
����������	�
	���	������������	����	
��	�	����������
��������	����������	���������	��	�	��������	��������

������

Jack M. West and John K. Antonio

Department of Computer Science, P.O. Box 43104, Texas Tech University, Lubbock, TX
79409-3104

{west, antonio}@ttu.edu

�����������	�
���

The focus of this work involves the investigation of parallelization and performance
improvement for a class of radar signal processing techniques known as space-time
adaptive processing (STAP). STAP refers to an extension of adaptive antenna signal
processing methods that operate on a set of radar returns gathered from multiple
elements of an antenna array over a specified time interval. Because the signal
returns are composed of range, pulse, and antenna-element samples, a three-
dimensional (3-D) cube naturally represents STAP data. Typical STAP data cube
processing requirements range from 10-100 giga floating point operations per second
(Gflops). Imposed real-time deadlines for STAP applications restricts processing to
parallel computers composed of numerous interconnected compute nodes (CNs). A
CN has one or more processors connected to a block of shared memory.

Developing a solution to any problem on a parallel system is generally not a trivial
task. The overall performance of many parallel systems is highly dependent upon
network contention. In general, the mapping of data and the scheduling of
communications impacts network contention of parallel architectures. The primary
goals of many applications implemented on parallel architectures are to reduce
latency and minimize interprocessor communication time (IPC) while maximizing
throughput. It is indeed necessary to accomplish these objectives in STAP processing
environments. In most STAP implementations, there are three phases of
computations, one for each dimension of the data cube (i.e., range, pulse, and
channel). To reduce computational latency, the processing at each phase must be
distributed over multiple CNs using a single program multiple data (SPMD)
approach. Additionally, prior to each processing phase, the data set must be
partitioned in a fashion that attempts to equally distribute the computational load over
the available CNs. Because each of the three phases process a different dimension of
the data cube, the data must be redistributed to form contiguous vectors of the next
dimension prior to the next processing phase. This redistribution of data or
distributed “corner-turn” requires IPC. Minimizing the time required for
interprocessor communication helps maximize STAP processing efficiency.

Driven by the need to solve complex real-time applications that require tremendous
computational bandwidths such as STAP algorithms, commercial-off-the-shelf

(COTS) embedded high-performance computing systems that emphasize upward
scalability have emerged in the parallel processing environment. In a message
passing parallel system, CNs are connected with each other via a common data
communication fabric or interconnection network. For the purposes of discussion and
illustration, assume that a crossbar with six bidirectional channels is the building
block for the interconnection network. Each of the six input/output channels is
bidirectional, but may only be driven in one direction at a time. The versatility of the
six-port crossbar allows for the interconnect to be configured into a number of
different network topologies, including two-dimensional (2-D) and 3-D meshes, 2-D
and 3-D rings, grids, and Clos networks. However, the most common configuration is
a fat-tree, where the crossbars are connected in a parent-child fashion. In a fat-tree
configuration, which is the configuration assumed in this paper, each crossbar has two
parent ports and four child ports. The fat-tree architecture helps alleviate the problem
of communication bottlenecks at high levels of the tree (present in conventional tree
architectures) by increasing the number of effective parallel paths between CNs.
Unfortunately, the addition of multiple paths between CNs increases the complexity
of the communication pattern in applications such as STAP that involve data
redistribution phases.

Additional complexity emerges when each CN is composed of more than one
processor or compute element (CE) configured with the shared-memory address space
of the CN. In a system with one CE per CN, the communication pattern during
distributed corner-turn phases is very regular and well-understood (i.e., a matrix
transpose operation implemented in parallel). However, the overall complexity of
both the mapping and scheduling of communications increases in systems where the
CNs contain more than one CE, for two reasons. First, the communication pattern can
be less regular. Second, the message sizes are not uniform.

