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Abstract 
 
The power consumed by a combinational circuit is 
dictated by the switching activities of all signals 
associated with the circuit. An analytical approach is 
proposed for calculating signal activities for 
combinational circuits. The approach is based on a 
Markov chain signal model, and directly accounts for 
correlations present among the signals. The accuracy 
of the approach is verified by comparing signal activity 
values calculated using the proposed approach with 
corresponding values produced through simulation 
studies. It is also demonstrated that the proposed 
approach is computationally efficient.  
 

 

1. Introduction 
 

Power consumption of integrated circuits (ICs) is of 
growing concern as more electronic devices are being 
deployed in mobile and portable applications, e.g., 
PDAs, mobile telephones, and other battery-powered 
electronic devices.   As the functionality of such devices 
increases, so does the complexity and sophistication of 
the underlying circuits. More complexity and faster 
clock rates generally translate into higher power 
consumption for a given hardware implementation 
technology. Because battery technology has not 
improved at the same rate as IC technology, there is 
strong motivation to design circuits that are as power 
efficient as possible to extend battery life for portable 
devices. 

The focus of this paper is the development of an 
analytical tool for predicting power consumption of 
combinational circuits. This tool, which is implemented 
in software, can be utilized during the design phase to 
give the designer quick and accurate predictions of 
power consumption for a given circuit design.  

Several similar and related approaches to this 
problem have been proposed in the past, including 

simulation-based [1] and analytical approaches [2, 3, 4]. 
A good survey of past approaches can be found in [5]. 
Generally, simulation-based approaches achieve high 
accuracy but require long execution times; in contrast, 
the analytical approaches are faster but are generally less 
accurate. In this paper a new analytical approach is 
proposed that achieves fast execution time and accuracy 
that is comparable with simulation-based methods. As 
explained below, the particular focus is on power 
consumption of circuits implemented in CMOS, but the 
proposed approach may be applicable for other 
technologies as well. 

Power consumption in a CMOS circuit is primarily 
due to three types of current flow: leakage current, 
switching transient current, and load capacitance 
charging current [9]. The last is the dominant component 
of power consumption in CMOS devices, and is strongly 
dependent on signal switching activity.  

Let S denote the set of all signals associated with a 
circuit. For each s ∈ S, let C(s) denote the capacitive 
load associated with signal s. Also, let α(s) denote the 
activity of signal s, which has a value between zero and 
one, and represents the signal’s normalized average 
frequency relative to the frequency of a system clock, f.  
Thus, fα(s) gives the average frequency of signal s. 
Based on these assumptions and notation, the average 
power for a CMOS circuit operating at a voltage level of 
V can be expressed as [4, 5]: 

∈

=
Ss

ssCfV )()(
2

1
Power 2

avg α .      (1) 

The problem addressed in this paper is to determine 
the activity of all signals of a combinational circuit given 
an appropriate probabilistic model for the primary input 
signals that drive the circuit.  The signal model proposed 
in this paper is based on a Markov chain. The signal 
activity is easily computed from the parameters 
associated with the proposed signal model. In the 
proposed approach, signals with known Markov chain 
representations are propagated through the circuit to 
produce Markov chain representations for the outputs of 
all gates in the circuit. Accuracy of the approach is 
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verified by comparing signal activities produced by the 
proposed method with corresponding activities produced 
through simulation studies. When compared with other 
related approaches, a key aspect of the proposed 
approach is that correlations present among the signals 
due to re-convergent fan-out are accounted for directly. 

 
2. Previous Related Approaches 
 
2.1 Signal Probability Calculation 

 
In [2], probabilistic signal modeling for 

combinational circuits was first introduced. Each signal 
is modeled with a single probabilistic parameter that 
defines the probability of a signal having a logical value 
of one. For signal x, the probability that x has logic value 
1 is defined by )1()( == xPxP . Two algorithms for 

calculating signal probabilities are introduced in [2]. 
These approaches require that a Boolean function 
expression associated with each signal be derived in 
terms of the primary inputs. Because the number of 
terms in these expressions can grow exponentially with 
the number of inputs, the complexity of these approaches 
can be prohibitive for practical circuits.   

