecture introduced in [7]. Because

some of the functional units of the processor are

reconfigurable, the architecture is within the RFU

paradigm discussed in the previous section. A collection

of five fixed functional units (FFUs) and eight RFU

“slots” are provided as a basis for the architecture in this

paper. As the processor executes instructions, it

reconfigures RFUs that are not busy to best match the

needs of the instructions that are in the instruction queue

and are ready to be executed.

The architecture given in Figure 1 includes three

predefined configurations for the functional units. The

RFUs can be reconfigured independently of each other

using partial reconfiguration techniques, thereby allowing

the processor to implement a configuration that is a

hybrid combination of the predefined configurations.

Thus, the current configuration may or may not

correspond exactly to one of the predefined

configurations. Predefined configurations provide a basis

for selecting a steering vector for the reconfiguration.

This approach is an extension of [7], where the use of

partial reconfiguration at the level of functional units was

not directly addressed. Also, the idea of implementing

one of each type of functional unit in fixed hardware was

not specified. However, the basic architectural structure

assumed in this paper is the same as that assumed in [7].

Each predefined configuration specifies zero or more

integer arithmetic/logic units (Int-ALU), integer

multiply/divide units (Int-MDU), load/store units (LSU),

floating-point arithmetic/logic units (FP-ALU), and/or

floating-point multiply/divide units (FP-MDU). Table 1 is

a break down of how many functional units of each type

are provided by each configuration including the number

of each that is provided as a fixed unit. It should be noted

that the granularity of the functional units can be

generalized to be either finer or coarser than what is

assumed here. For the purposes of this work, it is assumed

that each instruction is only supported by by one type of

functional unit.

In addition to the fixed functional units, other fixed

modules of the architecture provide separate instruction

and data memories, a trace cache, an instruction fetch

unit, an instruction decoder, a register update unit, a

register file, and the configuration management unit. The

instruction fetch unit fetches instructions from memory

and provides them to the configuration management unit,

which uses a unit decoder similar to the pre-decoder of

[7] to retrieve the instruction opcodes. The instruction

opcodes are then used to determine the functional unit

resources required. The trace cache is used to hold

instructions that are frequently executed. In [7], the trace

cache and the pre-decoding unit are used to determine the

resources required to execute instructions at run time.

Section 3 provides a configuration selection system that

matches instructions that are ready to be executed with

the functional units they require and (partially)

reconfigures the functional units of the processor to match

the needs of these instructions. This system can be used

(to fulfill the requirements) for the pre-decoders and

configuration manager envisioned in [7].

The register update unit collects decoded instructions

from the instruction queue and dispatches them to the

various functional units configured in the processor. This

unit also resolves all dependencies that occur between

instructions and registers. A dependency buffer is

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

included in the register update unit that keeps track of the

dependencies between instructions and registers. This unit

writes computation results back to the register file during

the write-back stage of instruction execution.

Furthermore, the register update unit allows the processor

to perform out-of-order execution of instructions, in-order

completion of instructions, and operand forwarding [7].

3. Configuration Selection and Loading

3.1. Configuration Selection

The configuration selection unit is shown in Figure 2.

This unit inspects the instructions in the instruction queue

that are ready to be executed and chooses one of the four

configurations of functional units specified in the

architecture. Three of these are the predefined steering

configurations; the remaining represents the currently

active configuration (see Table 1). The current

configuration may or may not correspond exactly to one

of the predefined steering configurations because partial

reconfiguration is employed when transitioning between

configurations. Thus, the current configuration may be a

hybrid combination of two or more predefined steering

configurations. The configuration selection unit considers

the possibility that the current configuration may be better

matched to the instructions requesting resources than any

of the predefined steering configurations. In fact,

achieving a stable and well-matched current configuration

is desirable because it implies that the architecture has

settled into a configuration state that matches the

requirements of the code.

The configuration selection unit consists of four

stages: (1) the unit decoders, (2) resource requirements

encoders, (3) configuration error metric generators, and

(4) a minimal error selection unit. The inputs to the

selection unit are the instruction queue and the number of

each type of functional units currently configured in the

processor. The output of the unit is a two-bit value that

indicates which of the four configurations (three

predefined RFU configurations or the current

configuration) should be configured next.

