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Abstract. An important consideration in the maximization of performance in 
parallel processing systems is scheduling the communication of messages 
during phases of data movement to reduce network contention and overall 
communication time. The work presented in this paper focuses on off-line 
optimization of message schedules for a class of radar signal processing 
techniques know as space-time adaptive processing on a parallel embedded 
system. In this work, a genetic-algorithm-based approach for optimizing the 
scheduling of messages is introduced. Preliminary results indicate that the 
proposed genetic approach to message scheduling can provide significant 
decreases in the communication time. 

1 Introduction and Background 

For an application on a parallel and embedded system to achieve required 
performance given tight system constraints, it is important to efficiently map the tasks 
and/or data of the application onto the processors to the reduce inter-processor 
communication traffic. In addition to mapping tasks efficiently, it is also important to 
schedule the communication of messages in a manner that minimizes network 
contention so as to achieve the smallest possible communication time.   

Mapping and scheduling can both – either independently or in combination – be 
cast as optimization problems, and optimizing mapping and scheduling objectives can 
be critical to the performance of the overall system. For parallel and embedded 
systems, great significance is placed on minimizing execution time (which includes 
both computation and communication components) and/or maximizing throughput.   

The work outlined in this paper involves optimizing the scheduling of messages for 
a class of radar signal processing techniques known as space-time adaptive processing 
(STAP) on a parallel and embedded system. A genetic algorithm (GA) based 
approach for solving the message-scheduling problem for the class of parallel STAP 
algorithms is proposed and preliminary results are provided. The GA-based 
optimization is performed off-line, and the results of this optimization are static 



schedules for each compute node in the parallel system. These static schedules are 
then used within the on-line parallel STAP implementation. The results of the study 
show that significant improvement in communication time performance are possible 
using the proposed approach for scheduling. Performance of the schedules were 
evaluated using a RACEway network simulator [6]. 

2 Overview of Parallel STAP 

STAP is an adaptive signal processing method that simultaneously combines the 
signals received from multiple elements of an antenna array (the spatial domain) and 
from multiple pulses (the temporal domain) of a coherent processing interval [5]. The 
focus of this research assumes STAP is implemented using an element-space post-
Doppler partially adaptive algorithm, refer to [5, 6] for details. Algorithms belonging 
to the class of element-space post-Doppler STAP perform filtering on the data along 
the pulse dimension, referred to as Doppler filtering, for each channel prior to 
adaptive filtering. After Doppler filtering, an adaptive weight problem is solved for 
each range and pulse data vector. 

The parallel computer under investigation for this work is the Mercury RACE 
multicomputer. The RACE multicomputer consists of a scalable network of 
compute nodes (CNs), as well as various high-speed I/O devices, all interconnected 
by Mercury’s RACEway interconnection fabric [4]. A high-level diagram of a 16-CN 
RACEway topology is illustrated in Figure 1. The interconnection fabric is configured 
in a fat-tree architecture and is a circuit switched network. The RACEway 
interconnection fabric is composed of a network of crossbar switches and provides 
high-speed data communication between different CNs. The Mercury multicomputer 
can support a heterogeneous collection of CNs (e.g.,  SHARC and PowerPCs), for 
more details refer to [6]. 
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Fig. 1. Mercury RACE Fat-Tree Architecture configured with 16 CNs. 

Achieving real-time performance requirements for STAP algorithms on a parallel 
embedded system like the Mercury multicomputer largely depends on two major 
issues. First is determining the best method for distributing the 3-D STAP data cube 
across CNs of the multiprocessor system (i.e., the mapping strategy). Second is 



determining the scheduling of communications between phases of computation. In 
general, STAP algorithms contain three phases of processing, one for each dimension 
of the data cube (i.e., range, pulse, channel).  During each phase of processing, the 
vectors along the dimension of interest are distributed as equally as possible among 
the processors for processing in parallel. An approach to data set partitioning in STAP 
applications is to partition the data cube into sub-cube bars. Each sub-cube bar is 
composed of partial data samples from two dimensions while preserving one whole 
dimension for processing. The work here assumes a sub-cube bar partitioning of the 
STAP data cube, for further details refer to [6]. Figure 2 shows an example of how 
sub-cube partitioning is applied to partition a 3-D data cube across 12 CNs.  

