
Evaluation of a Methodology for the Reverse Engineering
and Parallelization of Sequential Code

Per H. Andersen*, Joseph Pizzi*, Runlin Zhu*, Youling Cao*, Donald J. Bagert*, John K. Antonio*,
Fred Lott+, and John C. Grieger+

*Department of Computer Science
Texas Tech University

Lubbock, Texas 79409-3104

+Phillips Petroleum Company
Bartlesville, OK 74006

Abstract

A general methodology based on software engineering
principles is proposed for the parallelization of existing
sequential code. The utility of the proposed methodology
is evaluated through a case study involving a
numerically intensive application in the domain of
petrochemical exploration. The methodology does not
assume the existence of detail design documentation for
the sequential code. The methodology involves three
basic phases: (1) reverse engineering; (2) parallel
design; and (3) parallel implementation. The process
iterates between phases two and three until the values of
the performance metrics satisfy project requirements. In
addition to the methodology itself, considerable detail
related to the experiences and lessons learned in
performing the case study are included.

1: Introduction and background

Much progress has been made in the past five to ten
years in defining middle-ware standards for parallel and
distributed platforms, e.g., MPI and PVM [1, 12, 13].
Standards such as these make it relatively easy for
parallel software developers to port their application
software from one type of parallel platform to another,
e.g., from a heterogeneous cluster of workstations to a
massively parallel processor such as the IBM SP [3, 10,
11].  However, very little work has been published on
defining and standardizing a software engineering based
methodology for parallel software development itself.

A distinction can be made between how to define a
methodology for parallelizing existing sequential code
and a methodology for developing parallel software (i.e.,
“from scratch”). Even in cases where a sequential
version of the application software exists, it could be
argued that in order to achieve absolute peak parallel
performance for a given application, one should not
make extensive use of existing sequential code in the
parallel software development process. The basis for
such an argument is that the original developer of the

sequential code never intended that the code be used as a
basis for parallelization. It is possible that the way in
which portions of the sequential design were originally
encoded may actually hinder others from later
discovering opportunities for parallelization. There are in
fact examples in which the most efficient sequential
algorithm for a particular computational task cannot be
readily parallelized, but less efficient sequential
algorithms for the same task may be extremely well-
suited for parallelization. Thus, one can argue that using
existing sequential code as a basis for parallelization may
artificially constrain (or at least obscure) the design
options available to the parallel software design process.

In theory, the above argument could be taken to the
limit and the claim could be made that sequential code
should not be used as a basis for developing parallel
code. Instead, parallel software developers should re-
think and re-engineer the entire application with
parallelization in mind.  In practice, however, one must
acknowledge that there is a plethora of existing large-
scale sequential applications that would benefit from
parallel execution. Due to the associated time, cost, and
general need for extensive domain expertise, it would be
far too expensive (and thus impractical) to consider re-
designing all such applications “from scratch.” Many
industries can derive significant profit, in the near term,
from fast parallel execution of important applications -
even if the parallel implementation is not fully optimized
for peak performance. Thus, in practice there is a balance
that must be struck between the time it takes to develop
stable parallel code and that code’s parallel efficiency.

The work described in this paper is motivated by the
real need that exists for a well-defined methodology for
parallelizing existing numerically intensive sequential
applications. One such application, known as “elastic
seismic wave modeling,” is used here to help define and
evaluate a general methodology for the parallelization of
existing sequential code.  During the initial process of
defining the underlying methodological concepts
presented, we were unaware of any existing similar
methodologies that had been proposed and published in
the literature. Later, however, we discovered a similar



effort, known as SEMPA: Software Engineering
Methods for Parallel Scientific Applications [7], which is
based on a very similar framework to the one presented
here. The similarity between our proposed methodology
and the one independently developed by the SEMPA
project reinforces its validity, intuitiveness, and utility.
Another related effort that shares some concepts
presented was developed as a result of the PARSE
(Parallel Software Engineering) project [4].

The rest of the paper is organized as follows. In
Section 2, the basic phases of the proposed methodology
are defined at a high level. In Section 3, a case study
involving the application of the proposed methodology
to the parallelization of the “elastic seismic wave
modeling” code is described. Section 4 contains a post
analysis of both the code and the proposed methodology.
This section highlights some of the lessons learned,
outlines the strengths and weaknesses of the proposed
approach, and indicates how the approach could be
enhanced for future use. Some concluding remarks are
provided in Section 5.