Instruction
Memory

Trace Cache

Fetch Unit

Configuration
Manager

Decoder
Register

Update Unit

Register Files

Data
MemoryBus

Fixed Modules Fixed Module

Configuration
Selection

Configuration
Loader

Config 3
Config 2

Config 1
Config 0
(Current)

LSU

LSU

LSU

LSU

LSU

LSU

FP-ALU

FP-MDU

Int-MDU

Int-ALU

Int-MDU

Int-MDU

Int-ALU

Int-ALU

Reconfigurable
Functional Units

FFUs

Int-ALU

Int-MDU

LSU

FP-ALU

FP-MDU

Fixed
Functional

Units

Bus

Fixed and Reconfigurable Modules

RFUS

Figure 1. A partially run-time reconfigurable architecture, derived from [7].

Table 1. Number of each type of functional unit provided in the fixed and reconfigurable portions of the
processor, and their encodings.

 Int-ALU Int-MDU LSU FP-ALU FP-MDU

FFUs 1 1 1 1 1

RFUs – Configuration 0 (Current) 0 - 2 0 - 3 0 - 4 0 - 1 0 - 1

RFUs – Configuration 1 1 1 4 0 0

RFUs – Configuration 2 0 0 2 1 1

RFUs – Configuration 3 2 2 0 0 0

Resource Type Encoding, t 0002 0012 0102 0112 1002

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

(Instruction Queue)

7-bit unary
to

3-bit binary

7-bit unary
to

3-bit binary

7-bit unary
to

3-bit binary

7-bit unary
to

3-bit binary

7-bit unary
to

3-bit binary

Config 0
(Current)

Error Metric

Config 1
Error Metric

Config 3
Error Metric

Config 2
Error Metric

Minimal Error Selection

Configuration
Selection

5

5

5

5

5

5

5

In
t-

A
L
U

 (
B

it
 0

)

In
t-

M
D

U
 (

B
it

1
)

L
S

U
 (

B
it

2
)

F
P

-A
L

U
 (

B
it

3
)

F
P

-M
D

U
 (

B
it
 4

)

#
 o

f
re

q
u

ir
e
d

 I
n
t-

A
L

U
s

#
 o

f
re

q
u

ir
e
d

 I
n
t-

M
D

U
s

#
 o

f
re

q
u

ir
e
d

 L
S

U
s

#
 o

f
re

q
u

ir
e
d

F
P

-A
L
U

s

#
 o

f
re

q
u

ir
e
d

F
P

-M
D

U
s R

e
s
o

u
rc

e
 R

e
q

u
ir

e
m

e
n

ts

E
n
c
o

d
e

rs
C

o
n

fig
u

ra
tio

n
 E

rr
o
r

M
e
tr

ic
 G

e
n

e
ra

to
rs

of units of each
type currently

configured
(from configuration

loader)

Unit
Decoders

Figure 2. Configuration selection unit.

The unit decoders serve the same purpose as the pre-

decoders of the original architecture specified in [7].

These decoders retrieve the opcode of each instruction in

the instruction queue that is ready for execution. The

output of each unit decoder is a one-hot vector that

indicates the functional unit required by the instruction

whose opcode the unit decoded. This information is

collected from all decoders and transformed into a three-

bit binary value by the resource requirements encoder that

indicates how many functional units of each type (Int-

ALU, Int-MDU, LSU, FP-ALU, and FP-MDU) are

required to execute all of the instructions in the

instruction queue. The configuration error metric

generators then determine how close each of the three

predefined configurations and the current configuration

are to providing the resources required by the instructions

in the instruction queue. Finally, the minimal error

selection unit uses the error of each configuration to

choose the configuration that most closely meets the

needs of the instructions in the instruction queue.

The configuration error metric generators calculate a

value that indicates the “closeness” of the number and

type of functional units required to execute the

instructions in the instruction queue relative to each of the

four configurations including the FFUs. The function that

each error metric unit implements is defined by the

equation given in Figure 3(a).