Fig. 2. Illustration of the sub-cube bar mapping technique for the case of 12 CNs. The mapping 
of the sub-cube bars to CNs defines the required data communications. (a) Example illustration 
of the communication requirements from CN 1 to the other CNs (2, 3, and 4) after completion 
of the range processing and prior to Doppler processing. (b) Example illustration of the 
communication requirements from CN 1 to other CNs (5 and 9) after the completion of Doppler 
processing and prior to adaptive weight processing. 

During phases of data redistribution (i.e., communication) between computational 
phases, the number of required communications and the communication pattern 
among the CNs is dependant upon how the data cube is mapped onto the CNs. For 
example, in Figure 2(a) the mapping of sub-cube bars to CNs dictates that after range 
processing, CN 1 must transfer portions of it data sub-cube bar to CNs 2, 3, and 4. 
(Each of the other CNs, likewise, is required to send portions of their sub-cube bar to 
CNs on the same row.) The scheduling (i.e., ordering) of outgoing messages at each 
CN impacts the resulting communication time. For example, in Figure 2(a) note CN 1 
could order its outgoing messages according to one of 3! = 6 permutations (i.e., 
[2,3,4], [3,2,4], etc.). Similarly, a scheduling of outgoing messages must be defined 
for each CN.  Improper schedule selection can result in excessive network contention 
and thereby increase the time to perform all communications between processing 
phases. The focus in this paper is on optimization of message scheduling, for a fixed 
mapping, using a genetic algorithm methodology.  
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3  Genetic Algorithm Methodology 

A GA is a population-based model that uses selection and recombination operators to 
generate new sample points in the solution space [3]. A GA encodes a potential 
solution to a specific problem on a chromosome-like data structure and applies 
recombination operators to these structures in a manner that preserves critical 
information. Reproduction opportunities are applied in such a way that those 
chromosomes representing a better solution to the target problem are given more 
chances to reproduce than chromosomes with poorer solutions. GAs are a promising 
heuristic approach to locating near-optimal solutions in large search spaces [3].  For a 
complete discussion of GAs, the reader is referred to [1, 3].  

Typically, a GA is composed of two main components, which are problem 
dependent: the encoding problem and the evaluation function. The encoding problem 
involves generating an encoding scheme to represent the possible solutions to the 
optimization problem.  In this research, a candidate solution (i.e., a chromosome) is 
encoded to represent valid message schedules for all of the CNs. The evaluation 
function measures the quality of a particular solution. Each chromosome is associated 
with a fitness value, which in this case is the completion time of the schedule 
represented by the given chromosome. For this research, the smallest fitness value 
represents the better solution. The “fitness” of a candidate is calculated here based on 
its simulated performance. In previous work [6, 7], a software simulator was 
developed to model the communication traffic for a set of messages on the Mercury 
RACEway network. The simulation tool is used here to measure the “fitness” (i.e., the 
completion time) of the schedule of messages represented by each chromosome.  

Chromosomes evolve through successive iterations, called generations. To create 
the next generation, new chromosomes, called offspring, are formed by (a) merging 
two chromosomes from the current population together using a crossover operator or 
(b) modifying a chromosome using a mutation operator. Crossover, the main genetic 
operator, generates valid offspring by combining features of two parent chromosomes. 
Chromosomes are combined together at a defined crossover rate, which is defined as 
the ratio of the number of offspring produced in each generation to the population 
size. Mutation, a background operator, produces spontaneous random changes in 
various chromosomes. Mutation serves the critical role of either replacing the 
chromosomes lost from the population during the selection process or introducing 
new chromosomes that were not present in the initial population. The mutation rate 
controls the rate at which new chromosomes are introduced into the population. In 
this paper, results are based on the implementation of a position-based crossover 
operator and an insertion mutation operator, refer to [1] for details.   

