
Implementation and Utilization of a Heterogeneous Multicomputer Cluster
for the Study of Load Balancing Strategies

Per H. Andersen and John K. Antonio
Department of Computer Science

Texas Tech University
Lubbock, TX 79409-3104

{p.andersen, antonio}@ttu.edu

Abstract

The focus of this paper is the implementation and
utilization of an inexpensive heterogeneous
multicomputer cluster for the study of load balancing
techniques. The basic conclusion of the paper is that
excellent performance is possible provided that the
proper choices among various parameters and
implementation options of the load balancing schemes
are employed.

1: Introduction

The heterogeneous multicomputer cluster (HMC)
hardware consists of seven Intel-based workstations: two
Pentium 100s, each with 32Mbytes; a 486/DX100 with
20Mbytes; a 486/DX66 with 8 Mbytes; a 486/DX40 with
8 Mbytes; and two 386/DX40s, each with 8 Mbytes. Each
system is equipped with a 3Com 509 network interface
card. The interconnection network is a 24-port 3Com
Superstack II 1000 10BT ethernet switch.

Linux was chosen as the operating system for the
HMC and LAM/MPI (Local Area Multicomputer
/Message Passing Interface) as the parallel application
development package. LAM/MPI was developed and is
distributed freely by the Ohio Supercomputer Center
(OSC) at Ohio State University. It follows the MPI 1.1
Standard as proposed by the MPI Forum (and includes
some additional enhanced features).

The implemented load balancing strategies are
dynamic because they divide and allocate computational
work based on the actual loading of the machines during
execution. Each of these load balancing schemes is
defined based on many different static parameters and
implementation options, including: polling schemes;
thresholds that define whether a machine is idle or busy;
counters that affect how often a machine responds to or
makes a request for work; techniques for initializing the
workload; techniques for terminating the search; and work
splitting mechanisms. The basic conclusion of the paper is

that excellent performance is possible provided that the
proper choices among these parameters and
implementation options are employed. Sample timing
results are included, which are based on the application of
load balancing techniques to parallel search algorithms for
solving the traveling salesman problem.

2: Parallel search techniques

There are three processing phases associated with
implementing a parallel search algorithm that are
considered: the startup phase; the working phase; and the
shut-down phase [1].

Within the startup phase, four possible initialization
methods are described in [1]: root initialization,
enumerative initialization, selective initialization, and
direct initialization. For this study, root initialization and a
variation on direct initialization are investigated.

During the working phase, as a workstation
completes it’s work, it has to either request more work
from busy workstations (idle initiated) or respond to
requests to take work from busy workstations (busy
initiated) [3]. Work is performed by expanding nodes of a
search tree. Work is divided between workstations by a
queue-sharing method [4].

The technique used to terminate the search during the
shutdown phase depends on the type of search algorithm
that is implemented. For further details, refer to [4].

3: Load balancing schemes

Dynamic load balancing is activated during the working
phase of a parallel search. Different tasks (i.e., partitions
of the search space) can be re-partitioned and distributed
among workstations during program execution. One of
two mechanisms are considered for initiating the re-
partitioning and distribution of work: an idle initiated
work request or a busy initiated work request.

Fig. 1: Counter value study for the idle initiated scheme.

For idle initiated, idle workstations start making
requests to receive work when the size of their work
queue drops to below an “idle” threshold. The value of
this idle threshold as well as user-selected counters
(defined in the next section) must be defined.

For busy initiated, busy workstations start making
requests to give away work when the size of their work
queue exceeds a “busy” threshold. Similar to the idle
initiated case, the value of the busy threshold as well as a
user-selected counters must be defined.

To implement the idle initiated approach, a target
machine must be selected by the workstation requesting
work. Similarly, to implement the busy initiated approach,
a target machine must be selected by the workstation
attempting to off-load work. Three possible techniques for
selecting a target machine are considered: asynchronous
round robin (ARR); random polling (RP); and global
round robin (GRR) [2].

4: Data collection and empirical studies

Numerous experiments were conducted with many
possible combinations of parameter values and
implementation options. Structured variations of
parameter values and/or implementation options were
made while the remaining parameters and options were
kept fixed. For some cases considered, there was not
measurable performance variations observed by varying
the parameters of interest. In other cases, the variation in
performance was similar for several different cases.

Fig. 1 is an illustrative example of the types of timing
effects recorded. The figure shows execution time versus
the (user-selected) counter values – higher counter values

Fig. 2: Typical speedup curves.

correspond to more local work being performed between
successive checks for a response (or request) for work.
From the figure, note that poor performance results if the
machines check for responses too often, relative to the
amount of time spent performing local computation. Fig. 2
shows typical speedup curves (relative to the fastest
machine) obtained for various problem sizes. The ideal
speedup curve is not linear because the relative speeds of
the seven machines in the HMC were not uniform. The
machines are numbered in descending order of speed.

5: Conclusions

Based on the data collected and for the problem sizes
and search algorithms considered, it was found that idle
initiated load balancing is generally preferred over busy
initiated. It is concluded that good performance is
possible on the HMC provided that the threshold and
counter parameters of the load balancing schemes are
properly selected. Performance can be further tuned and
optimized by proper selection of other parameters and
implementation options; further details are in [4].

References

[1] D. Henrich, “Initialization of Parallel Branch-and-Bound
Algorithms,” 2nd Int’l Workshop on Parallel Proc. for
Artificial Intelligence, Chambery, France, Aug. 29 1993.

[2] V. Kumar, A. Grama, A. Gupta, and G. Karypis,
Introduction to Parallel Computing, Benjamin/Cummings
Publishing Co., Redwood City, CA, 1994.

[3] N. G. Shivaratri, P. Krueger, and M. Singhal, “Load
Distributing for Locally Distributed Systems,” IEEE
Computer, pp. 33-44, Dec. 1992.

[4] P. Andersen, Implementation and Utilization of a
Heterogeneous Multicomputer Cluster for the Study of
Load Balancing Strategies, M.S. Thesis, Dept. of
Computer Science, Texas Tech Univ., Lubbock, TX, Aug.
1997.

HMC Speedup

0

0.5

1

1.5

2

2.5

3

3.5

4

2 3 4 5 6 7

Number of Workstations

S
pe

ed
up

Ideal

12 Cities

11 Cities

10 Cities

9 Cities

8 Cities

