
A case study on the importance of compiler and
other optimizations for improving super-scalar
processor performance

M. Duvall1, P. Andersen1, J. Leggoe1, A. Graham1, D. Cooke1 &
J. Antonio2

1Departments of Chemical Engineering and Computer Science, Texas
Tech University, United States
2School of Computer Science, University of Oklahoma, United States

Abstract

The importance of properly optimizing code for execution on super-scalar
processors was investigated. Access to the domain specialist was not available
during the optimization investigation. For this study of an existing serial
FORTRAN application, the use of compiler switches, manual coding techniques,
a commercial preprocessor utility (KAP), and a commercial parallelization utility
(FORGE) showed the potential to affect execution performance by more than an
order of magnitude. The application for the case study was a three-dimensional
boundary element code that modeled spherical particle transport phenomena in a
particle suspension. Separate experiments were conducted using two different
processor platforms: a four node IBM SP (160Mhz POWER2 CPU) and a single
node DEC Alpha (667Mhz 21164 CPU).

Execution times for the non-optimized, serial base case were 72 hours on a
single IBM SP node and 66 hours on the DEC Alpha. Using a combination of
compiler switches and manual optimizations, such as in-lining of inefficient
subroutines, execution times were reduced to 7.5 hours on a single IBM SP node
and 5.4 hours on the DEC Alpha. The use of the KAP pre-processor reduced
execution time to 2.3 hours on the single IBM SP node. Using the parallelization
software FORGE and four nodes on the IBM SP resulted in an execution time of
25.8 hours without compiler optimization and 3.0 hours using compiler switches
for optimization.

Marshall Duvall
This document appears as presented for publication at HPC 2000 in Maui, Hawaii on January 26-28, 2000. This document is a pre-release version only.

1 Introduction

As the availability of cheaper and faster computers has increased, it has become
feasible to develop suspension models in which the individual particles are
included as discrete entities. These models are used for more detailed
investigation of flow phenomena such as the effects of particle interactions on
macroscopic suspension behavior. Acceleration of the solution process is
considered essential to increase the number of particles that can be included in
the model and to increase the period of real time that can be simulated. Both
improvements would greatly increase the ability of the model to provide
information on the evolution of phenomena such as particle migration in real
flow situations.

A number of techniques to accelerate the solution process are available and
documented in various books and papers. These techniques include the use of
compiler switches, manual code optimization, commercial preprocessors, and
conversion from serial to parallel code either manually or with the aid of
commercial parallelization software. For optimization of serial code, Dowd and
Severance [1] discuss a number of manual techniques to eliminate clutter in
subroutine calls, loops, and branches. The authors also discuss in general terms
the different levels of compiler optimization from no optimization to
interprocedural analysis to floating-point optimization. The overview does not
provide information on the amount of execution time saved using the different
techniques or the order in which to apply the various techniques.

Stewart [2] provides a comparison of the execution time saving benefits of
common compiler switches and information on which compiler switches to
implement to reduce execution time. However, a comparison between manual
implementation of a corresponding compiler switch (such as manual in-lining of
subroutines) and use of the compiler switch is not made by Stewart. KAP [3], a
preprocessor and optimizer, is described as being beneficial for code that 1) uses
significant computation time; 2) has loop nests that use many local arrays; 3)
uses a data set whose total size is larger than the cache of the machine; 4) have
significant data reuse within a loop nest; and 5) has large loop iterations. As
noted in [3], the benefits of KAP can be increased if compiler switches are used,
but no information on the effectiveness of KAP plus compiler switches was
available.

If serial code is converted to parallel code, the execution time can often be
reduced. However, the execution time savings depends on the method used to
create the parallel code. Ideally, the serial code should be completely rewritten as
parallel code, which can be a time consuming task. Andersen [4] and Jelly [5]
have proposed similar methodologies to reduce the time required to convert
existing serial code into parallel code. However since both methodologies are
iterative in nature, it is difficult to calculate up front the execution time savings
that will be achieved by converting the serial code to parallel code. Commercial
parallelization software such as FORGE [6], BERT 77 [7], or Visual KAP [3]
can be used to analyze serial code, create parallel code, and estimate the speedup
from converting serial to parallel code. However, commercial parallelization

software is platform specific which limits software availability and portability of
the parallel code. A combination of the techniques discussed by the above
authors was needed to efficiently optimize the serial code and analyze parallel
code speedup.