Two major challenges of implementing STAP algorithms on embedded high-
performance systems are determining the best method for distributing the 3-D data set
across CNs (i.e., the mapping strategy) and the scheduling of communication prior to
each phase of computation. At each of the three phases of processing, data access is
either vector-oriented along a data cube dimension or a plane-oriented combination of
two data cube dimensions. During the processing at each phase, the contiguous
vectors along the dimension of interest are distributed among the CNs for processing
in parallel. Additionally, each CE may be responsible for processing one or more
vectors of data during each phase. Before processing of the next phase can take place,
the data must be redistributed among the available CNs to form contiguous vectors of
the next dimension. Determining the optimal schedule of data transfers during phases
of data repartitioning on a parallel system is a formidable task. The combination of
these two factors, data mapping and communication scheduling, provides the key
motivation for this work.

One approach to data set distribution in STAP applications is to partition the data
cube into sub-cube bars (see Fig. 1). Each sub-cube bar is composed of partial data
samples from two dimensions, while preserving one whole dimension of the data-
cube. After performing the necessary computations on the current whole dimension,
the data vectors must be redistributed to form contiguous sub-cube bars of the next
dimension to be processed. By implementing a sub-cube bar partitioning scheme,
IPC between processing stages is isolated to clusters of CNs and not the entire system

(i.e., the required data exchanges occur only between CNs in the same logical row or
column).

To illustrate the impact of mapping, consider the two examples shown in Fig. 2 and
Fig. 3. For these two examples, assume that the parallel system is composed of four
CNs, with each having three CEs, and connected via one six-port crossbar (see Fig 4).
Additionally, the number on each sub-cube bar indicates the processor to which the
sub-cube bar is initially distributed for processing. Fig. 2 illustrates a mapping
scheme where the sub-cube bars are raster-numbered along the pulse dimension. In
contrast, the sub-cube bars are raster-numbered along the channel dimension in Fig. 3.
As illustrated in the two examples, the initial mapping of the data prior to pulse
compression affects the number of required communications during the data
redistribution phase prior to Doppler filtering. In the case where the data cube is
raster-numbered along the pulse dimension, six messages, totaling 20 units in size,
must be transferred through the interconnection network. By implementing the
mapping scheme in Fig. 3, the number of required data transfers increases to twelve,
while the total message size expands to 36 units. For this small example, the initial
mapping of the sub-cube bars greatly affects the communication overhead that occurs
during phases of data repartitioning.

To illustrate the impact of scheduling communications during data repartitioning
phases, consider the problem depicted in Fig. 5, which is the same problem as shown
in Fig. 3. The left-hand portion of the figure shows the current location of the STAP
data cube on the given processors after pulse compression. The data cube on the
right-hand side of the figure illustrates the sub-cube bars of the data cube after
repartitioning. The coloring scheme indicates the destination CN of the data for the
data prior to the next processing phase. If any part of the sub-cube bar is a different
color than its current processor color in the left-hand data cube, the data must be
transferred to the corresponding colored destination node. In this example, the
repartitioning phase involves transferring six data sets through the interconnection
network. If the six messages were sequentially communicated (i.e., no parallel
communication) through the network, the completion time (cT) would be the sum of
the length of each message, which totals 20 network cycles. If two or more messages
could be sent through the network concurrently, then the value of cT would be
reduced (i.e., below 20).

Scheduling the communications for each of the six messages through the
interconnection network greatly affects the overall performance (even for this small
system consisting of only one crossbar). Fig. 6 shows the six messages, labeled A
through F, in the outgoing first-in-first-out (FIFO) message queues of the source CNs.
Each message’s destination is indicated by its color code. The number in parenthesis
by each message label represents the relative size of the message. The minimal
achievable communication time is dependent upon the CN with the largest
communication time of all outgoing and incoming messages. For this example, the
minimum possible communication time is the sum of all outgoing and incoming
messages on the CNs having two messages, which equals fourteen message units.
The actual communication time, cT , that would result from this example with the
given message queue orderings (i.e., schedule) is 17 units. However, changing the
ordering of the messages in the outgoing queues will yield an optimal schedule of