2: The proposed parallelization
methodology

As illustrated in Figure 1, the proposed
methodology involves three basic phases: (1) reverse
engineering; (2) parallel design; and (3) parallel
implementation. The input to phase one is the sequential
code, and the output of phase one is called the reverse
engineered for parallelization (REP) design document.
The REP design document includes many of the
characteristics of standard design documents for
sequential code, but also includes extra features that are
useful for doing parallel design. The REP design
document serves as input for parallel design, which is
done in phase two. Features of the REP design document
that were particularly useful for the case study are
described in more detail in Subsection 3.2.

The initial output of phase two is a prototype
parallel design, which is then implemented in phase
three. The initial prototype implementation is then
evaluated using performance and other metrics. The
information from this evaluation is fed back to phase two
where refinements to the prototype design are developed.
The process iterates between phases two and three until
the values of the performance metrics satisfy project
requirements. More details regarding the parallel design
and implementation phases relevant to the case study are
described in Subsections 3.3, 3.4, and 4.2.4.

(1) Reverse Engineering
• Code Structure Evaluation
• Variable Dependencies
• Control/Data Flow Analysis

Sequential
Code

REP
Document

(2) Parallel Design
• Parallelization Scheme
• Isolation of Computations
• Data Decomposition
• Communication Design

(3) Parallel Implementation
• Define Message Types
• Define Communication Types
• Handshaking for Deadlock

Avoidance

Parallel
Design Document

Parallel Code

Is
Performance

Criteria
Satisfied?

No

Yes

Fig. 1: Overview of the proposed methodology.

3: A case study using the proposed
methodology

3.1: Overview of the elastic seismic wave
modeling application code

Phillips Petroleum Company is actively exploring
the subsalt oil in the Gulf of Mexico. With standard
seismic processing, the seismic images under the salt are
“blurred.” The seismic image being blurred results in



uncertainty as to where to drill. However, there exist
seismic-processing algorithms (e.g., prestack depth
migration) that greatly enhance the clarity of the seismic
images under salt. These seismic algorithms, generically
referred to here as elastic seismic wave modeling
application codes, are very compute and data intensive.

A particular 2-dimensional sequential seismic wave
modeling program, provided by Phillips Petroleum, was
ported to the IBM SP machine in the Department of
Computer Science at Texas Tech University. The team at
Texas Tech signed a rigorous non-disclosure agreement
prior to porting of this code. A main objective of this
collaborative effort is to develop and evaluate relatively
general software engineering techniques for serial to
parallel program reengineering and redesign.

3.2: Reverse engineering

Reverse engineering can be described as the process
of re-establishment of design. Its main tasks are
analyzing the existing program, extracting design
information from the program and forming a high level
of abstraction, which will contribute the reengineering
process. The REP design document has some
characteristics that are quite different from ordinary
design documents, but are very helpful for parallel
design.

In order to obtain a practical strategy, the team must
examine the source code, reconstruct or remodel it so
that the program structure can be perceived, and derive
an efficient format of design that benefits the process of
parallel design.

There were three stages to the task of reverse
engineering of the given sequential program.  The first
stage was the identification of the source code logic.
This was accomplished by performing a procedural
design for the original code, by first numbering the lines
of the source code, then giving detailed descriptions for
all services and finally drawing a flow diagram for the
unstructured source code.  Though the level of
abstraction was somewhat low, this step constituted the
basis for analysis and obtaining a higher level of
abstraction of information for the program.

In the second step, in order to facilitate the
reengineering of the software for a parallel system, the
source code was analyzed and the abstraction simplified
by creating a format that would facilitate the
parallelization process.  The relationship between the
functions and variables were highlighted by using
sufficiently abstracted pseudocode. In the variable
description list, we traced and dissected data separately
by listing their attributes, types, statuses, and critical
points for the bound checking of functions. Because data
dependency is also important for processing data in
parallel systems, for every variable, all other variables

that have a logical connection to it were listed.  For the
convenience of parallelizing, the points in the sequence
of logic flow where data are referred were also listed, and
flags within the program that show important information
data flow were identified.