This paper outlines and discusses the steps taken to optimize a serial
FORTRAN program to significantly reduce execution time, using many of the
techniques listed above. Section 2 provides a description of the model and serial
code. Section 3 discusses the path to serial optimization and associated execution
time results. Section 4 focuses on the initial parallel optimization results. Finally,
Sections 5 and 6 summarize all of the current results, review the methodology
used to optimize the serial code, and discuss future plans to complete the
development of the parallel version of the model code.

2 Model Overview

The existing application code used for this study was originally encoded as a
serial FORTRAN program. A three dimensional boundary element model was
used to simulate spherical particle transport in flows subjected to varying
boundary conditions. At each time step, the model determined the velocity of all
particles and updated particle positions using a fifth order Runge-Kutta
algorithm. Integration step size was adjusted over time within the program to
reduce the stiffness of the problem as the particles came into proximity with each
other and the boundaries.

The base case study was the simulation of ten spherical particles flowing in a
cylinder for ten seconds. The code consisted of 2500 lines of code with 25
subroutines. Most of the subroutines were nested and contained two or more sets
of nested loops. The application code was executed on both a four node IBM SP
(160Mhz POWER2 CPU) and on a single node DEC Alpha (667Mhz 21164
CPU). Execution of non-optimized code required 72 hours on a single node of
the IBM SP and 66 hours on the DEC Alpha. Results from the non-optimized
execution of the serial code on both the IBM SP and DEC Alpha were used to
compare to the results from the serial and parallel optimizations of the
FORTRAN code.

3 Serial Optimization

Given the large serial code with nested loops and subroutines – and no access to
the domain specialist who designed the code – a methodology was needed to
efficiently analyze the serial FORTRAN program to determine which manual
optimizations and compiler switches to use. Table I summarizes the switches
used for code optimization on the IBM SP and DEC ALPHA referred to through
the remainder of this paper.

Table 1: Description of compiler optimization switches.

Compiler Switch Description

O# In-lining of intrinsic functions, global optimization, branch
elimination using memory and compiler time intensive
optimizations. # indicates level of optimization.

hot Performs high order transformation of loops.
arch Use processor specific instructions.
tune Tune the code for a specific processor.

cache Customize the cache for a specific cache configuration.
Q In-line all subroutines that can be in-lined.

autodbl Perform calculations using longer data types and full PWR2
floating point calculations.

float Round single precision expressions only when stored as
single precision.

unroll Unroll loops to a given depth.
align Align all COMMON block entities.
strict Do not change semantics of program to account for floating

point precision and exceptions.
KAP Use KAP preprocessor code and includes.

To quickly and efficiently profile the code for subroutine dependence and
execution time, gprof on the IBM SP was used [1]. gprof is a timing and
profiling utility used to determine subroutine dependency and execution times.
Figure 1 shows output from gprof as applied to the original code. Execution
times from relevant subroutines are shown all of the figures. Subroutine
dependency results from gprof are not shown any of the figures for clarity.

% cumulative self self total
time seconds seconds calls ms/call ms/call name

33.2 7436.27 7436.27 1991229483 0 0 .funds [9]
20.2 11959.23 4522.96 219702144 0.02 0.06 .rqint [8]

16.7 15696.24 3737.01 872 4285.56 4328.47 .decomp [10]
4.9 19162.1 1102.25 872 1264.05 17838.99 .matvec [5]
3.1 19852.65 690.55 1836824121 0 0 .der9t [13]

2.2 20335.3 482.65 37879680 0.01 0.04 .rtint [12]
2.1 20796.36 461.06 1747634267 0 0 .shp9t [15]

1.5 21127.4 331.04 2081643706 0 0 .unormal [16]

Figure 1: Example gprof output from original serial code.

Some subroutines, such as funds and rqint, have a large number of calls with
small execution times (self ms/call) resulting in large overhead from entering
and exiting the subroutines without performing any significant number of
calculations. These types of subroutines are good candidates for subroutine in-
lining [1]. Also, parallelism is significantly reduced by these inefficient and
nested subroutines, which could be a roadblock to developing good parallel
code.

Figure 2 shows a sample of the results from rerunning the original code but
using the compiler switch –Q for in-lining of subroutines.

% cumulative self self total
time seconds seconds calls ms/call ms/call name
38.3 7556.68 7556.68 1991229483 0 0 .funds [9]
27.3 12930.02 5373.34 219702144 0.02 0.05 .rqint [8]

19 16682.08 3752.06 872 4302.82 4302.82 .decomp [10]
5.6 17785.45 1103.37 872 1265.33 17259.12 .matvec [5]

Figure 2: Example gprof output using –Q compiler switch.