messages. The message queues in Fig. 7 are identical to those in Fig. 6 except the
positions of messages C and F have been swapped in the outgoing queue. Swapping
the ordering of the messages on the green CN allows for an increase in the number of
messages that can be communicated in parallel. For this new ordering of queued
messages, the actual completion time achieves the optimal completion time of
fourteen units. The purpose of this example is to illustrate that the order (i.e., the
schedule) in which the messages are queued for transmission can impact how much
(if any) concurrent communication can occur. The method used to decompose and
map the data onto the CNs will also impact the potential for concurrent
communication.

The current research involves the design and implementation of a network
simulator that will model the effects of data mapping and communication scheduling
on the performance of a STAP algorithm on an embedded high-performance
computing platform. The purpose of the simulator is not to optimally solve the data
mapping and scheduling problems, but to simulate the different data mappings and
schedules and resultant performance. Thus, the simulator models the effects
associated with how the data is mapped onto CNs, composed of more that one CE, of
an embedded parallel system, and how the data transfers are scheduled.

The network simulator is designed in an object-oriented paradigm and
implemented in Java using Borland’s JBuilder Professional version 1.0. Java was
chosen over other programming languages because of its added benefits. First, Java
code is portable. This feature allows the simulator to run on various platforms
regardless of the architecture and operating system. Additionally, Java can be used to
create both applications (i.e., a program that executes on a local computer) and
applets (i.e., an application that is designed to be transmitted over the Internet and
executed by a Java-compatible web browser). Third, Java source code is written
entirely in an object-oriented paradigm, which is well-suited for the simulator’s
design. Fourth, Java provides built-in support for multithreaded programming.
Finally, Java development tools, like Borland’s JBuilder, provide a set of tools in the
Abstract Window Toolkit (AWT) for visually designing and creating graphical user
interfaces (GUIs) for applications or applets.

The simulator’s functionality is encompassed by a friendly GUI. The main user
interface of the simulator provides a facility for the user to enter the corresponding
values of the three dimensions of a given STAP data cube and the number of CNs to
allocate to processing the STAP data cube using an element-space post-Doppler
heuristic and a sub-cube bar partitioning scheme. After providing the problem
definition information, the user selects an initial mapping that includes a set of
predefined mappings (e.g., raster-numbering along the pulse dimension, raster-
numbering along the channel, etc.), a random mapping, or a user-definable
customized mapping. Furthermore, the user selects the ordering of the messages in
the outgoing queues from a predefined set of scheduling algorithms (e.g., short
messages first, longest messages first, random, custom, etc). After providing the
necessary input, the network simulator simulates the defined problem and produces
the timing results from both phases of data repartitioning. The level of detail that the
simulator models could be defined as a medium- to fine-grained simulation of the
interconnection network. The simulator assumes the network is circuit switched, and
the contention resolution scheme is based on a port number tie-breaking mechanism

to avoid deadlocks. In addition, the simulator incorporates a novel and efficient
method of evaluating blocked messages within the interconnection network and
queued messages waiting for transfer.

The simulator can be used as a tool for collecting and analyzing how the
performance of a system is affected by changing the mapping and scheduling. If it is
determined that mapping and/or scheduling choices have a significant impact on
performance, then the simulator will serve as a basis for future research in
determining the optimal mappings and communications.

Acknowledgements

This work was supported by Rome Laboratory under Grant No. F30602-96-1-0098
and Defense Advanced Research Projects Agency (DARPA) under Contract No.
F30602-97-2-0297.

�������������������	
��������������
���	
��	
��
��
��
�����������

[1] M. F. Skalabrin and T. H. Einstein, “STAP Processing on a Multicomputer: Distribution of
3-D Data Sets and Processor Allocation for Optimum Interprocessor Communication,”
Proceedings of the Adaptive Sensor Array Processing (ASAP) Workshop, March 1996.