The configuration error metric (CEM) circuit of Figure

3(b) accepts the quantified configuration resources for the

three predefined configurations, as well as the current

configuration. The CEM circuit shown in Figure 3(b)

implements the equation of Figure 3(a) to produce the

error metric for each of the four configurations. The barrel

shifters for the three predefined configurations can be

arranged with hard-wired shift control inputs to divide by

4, 2, or 1. The shifters for the current configuration use

shift control inputs that represent the upper two bits of the

quantity of currently configured functional units. Figure

3(c) shows how the upper two bits are treated to

approximate division of the functional unit requirement

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

using 4, 2, or 1 as the divisor. A more accurate divider

circuit could be implemented, if desired, at the expense of

increased complexity and latency. Because the total

number of functional units required cannot exceed seven

(the instruction queue is assumed to hold seven

instructions), three-bit adders are sufficient for summing

the total error metric.

The configuration selection unit chooses a

configuration that achieves a minimal error by outputting

a two-bit binary value that represents the configuration

that should begin loading. The novelty in this process is

handling the case where an RFU is executing a multi-

cycle instruction, which is accomplished by only

reconfiguring the RFUs that are not busy.

In cases where the configuration errors are equal, the

minimal error selection circuit is designed to identify the

configuration that requires the least amount of

reconfiguration. Thus, the current configuration is always

favored over any predefined steering configuration that

has the same error metric value.

3.2. Configuration Loading

The configuration selection unit of Figure 2 determines

the configuration that should be loaded into the processor

to execute the instructions in the instruction queue that

have not been scheduled. If the configuration selection

unit chooses the current configuration, then the system

will not reconfigure any of the RFUs. Additionally, the

configuration loader tracks what type of functional unit is

configured into each slot of reconfigurable logic. This is

handled by storing a resource allocation vector that

contains this information. Each of the functional unit

types supported by the architecture (Int-ALU, Int-MDU,

LSU, FP-ALU, FPU-MDU) are given a three-bit

encoding, specified in Table 1. Because each functional

unit can occupy one or more slots of reconfigurable logic

available in the processor, a special encoding is used to

indicate that a slot contains a portion of a functional unit

that spans two or more slots. The first entry of the

resource allocation vector for a unit that spans multiple

slots contains that block’s encoding, and the following

entries contain the special encoding of 1112.

Once a configuration is chosen, the configuration

loader will determine which RFUs need to be

reconfigured by determining the difference (XOR)

between the chosen configuration and the current

configuration using the resource allocation vector. The

loader will then choose which RFUs to reconfigure on the

basis of their availability. If an RFU is executing a multi-

cycle instruction, the RFU cannot be reconfigured until

the instruction finishes execution and is retired. (And by

the time it is available for reconfiguration, a different

configuration may have been selected.) To accommodate

this approach, each slot has an available port that is

asserted when the unit it implements is available. The

configuration loader can determine if an RFU can be

reconfigured by inspecting this output from the

corresponding slot.

Unit Shift

Control Inputs

High-Order

Configuration

Quantity Bit

of Int-ALUs
required

3

Int-ALU Shift
Control Input

2

of Int-MDUs
required

3

Int-MDU Shift
Control Input

2

LSU
Barrel Shifter

divide by 4, 2, or 1

of LSUs
required

3

LSU Shift
Control Input

2

of FP-ALUs
required

3

FP-ALU Shift
Control Input

2

of FP-MDUs
required

3

FP-MDU Shift
Control Input

2

3-Bit
Adder

3-Bit
Adder

3-Bit, 3-Operand
Adder

3

3

Configuration
Error Metric

(b) Error Metric Computation Circuit

Next Lower-Order

Configuration

Quantity Bit

(c) Current Configuration Shifter Inputs

Int-MDU
Barrel Shifter

divide by 4, 2, or 1

Int-ALU
Barrel Shifter

divide by 4, 2, or 1

FP-ALU
Barrel Shifter

divide by 4, 2, or 1

FP-MDU
Barrel Shifter

divide by 4, 2, or 1

MDUs-FPof#Avail

MDUs-FPof#dReq'

ALUs-FPof#Avail

ALUs-FPof#dReq'

LSUsof#Avail

LSUsof#dReq'

MDUs-Intof#Avail

MDUs-Intof#dReq'

ALUs-Intof#Avail

ALUs-Intof#dReq'
Error

(a) Error Metric Equation

3 3

3 3

3 3

Figure 3. Configuration error metric generation.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

If the unit is available and it must be reconfigured to

implement a new configuration, then the configuration

loader will reconfigure the RFU to implement the

functional unit specified by the chosen configuration. The

RFU will not be reconfigured if it already implements the

specified functional unit (i.e., the type of the unit

currently implemented in the RFU matches the type

specified in the chosen configuration). This

reconfiguration is performed using partial reconfiguration

techniques, such as those discussed in [8].

