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1. Introduction
Space-time adaptive processing (STAP) refers to a class of

signal processing techniques used to process returns of an antenna
array radar system [4]. STAP algorithms are designed to extract
desired target signals from returns comprised of Doppler shifts,
ground clutter, and jamming interference. STAP simultaneously
and adaptively combines the signals received on multiple
elements of an antenna array – the spatial domain – and from
multiple pulse repetition periods – the temporal domain.

The output of STAP is a weighted sum of multiple returns,
where the weights for each return in the sum are calculated
adaptively and in real-time. The most computationally intensive
portion of most STAP approaches is the calculation of the
adaptive weight values. Calculation of the weights involves
solving a set of linear equations based on an estimate of the
covariance matrix associated with the radar return data.

Existing approaches for STAP typically rely on the use of
multiple digital signal processors (DSPs) or general-purpose
processors (GPPs) to calculate the adaptive weights. These
approaches are often based on solving multiple sets of linear
equations and require the calculation of numerous vector inner
products. This paper proposes the use of FPGAs as vector co-
processors capable of performing inner product calculation.

Two different “inner-product co-processor” designs are
introduced for use with the host DSP or GPP. The first has a
multiply-and-accumulate structure, and the second uses a
reduction-style tree structure having two multipliers and an adder.

2. STAP Weight Calculation
2.1 Basic Formulation

The STAP algorithm assumed here is known as Kth-order
Doppler factored STAP, which is classified as a partially adaptive
technique. Due to the space limitation, it will not be possible to
fully explain this algorithm. Instead, the focus here will be on the
necessary notation and core calculations required to determine the
values of the adaptive weights. For more information on STAP,
the reader is referred to [1, 4].

Determining the values for the n-vector of adaptive weights,
denoted by w

r
, involves solving a system of linear equations of

the form:

sw vr =Ψ , (1)

This work was supported by DARPA under contract number F30602-97-
2-0297

where s
r

is a known n-vector called the steering vector and Ψ
is an estimate of the covariance matrix, which is determined
based on the sampled radar returns. Ψ is derived based on
space-time data matrix X, which is an  n × N  matrix defined by:
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2.2   QR-Decomposition and Conjugate Gradient

The QR-decomposition approach is a direct approach for
solving a system of linear equations. The QR approach always
gives an exact solution and the complexity of the algorithm is
fixed. It involves performing a QR-decomposition on the matrix
XT, the result of which is an NN × orthogonal matrix Q and an

Nn× upper triangular matrix R such that X = QR. The final
result is obtained by forward and backward substitution. For
more details the reader is referred to [1].

The conjugate gradient approach is an iterative method
that provides a general means for solving a system of linear
equations [2]. For the system of equations given in Eq. (1), it is
based on the idea of minimizing the following function:

wswwwf T rrrr −Ψ=
2
1
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The function f is minimized when its gradient is zero, i.e.,
0=−Ψ=∇ swf

rr
, which corresponds to the solution to the

original system of linear equations. The very repetitive and
regular numerical structure of the conjugate gradient update
equations makes it a prime candidate for implementation on an
FPGA system.

Numerical studies were conducted using Matlab
implementations of the QR-decomposition and CG methods on
actual STAP data collected by the Multi-Channel Airborne
Radar Measurement (MCARM) system of Rome Lab [3].
Further details of this study can be found in [6].

3. Inner-Product FPGA Co-Processor

Each of the two methods outlined above requires
calculating a number of inner products. Given enough
resources, all the inner products could be done in parallel on
FPGAs. Because the available system has only two FPGAs [5],
the computations was divided among the host processor and the
FPGA board. The two schemes that were implemented are
outlined below. For both schemes, the data vectors are assumed
to be in block-floating-point format [9]. Additionally, the



multiplier implementation is based on discussion in [7] and the
adder unit uses 4-bit carry-look-ahead adders [8] in each stage of
the adder pipe.

3.1 Multiply-and-Accumulate Implementation

In the first implementation shown in Figure 1, the FPGA is
configured to perform the multiply-and-accumulate operations on
the input vectors. The implementation consists of a multiply unit
and an accumulator, which is composed of a normalization unit
and an adder. The normalization unit shifts the binary point of the

mantissa and makes a compensating adjustment to the exponent
prior to the addition. The output of the adder is fed back and
accumulated with the next product term.

The single cycle multiply-and-accumulate is achieved by
pipelining each unit of the implementation. This unit reads in two
operands and performs two operations per cycle. Thus, the unit
reduces two N-vectors to a constant number of partial sums equal
to the number of stages in the accumulator pipe. The
implementation allocates approximately 88% of the configurable
logic blocks (CLBs) on the Xilinx 4028EX FPGA. The
implementation can be clocked at 40MHz, thus giving a
throughput of 80 million block-floating-point operations per
second.

3.2 Multiply-and-Add Implementation

Figure 2 illustrates the second implementation that performs
an inner product, i.e., a multiply-and-add operation on the two
input vectors. The design incorporates two 16-bit multiply units
and an adder. By using this approach, two multiplies can be
performed in parallel, and afterwards, the adder computes the
sum of the two products.

A challenge associated with this implementation is that four
16-bit input operands, i.e., 64 bits, are required per computation
cycle. Unfortunately, the data-path to the FPGA board is only 36-
bits wide. The solution to this problem involves clocking the
input state machine at twice the frequency of the multiply-and-
add state machine, and registering the first two operands for one
input state machine clock cycle.

The multiply-and-add unit reads in four operands and
performs three block-floating-point operations per cycle. Thus,

the two input N-vectors are reduced to an N/2-vector of partial
sums. This implementation, however, involves an additional
N/2 addition operations to obtain the inner product result. For
this implementation, approximately 99% of the available CLBs
on the Xilinx 4028EX FPGA are required. In summary, for a
fixed clock rate, the second design can provide a higher
throughput, but requires more computation from the host (to
perform the final summation of the partial sums).
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Figure 2: Block diagram implementation of the multiply-and-
add unit on WildOne FPGA board.
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Figure 1: Block diagram implementation of the multiply-and-
accumulate unit on WildOne FPGA board.
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