In the final stage, the abstractions from the final
specification were refined and the data control flow
diagram that had become the starting point of the
reengineering procedure was constructed.  Because
global data played a dominant role in the given program,
the diagram clearly described the global variables in term
of updates and references.  This diagram also adds to the
knowledge of variable dependencies and assists in
making decisions on how to setup data sharing or data
splitting in the parallel design.

The documentation obtained in the reverse
engineering phase is not finalized until the whole process
of reengineering is complete. Any more specific
information is added following the process of
reengineering; this is especially true for the user interface
and file structures. The result of the reverse engineering
process is a REP design document which can be used in
the subsequent process of reengineering [9, pp. 770-1].

3.3: Prototype parallel design

The parallel platform targeted for this study was the
IBM SP SuperScalar system, which consists of multiple
independent processing nodes interconnected by a high-
speed interconnection network [11].  Because each node
is basically a stand-alone machine (i.e., a workstation
minus the keyboard and monitor), the IBM SP
architecture is described in [8, p. 29] as a “cluster-in-a-
box.” However, the speed and scalability of the
interconnection network of the IBM SP distinguishes it
from a typical LAN-based cluster of workstations.

The IBM SP (as well as clusters of workstations)
could be used to implement task parallelism, in which
functionally independent tasks are executed on distinct
nodes in parallel. However, for numerically intensive
applications like the one studied here, it is typically more
fruitful (and easier) to exploit data parallelism. The
concept of data parallelism is to divide the application’s
data set across the nodes so that each node performs
calculations using its local data partition. This style of
parallelism, which is implemented by having all nodes
execute the same program on distinct data sets, is known
as the single program, multiple data (SPMD) style of
parallel programming. In using the SPMD approach, it is
usually the case that intermediate results must be
exchanged among the nodes as the parallel computation
progresses. The way in which the data set is partitioned
can impact the volume and timing of the inter-node
communications that are required. Because excessive
inter-node communications can degrade overall



performance, understanding the data dependencies for an
application is a key element in deciding how to best
partition the data across the nodes.

The first step in the prototype parallel design
process was to determine the portions of the sequential
code in which the computational load was concentrated.
The sequential program was instrumented and timings
were taken on all areas in which intensive computations
appeared to be likely (e.g., around nested looping
constructs). The overall execution time was also
monitored in order determine if any significant work was
overlooked.

Once the work-load concentrations were
determined, it was possible to go back to the data
dependency diagrams (defined in REP design document)
and determine which significant variables were involved.
The dependencies among these and other variables were
then analyzed. A variable flow diagram was developed
as a mechanism for identifying all the points in the
model where data dependencies had to be accounted for
in the parallel design. Again, the data dependency
diagrams were useful in reducing the effort required in
this stage of design. From the variable flow diagrams it
was possible to map out the message passing
requirements for the parallel design.

An important part of the structure of the sequential
program was an “outer” iterative loop. For each outer
loop iteration, several inner nested loops were executed
in sequence (within the outer loop body). There were
strong data dependencies among the variables updated
within consecutively executed inner loops, so executing
the inner loops in parallel was not possible. Instead, it
was decided to parallelize each nested inner loop.

In general, each nested inner loop updated the
values stored in a 2-dimensioanl array. For some inner
loops there were data dependencies between columns
only, i.e., updating the values in the i-th column required
data values form the (i – 1)-st column. Other inner loops
had data dependencies among the rows only, and still
others had data dependencies among both rows and
columns. Figure 2 shows a typical data decomposition
scheme used for parallelizing an inner loop. This type of
data decomposition diagram was very useful in
describing the parallel design.

Because the parallelization of some inner loops
required inter-node communications, a “space-time”
diagram was used to document the design of the required
communications. Figure 3 shows such a diagram. The
term “space-time” relates the fact that the data is divided
over space (i.e., among nodes of the distributed memory
system) and the horizontal direction indicates the
computations and communications that take place as
time progresses.  It is important to note that this diagram
was   not   produced   using   postmortem   data  captured

2 Columns

1 Column

2 Columns

1 Column

Derived Data Type

Array Split onto
One Node

Fig. 2: Typical array splitting technique,
showing examples of data movement and a
derived data type. (Reported in the parallel
design document.)

during parallel execution. The diagram in Figure 3 is a
part of the design process; it illustrates the designer’s
estimate of the relative timings and relationships between
computations  and  communications.  There  are,  in  fact,



Fig. 3: Typical space-time diagram. (Reported in the parallel design document.)

postmortem tools such as VT [3] that can be used to
analyze, precisely, timings associated with an actual
parallel implementation and resulting execution.
However, at this stage of the process, the code is not
implemented, so such a tool was not applicable.

