
Optimal Configuration of Compute Nodes for Synthetic
Aperture Radar Processing

Jeffrey T. Muehring and John K. Antonio

Deptartment of Computer Science, P.O. Box 43104, Texas Tech University,
Lubbock, TX 79409-3104

{muehring, antonio}@ttu.edu

Abstract. Embedded systems often must adhere to strict size, weight, and
power (SWAP) constraints and yet provide tremendous computational
throughput. Increasing the difficulty of this challenge, there is a trend to utilize
commercial-off-the-shelf (COTS) components in the design of such systems to
reduce both total cost and time to market. Employment of COTS components
also promotes standardization and permits a more generalized approach to
system evaluation and design than do systems designed at the application-
specific-integrated-circuit (ASIC) level. The computationally intensive
application of synthetic aperture radar (SAR) is by nature a high-performance
embedded application that lends itself to parallelization. A system performance
model, in the context of SWAP, is developed based on mathematical
programming. This work proposes an optimization technique using a
combination of constrained nonlinear and integer programming.

1 Introduction

This work focuses on modeling and optimizing the processor-memory relationships of
an embedded system for synthetic aperture radar (SAR) processing. The hardware
computing platform of investigation is one constructed with commercial off-the-shelf
(COTS) components that are based on daughtercards and the compute-node concept.
A daughtercard consists of one or more compute nodes, where a compute node is
defined as an entity consisting of one or more processors, a block of shared memory,
and the requisite glue logic. Within the framework of the models developed,
optimization is performed on parameters such as the convolution section size and the
choice and number of daughtercards comprising the system.

Size, weight, and power (SWAP) constraints often motivate the maximization of
performance density for a given SAR system, especially in the case of unmanned
aerial vehicles (UAVs) or satellites, which often accommodate SAR systems. SAR in
itself is an approach to densifying a radar system by substituting a large degree of data
postprocessing for radar equipment with prohibitively high size, weight, and power
characteristics. Minimizing the power consumption of the compute platform used for

SAR processing is the fundamental objective in this research (although with sufficient
parameter guidelines, size and weight could also be minimized using the same
approach).

2 Fundamentals of SAR Processing

The specific mode of SAR investigated in this research is known as stripmapping. In
stripmapping, successive radar pulses are transmitted and returned in the range
dimension, which is orthogonal to the line of flight. Each received series of pulses
from an individual transmitted pulse is then convolved with a reference kernel to
achieve range compression. The entire range dimension is processed at once in this
way. Detailed coverage of SAR and SAR processing is available in such works as [1,
2].

To create a two-dimensional SAR image, processing in the azimuth dimension is
also necessary. The azimuth dimension is parallel to the line of flight and is
conceptually infinite in length. Thus, processing of the entire azimuth vector, created
from stacked range-processed vectors, is infeasible. To counter this problem,
sectioned convolution is employed.

Sectioned convolution extracts a piece (or section) of the azimuth vector,
convolves it with a reference kernel as in the range dimension, and then discards a
portion of the result equal to the length of the reference kernel. Successively
processed azimuth sections are then overlapped (with overlaps equal to the discarded
kernel length) to form continuous vectors in the azimuth dimension. As is intuitive, a
large azimuth section length requires more memory than a small section.
Correspondingly, small azimuth sections require more total processing than do large
sections because the percentage of new data processed, which is not discarded, is low
(the size of the reference kernel being fixed).

A key point in this work is the exploitation of the section size and the concomitant
processor-memory tradeoff [3]. Different daughtercards are better suited for different
scenarios depending on the memory per processor ratio associated with the
daughtercard, which is largely dependent on the chosen section size. The
combination of the choices for the section size and number and types of daughtercards
employed greatly affects the overall performance and associated power consumption
of the computational platform.

3 Optimization Models

Two models are presented in this work, which address the problem of determining the
optimal parameter values for configuring the system. Both methods are based on
mathematical programming, which provides a method of formulating an optimization
problem given an objective and set of constraints [4, 5]. This work proposes
optimization techniques using a combination of constrained nonlinear and integer
programming.

The first model is based on the assumption of an ideal shared-memory system. It
treats all the memory contributed by individual daughtercards as a conglomerate
block, equally accessible by all processors located on all daughtercards. For a system
that is tightly predicated on the compute node with relatively high penalties for inter-
compute-node communication, this is an inaccurate oversimplification. However, it is
useful to initially investigate the optimization of the SAR system based on such an
assumption because it provides clear insight into the interrelationships between
variables and the effects of perturbation of other external parameters. In addition,
without constraints on the amount of local memory available to a processor, the ideal
memory-per-processor ratio can be derived from the optimization solution.

The second model removes the assumption of global shared memory and purposes
to address system configuration more realistically. With this goal comes an increase
in the complexity of the optimization formulation. The constraint set is modified to
ensure only local memory access by processors. To accomplish this optimization, a
much higher degree of integer programming is required than in the first model,
entailing greater computational intensity to perform the optimization. The benefits of
this second model include solutions that consist of a complete specification of how
system resources are to be utilized, whereas the first model only specifies which
resources are to be employed.

Parallelization of SAR processing involves the allocation of system resources for
either range or azimuth processing [6]. In the first model, range and azimuth
processors and memory are treated as aggregate requirements that somehow must be
met with an appropriate number of daughtercards of each type. The second model,
however, specifies how many processors and how much memory on each compute
node per daughtercard is allocated for each function to prevent remote memory access
during computation. Note that a single compute node can perform both range and
azimuth processing, although each processor within a compute node must be
dedicated to a single task.

