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Abstract. The work described here introduces a practical and accurate tool for 
predicting power consumption for FPGA circuits. The utility of the tool is that it 
enables FPGA circuit designers to evaluate the power consumption of their 
designs without resorting to the laborious and expensive empirical approach of 
instrumenting an FPGA board/chip and taking actual power consumption 
measurements. Preliminary results of the tool presented here indicate that an 
error of less than 5% is usually achieved when compared with actual physical 
measurements of power consumption. 

1 Introduction and Background 

Reconfigurable computing devices, such as field programmable gate arrays (FPGAs), 
have become a popular choice for the implementation of custom computing systems. 
For special purpose computing environments, reconfigurable devices can offer a cost-
effective and more flexible alternative than the use of application specific integrated 
circuits (ASICs). They are especially cost-effective compared to ASICs when only a 
few copies of the chip(s) are needed [1]. Another major advantage of FPGAs over 
ASICs is that they can be reconfigured to change their functionality while still 
resident in the system, which allows hardware designs to be changed as easily as 
software and dynamically reconfigured to perform different functions at different 
times [6]. 

Often a device’s performance (i.e., speed) is a main design consideration; however, 
power consumption is of growing concern as the logic density and speed of ICs 
increase. Some research has been undertaken in the area of power consumption in 
CMOS (complimentary metal-oxide semiconductor) devices, e.g., see [4, 5]. 
However, most of this past work assumes design and implementation based on the use 
of standard (basic cell) VLSI techniques, which is typically not a valid assumption for 
application circuits designed for implementation on an FPGA. 



2 Overview of the Tool 

A probabilistic power prediction tool for the Xilinx 4000-series FPGA is overviewed 
in this section. The tool, which is implemented in Java, takes as input two files: (1) a 
configuration file associated with an FPGA design and (2) a pin file that characterizes 
the signal activities of the input data pins to the FPGA. The configuration file defines 
how each CLB (configurable logic block) is programmed and defines signal 
connections among the programmed CLBs. The configuration file is an ASCII file 
that is generated using a Xilinx M1 Foundation Series utility called ncdread. The pin 
file is also an ASCII file, but is generated by the user. It contains a listing of pins that 
are associated with the input data for the configured FPGA circuit. For each pin 
number listed, probabilistic parameters are provided which characterize the signal 
activity for that pin. 

Based on the two input files, the tool propagates the probabilistic information 
associated with the pins through a model of the FPGA configuration and calculates 
the activity of every internal signal associated with the configuration [1]. The activity 
of an internal signal s, denoted as, is a value between zero and one and represents the 
signal’s relative frequency with respect to the frequency of the system clock, f.  Thus, 
the average frequency of signal s is given by as f. 

Computing the activities of the internal signals represents the bulk of computations 
performed by the tool [1]. Given the probabilistic parameters for all input signals of a 
configured CLB, the probabilistic parameters of that CLB’s output signals are 
determined using a well-defined mathematical transformation [2].  Thus, the 
probabilistic information for the pin signals is transformed as it passes through the 
configured logic defined by the configuration file. However, the probabilistic 
parameters of some CLB inputs may not be initially known because they are not 
directly connected to pin signals, but instead are connected to the output of another 
CLB for which the output probabilistic parameters have not yet been computed (i.e., 
there is a feedback loop). For this reason, the tool applies an iterative approach to 
update the values for unknown signal parameters. The iteration process continues 
until convergence is reached, which means that the determined signal parameters are 
consistent based on the mathematical transformation that relates input and output 
signal parameter values, for every CLB.  

The average power dissipation due to a signal s is modeled by ½ Cd(s)V 2as f, where 
d(s) is the Manhattan distance the signal s spans across the array of CLBs, Cd(s) is the 
equivalent capacitance seen by the signal s, and V is the voltage level of the FPGA 
device. The overall power consumption of the configured device is the sum of the 
power dissipated by all signals. For an N x N array of CLBs, Manhattan signal 
distances can range from 0 to 2N. Therefore, the values of 2N + 1 equivalent 
capacitance values must be known, in general, to calculate the overall power 
consumption. Letting S denote the set of all internal signals for a given configuration, 
the overall power consumption of the FPGA is given by: 
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The values of the activities (i.e., the as’s) are dependent upon the parameter values 
of the pin signals defined in the pin file. Thus, although a given configuration file 
defines the set S of internal signals present, the parameter values in the pin file impact 
the activity values of these internal signals. 