CN 7

CN 8

CN 9

CN 4

CN 5

CN 6

CN 1

CN 2

CN 3

Chan
nels

Pulses

R
an

g
e

C
h

an
n

el
s

CN 7

CN 8

CN 9

CN 4

CN 5

CN 6

CN 1

CN 2

CN 3

Range

Puls
es

Range

Puls
es

C
h

a
n

n
el

s

Doppler Filtering

Pulse Compression

Partitioning
Re-partitioning

����� ��!��������������������������������	�
������"���������	"�������������

�����#��!��������������������������������	�
������"��������������"�����������

Pulses
Range

C
h

an
n

el
s 12

8

4

11

7

3

10

6

2

9

5

1

Data Set Re-Partitioning Prior to Doppler Filtering
with raster ordering in the pulse dimension

10
9

11
12

6
5

7

8

Channels
Pulses

R
an

g
eRe-Partitioning

1

3
4

2

1

4
CN

7

10

CN

CN

CN

CN

CN

3

4

3

3

4

3

Required Data Transfers
Total Message Size Count
 = 3 + 3 + 4 + 4 + 3 + 3
 = 20 units

6
3

9
12

5
2

8
11

4
1

7
10Channels

Pulses

R
an

g
e11

10

12
8

7

9
5

4

6

Pulses
Range

C
h

an
n

el
s

2

1

3

Data Set Re-Partitioning Prior to Doppler Filtering
with raster ordering in the channel dimension

Re-Partitioning

Required Data Transfers
Total Message Size Count
 = 36 units

1

CN

CN

CN

3

3

3

10

CN

CN

CN

3

3

3

4 CN

CN

3

3

3

CN

7 CN

CN

3

3

3

CN

Network Interconnection ConfigurationNetwork Interconnection Configuration

6-Port
Crossbar

CN CN CN CN

1
2

3

4
5

6 7
8

9

10
11

12

�����$������%���"��������	�������������	�&'�����"(��&)����������������������*�

�����+������%���"������	
��	
��
����������������������!���"����"������

IPC

5
6

7
8

9
10

11
12

C
h

an
n

el

1
2

3
4Pulses Range

Pulse Compression Doppler Filtering

Puls
es

C
h

an
n

el

Range

9 10 11 12

5 6 7 8

1 2 3 4

1

4
CN

7

10

CN

CN

CN

CN

CN

3

4

3

3

4

3

Required Data Transfers
 Total Message Size Count
 = 20 units

Outgoing Message Queues

CN

A (3)

CN

E (4)

B (3)

CN

D (3)

CN

F (3)

C (4)

6-Port
Crossbar

Actual Communication Time:

T (0) = max[Tp (), Tp ()]

= 3 m.c.

T (3) = Tp () = 3 m.c.

T (6) = Tp () = 4 m.c.

T (10) = Tp () = 4 m.c.

T (14) = Tp () = 3 m.c.

 Tc =

17 message cycles

D

C

E

A

B

F

Minimum Communication Time:

Tmin(, , ,) = Tc () = Tc ()

Tc () = Toutgoing + T incoming = (3 + 4) + (3 + 4)

= 14 message cycles

CN CN CNCN CN CN

CN

�����,�����	
�������"�����	��������������	"�����%���"��

�����-�����������"�����	��������������	"�����%���"��

Actual Communication Time:

T (0) = max [Tp (), Tp ()]

= 3 m.c.

T (3) = max [Tp (), Tp ()]

= 3 m.c.

T (6) = Tp () = 4 m.c.

T (10) = Tp () = 4 m.c.

 Tc =

14 message cycles

D

C

E

A

B

F

Outgoing Message Queues

CN

A (3)

CN

E (4)

B (3)

CN

D (3)

CN

F (3)

C (4)

6-Port
Crossbar

