
A Genetic Algorithm Approach to Scheduling
Communications for a Class of Parallel Space-Time

Adaptive Processing Algorithms

Jack M. West and John K. Antonio

School of Computer Science
University of Oklahoma

200 Felgar Street
Norman, OK 73019

Phone: (405) 325-4624
{west, antonio}@ou.edu

Abstract. An important consideration in the maximization of performance in
parallel processing systems is scheduling the communication of messages
during phases of data movement to reduce network contention and overall
communication time. The work presented in this paper focuses on off-line
optimization of message schedules for a class of radar signal processing
techniques know as space-time adaptive processing on a parallel embedded
system. In this work, a genetic-algorithm-based approach for optimizing the
scheduling of messages is introduced. Preliminary results indicate that the
proposed genetic approach to message scheduling can provide significant
decreases in the communication time.

1 Introduction and Background

For an application on a parallel and embedded system to achieve required
performance given tight system constraints, it is important to efficiently map the tasks
and/or data of the application onto the processors to the reduce inter-processor
communication traffic. In addition to mapping tasks efficiently, it is also important to
schedule the communication of messages in a manner that minimizes network
contention so as to achieve the smallest possible communication time.

Mapping and scheduling can both – either independently or in combination – be
cast as optimization problems, and optimizing mapping and scheduling objectives can
be critical to the performance of the overall system. For parallel and embedded
systems, great significance is placed on minimizing execution time (which includes
both computation and communication components) and/or maximizing throughput.

The work outlined in this paper involves optimizing the scheduling of messages for
a class of radar signal processing techniques known as space-time adaptive processing
(STAP) on a parallel and embedded system. A genetic algorithm (GA) based
approach for solving the message-scheduling problem for the class of parallel STAP
algorithms is proposed and preliminary results are provided. The GA-based
optimization is performed off-line, and the results of this optimization are static

schedules for each compute node in the parallel system. These static schedules are
then used within the on-line parallel STAP implementation. The results of the study
show that significant improvement in communication time performance are possible
using the proposed approach for scheduling. Performance of the schedules were
evaluated using a RACEway network simulator [6].

2 Overview of Parallel STAP

STAP is an adaptive signal processing method that simultaneously combines the
signals received from multiple elements of an antenna array (the spatial domain) and
from multiple pulses (the temporal domain) of a coherent processing interval [5]. The
focus of this research assumes STAP is implemented using an element-space post-
Doppler partially adaptive algorithm, refer to [5, 6] for details. Algorithms belonging
to the class of element-space post-Doppler STAP perform filtering on the data along
the pulse dimension, referred to as Doppler filtering, for each channel prior to
adaptive filtering. After Doppler filtering, an adaptive weight problem is solved for
each range and pulse data vector.

The parallel computer under investigation for this work is the Mercury RACE
multicomputer. The RACE multicomputer consists of a scalable network of
compute nodes (CNs), as well as various high-speed I/O devices, all interconnected
by Mercury’s RACEway interconnection fabric [4]. A high-level diagram of a 16-CN
RACEway topology is illustrated in Figure 1. The interconnection fabric is configured
in a fat-tree architecture and is a circuit switched network. The RACEway
interconnection fabric is composed of a network of crossbar switches and provides
high-speed data communication between different CNs. The Mercury multicomputer
can support a heterogeneous collection of CNs (e.g., SHARC and PowerPCs), for
more details refer to [6].

CrossbarCrossbarCrossbarCrossbar

CrossbarCrossbarCrossbarCrossbarCrossbarCrossbarCrossbarCrossbar

11 22 33 44 55 66 77 88 99 1010 1111 1212 1313 1414 1515 1616

Fig. 1. Mercury RACE Fat-Tree Architecture configured with 16 CNs.

Achieving real-time performance requirements for STAP algorithms on a parallel
embedded system like the Mercury multicomputer largely depends on two major
issues. First is determining the best method for distributing the 3-D STAP data cube
across CNs of the multiprocessor system (i.e., the mapping strategy). Second is

determining the scheduling of communications between phases of computation. In
general, STAP algorithms contain three phases of processing, one for each dimension
of the data cube (i.e., range, pulse, channel). During each phase of processing, the
vectors along the dimension of interest are distributed as equally as possible among
the processors for processing in parallel. An approach to data set partitioning in STAP
applications is to partition the data cube into sub-cube bars. Each sub-cube bar is
composed of partial data samples from two dimensions while preserving one whole
dimension for processing. The work here assumes a sub-cube bar partitioning of the
STAP data cube, for further details refer to [6]. Figure 2 shows an example of how
sub-cube partitioning is applied to partition a 3-D data cube across 12 CNs.

Fig. 2. Illustration of the sub-cube bar mapping technique for the case of 12 CNs. The mapping
of the sub-cube bars to CNs defines the required data communications. (a) Example illustration
of the communication requirements from CN 1 to the other CNs (2, 3, and 4) after completion
of the range processing and prior to Doppler processing. (b) Example illustration of the
communication requirements from CN 1 to other CNs (5 and 9) after the completion of Doppler
processing and prior to adaptive weight processing.

