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Abstract 

 
A prototype system is described that demonstrates the advantages and trade-offs 

associated with the combined use of different hardware technologies for two embedded 
radar processing applications. The primary metrics of interest are size, weight, and power 
utilizations. The system can be configured with FPGAs (field programmable gate arrays), 
DSPs (digital signal processors), and/or GPPs (general purpose processors). The two 
radar applications evaluated are SAR (synthetic aperture radar) and STAP (space-time 
adaptive processing). Although the prototype system is not evaluated through actual 
fielded studies, experiments involving continuous input streams at relatively high rates 
are conducted in the laboratory using stored and unprocessed radar data as input.  

The FPGA components of the prototype system are commercially available WildOne 
and WildForce boards (from Annapolis Microsystems) populated with 4000-series Xilinx 
parts. The WildForce boards each have four 4085-series FPGAs plus one control FPGA. 
The DSP/GPP components of the system are within a Mercury Race Multicomputer 
configured with both SHARC and PowerPC compute nodes. The Mercury system can be 
configured with up to eight PowerPC nodes and eight SHARC compute nodes (each 
SHARC compute node actually contains three SHARC DSP chips). An overview of the 
overall architecture is depicted in Figure 1.  

The source PC is responsible for initially loading unprocessed radar data (from disk) 
into a circular buffer within its main memory. Once the input data is loaded into the 
circular buffer, the source PC then continuously (and repeatedly) streams this data into 
the front-end FPGA subsystem, denoted as (F) in Figure 1. It was necessary to locate the 
input data in a large main memory buffer in order to achieve realistic data throughput 
rates, which would otherwise not be possible if the data were streamed directly from the 
disk of the source PC.   

All of the Annapolis FPGA boards are PCI-based and reside on the data source and/or 
data sink PCs. A total of four WildForce boards are available, and zero or more of these 
may reside on the source and sink PCs. The source and sink PCs also contain one 
WildOne board each. The WildOne boards are not used for computation, but handle the 



data communication (through the PCI bus) between the PCs and the FPGA subsystems. 
The data communication among all FPGA boards is through two types of 36-bit wide 
connectors, one called systolic and one called SIMD.   

The data communication between the front-end FPGA subsystem (F) and the 
DSP/GPP subsystem is a custom interface developed using the systolic connector from 
Annapolis and the RIN-T input device from Mercury. Similarly, the data communication 
between the DSP/GPP subsystem and the back-end FPGA subsystem (B) is through a 
custom interface developed using the ROUT-T output device from Mercury and the 
systolic connector from Annapolis.  

Figures 2 and 3 illustrate how the major computational components of the SAR and 
STAP applications can be mapped onto the prototype system. A candidate mapping is 
defined by assigning the computations of each major component to one or both of the 
symbols shown in each block (which correspond to one of the FPGA or DSP/GPP 
subsystems). Using SAR to illustrate, one mapping would be to perform all of the range 
compression on the front-end FPGA subsystem (F) and then perform all azimuth 
processing on the DSP/GPP subsystem. Another possible mapping is defined by using the 
FPGA subsystems and the DSP/GPP for both components of computation. It is also 
possible to use only the DSP/GPP subsystem for both components of computations.  

The SAR studies were designed by adapting the RASSP (Rapid Prototyping of 
Application Specific Signal Processors) benchmark developed originally by Lincoln 
Laboratory at MIT. The benchmark, which was originally implemented in serial C code, 
was first modified to execute on the parallel DSP/GPP subsystem. A data-streaming 
component was also added so that input data can be sent continuously from the data 
source of the prototype system. Core computations from the range compression and 
azimuth processing components were implemented for the FPGA subsystems.  

The STAP studies were designed by adapting the RT_STAP (Real Time STAP) 
benchmark developed originally at MITRE. This benchmark was already implemented 
for parallel execution on a PowerPC-based Mercury system. This implementation was 
expanded to also enable execution on SHARC compute nodes. The same basic data 
streaming component that was developed for SAR was also adapted to enable the STAP 
input data to be sent continuously from the data source. Finally, core computations from 
the range compression and weight computation components from the STAP processing 
flow were implemented for the FPGA subsystems.  

The size, weight, and power utilizations of various mappings and problem instances 
are under investigation. Initial indications are that heterogeneous configurations, which 
utilize two or more hardware technologies of the prototype system, are preferred over 
homogeneous configurations. 
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Figure 1. Overview of the architecture of the prototype system. 
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Figure 2. Major computational components of SAR processing flow. 
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Figure 3. Major computational components of STAP processing flow. 

 
 
 

 
 
 