3.4: Prototype parallel implementation

Because the original serial program was written in
FORTRAN, the data parallelism was implemented by
sharing the data arrays column-wise. The points in the
program where message passing was required was
implemented with calls to non-blocking message passing
procedures. The non-blocking calls were implemented
since at these points in the program, messages had to be
sent both to the previous and next node as well as
messages received from both the previous and next node.
Deadlock is a potential problem with this kind of
message passing structure. Deadlock was avoided by
using non-blocking calls coupled with a call to a
message passing procedure, which waits for all messages
to complete [1]. In addition to implementing the message
passing, the array indexing on each node had to be
adjusted to account for the reduced number of
calculations required on each node.

The structures of the messages were, generally, a
derived data type. MPI was used, which makes it
possible to derive data types when data is not contiguous
in memory. This mechanism reduces the number of
times data is copied between memory locations [13]. A

careful analysis of the data dependencies made it possible
to determine which variables could be collected together
and sent as one message even before a variable might be
required by the program. This was done in an attempt to
keep the number of messages to a minimum.

The careful attention to Software Engineering
techniques and design documentation resulted in a
parallel program that was implemented in one step [2].
Except for a few typographical errors, the parallel
program ran within one hour of being completed and no
design changes were required. The original sequential
program was around 940 lines of code and the prototype
parallel program was about 1,740 lines of code. Although
further work related to optimization of both the serial and
parallel programs will be investigated in the future, the
prototype parallel implementation preformed better than
expected. Performance and timing details are provided in
the next subsection.

The prototype parallel program was tested on the
IBM SP at Texas Tech University, consisting of 4 nodes.
Eventually the code will be moved to the IBM SP system
operated by Maui High Performance Computing Center
(MPHCC) and the number of nodes increased to 64.

3.5: Refinements of parallel design and
implementation

3.5.1: Establishing a means for evaluation. Several
obstacles had to be overcome before the program used in
this study could be further refined. The program is a 2-D

Blocked Serial
Activity

Idle Parallel
Activity

Message Barrier or
Waiting

Outer Loop

Node 1

Node 2

Node 3

Node 4



seismic model, which occupies a position of importance
within the petroleum industry. Not only is the algorithm
guarded but so are the data sets used to initialize the
model as well as the results generated by the model.
Phillips Petroleum provided Texas Tech with one set of
initial conditions, and this data set was fairly small.
Because of the lack of a large set of initial conditions to
test the model with, the initial data set was expanded
(synthetically) in steps to create multiple data sets of
larger sizes for testing and evaluating the performance of
the parallel implementation.

A second obstacle that had to be overcome was the
lack of an optimizing preprocessor on the Texas Tech
IBM SP. Code refinement on an IBM SP involves
optimizing the programs for the IBM SP POWER2
processor. Although the IBM SP XLF compiler
optimizes code fairly well, the recommended [6]
approach to optimizing code is to take advantage of a
third party preprocessor such as the KAP preprocessor
from Kuck and Associates [5]. The Texas Tech IBM SP
does not have a preprocessor, so code refinement was
implemented using the SP XLF compiler. An IBM SP
system account request has been made to the Maui High
Performance Computer Center in order to take advantage
of the preprocessors on their systems for future studies.

A third obstacle was limited access to a domain
specialist during the reverse engineering and parallel
design phases. This “obstacle” actually served as a
benefit for this study. One of the goals of the study was
to determine whether a domain specific model like the
one used could be reverse engineered and parallelized
using software engineering techniques alone. Only twice
during the parallelization would closer contact with a
domain specialist have helped. The first instance was a
point in the code where a serial dependency occurred at
the boundaries within an array. A decision was made to
use data from the previous iteration at the boundaries,
resulting in a difference in the final result at the fifth
decimal point in the mantissa. The other instance that
might have been improved with input from a domain
specialist was the fact that in the sequential program
intermediate results are collected and dumped to disk
during execution. An insight on how this data was being
used might have resulted in a better parallel design. In
this case it was decided that each node would return its
intermediate results to a master node, which would dump
the results to disk.