3 Calibration of the Tool 

Let iS denote the set of signals of length i, i.e., })(|{ isdSsSi =∈= . So, the set of 
signals S can be partitioned into 2N + 1 subsets based on the length associated with 
each signal. Using this partitioning, Eq. 1 can be expressed as follows: 
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To determine the values of the tool’s capacitance parameters, actual power 
consumption measurements are taken from an instrumented FPGA using different 
configuration files and pin input parameters. Specifically, 2N + 1 distinct 
measurements are made and equated to the above equation using the activity values 
(i.e., the as’s) computed by the tool. For the j-th design/data set combination, let Pj 
denote the measured power and let Aj,k denote the aggregate activity of all signals of 
length k. The resulting set of equations is then solved to determine the 2N + 1 
unknown capacitance parameter values:  
 

 
Solving the above equation for the vector of unknown capacitance values is how the 
tool is calibrated. 

4 Power Measurements 

For this study, a total of 70 power measurements were made using 5 different 
configuration files and 14 different data sets. Descriptions of these configuration files 
and data sets are given in Tables 1 and 2, respectively. All of the configuration files 
listed in Table 1 each take a total of 32-bits of data as input. The first three 
configurations (fp_mult, fp_add, int_mult) each take two 16-bit operands on each 
clock cycle, and the last two (serial_fir and parallel_fir) each take one 32-bit complex 
operand on each clock cycle. The 32 bits of input data are numbered as 0 through 31 
in Table 2, and two key parameters are used to characterize these bits: an activity 
factor, a and a probability factor, p. The activity factor of an input bit is a value 
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between zero and one and represents the signal’s relative frequency with respect to the 
frequency of the system clock, f.  The probability factor of a bit represents the fraction 
of time that the bit has a value of one. 

Fig. 1 shows plots of the measured power for all combinations of the configuration 
files and data sets described in Tables 1 and 2. For all cases, the clock was run at f = 
30 MHz. With the exception of the fp_mult configuration file, the most active data set 
file (number 6) is associated with the highest power consumption. Also, the least 
active data set file (number 5) is associated with the lowest power consumption across 
all configuration files. There is somewhat of a correlation between the number of 
components utilized by each configuration and the power consumption; however, note 
that even though the serial_fir implementation is slightly larger than parallel_fir, it 
consumes less power. This is likely due to the fact that the parallel_fir design requires 
a high fan-out (and thus high routing capacitance) to drive the parallel multipliers. 

 

Table 1. Characteristics of the configuration files. 

Configuration 
File Name 

Description Component 
Utilization of 

Xilinx 4036xla 

 
fp_mult Custom 16-bit floating point multiplier with 11-

bit mantissa, 4-bit exponent, and a sign bit [3]. 

 
368 

 
fp_add Custom 16-bit floating point adder with 11-bit 

mantissa, 4-bit exponent, and a sign bit [3].  

 
339 

 
int_mult 16-bit integer array multiplier; produces 32-bit 

product [3]. 

 
509 

 
 

serial_fir 

FIR filter implementation using a serial-
multiply with a parallel reduction add tree. 
Input data is 32-bit integer complex. Constant 
coefficient multipliers and adders from core 
generator.  

 
 

1060 

 
 

parallel_fir 

FIR filter implementation using a parallel-
multiply with a series of delayed adders. Input 
data is 32-bit integer complex. Constant 
coefficient multipliers and adders from core 
generator.  

 
 

1055 

 



 

Table 2. Characteristics of the data sets. 