During phases of data redistribution (i.e., communication) between computational
phases, the number of required communications and the communication pattern
among the CNs is dependant upon how the data cube is mapped onto the CNs. For
example, in Figure 2(a) the mapping of sub-cube bars to CNs dictates that after range
processing, CN 1 must transfer portions of it data sub-cube bar to CNs 2, 3, and 4.
(Each of the other CNs, likewise, is required to send portions of their sub-cube bar to
CNs on the same row.) The scheduling (i.e., ordering) of outgoing messages at each
CN impacts the resulting communication time. For example, in Figure 2(a) note CN 1
could order its outgoing messages according to one of 3! = 6 permutations (i.e.,
[2,3,4], [3,2,4], etc.). Similarly, a scheduling of outgoing messages must be defined
for each CN. Improper schedule selection can result in excessive network contention
and thereby increase the time to perform all communications between processing
phases. The focus in this paper is on optimization of message scheduling, for a fixed
mapping, using a genetic algorithm methodology.

1

5

9 10 11 12

5

Pulse
s

Range

C
ha

nn
el

s

6 7 8

1 2 3 4 9

2 3 4

6 7 8

10 11 12

Pulse
s

Range
C

ha
nn

el
s

Pulse
s

Range

C
ha

nn
el

s

2

3

4

1
6

7

8

12

11

10
5

9

9 10 11 12

5

Pulse
s

Range

C
ha

nn
el

s

6 7 8

1 1 1 11 2 3 4

(a)

(b)

3 Genetic Algorithm Methodology

A GA is a population-based model that uses selection and recombination operators to
generate new sample points in the solution space [3]. A GA encodes a potential
solution to a specific problem on a chromosome-like data structure and applies
recombination operators to these structures in a manner that preserves critical
information. Reproduction opportunities are applied in such a way that those
chromosomes representing a better solution to the target problem are given more
chances to reproduce than chromosomes with poorer solutions. GAs are a promising
heuristic approach to locating near-optimal solutions in large search spaces [3]. For a
complete discussion of GAs, the reader is referred to [1, 3].

Typically, a GA is composed of two main components, which are problem
dependent: the encoding problem and the evaluation function. The encoding problem
involves generating an encoding scheme to represent the possible solutions to the
optimization problem. In this research, a candidate solution (i.e., a chromosome) is
encoded to represent valid message schedules for all of the CNs. The evaluation
function measures the quality of a particular solution. Each chromosome is associated
with a fitness value, which in this case is the completion time of the schedule
represented by the given chromosome. For this research, the smallest fitness value
represents the better solution. The “fitness” of a candidate is calculated here based on
its simulated performance. In previous work [6, 7], a software simulator was
developed to model the communication traffic for a set of messages on the Mercury
RACEway network. The simulation tool is used here to measure the “fitness” (i.e., the
completion time) of the schedule of messages represented by each chromosome.

Chromosomes evolve through successive iterations, called generations. To create
the next generation, new chromosomes, called offspring, are formed by (a) merging
two chromosomes from the current population together using a crossover operator or
(b) modifying a chromosome using a mutation operator. Crossover, the main genetic
operator, generates valid offspring by combining features of two parent chromosomes.
Chromosomes are combined together at a defined crossover rate, which is defined as
the ratio of the number of offspring produced in each generation to the population
size. Mutation, a background operator, produces spontaneous random changes in
various chromosomes. Mutation serves the critical role of either replacing the
chromosomes lost from the population during the selection process or introducing
new chromosomes that were not present in the initial population. The mutation rate
controls the rate at which new chromosomes are introduced into the population. In
this paper, results are based on the implementation of a position-based crossover
operator and an insertion mutation operator, refer to [1] for details.

Selection is the process of keeping and eliminating chromosomes in the population
based on their relative quality or fitness. In most practices, a roulette wheel approach,
either rank-based or value-based, is adopted as the selection procedure. In a ranked-
based selection scheme, the population is sorted according to the fitness values. Each
chromosome is assigned a sector of the roulette wheel based on its ranked-value and
not the actual fitness value. In contrast, a value-based selection scheme assigns
roulette wheel sectors proportional to the fitness value of the chromosomes. In this
paper, a ranked-based selection scheme is used. Advantages of rank-based fitness

assignment is it provides uniform scaling across chromosomes in the population and
is less sensitive to probability-based selections, refer to [3] for details.

4 Numerical Results

In the experiments reported in this section, it is assumed that the Mercury
multicomputer is configured with 32 PowerPC compute nodes. For range processing,
Doppler filtering, and adaptive weight computation, the 3-D STAP data cube is
mapped onto the 32 processing elements based on an 48 × process set (i.e., 8 rows
and 4 columns), refer to [2, 6]. The strategy implemented for CN assignment in a
process set is raster-order from left-to-right starting with row one and column one for
all process sets. (The process sets not only define the allocation of the CNs to the data
but also the required data transfers during phases of data redistribution.) The STAP
data cube consists of 240 range bins, 32 pulses, and 16 antenna elements.