3.5.2: Performance results. The performance of the
initial parallel implementation was very impressive with
all combinations of data set sizes and number of nodes
used. The original sequential code executed using the
initial (small) data set resulted in an execution time of
about 3.6 seconds on a single SP node. This was based
on compiling the original sequential code without any of

the compiler optimization switches set. The parallel
program accomplished the same calculation on four SP
nodes (on the same data set) with an execution time of
about 0.9 seconds. Again, none of the optimization
switches of the compiler were set.

A test on the largest data set resulted in a sequential
execution time of 30.25 seconds, again with no
optimization switches set. The large data set was
obtained by decreasing the grain size of the simulation up
to the memory limitations of a single SP node, which was
256 Mbytes.

The effect of setting various compiler optimization
switches were then studied. Table 1 provides a list of the
options and a brief description. For more information on
the IBM SP XLF Compiler see Katherine Stewart’s
article on optimizing with the XLF compiler [10].

Table 1:  Descriptions of compiler optimization
 switches.

Switch Label Description
O3 Memory and compiler time intensive

optimizations
hot Performs high order transformations on

loops
arch Make use of instructions specific to a

given processor
tune Tune the code for a specific processor

cache Customize the code for a specific cache
configuration

The following is an example of a compile command line
that makes use of all of  the switches listed in Table 1.

xlf -O3 -qhot -qarch=pwr2 -qtune=pwr2
–qcache = level = 1:type = d:size =
128:line = 256:assoc=4:cost=12 –qcache
= level = :type = i:size = 32:line =
128:assoc = 2:cost = 12 -o program
program.f

Table 2: Serial execution time on one SP node.

Compiler Switches Used Execution Time (sec.)
none 30.25
O3 14.25
O3 and hot 11.40
O3, hot, and arch 11.23
O3, hot, arch, and tune 11.18
O3, hot, arch, tune, and cache 11.06

Table 2 shows the execution time results of applying
various combinations of the compiler switches for the
sequential code. Table 3 shows the execution time results
of applying various combinations of the compiler



switches for the parallel code executing on four SP
nodes. The data set used was the same as that used for
collecting the sequential execution times of Table 2.

Table 3: Parallel execution time on four SP
nodes.

Compiler Switches Used Execution Time (sec.)
none 6.98
O3 2.75
O3 and hot 2.74
O3, hot, and arch 2.72
O3, hot, arch, and tune 2.68
O3, hot, arch, tune, and cache 2.67

From the execution time results tabulated above, the
speedup for the data set tested is more than four, which
is the number of SP nodes used for parallel execution.
The reason for this “super-linear” speedup is related to
the fact that the large size of the data set used combined
with the nested looping structure of the application
resulted in poor cache utilization and thus large numbers
of memory references for sequential execution.

One of the strengths of the preprocessor tools is
their ability to effectively optimize code for nested loops
by improving cache utilization and reducing memory
references. The type of large and deeply nested loops
found in this particular simulation model are not easily
optimized by the IBM SP XLF compiler. Experiences on
the IBM SP with matrix multiplication algorithms have
shown that hand coded loop unrolling and cache
blocking for complex loop structures is more productive
in obtaining performance gains than what can be
expected from the XLF compiler.  Again, as stated in the
previous subsection, further studies will be conducted
when access to a third party preprocessor is obtained.

4: Post analysis

4.1: Code

A post development evaluation of the code was
done. Two code evaluation tools were used, Verilog’s
Logiscope [15] and Paralogic’s Bert 77 [14]. Both tools
were demo evaluation copies although Texas Tech
University has since purchased the license for
Logiscope.

4.1.1: Logiscope. Verilog describes its Logiscope tool as
a test and maintenance tool for C and C++ programs.
Some of the key features of Logiscope are: a call graph

used for illustrating the overall architecture of an
application by displaying the calling relationships in an
application; a control graph that illustrates the logical
structure of a component of an application (e.g., a
function); and a quality model similar to ones defined by
Boehm and McCall [15]. The actual implementation of
the software quality analysis is via a series of Kiviat
graphs, a test mechanism, and a standard set of metrics
for measuring the complexity of code is also included in
Logiscope.