A computationally efficient algorithm for calculating 
signal probabilities is introduced in [7], named 
“Algorithm 1,” which operates by propagating 
probability values through the gates of circuit, thereby 
drastically reducing the size of the Boolean functions 
that must be evaluated. This algorithm is simple and fast 
– it has a linear complexity in the number of gates – but 
is not accurate for all classes of circuits.  

Another algorithm is proposed in [7] called the 
Weighted Averaging Algorithm (WAA), which generally 
achieves better accuracy than Algorithm 1 and has a 
comparable time complexity.  However, the WAA still 
does not always produce correct values. 

A method for accounting for signal probability 
correlations was developed in [6] named the correlation 
coefficient method (CCM). By using this approach, the 
probability of the output of a two-input gate can be more 
accurately calculated, given the probabilities of the two 
inputs and an associated correlation factor associated 
with the two signals. In this algorithm, the correlation 
factor can also be calculated analytically by means of a 
set of basic propagation rules. 

 
2.2. Signal Activity Calculation 
 

The above-described approaches of [2], [6], and [7] 
are concerned with determining the probabilities of 
signal values, not the probabilities of signal transitions, 
i.e., activities, which are necessary for estimating power 

consumption, refer to Eq. 1. An early approach for 
estimating signal activities was developed in [3], in 
which signals of a circuit are modeled to be mutually 
independent strict-sense-stationary (SSS) mean-ergodic 
0-1 processes. Under these assumptions, the activity of a 
signal y from a circuit with n-primary inputs can be 
expressed as 
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n
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where ixy ∂∂ /  is the Boolean difference of function y 

with respect to xi and is defined by 

).,,,0,,,(                   

),,,1,,,(||

111

11101

nii

niixx
i

xxxxy

xxxxyyy
x

y
ii

LL

LL

+−

+−==

⊕

=⊕=
∂
∂

       (3) 

Intuitively, the Boolean difference ixy ∂∂ /  defines 

whether a transition of signal xi will cause a transition in 
output signal y. Specifically, if the Boolean difference 
function evaluates to one, then a transition of signal xi 
causes a transition in y. So, the probability of the 

Boolean difference function,
∂
∂

ix

y
P , defines the 

probability that a change in y will occur given that there 
is a change in xi.  

The calculation of the probability of the Boolean 

difference terms, i.e., 
∂
∂

ix

y
P , this calculation can be 

complicated for large and complex circuits. In [3], the 
calculation of these terms is accomplished by first 
representing the nodes of the circuit with a binary 
decision diagram (BDD) [3, 5]. In practice, the BDD 
approach often achieves linear or near linear time 
complexity; however, in the worst case the complexity 
can grow exponentially with the number of gates.  

It is noted in [4] that Eq. 2, i.e., the approach 
described in [3], fails to consider the effect of 
simultaneous switching of gate inputs. Each Boolean 
difference term associated with Eq. 2 describes an input-
switching event in which exactly one of the inputs makes 
a transition. Thus, Eq. 2 does not account for events 
involving simultaneous switching of two or more of the 
input signals.  The concept of the generalized Boolean 
difference was introduced in [4] to account for 
simultaneous switching, and is denoted as follows: 
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where k is a positive integer, 
jix , kj ,...,2,1= , are 

distinct mutually independent primary inputs of y, and 
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jib are binary values of 0 or 1. Note that if the 

generalized Boolean difference evaluates to one, then the 
simultaneous transitions of signals ),...,,(

21 kiii xxx  from 

),...,,(
21 kiii bbb  to ),...,,(

21 kiii bbb  or from ),...,,(
21 kiii bbb  

to ),...,,(
21 kiii bbb  will cause a transition at y.  

Eq. 2 is adapted in [4] using the generalized Boolean 
difference concept to account for simultaneous 
switching, resulting in: 
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conditional probabilities of the generalized Boolean 
differences under the condition that only the indicated 
inputs simultaneously switch, and the rest do not. Details 
on how to calculate these conditional probabilities can 
be found in [4].  