Due to the possibility that some RFU’s may not be

reconfigured to implement a functional unit defined by

the chosen configuration, certain instructions may not be

able to execute for several cycles. This problem would be

compounded if FFUs were not provided as a part of the

architecture and the processor entered a state where

certain functional units were not implemented for long

periods of time. Because the FFUs implement units for all

instructions, every instruction is guaranteed to execute.

4. Instruction Scheduling and Execution

An integral challenge in the design of a dynamically

partial reconfigurable processor is the scheduling,

execution, and retirement of instructions. As the processor

changes the configuration of its RFUs to best match the

instructions being executed, the processor must be able to

determine what resources are available to support the

execution of instructions. If the processor chooses to

schedule instructions for which there are not enough

resources, then those instructions’ execution can be

delayed waiting for the required resources to become

available.

To solve this problem, we employ a scheduling

approach that uses a wake-up array that allows

instructions to “wake up” when the necessary functional

units are available and required results from previous

instructions are available [9]. This section discusses the

basic approach and presents how the availability of RFUs

can be dynamically determined. Note that [9] presents a

more sophisticated scheduling approach than discussed

here; however, our approach can be extended using the

same techniques that are employed in [9].

4.1. Scheduling using Wake-Up Arrays

A wake-up array contains information that allows the

scheduling logic to match the functional units that are not

busy to instructions that are ready to execute. This

includes determining if the instruction requires results

from any previous instructions and verifying that the

results from those previous instructions are available.

Specifically, the wake-up array consists of a set of

resource vectors that encode which functional unit an

instruction requires and the instructions that must produce

results before the instruction can be executed [9]. An

example of a dependency graph for a set of instructions

and the corresponding wake-up array are presented in

Figures 4 and 5. Note that there must be a “result required

from” column in the array for each row (instruction entry)

of the array.

In the example of Figures 4 and 5, the Load instruction

(Entry 5) only requires a load-store unit, so only the

resource bit for the LSU is set on the row for the Load

instruction. Additionally, the Load instruction does not

depend on the result of any other instructions, so the

column entries for the other instructions in the array are

not set. Recall that for the RISC architecture assumed

here, an instruction will never require more than one

functional unit. The Multiply instruction (Entry 4) uses an

integer multiplier (Int-MDU) and requires a result from

the Subtract instruction (Entry 3); therefore, the bits for

Entry 4 are set in the columns for the Int-MDU unit and

Entry 3.

Figure 6 shows the logic associated with the wake-up

array of Figure 5 that determines if the instruction

represented by each entry of the wake-up array should be

considered for release by the scheduling logic. The wake-

up logic only determines when an instruction is ready for

execution and generates an execution request for those

instructions that are ready and does not actually determine

if an instruction is scheduled because multiple

instructions could require the same resources. This

contention between instructions must be handled by the

scheduler after multiple instructions that use the same

resources request execution.

The “available” lines shown in Figure 6 indicate

whether the corresponding resource or the results of the

corresponding entry in the array are available; the value

of each line is high if the resource/result is available.

These lines pass through every entry in the array and

enter an OR gate that checks if the resource/result is

needed and available [9]. If the resource is not required,

then the output of the OR gate must be high in order for

the entry to be scheduled when the resources/entries that

are required are available. Each of these results are

ANDed together to ensure that every resource and entry

required is available [9]. The logic required to compute

resource availability in a static processor is more

straightforward than for a reconfigurable processor, where

the logic that determines the availability of a resource

must consider not only if the resource is busy but also if

the resource is currently configured into the system. This

logic is discussed in Subsection 4.2.