Before Logiscope could be used, the Fortran
program had to be converted to C or C++. There were
two approaches available for translating the program: by
hand coding the translation or by using a Fortran to C
converter. The Fortran to C converter approach was
chosen to save time. F2c, an AT&T, Lucent
Technologies and Bellcore product was chosen as the
converter. It was installed on the IBM SP and the model
was then converted to C. The Logiscope product is a
Windows application therefore the analysis of the
converted program was run on an NT workstation. The
program was run through Logiscope primarily as a
method of exposing any gaps in the reverse engineering
and parallel design of the model using software
engineering techniques. A secondary reason was part of
the evaluation of Logiscope as a tool for software
analysis. We wanted to determine if the methodology, of
converting Fortran programs to C, for Logiscope analysis
is a valid methodology.

The result of the Logiscope analysis was the
confirmation that nothing significant was overlooked
during the reverse engineering and parallel design. An
example of a call graph generated by Logiscope for the
model is illustrated in Figure 4. A window containing the
source code combined with the call graph is required to
understand the significance of the call graph. From the
figure, a large loop is apparent with a number of smaller
nested loops that have calls buried in them. Some of the
calls represent functions with additional nested loops in
them. A complete picture of the loops and the call
sequences can be obtained from the Logiscope tool.

The methodology of converting Fortran to C and
applying Logiscope to the C code has potential but the
results are inconclusive. The call graphs and control
graphs were generated without too much trouble with this
approach. However, the structure of the code was fairly
easy to determine using manual analysis techniques for
this  study.  For   larger    applications,    utilizing   an



If then - end if While - do - end
of while loop

Infinite loopCall reference If then - else - end if

Fig. 4: Sample call graph generated by Logiscope for main function.

automated approach (i.e., using a tool like Logiscope)
may be more important or worthwhile.

4.1.2: Bert 77. The functionality of Bert 77 is quite
different from that of Logiscope. Paralogic describes
Bert 77 as “an automatic and optimizing parallelizer for
FORTRAN 77.” From [14], Paralogic claims that Bert
77 aids in answering the following questions:

• Is my application concurrent?
• How much performance increase can I get from

running my application on a cluster of
workstations? a shared memory machine?

• If I make my application concurrent, how much
faster will it really go?

• What is the effect of adding more processors?

There are two ways in which Bert 77 can be run: the
recommended method is via an X-windows GUI; the
other method is via command line. Both methods were
used for the analysis. The goal of Bert 77 is to expose
any potential areas within the program for parallelization
that might be overlooked. Unlike Logiscope, Bert 77
makes recommendations on what can and can’t be
parallelized and the efficiency of parallelizing. The
amount of data generated by programs like Logiscope
and Bert 77 can be daunting. For example, the sequential

program used in this study is moderate in size (less than
1000 lines of code). However, Bert 77 generated 69
pages of data during its analysis of this code.

Figure 5 is a small excerpt from the output of Bert
77 when used in the command line mode. From the
figure, both Bert 77 and the parallel program design were
in agreement with respect to the first loop being a poor
choice for parallelization and the second loop being a
potential candidate for parallelization.

Bert 77 lists loops that are potential candidates for
parallelization as concurrent and lists loops that are poor
candidates for parallelized as not concurrent. The only
serious problem with the results from the Bert 77
analysis was the poor efficiency values it generated. This
is probably related to the fact that a version of Bert 77 is
not yet available for the IBM SP, therefore in order to do
the analysis, a Linux version was installed on a
standalone PC. If the efficiency values are ignored, Bert
77 actually did a fair job. It detected 75 loops and
determined 61 loops were concurrent and 14 loops were
not concurrent. Of the 61 concurrent loops 19 were in
sections of code that had very low workload
concentrations, the same was true for 10 of the 14 loops
that were not concurrent. That leaves 42 concurrent loops
and 4 not concurrent. In the actual parallel program
developed for this study, 24 of the loops detected by Bert
77 as concurrent were parallelized and the four not



concurrent loops were not parallelized. The remaining 18
loops detected by Bert 77 as concurrent tended to be
inner loops of nested loops which were not parallelized
due to the data partitioning scheme selected for the
parallel program design.