The approaches of [3] and [4] can have high 
computational complexities because the number of terms 
in the underlying equations/transformations can grow 
exponentially with the number of primary inputs to the 
circuit. Trade-offs between computational complexity 
and accuracy are possible relative to the evaluation of 
Eq. 2 and Eq. 5 (associated with [3] and [4], 
respectively). Instead of deriving a signal’s logic 
function in terms of the circuit’s primary inputs, the 
parameters to the immediate inputs of the signal’s logic 
gate can be used. This type of “gate-by-gate” technique 
will generally introduce error because it does not 
account for correlations present among the internal 
signals that drive the gates within the circuit.  
 
3. Markov Chain Signal Model 
 
 3.1. Preliminaries 
 

In this section we introduce a signal model that is 
based on a Markov chain having three event parameters. 
It is shown that the proposed Markov chain model is 
equivalent to the two-parameter probability/activity 
signal model of [3] and [4]. The advantage of modeling 
signals with Markov chains is that it makes it possible to 
compute correlations between signals related to both 
probability and activity.  

The approach derived here can be viewed as a 
generalization of the approach in [6].  Instead of tracking 

a correlation factor for the single probability parameter 
model, transformations for correlation factors associated 
with the three parameters of the Markov model are 
derived.  This ultimately leads to a fast and accurate 
“gate-by-gate” algorithm for calculating signal 
probabilities and activities. 

As illustrated in Figure 1, the proposed Markov chain 
signal model has three event parameters for signal A. 
The event denoted by A represents the signal being in 
state 1, and A1 and A2 represent the events that there is a 
transition from state 0 to 1 and from state 1 to 0, 
respectively. Note that the probability of event A is 
denoted by P(A), and is equivalent to the signal 
probability defined in the previous section.  

Figure 1. Proposed Markov chain signal model. 
 

For notational convenience and clarity, we will 
denote the value of P(A) as pA (for the value of the 
probability of signal A) and the value of the activity α(A) 
as αA (for the value of the activity of signal A) 
throughout the rest of the paper. Using these notations 
and applying basic properties of Markov chains along 
with the definition of signal activity, the following 
expressions can be derived for P(A), P(A1) and P(A2): 

 

ApAP =)( ,  
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Thus, if the values of both the probability and activity 
parameters of a signal are known (i.e., pA and αA), then 
the probabilities of the three events associated with the 
proposed Markov model for the signal are completely 
determined. Likewise, knowing the probability values of 
the three parameters of the Markov model fully 
determines the probability and activity parameters of the 
signal. 

In order to define correlations between two signals 
modeled with Markov chains, some basic definitions are 
needed. Let A and B denote two events and let P(AB) 
denote the probability of both A and B occurring.  From 
basic probability theory [8], P(AB) = P(A/B)P(B), where 
P(A/B) represents the probability of A given B. Also, the 
correlation coefficient of two events A and B is defined 
as 

A 
1 0 

A1 

A2 
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BA

AB
AB σσ

σρ =       (7)  

where ABσ  is the covariance and Aσ  and Bσ  are the 

positive square roots of the variances of A and B.  It can 
be shown that 

))(1)(())(1)((
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In order to simplify later derivations, it is convenient to 
define the correlation factor CAB of two events A and B 
as  
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By applying Eq. 8 to Eq. 9, the following relationship 
can be derived: 
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Thus, CAB is related to ρAB through scaling and shifting. 
The value of ρAB, by definition [8], is a real number in 
the interval [-1, 1]; therefore, according to Eq. 10, CAB 
takes on real non-negative values. Also, ρAB = 0 
corresponds to CAB =1, and indicates that the events A 
and B are mutually independent. Similarly, ρAB < 0 (i.e., 
A and B are negatively correlated) corresponds to 0 ≤ 
CAB < 1, and ρAB > 0 (i.e., A and B are positively 
correlated) corresponds to CAB > 1.  
 