For each genetic-based scenario, 40 random schedules were generated for the
initial population. The poorest 20 schedules were eliminated from the initial
population, and the GA population size was kept a constant 20. The recombination
operators included a position-based crossover algorithm and an insertion mutation
algorithm. A ranked-based selection scheme was assumed with the angle ratio of
sectors on the roulette wheel for two adjacently ranked chromosomes to be P/11 + ,
where P is the population size. The stopping criteria were: (1) the number of
generations reached 500; (2) the current population converged (i.e., all the
chromosomes have the same fitness value); or (3) the current best solution had not
improved in the last 150 generations.

Figure 3 shows the simulated completion time for three genetic-based message
scheduling scenarios for the data transfers required between range and Doppler
processing phases. Figure 4 illustrates the simulated completion time for the same
three genetic-based message scheduling scenarios for the data transfers required
between Doppler and adaptive weight processing phases. In the first genetic scenario
(GA 1), the crossover rate (Pxover) is 20% and the mutation rate (Pmut) is 4%. For GA
2, Pxover is 50% and Pmut is 10%. For GA 3, Pxover is 90% and Pmut is 50%. Figures 3
and 4 provide preliminary indication that for a fixed mapping the genetic-algorithm-
based heuristic is capable of improving the scheduling of messages, thus providing
improved performance. All three genetic-based scenarios improve the completion
time for both communication phases. In each phase, GA 2 records the best schedule
of messages (i.e., the smallest completion time).

Fig. 3. Simulated completion time of the communication requirements for data redistribution
after range processing and prior to Doppler processing for the parameters discussed in Section
4. For GA 1, the crossover rate (Pxover) = 20% and the mutation rate (Pmut) = 4%. For GA 2,
Pxover = 50% and Pmut = 10%. For GA 3, Pxover = 90% and Pmut = 50%.

4.4

4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

0 50 100 150 200 250 300 350

Generation

Fi
tn

es
s

(c
om

pl
et

io
n

tim
e

in
 m

ic
ro

se
co

nd
s)

GA 1

GA 2

GA 3

Fig. 4. Simulated completion time of the communication requirements for data redistribution
after Doppler processing and prior to adaptive weight computation for the parameters stated in
Section 4. For GA 1, the crossover rate (Pxover) = 20% and the mutation rate (Pmut) = 4%. For
GA 2, Pxover = 50% and Pmut = 10%. For GA 3, Pxover = 90% and Pmut = 50%.

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0 100 200 300 400 500 600

Generation

Fi
tn

es
s

(c
om

pl
et

io
n

tim
e

in
 m

ic
ro

se
co

nd
s)

GA 1

GA 2

GA 3

5. Conclusion

In conclusion, preliminary data demonstrates that off-line GA-based message
scheduling optimization can provide improved performance in a parallel system.
Future work will be conducted to more completely study the effect of changing
parameters of the GA, including crossover and mutation rates as well as the methods
used for crossover and mutation. Finally, future studies will be conducted to
determine the performance improvement between a randomly selected scheduling
solution and the one determined by the GA. In Figures 3 and 4, the improvements
shown are conservative in the sense that the initial generations’ performance on the
plots represents the best of 40 randomly generated chromosomes (i.e., solutions). It
will be interesting to determine improvements of the GA solutions with respect to the
“average” and “worst” randomly generated solutions in the initial population.

Acknowledgements

This work was supported by DARPA under contract no. F30602-97-2-0297.

References

1. M. Gen and R. Cheng, Genetic Algorithms and Engineering Design, John Wiley & Sons,
Inc., New York, NY, 1997.

2. M. F. Skalabrin and T. H. Einstein, “STAP Processing on a Multicomputer: Distribution of
3-D Data Sets and Processor Allocation for Optimum Interprocessor Communication,”
Proceedings of the Adaptive Sensor Array Processing (ASAP) Workshop, March 1996.

3. L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A. Maciejewski. “Task Matching and
Scheduling in Heterogeneous Computing Environments Using a Genetic-Algorithm-Based
Approach,” Journal of Parallel and Distributed Computing, Special Issue on Parallel
Evolutionary Computing, Vol. 47, No 1, pp. 8-22, Nov. 25, 1997.

4. The RACE Multicomputer, Hardware Theory of Operation: Processors, I/O Interface, and
RACEway Interconnect, Volume I, ver. 1.3.

5. J. Ward, Space-Time Adaptive Processing for Airborne Radar, Technical Report 1015,
Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, MA, 1994.

6. J. M. West, Simulation of Communication Time for a Space-Time Adaptive Processing
Algorithm Implemented on a Parallel Embedded System, Master’s Thesis, Computer
Science, Texas Tech University, 1998.

7. J. M. West and J. K. Antonio, "Simulation of the Communication Time for a Space-Time
Adaptive Processing Algorithm on a Parallel Embedded System," Proceedings of the
International Workshop on Embedded HPC Systems and Applications (EHPC ‘98), in
Lecture Notes in Computer Science 1388: Parallel and Distributed Processing, edited by
Jose Rolim, sponsor: IEEE Computer Society, Orlando, FL, USA, Apr. 1998, pp. 979-986.