Data Set 
Number 

Description 

1 Pins 0 through 15    ⇒ p = 0.0 and a = 0.0. 
Pins 16 through 31  ⇒ p = 0.5 and a = 1.0 

2 Pins 0 through 15    ⇒ p = 0.0 and a = 0.0 
Pins 16 through 31  ⇒ p = 0.75 and a = 0.4 

3 Pins 0 through 15    ⇒ p = 0.25 and a = 0.45 
Pins 16 through 31  ⇒ p = 0.0 and a = 0.0 

4 Pins 0 through 15    ⇒ p = 0. 5 and a = 1.0 
Pins 16 through 31  ⇒ p = 0.0 and a = 0.0 

5 Pins 0 through 31    ⇒ p = 0.0 and a = 0.0 

6 Pins 0 through 31    ⇒ p = 0.5 and a = 1.0 

7 Even numbered pins ⇒ p = 0.0 and a = 0.0 
Odd numbered pins  ⇒ p = 0.5 and a = 1.0 

8 Even numbered pins  ⇒ p = 0.3 and a = 0.5 
Odd numbered pins   ⇒ p = 0.7 and a = 0.5 

9 Even numbered pins  ⇒ p = 0.5 and a = 1.0 
Odd numbered pins   ⇒ p = 0.0 and a = 0.0 

10 Even numbered pins  ⇒ p = 0.8 and a = 0.1 
Odd numbered pins   ⇒ p = 0.2 and a = 0.15 

11 For all pins, p and a selected at random 

(different from data set 12).  

12 For all pins, p and a selected at random 
(different from data set 11). 

13 Pins 0 through 2, p = 0.1 and a = 0.1 
Pins 3 through 5, p = 0.2 and a = 0.2, etc.,  
p’s continue to increase in steps of 0.1 and a’s 
increase to 0.5 in steps of 0.1 and then 
decrease back down to 0.0. 

14 Pin 0, p = 0.1 and a = 0.2 
Pin 1, p = 0.2 and a = 0.4 
Pin 2, p = 0.3 and a = 0.6, etc.,  
p’s continue to increase to 1.0 in steps of 0.1 
(and then decrease) and a’s increase to 1.0 in 
steps of 0.2 (and then decrease). 
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Fig. 1. Measured power consumption for the configuration files and data sets described in 
Tables 1 and 2. 

5  Experimental Evaluation of the Tool 

Because 73 values are used to model all of the internal capacitances of the device used 
in this study, at least three more measurement scenarios are required to calibrate all 
capacitance values (by solving the complete set of linear equations defined by Eq. 3). 
Fortunately, however, we were able to calibrate a subset of capacitance values by 
considering the power consumption of the two FIR filters (serial_fir and parallel_fir). 
This was because there turned out to be a total of only 28 non-zero entries for the 
rows of the matrix of Eq. 3, corresponding to aggregate activities for the two FIR 
filter designs. 

Fig. 2 shows the measured power consumption curve along with 29 different 
prediction curves generated by the tool for the serial FIR filter design. One of the 
prediction curves corresponds to predicted values based on using all 28 measured 
values to calibrate the tool’s capacitance values (this curve is labeled “all” in the 
legend of the figure). This curve naturally has excellent accuracy; predicted power 
consumption values match measured values nearly perfectly.1 The remaining 28 
prediction curves are associated with capacitance values determined by using all but 
one of the measured data values to calibrate the tool (the data set not used is indicated 
in  the  legend  of  the  figure). For  each  of  these  curves, the  data set not used in the 
                                                        
1  The reason the predicted values do not match measured values exactly is because the equations used to 

determine capacitance values did not have full rank, and thus a least-squares solution was determined. 
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Fig. 2. Measured and predicted power consumption curves using various calibration scenarios 
for the serial FIR filter implementation. 
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Fig. 3. Measured and predicted power consumption curves using various calibration scenarios 
for the parallel FIR filter implementation. 

 



calibration of the tool’s capacitance values generally associates with the highest error 
in the predicted value for that data point. For example, note that when data set number 
six for the serial FIR (labeled S6 in the figure’s legend) was not used in the calibration 
process, the resulting prediction for that value was highest (around 10% error). When 
data sets associated with the parallel FIR design were not included, the prediction 
curves did not change, thus those curves are all drawn as solid lines with no symbols. 
Fig. 3 shows the same type of results as Fig. 2, except for the parallel FIR instead of 
the serial FIR. 

6  Summary 

To summarize the results for both filter designs, when all 28 sets of measurements 
are used to calibrate the tool, the maximum error in predicted versus measured power 
is typically less than about 5%. With one data set removed, the maximum error 
increases to about 10%, and the predicted value with this highest error is typically 
associated with the data set not used in calibrating the tool. This level of error is 
acceptable for most design environments, and represents a considerable 
accomplishment in the area of power prediction for FPGA circuits. Thus, these 
preliminary results indicate that the tool is able to adequately predict power 
consumption (i.e., for data sets not used in calibrating the tool). By using more data 
sets to calibrate the tool in the future, it is expected that even greater prediction 
accuracy and robustness will be achieved. 
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