3.2. Markov Chain Model for Basic Logic Gates 

 
The focus in this subsection is on deriving the 

Markov chain model for the output of a basic logic gate 
in which the Markov chain models of the input signals 
are known. The simple case of a NOT gate is considered 
first followed by the analysis of two-input basic logic 
gates.  

For a NOT gate with input A, the Boolean output 

function is given by AY = . From Figure 1, it is clear 
that the Markov model for Y is given by  

 
)()(  ),()(   ),(1)( 1221 APYPAPYPAPYP ==−= .   (11) 

 
Consider now the case of a two-input basic logic gate. 

Assuming the Markov chain models of inputs A and B 
are known, the objective is to derive the Markov chain 
model for output signal Y.  A key to deriving the Markov 
chain model for signal Y is to represent the state 
transition diagram associated with the gate’s two inputs, 
as shown in Figure 2. The four states in the figure 
correspond to the four input combinations for the two 

inputs. The first digit of each state label corresponds to 
the value of A, and the second to the value of B, e.g., the 
state labeled “01” corresponds to A = 0 and B = 1. 
Although not labeled on the figure, the directed edges 
represent transition events. To illustrate the notation to 
label transition events, “00 10” will be used to 
represent the event that input signal A transitions from 0 
to 1 and signal B stays in state 0.  

 
Figure 2. State transition diagram for a two-

input gate.  
 
The known parameters of the Markov chain models 

for signals A and B are given by P(A), P(A1), P(A2), 
P(B), P(B1), and P(B2). Also assumed to be known are 
the correlation factors for pairs of events associated with 
the Markov chain models for the inputs.  From Eq. 9 
note that P(AB) = P(A)P(B)CAB, where CAB is the 
correlation factor associated with events A and B. 
Similarly, the correlation factor 

21BAC  enables the 

calculation of P(A1B2) using the fact that 

21
)()()( 2121 BACBPAPBAP = .  Recall from Eq. 10 that 

independent events correspond to a correlation factor of 
unity. Given the Markov chain models for signals A and 
B (and the corresponding correlation factors) it is 
possible to derive the probability associated with every 
event shown in the state transition diagram of Figure 2. 
A complete tabulation of these expressions can be found 
in [11].   

Deriving a Markov chain model for the output (Y) of 
a two-input gate depends on the particular function of 
the gate. To illustrate, consider the specific example of 
an AND gate, i.e., Y = AB.  For an AND gate, the output 
takes on logic value 1 if and only if both inputs are 1. 
Thus, 

 

ABBA CppPYP == )11()( .           (12) 
 

The event Y1 is associated with three events from Figure 
2, namely: 00→11, 01→11, and 10→11. Thus, equality 
can be established as follows: 
 

).1100()01(

)1100()01()1100()00()()( 1

→+
→+→=
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PPPPYPYP
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00 

11 

01 

10 
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Solving Eq. 13 for )( 1YP  and using Eqs. 6 results in the 

following expression: 

( ) −−+−

−+=

)1/(
4

1

)1/()
2

1

2

1
()(

111221

1

ABBABABABABBAA

ABBABABABA

CppCCC

CppppYP

ααλλλ

αλαλ
(14) 

The parameters λ, λA, and λB are simply functions of 
probabilities and correlations factors and are used for 
notational convenience; expressions for these parameters 
can be found in [11]. Derivation for P(Y2) follows in a 
similar fashion and can be expressed as  

22
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Derivations of P(Y), P(Y1), and P(Y2) for two-input OR 
and XOR gates are included in [11]. Methods for 
calculating/propagating correlation factors through basic 
elements of a circuit are also included in [11]. 
 
4. Markov Chain Propagation Algorithm 
 

This section describes a proposed Markov Chain 
Propagation (MCP) algorithm for determining the 
Markov chain models for all signals of a given 
combinational circuit. The Markov chain signal model of 
Section 3 is employed, and it is assumed that the 
parameters of the model are known for the circuit’s 
primary inputs. The overall   approach   is   to   
propagate signal information associated with the Markov 
chain model through the circuit in a “gate-by-gate” 
fashion. Recall that once the Markov  chain  model  is  
determined   for  all  signals, the signal activities and 
circuit power estimate are determined using Eq. 6 and 
Eq. 1, respectively. It is assumed that the given circuit is 
specified at the level of basic logic gates.  