4 Numerical Studies

Test data is based on the availability of two different daughtercards. The first is
comprised of two compute nodes. Each compute node on this daughtercard consists
of three processors and a shared memory block of 16 MB. The second daughtercard
consists of a single compute node with two processors and 64 MB of memory. The
first daughtercard consumes 12.2 watts of power and the second 9.6 watts.
Throughput data for the significant operations involved in SAR processing is based
on SHARC processors [7].

MATLAB’s constr function in the Optimization Toolbox was used to solve the
nonlinear constrained programming problem presented by both models. The
nonlinear nature of the problem results from the equations that express the required
system memory and number of processors, which are derived in [8]. The constr
implements a Sequential Quadratic Programming algorithm [9]. Integer
programming, the need for which results from the inherently discrete number of

processors per compute node and total compute nodes in a system, is implemented by
multiple optimizations over the feasible discrete permutations.

Figs. 1 through 3 illustrate the result of solving the optimization problem of one of
the models many times across a range of values for different platform velocities and
desired resolutions. In each case, the platform velocity ranges from 50-400 m/s and
the resolution from 0.5-2.0 m.

The utility of optimization of the section size is demonstrated by comparison of
results produced by a heuristic used to determine section size, which defines the
section size to be equal to the kernel size. This section size definition and resultant
system configuration is designated as nominal. This work finds that the nominal
section size, although relatively efficient in processing, is too large for most scenarios
because of the excessive memory requirements involved. The optimizations
performed show that forcing relatively inefficient processing with an associated
reduction in memory requirements is optimal if power is to be minimized. Optimal
section sizes thus often are found to be only a fraction of the kernel size, entailing the
processing of more old data that is to be discarded than new data.

Fig. 1. Ratio of power consumption of the nominal section size to the optimal section size.

Fig. 2. Power consumption of the CN-constrained model.

Figure 1 shows the surface plot of the ratio of results obtained by employment of the
nominal section size to the optimized section size of the first model. As would be
expected, the optimized section size always results in equal or lower power
consumption than does the nominal section size. The optimized section size adjusts
to take advantage of unutilized processor and/or memory resources resulting from
changes in system requirements produced by changes in the velocity (axis labeled v)
and/or resolution (axis labeled d).

In both models, higher velocities and/or finer resolutions require more
daughtercards and thus more power. All other radar parameters such as wavelength,
range, range swath, and pulse width remain fixed at values representative of a real
system [6]. These trends are illustrated in Fig. 2, which represents the optimal power
consumption associated with the second model.

Fig. 3 displays the daughtercard configurations necessary for the optimal power
values represented in Fig. 2. A configuration is defined as the processor and memory
allocation (for range or azimuth processing) per compute node for a particular
daughtercard type. An optimal system configuration consists of one or two
daughtercard configurations. The two configurations are denoted as X and Y, with the
subscipts T, r, and a designating the daughtercard type (T), number of range
processors per compute node of that type daughtercard (r), and the number of azimuth
processors (a).

5 Summary and Conclusions

Comparison of the two models shows the first model to be a good approximator to the
second model. Both the simplicity of formulation and the speed of data collection
lend the first model to be a useful method for obtaining a preliminary estimate for
total required system power and number of daughtercards. Refer to [8] for a full
comparison of the optimal power consumptions produced by the two models.

This work demonstrates the advantage of employing more than one type of
daughtercard in a system. Different daughtercards are characterized by different
power requirements and the processor-memory ratio of the compute nodes that they
house. Optimization exploits these differences and determines the optimal system
configurations.

Generalization of the models developed in this work is straightforward. Although
data is collected based on sample daughtercards and compute nodes deemed to be
representative of actual systems, the values that characterize the daughtercards are
expressed as functions that can be immediately adapted to accommodate any number
of additional components.

Fig. 3. Configurations of the CN-constrained model.

Acknowledgements

This work was supported by Rome Laboratory under Grant No. F30602-96-1-0098
and Defense Advanced Research Projects Agency (DARPA) under Contract No.
F30602-97-2-0297.

References

1. J. C. Curlander and R. N. McDonough, Synthetic Aperture Radar: Systems and Signal
Processing, John Wiley & Sons, New York, NY, 1991.

2. W. G. Carrara, R. S. Goodman, and R. M. Majewski, Spotlight Synthetic Aperture Radar:
Signal Processing Algorithms, Artech House, Boston, MA, 1995.

3. J. T. Muehring and J. K. Antonio, “Optimal Configuraion of Parallel Embedded Systems for
Synthetic Aperture Radar,” Proceedings of the 7th International Conference on Signal
Processing & Applied Technology, October 1996, pp. 1189-1194.

4. F. S. Hillier and G. J. Lieberman, Introduction to Operations Research, Sixth Edition,
McGraw-Hill, New York, NY, 1995.

5. M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming: Theory and
Algorithms, Second Edition, John Wiley & Sons, New York, NY, 1993.

6. T. Einstein, “Realtime Synthetic Aperture Radar Processing on the RACE Multicomputer,”
Application Note 203.0, Mercury Computing Systems, Inc., Chelmsford, MA, 1996.

7. "SHARC DSP Compute Nodes (3.3-Volt)," Mercury Computing Systems, Inc., Chelmsford,
MA, Sept. 1995.

8. J. T. Muehring, Optimal Configuration of a Parallel Embedded System for Synthetic
Aperture Radar Processing, M. S. Thesis, Texas Tech University, 1997
(http://hpcl.cs.ttu.edu/darpa/opt_config/thesis.pdf)

9. P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press,
London, 1981.