Selection is the process of keeping and eliminating chromosomes in the population 
based on their relative quality or fitness. In most practices, a roulette wheel approach, 
either rank-based or value-based, is adopted as the selection procedure. In a ranked-
based selection scheme, the population is sorted according to the fitness values. Each 
chromosome is assigned a sector of the roulette wheel based on its ranked-value and 
not the actual fitness value. In contrast, a value-based selection scheme assigns 
roulette wheel sectors proportional to the fitness value of the chromosomes.  In this 
paper, a ranked-based selection scheme is used. Advantages of rank-based fitness 



assignment is it provides uniform scaling across chromosomes in the population and 
is less sensitive to probability-based selections, refer to [3] for details.  

4 Numerical Results 

In the experiments reported in this section, it is assumed that the Mercury 
multicomputer is configured with 32 PowerPC compute nodes. For range processing, 
Doppler filtering, and adaptive weight computation, the 3-D STAP data cube is 
mapped onto the 32 processing elements based on an 48 ×  process set (i.e., 8 rows 
and 4 columns), refer to [2, 6]. The strategy implemented for CN assignment in a 
process set is raster-order from left-to-right starting with row one and column one for 
all process sets. (The process sets not only define the allocation of the CNs to the data 
but also the required data transfers during phases of data redistribution.) The STAP 
data cube consists of 240 range bins, 32 pulses, and 16 antenna elements. 

For each genetic-based scenario, 40 random schedules were generated for the 
initial population. The poorest 20 schedules were eliminated from the initial 
population, and the GA population size was kept a constant 20. The recombination 
operators included a position-based crossover algorithm and an insertion mutation 
algorithm. A ranked-based selection scheme was assumed with the angle ratio of 
sectors on the roulette wheel for two adjacently ranked chromosomes to be P/11 + , 
where P is the population size. The stopping criteria were: (1) the number of 
generations reached 500; (2) the current population converged (i.e., all the 
chromosomes have the same fitness value); or (3) the current best solution had not 
improved in the last 150 generations.         

Figure 3 shows the simulated completion time for three genetic-based message 
scheduling scenarios for the data transfers required between range and Doppler 
processing phases. Figure 4 illustrates the simulated completion time for the same 
three genetic-based message scheduling scenarios for the data transfers required 
between Doppler and adaptive weight processing phases.  In the first genetic scenario 
(GA 1), the crossover rate (Pxover) is 20% and the mutation rate (Pmut) is 4%.  For GA 
2, Pxover is 50% and Pmut is 10%.  For GA 3, Pxover is 90% and Pmut is 50%.   Figures 3 
and 4 provide preliminary indication that for a fixed mapping the genetic-algorithm-
based heuristic is capable of improving the scheduling of messages, thus providing 
improved performance. All three genetic-based scenarios improve the completion 
time for both communication phases.  In each phase, GA 2 records the best schedule 
of messages (i.e., the smallest completion time).   



Fig. 3. Simulated completion time of the communication requirements for data redistribution 
after range processing and prior to Doppler processing for the parameters discussed in Section 
4.  For GA 1, the crossover rate (Pxover) = 20% and the mutation rate (Pmut) = 4%.  For GA 2, 
Pxover = 50% and Pmut = 10%.  For GA 3, Pxover = 90% and Pmut = 50%. 
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Fig. 4. Simulated completion time of the communication requirements for data redistribution 
after Doppler processing and prior to adaptive weight computation for the parameters stated in 
Section 4.  For GA 1, the crossover rate (Pxover) = 20% and the mutation rate (Pmut) = 4%.  For 
GA 2, Pxover = 50% and Pmut = 10%.  For GA 3, Pxover = 90% and Pmut = 50%. 
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5.  Conclusion 

In conclusion, preliminary data demonstrates that off-line GA-based message 
scheduling optimization can provide improved performance in a parallel system.  
Future work will be conducted to more completely study the effect of changing 
parameters of the GA, including crossover and mutation rates as well as the methods 
used for crossover and mutation. Finally, future studies will be conducted to 
determine the performance improvement between a randomly selected scheduling 
solution and the one determined by the GA. In Figures 3 and 4, the improvements 
shown are conservative in the sense that the initial generations’ performance on the 
plots represents the best of 40 randomly generated chromosomes (i.e., solutions). It 
will be interesting to determine improvements of the GA solutions with respect to the 
“average” and “worst” randomly generated solutions in the initial population.  
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