------------------------------------------
/home/andersen/phillips/elastic3.f:
LINE: 125
- - - - - - - - - - - - - - - - - - - - -

ACTION:
       Processing DO loop.
NOTE:  Loop contains file operations
RESULT:
       Loop is not concurrent

------------------------------------------

/home/andersen/phillips/elastic3.f:
LINE: 133
- - - - - - - - - - - - - - - - - - - - -

ACTION:
       Processing DO loop.
RESULT:
       Loop is concurrent

- - - - - - - - - - - - - - - - - - - - -
DO LOOP BODY

IN = {nx, dtx, a1, a2, pz1(3: nx-3,
k_BERT_LOW-1: k_BERT_UP+2),
xy1(3-1: nx-3+2, k), v1(3: nx-3, k),
dens(3: nx-3, k)}

   OUT = {j, v1(3: nx-3, k)}
- - - - - - - - - - - - - - - - - - - - -

ESTIMATIONS:
Execution time: 0.013552 seconds

repeated 14900.0 times  (17.6%)
Flow overhead time:0.021052(seconds)
Dynamic overhead time: 0.020964
(seconds)

   Estimated number of iterations : 298
NOTE: Efficiency of DO loop depends

on boundary values
Dataflow speedup: 0.58367 times with

8 processors(-12.5563%)
Dataflow parallelization is

estimated as: INEFFICIENT
Dynamic speedup:0.58589 times with 8

processors (-12.4418%)
Dynamic parallelization is estimated

as: INEFFICIENT

------------------------------------------

Fig. 5: Example excerpt from Bert 77 output
analysis file.

4.1.3: Summary of Logiscope and Bert 77. Both
Logiscope and Bert 77 were useful tools for analyzing
the sequential program. Both packages tend to produce a
lot of information leaving it up to the programmer to
decide on how to make use of the results. Logiscope is

not a Fortran programming tool so probably should be
used with caution. Bert 77 appears to have potential. Its
inability to provide good efficiency values will be
investigated once an IBM SP version becomes available.

4.2: Methodology

A post-implementation analysis of the software
methodology used to develop the parallelized software
from the existing sequential code in the case study
provided some useful information (described below) that
will be helpful for future work in this area.

4.2.1: Team software development and project
planning. Previously, parallelization of sequential code
often involved a single individual.  In this case study, a
team of four graduate students, supervised by two
faculty, reverse and re-engineered sequential code.
There were two graduate students and one faculty
member whose primary research area is software
engineering, and two graduate students and one faculty
researcher in high performance computing as well.  The
goal was to have a working prototype within 22 calendar
days after starting the project.  The usual response to
such a short deadline is to forego the proper
infrastructure to have an effective software process;
however, studies have shown that even in such cases,
good project planning and effective software quality
assurance can significantly reduce the total development
time [2].

4.2.2: Team software development and inspections. A
team of four developers is ideal for design document and
code inspections.  Not only did the inspections
significantly reduce testing time, but also allowed for
greater communication and sharing of ideas among the
team members.

4.2.3: Individual software development. A software
team is most effective when each of its individuals is a
strong software developer. The Personal Software
ProcessSM (PSPSM) strategy [2] is a good starting point
for developers to each define an individual software
development process while improving their skills.  At the
time of this case study, only one of the four developers
had been trained in PSPSM; the other three are currently
going through a course using the process.  All of the
developers agree that using some of the PSPSM

techniques for gathering data and in the design and
implementation of the parallel code were useful.

                                                          
SM Personal Software Process is a service mark of
Carnegie Mellon University.
SM PSP is a service mark of Carnegie Mellon University.



4.2.4: The parallel design document. As the initial
version of the parallel design document was being
created, it was evident that some specific formalisms
were needed.  The parallel design document consisted of:
a space-time diagram (Figure 3), a message passing
tracking table (associates variables with source code line
numbers where message passing of listed variables must
occur), message structure diagrams (Figure 2), a control
flow diagram for primary variables, and the dependency
forms and pseudo-code from the reverse engineering
document. These design document features proved to be
useful to varying degrees. The signal flow diagrams,
similar to the Logiscope control flow diagrams, were the
least useful; the dependency forms provided the same
information in a more useful format that was easier to
generate. The most useful tool in the parallel design
document were the message passing tracking tables and
message passing structure diagrams. They were used in
conjunction with the pseudo-code as a guideline during
the actual coding of the parallel program. The space-time
diagram was useful during program debugging, but also
helped in solidifying the parallel design concept at a
fairly high level of abstraction.