From Figure 2, some of the subroutines were in-lined successively using the
compiler switch -Q. However due to the nested nature of some subroutines, for
example funds and rqint, some subroutines could not be in-lined using the –Q
switch. Using manual in-lining [1] of subroutines on the original code resulted in
the gprof output shown in Figure 3.

% cumulative self self total
time seconds seconds calls ms/call ms/call name

55.2 10058.58 10058.58 872 11535.07 11576.88 .decomp [6]
35.4 16504.72 6446.14 474368 13.59 13.6 .int4 [8]
8.9 18122.07 1617.35 872 1854.76 9253.07 .matvec [7]

0.4 18194.99 72.92 1744 41.81 41.81 .solve [9]

Figure 3: Example gprof output using manual in-lining of subroutines.

The results from gprof also included the total execution time of the program.
Thus using gprof and comparing subroutine and total execution times for
different in-lining methods, we were able to determine that manual in-lining
some subroutines would be beneficial to optimization by elimination of
subroutine overhead. In the final optimization of the serial code, the use of
manual in-lining contributed significantly to the decrease in the execution time.
To determine whether using the compiler switch for in-lining would be
successful, we examined the subroutine dependence (nested nature of the
subroutines), which is also in the gprof output. Nested subroutines are not
typically in-lined by the –Q compiler switch optimization.

With the inefficient subroutines in-lined, compiler switches could be used to
further reduce the execution time of the program. Compiler switches have the
disadvantage of possibly altering the semantics of the program leading to
numerical differences in program solutions. The trade off for decreased
execution time is often increased floating point and round off errors. Table 2
compares the execution times on the IBM SP for different compiler switches
used on the original code and manually in-lined code. Two solutions from
Table 2 showed numerical differences in precision from the original solution.
The domain specialist was not available to provide information on the required
accuracy in the model solution. In this case, having the domain specialist

available would be an advantage to determine whether the serial solutions with
numerical differences were still accurate enough to be considered useable.

Table 2: Optimized serial execution times on the IBM SP. An asterisk indicates
the resulting solution differed numerically in precision from the original
solution.

Compiler Switch Execution Time
Original Code [hr]

Execution Time
Manual In-line [hr]

None 72.0 67.7
O3 7.9 7.4
O3, qarch, qtune 7.7 7.2
O3, qarch, qtune, qcache,
qfloat

7.7 5.6

O3, qarch, qtune, qautodbl,
qfloat

7.7 2.5*

O3, qarch, qfloat, qautodbl,
qfloat, KAP

7.8 2.3*

After manually in-lining inefficient subroutines, the IBM SP compiler was
able to significantly reduce the execution time. With the nested and inefficient
subroutines in the original code, use of the KAP optimizer did not decrease the
execution time over use of compiler switches only. Using the KAP optimizer in
addition to compiler switches on the manually in-lined code provided an
additional 8% decrease in execution time. Note that the numerical differences in
the precision of the solution obtained with the KAP optimizer would still have to
be validated by the domain specialist.

Table 3 shows the execution times from the Dec Alpha using optimization
switches on the original code and manually in-lined code. No KAP
preprocessor/optimizer was available for the DEC Alpha. Most of the decrease in
execution time was due to level three optimization. While a maximum of five
levels are available on the Dec Alpha, higher levels of optimization did not
decrease execution time. However, manual in-lining allowed the DEC Alpha
compiler to further decrease the execution time by 6.5%. Tuning the compiler for
the DEC Alpha and unrolling loops [1] resulted in an additional 5% savings in
execution time over -O3 optimization and manual in-lining of subroutines. The
numerical solutions for different compiler switch settings on the DEC Alpha
were all identical to the original solution on the DEC Alpha without
optimization.

Table 3: Optimized serial execution times on the DEC Alpha.

Compiler Switch Execution Time
Original Code [hr]

Execution Time
Manual In-line [hr]

None 77.0 No data
O3 6.1 5.7
O3, align, arch, tune, unroll 6.2 5.4

4 Parallel Optimization

A few commercial utilities exist for developing parallel code from serial code on
the IBM SP [3, 6, 7]. Before spending considerable time reverse engineering the
serial code to develop parallel code, we wanted an estimate of the speedup
expected from parallelization. The effectiveness of the use of compiler switches
for optimization of parallel code was also investigated. For the IBM SP, the test
utility of choice was FORGE [6]. Utilizing a demonstration version of FORGE
with default settings, the serial code with manual in-lining of subroutines was
converted to parallel code. The code was then run on the four nodes of the
IBM SP both with and without compiler switches. The results of the execution
times are summarized in Table 4.

Table 4: Parallel execution time utilizing four IBM SP nodes. The parallel code
was created using the commercial utility FORGE.