The scheduled bit, shown in Figure 6, is required to

keep an instruction from requesting execution once it has

been scheduled, since instructions may take several cycles

to complete [9]. Instruction entries in the wake-up array

are not removed until the instruction is retired to keep

instructions that rely on the result(s) of the instructions

currently being executed from requesting execution too

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

early. After an instruction receives an execution grant, its

corresponding available line is asserted at the time that its

result will be available. This is handled using a count

down timer that is set to the latency of the instruction. If

the instruction has a latency of N cycles, the count down

timer will be set to N – 1; if the instruction has a one-

cycle latency, the available line is asserted immediately.

An instruction’s timer will start once the instruction

receives an instruction grant and the instruction’s

available line is asserted once the time reaches a count of

one. Once an instruction finishes execution and is retired,

every wake-up array entry associated with the instruction

is cleared to keep new instructions that are added to the

wake-up array from incorrectly becoming dependent on

the retired instruction. This approach also handles the

case of an instruction being removed from the array

before its dependent instructions are scheduled by

allowing these instructions to request execution without

considering a dependence on the retired instruction. If an

instruction must be rescheduled, then the schedule bit is

de-asserted using the reschedule input of the scheduled bit

[9].

Shift

Add Sub

Mult

Load

FPMul

FPAdd

Figure 4. A dependency graph showing the
dependencies between entries of the instruction
queue, derived from [9].

1

1

1

1

1

1

1

1

1 1

1 1

Entry 1

Entry 2

Entry 3

Entry 4

Entry 5

Entry 6

Entry 7

In
t-

A
L

U

In
t-

M
D

U

L
S

U

F
P

-A
L
U

F
P

-M
D

U

E
n
tr

y
 1

E
n
tr

y
 2

E
n
tr

y
 3

E
n
tr

y
 4

E
n
tr

y
 5

E
n
tr

y
 6

E
n
tr

y
 7

Execution Unit
Required Result Required From

(Shift)

(Sub)

(Add)

(Mul)

(Load)

(FPMul)

(FPAdd)

Figure 5. A wake-up array showing the entries
for the instructions of Figure 4, derived from [9].

In
t-

A
L
U

 A
va

ila
b

le

L
S

U
 A

va
ila

b
le

E
n
tr

y
 1

 R
e

s
u
lt
 A

v
a
ila

b
le

In
t-

M
D

U
 A

v
a
ila

b
le

F
P

-A
L
U

 A
v
a
ila

b
le

F
P

-M
D

U
 A

v
a

ila
b
le

A
N

D

Reschedule

ResetSet

Execution
Grant

Request
Execution

E
n
tr

y
 2

 R
e

s
u
lt
 A

v
a
ila

b
le

E
n
tr

y
 3

 R
e

s
u
lt
 A

v
a
ila

b
le

E
n
tr

y
 4

 R
e

s
u
lt
 A

v
a
ila

b
le

E
n
tr

y
 5

 R
e

s
u
lt
 A

v
a
ila

b
le

E
n
tr

y
 6

 R
e

s
u
lt
 A

v
a
ila

b
le

E
n
tr

y
 7

 R
e

s
u
lt
 A

v
a
ila

b
le

Scheduled

Figure 6. The logic associated with one resource
vector of the wake-up array of Figure 5, derived
from [9].

4.2. Computation of Resource Availability

In order to use the wake-up array approach to

scheduling instructions, the processor must include logic

that determines which functional units (resources in the

wake-up array) are available. This can be handled by

allowing each resource to assert whether it is available. If

there are multiple resources of the same type, then their

availability assertions must be ORed to ensure that the

availability line in the wake-up logic for the resource is

asserted. Determining if a resource is available is more

difficult in a reconfigurable processor because of the

dynamic nature of which resources can be configured into

the processor at any given point in time.

The availability of a resource is a function of the

allocation of the resource and availability of each copy of

the resource that is configured into the processor. The

availability of each resource can be determined using a

signal from each slot of reconfigurable logic that indicates

if the functional unit it implements is busy or available.

This availability signal is asserted when the functional

unit is available. Equation 1 defines the calculation of an

available function that determines if a functional unit of a

particular type is available using the availability signal of

each slot and the resource allocation vector provided by

the configuration loader that specifies the type of

functional unit implemented by each RFU and FFU

provided in the processor. In Equation 1, type(i) refers to

the encoding of a functional unit of type t, specified in

Table 1.