From our experience, the parallel design document
might ideally include: a space-time diagram, a message
passing tracking table, message structure diagrams, the
variable dependency forms, pseudo-code, control flow
diagrams from Logiscope and loop concurrency analysis
from Bert 77.

5: Conclusions

Based on the results of the case study, the proposed
methodology is deemed to be a solid foundation for the
parallelization of sequential code.  The process of going
from sequential code to the prototype parallel
implementation required approximately 120 person-
hours, and was accomplished over a period of about a
month. About 80 hours were spent on reverse
engineering, 20 hours on parallel design, and 20 hours on
parallel implementation. The 80 hours counted as
“reverse engineering” time includes about 40 hours that
was devoted to determining exactly what the REP
document needed, and what it did not need, i.e., defining
the details of the methodology itself. Thus, discounting
the time required for defining the details of the reverse
engineering process and documentation, only a total of
about 80 hours were spent on the actual process of
parallelizing the code.  The performance of the parallel
implementation was very good. Future work includes
tuning the methodology based on the insights reported in
Section 4 (Post analysis) of this paper and attempting to
apply the methodology for parallelizing another
sequential application.

References

[1] Gropp,  W., Lusk, R., and Thakur, R, “Introduction to
Performance Issues in Using MPI for Communications
and I/O,” Tutorial from the7th IEEE Symposium on High-
Performance Distributed Computing, Chicago, July 1998.

[2] Humphrey, W., A Discipline for Software Engineering,
Addison-Wesley, Reading, MA, 1995.

[3] IBM Parallel Environment for AIX: Hitchhiker’s Guide,
Version 2, Release 3, order no. GC23-3895, International
Business Machines Corporation, Poughkeepsie, NY, 1997.

[4] Jelly, I., Gorton, I., “The PARSE Project,” Software
Engineering for Parallel and Distributed Systems, edited
by I. Jelly, I. Gorton, and P. Croll, Chapman & Hall, New
York, NY, 1996.

[5] “KAP for IBM Fortran and C,” Kuck & Associates, Inc.
       Champaign, IL, http://www.kai.com.

[6] Lantz, S. “Single-Processor Performance Considerations
for the SP2,” Cornell Theory Center,
http://www.tc.cornell.edu/Edu/Talks/Performance/SingleP
rocPerf/, 1998.

[7] Luksch, P., Maier, U., Rathmayer, S., Weidmann, M.,
“SEMPA: Software Engineering Methods for Parallel
Scientific Applications,” Software Engineering for
Parallel and Distributed Systems, edited by I. Jelly, I.
Gorton, and P. Croll, Chapman & Hall, New York, NY,
1996.

[8] Pfister, G., In Search of Clusters, Second Edition, Prentice
Hall, Upper Saddle River, NJ, 1998.

[9] Pressman, R., Software Engineering: A Practitioner’s
Approach, 4th Ed., McGraw-Hill, New York, NY, 1997.

[10] Stewart, K., “Using the XL Compiler Options to Improve
Application Performance,” http://www.rs6000.ibm.com/
resource/technology/options.html, 1999.

[11] Stunkel, C., et al, “The SP2 High-Performance Switch,”
IBM Systems Journal, Vol. 34, No. 2, 1995.

[12] Wilkinson, B. and Allen, M., Parallel Programming,
Prentice Hall, Upper Saddle River, NJ, 1999.

[13] Pacheco, P., Parallel Programming with MPI, Morgan
Kaufmann, San Fransico, CA, 1997.

[14] “BERT 77: Automatic and Efficient Parallelizer for
FORTRAN,” http://www.plogic.com/bert.html, 1998.

[15] “Logiscope C/C++ WinViewer,” VERILOG, Inc., Dallas,
TX, document reference: D/LEWX/MA/000/740,
http://www.verilogusa.com, 1997.