MCP Algorithm 
Step 1: Represent the given combinational circuit as 

a directed acyclic graph (DAG).  
Vertices of the DAG correspond to basic gates 
and edges represent signals. Two extra vertices 
(a source and a sink) are included in the DAG 
to accommodate the primary inputs and outputs 
of the circuit. An example of how to represent a 
circuit with the DAG model is illustrated by 
Figures 3(a) and 3(b).  

Step 2:  Perform a topological sort [10] on the DAG 
to obtain an ordering of the gates.  

 See Figure 3(c). 
Step 3:  Transform to two-input basic logic gates.  

As shown in Figure 3(d), replace all basic 
gates having more than two inputs with an 
equivalent sequence of two-input basic gates. 

Step 4 Partition the circuit into levels.  

 As shown in Figure 3(e), levels are defined at 
the input and output of each basic gate. Note 
that there is at most one gate between any two 
consecutive levels. 

Step 5: Successively apply propagation rules at each 
level.  

 Apply the propagation rules from [11] for 
calculating the parameters of the Markov 
model for the basic gate outputs and the 
associated correlation factors. 
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Figure 3. Illustration of the MCP Algorithm.  
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For a circuit with M signals and N gates, the time 
complexity of the MCP Algorithm can be shown to be 

)( NM +Θ . Due to space limitations, a detailed 

derivation of the time complexity of the MCP Algorithm 
is not included here, but can be found in [11]. 
 

5. Experimental Results 
 

The MCP Algorithm has been implemented and 
evaluated using several test circuits. To verify the 
accuracy of the results produced by the MCP algorithm, 
PSpice  circuit simulations were performed on the same 
test circuits. In the simulation studies, time-series 
realizations from the assumed Markov chain model for 
each primary input were used to drive the circuit 
simulation. Estimates of signal probabilities were 
derived from the simulations by counting the fraction of 
time each signal took on a value of unity. Estimates of 
signal activities were derived from the simulations by 
counting signal transitions.  

The MCP Algorithm was also evaluated using a 
circuit named C432 from the ISCAS-85 Benchmark Set. 
For this circuit there are a total of 145 distinct signals, 
not including the primary inputs. (Note that there are a 
total of 432 physical signals, which includes fan-out 
signals.) Table 1 shows the distribution of absolute 
differences and relative percentage errors between 
activity values computed by the MCP Algorithm and 
those derived through simulation. Other circuits were 
also tested and these results also indicate the accuracy of 
the MCP Algorithm. 

 
Table 1. Accuracy for the MCP Algorithm. 

 
Absolute Diff. 

Range 
Number of 

Signals 
 Relative Error 

Range (%) 
Number of 

Signals 
[0, 0.01] 70  [0, 1] 43 

(0.01, 0.02] 35  (1, 2] 41 
(0.02, 0.03] 19  (2, 5] 31 
(0.03, 0.04] 10  (5, 10] 25 
(0.04, 0.05] 10  (10, 20] 3 
(0.05, 0.06] 1  (20, 50] 2 

(0.06, 1] 0  >50 0 
 

6. Summary and Future Work 
 
The problem of determining the activities of all 

signals of a combinational circuit is addressed in this 
paper.  A new signal model is proposed based on a 
Markov chain. Signal activity is easily computed from 
the parameters associated with the proposed signal 
model. In the proposed approach, signals with known 
Markov chain representations are propagated through the 

circuit to produce a Markov chain representation for the 
output of each gate in the circuit. Accuracy of the 
approach is verified by comparing signal activities 
produced by the proposed method with corresponding 
activities produced through simulation studies. These 
initial testing results will be extended in future work by 
testing more and larger circuits. 
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