)(

))()(()(
]2,0[

 vectorallocation
resource

ityavailabili

itypettypetavailable
b

bb

i
 (1)

Some functional units require more than one

reconfigurable slot. From Figure 1, we assume that LSUs

require one slot, Int units require two slots each, and each

type of FP unit requires three slots. If a functional unit

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

spans more than one reconfigurable slot, only one of the

entries in the resource allocation vector will contain the

encoding of the functional unit and the other entries will

contain the encoding 1112 ensuring that the availability of

the functional unit is only considered once in the

calculation of the available function. Equation 1 can be

realized in hardware using the circuit of Figure 7.

In Figure 7, each bit of the resource allocation vector

and the corresponding availability signal are applied to

the product,)())()((
]2,0[

ityavailabiliitypettype
b

bb
,

computed by Equation 1.

5. Conclusions

An approach to configuration management is

introduced for a superscalar reconfigurable architecture

having both fixed and reconfigurable functional units.

The technique proposed matches current requirements

with a collection of predefined steering configurations

and the current configuration. By employing partial

configuration at the level of functional units, the approach

effectively steers the current configuration in the direction

specified by the best-matched steering configuration.

Designing the predefined steering configurations to be

relatively orthogonal to one another may form the basis

necessary to permit a large set of actual configurations

that are actually realized, perhaps close to the entire set of

possible processor configurations. The authors are

currently investigating how to formulate an optimal basis,

as well as, the separate problem of being able to

dynamically reconfigure without using predefined

configurations.

6. References

[1] Francisco Barat and Rudy Lauwereins,

“Reconfigurable Instruction Set Processors: A Survey,”

Proceedings of the 11th International Workshop on Rapid
System Prototyping, June 2000, pp. 168 - 173.

[2] S.C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M.

Moe, R.R. Taylor, “PipeRench: A Reconfigurable

Architecture and Compiler,” IEEE Computer, Vol. 33,

No. 4, Apr. 2000, pp. 70 -77.

[3] J.R. Hauser and J. Wawrzynek, “Garp: A MIPS

Processor with a Reconfigurable Coprocessor,”

Proceedings of the 5th Annual IEEE Symposium on Field

Programmable Custom Computing Machines, 1997, pp.

12-21.

[4] C. Iseli and E. Sanchez, “Beyond Superscalar Using

FPGAs,” Proceedings of the 1993 IEEE International
Conference on Computer Design: VLSI in Computers and

Processors, 1993, pp. 486-490.

availability(i)

F
ix

e
d
 R

e
s
o
u
rc

e
s

Fixed ResourcesReconfigurable Resources

OR

R
e
s
o
u
rc

e
 A

llo
c
a
ti
o
n
 V

e
c
to

r
R

e
c
o
n

fi
g
u

ra
b

le
 R

e
so

u
rc

e
s
 (

s
lo

ts
)

1002

0112

0102

0012

0002

available(t)

Figure 7. A circuit that computes the availability
of a resource of type t as specified in Equation 1.

[5] R. Razdan and M.D. Smith, “A High-Performance

Microarchitecture with Hardware-Programmable

Functional Units,” Proceedings of the 27th Annual

International Symposium on Microarchitecture, 1994, pp.

172-180.

[6] C. Iseli and E. Sanchez, “A C++ Compiler for FPGA

Custom Execution Units Synthesis,” Proceedings of the

IEEE Symposium on Field Programmable Custom

Computing Machines, 1995, pp. 173-179.

[7] Adronis Niyonkuru and Hans C. Zeidler, “Designing a

Runtime Reconfigurable Processor for General Purpose

Applications,” Reconfigurable Architectures Workshop,

in Proceeding of the 18th International Symposium on

Parallel and Distributed Processing, Apr. 2004, pp. 143 -

149.

[8] Two Flows for Partial Reconfiguration: Module

Based or Difference Based, Xilinx Application Note No.

XAPP290, Version 1.2, Xilinx Inc.,

http://www.xilinx.com/bvdocs/appnotes/xapp290.pdf,

Sept. 2004.

[9] Mary D. Brown, Jared Stark, and Yale N. Patt,

“Select-Free Instruction Scheduling Logic,” Proceedings
of the 34th ACM/IEEE International Symposium on

Microarchitecture, Dec. 2001, pp. 204 - 213.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

