
A Hybrid FPGA/DSP/GPP Prototype Architecture for SAR and STAP

Jack M. West, Hongping Li, Sirirut Vanichayobon, Jeffrey T. Muehring,
John K. Antonio, and Sudarshan K. Dhall

School of Computer Science

University of Oklahoma
200 Felgar Street

Norman, OK 73019-6151
Phone: 405-325-7859
Fax: 405-325-4044

antonio@ou.edu

HPEC 2000
The Fourth Annual Workshop on High-Performance Embedded Computing

Abstract

A prototype system is described that demonstrates the advantages and trade-offs

associated with the combined use of different hardware technologies for two embedded
radar processing applications. The primary metrics of interest are size, weight, and power
utilizations. The system can be configured with FPGAs (field programmable gate arrays),
DSPs (digital signal processors), and/or GPPs (general purpose processors). The two
radar applications evaluated are SAR (synthetic aperture radar) and STAP (space-time
adaptive processing). Although the prototype system is not evaluated through actual
fielded studies, experiments involving continuous input streams at relatively high rates
are conducted in the laboratory using stored and unprocessed radar data as input.

The FPGA components of the prototype system are commercially available WildOne
and WildForce boards (from Annapolis Microsystems) populated with 4000-series Xilinx
parts. The WildForce boards each have four 4085-series FPGAs plus one control FPGA.
The DSP/GPP components of the system are within a Mercury Race Multicomputer
configured with both SHARC and PowerPC compute nodes. The Mercury system can be
configured with up to eight PowerPC nodes and eight SHARC compute nodes (each
SHARC compute node actually contains three SHARC DSP chips). An overview of the
overall architecture is depicted in Figure 1.

The source PC is responsible for initially loading unprocessed radar data (from disk)
into a circular buffer within its main memory. Once the input data is loaded into the
circular buffer, the source PC then continuously (and repeatedly) streams this data into
the front-end FPGA subsystem, denoted as (F) in Figure 1. It was necessary to locate the
input data in a large main memory buffer in order to achieve realistic data throughput
rates, which would otherwise not be possible if the data were streamed directly from the
disk of the source PC.

All of the Annapolis FPGA boards are PCI-based and reside on the data source and/or
data sink PCs. A total of four WildForce boards are available, and zero or more of these
may reside on the source and sink PCs. The source and sink PCs also contain one
WildOne board each. The WildOne boards are not used for computation, but handle the

data communication (through the PCI bus) between the PCs and the FPGA subsystems.
The data communication among all FPGA boards is through two types of 36-bit wide
connectors, one called systolic and one called SIMD.

The data communication between the front-end FPGA subsystem (F) and the
DSP/GPP subsystem is a custom interface developed using the systolic connector from
Annapolis and the RIN-T input device from Mercury. Similarly, the data communication
between the DSP/GPP subsystem and the back-end FPGA subsystem (B) is through a
custom interface developed using the ROUT-T output device from Mercury and the
systolic connector from Annapolis.

Figures 2 and 3 illustrate how the major computational components of the SAR and
STAP applications can be mapped onto the prototype system. A candidate mapping is
defined by assigning the computations of each major component to one or both of the
symbols shown in each block (which correspond to one of the FPGA or DSP/GPP
subsystems). Using SAR to illustrate, one mapping would be to perform all of the range
compression on the front-end FPGA subsystem (F) and then perform all azimuth
processing on the DSP/GPP subsystem. Another possible mapping is defined by using the
FPGA subsystems and the DSP/GPP for both components of computation. It is also
possible to use only the DSP/GPP subsystem for both components of computations.

The SAR studies were designed by adapting the RASSP (Rapid Prototyping of
Application Specific Signal Processors) benchmark developed originally by Lincoln
Laboratory at MIT. The benchmark, which was originally implemented in serial C code,
was first modified to execute on the parallel DSP/GPP subsystem. A data-streaming
component was also added so that input data can be sent continuously from the data
source of the prototype system. Core computations from the range compression and
azimuth processing components were implemented for the FPGA subsystems.

The STAP studies were designed by adapting the RT_STAP (Real Time STAP)
benchmark developed originally at MITRE. This benchmark was already implemented
for parallel execution on a PowerPC-based Mercury system. This implementation was
expanded to also enable execution on SHARC compute nodes. The same basic data
streaming component that was developed for SAR was also adapted to enable the STAP
input data to be sent continuously from the data source. Finally, core computations from
the range compression and weight computation components from the STAP processing
flow were implemented for the FPGA subsystems.

The size, weight, and power utilizations of various mappings and problem instances
are under investigation. Initial indications are that heterogeneous configurations, which
utilize two or more hardware technologies of the prototype system, are preferred over
homogeneous configurations.

Data
Source

VME

Mercury
System

CNCNPEPE
... ...

SPARC

FPGA
Subsystem

DSP/GPP
Subsystem

Data
Sink

Annapolis
System

(F)
120 MB/sec

PC

120 MB/sec120 MB/sec

PC

PCI Custom Custom

PEPE
...

FPGA
Subsystem

Annapolis
System

(B)

PCI

120 MB/sec

Figure 1. Overview of the architecture of the prototype system.

Range
Compression

(F)

Azimuth
Processing

(B)

Figure 2. Major computational components of SAR processing flow.

Range
Compression

Doppler
Filtering

Weight
Computation

(F) (B)

Figure 3. Major computational components of STAP processing flow.