Compiler Switch Execution Time for
Parallel Code [hr]

Speedup
(versus manually in-lined
serial code with similar

compiler switches)
None 25.8 2.6
O3 3.5 2.1
O3, qarch, qtune, qfloat, qcache 3.0 1.9

The average speedup was 2.2 when compared to the execution times for the
manually in-lined code with similar compiler switches running on a single IBM
SP node. The compiler switch –qautodbl caused severe numerical problems in
the parallel solution when used with the parallel program as developed using
FORGE on the IBM SP. Thus, speedup results are not provided for the
–qautodbl compiler switch simulations. Also during execution of the parallel
code with only ten particles, some of the nodes were under utilized as observed
when analyzing the FORGE timing results. It is expected that as more particles
are included in the model and as the parallel code created using FORGE is
refined, under utilization of the nodes will not occur.

5 Conclusions

Utilizing manual optimization techniques, compiler switches, a commercial
preprocessor/optimizer utility, and a commercial parallelization utility, the
execution time for the serial code was decreased by an order of magnitude. For
both serial and parallel code, level optimization compiler switches provided the
largest decrease in execution time on both computer platforms tested. Utilizing
architecture specific compiler switches further reduced execution times. Some
compiler switches showed the potential to alter code semantics resulting in
numerical precision errors in the model solution. A solution based on no
optimization is still required to compare to optimized solutions.

Using manual optimization techniques such as in-lining of inefficient and
deeply nested subroutines further decreased execution time by removing
computational overhead and roadblocks to compiler optimization and
parallelization. Commercial utilities to convert serial code to parallel code have
improved greatly in the past few years. Using the basic settings for FORGE
utility and compiler switches on the IBM SP resulted in a speedup of 2.2 when
compared to single node execution times on the IBM SP.

The following methodology is suggested to efficiently optimize serial code,
to test serial code for parallel application, and to decrease serial and parallel
execution times without access to the domain specialist.

1) Use a profiling tool [1] to determine subroutine dependency and
inefficiency.

2) Use manual optimization techniques [1] to reduce computational
overhead and roadblocks to compiler optimization.

3) Add compiler switches [2] for level optimization to reduce execution
time. The numerical results of the program need to be compared to the
original solution as some compiler switches can alter the semantics of
the program.

4) Add architecture specific compiler switches.
5) Use a commercial parallelization utility to check for benefits of

parallelization of serial code [4] without the expense of writing
parallel code by hand.

Using the above procedure, approximately 60 person-hours (excluding execution
times) were required to optimize the serial code and to create the initial parallel
code. Another 30 hours were required to research compiler switch settings and to
review manuals for available commercial parallelization utilities.

6 Future Studies

The next step to decrease the execution time of the model will be to reverse
engineer the serial code and to create the parallel MPI code using the
methodology outlined by Andersen [4]. The serial program analysis output from
FORGE and BERT 77 will be used to determine what changes to the serial code
are required to create a more efficient parallel code. The parallel code created
with FORGE will be further optimized to provide a better comparison between
manual parallelization of serial code and using commercial software to
parallelize code.

Special thanks go to the Department of Computer Science of Texas Tech
University for access to the IBM SP and for their help in obtaining the results
presented in this paper.

References

[1] Dowd, K. & Severance, C. R. Programming and tuning software (Section II).
High Performance Computing, Second Edition, O’Reilly: Cambridge, pp. 79-
169, July 1998.

[2] Stewart, K. Using the XL compiler options to improve application
performance, http://www.rs6000.ibm.com/resource/technology/options.html,
1999.

[3] Kuck & Associates, Inc. KAP for IBM Fortran and C,
http://www.kai.com/productinfo.html, 1999.

[4] Andersen, P. H., Pizzi, J., Zhu, R., Cao, Y., Bagert, D., Antonio, J., Lott, F.,
& Grieger, J. Evaluation of a methodology for the reverse engineering and
parallelization of sequential code. Proceedings of the International
Symposium on Software for Parallel and Distributed Systems (PDSE ’99).
Computer Society: Los Angeles, CA, May 1999.

[5] Jelly, I., Gorton, I. & Croll, P. SEMPA: Software engineering methods for
parallel scientific applications. Software Engineering for Parallel and
Distributed Systems. Chapman & Hall: New York, 1996.

[6] Applied Parallel Research, Inc. FORGE and FORGE Explorer.
http://www.apri.com, 1998.

[7] Paralogic. BERT 77: Automatic and efficient parallelizer for FORTRAN,
http://www.plogic.com/bert.html, 1988.

