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Abstract

Lower bound complezities are derived for three in-
tensive communication paiterns assuming a balanced
generalized hypercube (BGHC) topology. The BGHC
is a generalized hypercube [6] that has ezactly w nodes
along each of d dimensions for a total of w® nodes. A
BGHC is said to be dense if the w nodes elong each di-
mension form a complete directed graph. A BGHC is
said to be sparse if the w nodes along each dimension
form a unidirectional ring. It is shown that a dense
N node BGHC with a node degree equal {0 Klog, N,
where K > 2, can process certain iniensive commu-
nication paiterns K(K — 1) times faster than an N
node binary hypercube (which has a node degree equal
to logy N ). Furthermore, a sparse N node BGHC with
a node degree equal to %logz N, where L > 2, is 2L
times slower at processing certain intensive communi-
cation patterns than an N node binary hypercube.

1 Introduction

The hypercube structure has been a popular choice
for interconnecting large numbers of processing ele-
ments in parallel processing systems. Examples of
commercially available parallel machines that utilize a
hypercube interconnection network include nCUBE’s
nCUBE 2, Connection Machine’s CM2, and Intel’s
iPSC2.

Unless stated otherwise, a d-dimensional hypercube
is usually understood to mean a binary hypercube in
which there are two connected nodes along each of d
dimensions for a total of 2¢ nodes. Some of the attrac-
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tive features of the binary hypercube are: a relatively
low number of links incident at each node (node de-
gree = d = logy N), a small minimum hop distance
between nodes (network diameter = d = log, N'), and
a large number of alternate paths between node pairs.
Another very useful property of the hypercube is the
fact that it is a symmetric graph.

In reference [6], Bhuyan and Agrawal introduce the
concept of a generalized hypercube (GHC) in which
w; nodes are connected along the #** dimension for a
total of N = I'If;} w; nodes. One of the interesting
properties of GHCs is the fact that for any given (inte-
ger) number of nodes N, there exists an integer d > 1
and a set of integers {wq, wy,...,wa—1}, w; > 2, for
which N = 1—1::01 w;. If the number of nodes along any
two dimensions are not equal (i.e., if w; # w; for some
i and j), then the resulting GHC will be an asymmet-
ric graph. In the present paper, the complexities of
three different intensive communication patterns are
derived assuming a balanced GHC (BGHC) topology.
In a BGHC, the number of nodes along every dimen-
sion equals w, i.e., wWg = w; = -+ = Wy = W.

A BGHC is said to be dense if the w nodes along
each dimension are completely connected, which re-
quires (w — 1)d input/output ports per node and a
total of (w — 1)dw? directed links. A BGHC is said
to be sparse if the w nodes along each dimension are
connected as a unidirectional ring, which requires d

" input/output ports per node and a total of dw? di-

rected links. Both the dense and sparse BGHCs are
symmetric graphs. The dense interconnection pattern
uses a maximal number of non-parallel directed links
along each dimension; the sparse interconnection pat-
tern maintains connectivity by using a minimal num-
ber of directed links along each dimension.

In references [1] and [2] communication patterns
known as complete broadcast, single-node scatter, and
total exchange are considered for binary hypercubes




and optimal algorithms and complexities are derived.
In the present paper, these same three patterns are
considered and optimal complexities are derived as-
suming the interconnection network is either a dense
BGHC or a sparse BGHC.! In the complete broadcast
pattern each node distributes a local message to all
other nodes, in the single-node scatter pattern a given
node distributes distinct messages to each other node,
and in the total ezchange pattern each node distributes
distinct messages to each other node.

It is assumed throughout this paper that all in-
cident links of a node can be used to transmit and
receive message simultaneously. This assumption is
called the multiple link availability assumption in [1],
d-port communication in [2], the link bound model in
[4] and the maultiple acceptance scheme in [5]. Further-
more, the following assumptions are made: message
transmission is accomplished via the packet switching
mode of communication, the buffer space at each node
is infinite, and the time required to cross any link is
the same for all links and is assumed to be one time
unit.

The paper is organized as follows. In Section 2 some
preliminary notation is introduced and the dense and
sparse BGHCs are formally defined. In Section 3 the
main complexity results are derived for the three com-
munication patterns of interest (for both the dense and
sparse BGHC topologies). The techniques used to de-
rive lower bound complexities for dense BGHCs are
relatively straightforward extensions of the techniques
used in [1] for deriving complexity bounds for binary
hypercubes. However, the derivations of lower bound
complexities for sparse BGHCs are significantly dif-
ferent and more complicated than the case of dense
BGHCs. Taken together, the complexity results for
the dense and sparse BGHCs provide insightful per-
formance criteria for a wide range of topological struc-
tures (i.e., ranging from rings to complete graphs). In
Section 4, cost versus performance analysis between
N node dense and N node sparse BGHCs is pre-
sented. The analysis indicates that: (1) an N node
dense BGHC costing K > 2 times more than a corre-
sponding N node binary hypercube can improve per-
formance by a factor of K(K — 1) and (2) an N node
sparse BGHC costing L > 2 times less than a corre-
sponding N node binary hypercube degrades perfor-
mance by a factor of 2Z.

1A BGHC with w = 2 is a binary hypercube, which is simul-
taneously dense and sparse.
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2 The BGHC

The nodes in a BGHC are numbered 0 through
w? — 1 using a w-based numbering system. Node
X is identified as X = (24-1,24-2,...,%0), Where
z; € {0,1,...,w — 1} for each i € {0,1,...,d - 1}.
For example, with w = 4 and d = 2, node 9 = (21).
Following are definitions of some fundamental arith-
metic operations.

Definition 1 Tke regular exclusive-or of two coordi-
nate values z,y € {0,1,...,w — 1} is defined by

z@y:{l if c#y

0 otherwise

Definition 2 The w-modulated sum of two coordi-
nate values z,y € {0,1,...,w — 1} is defined by

r+y
r+y—w

_ if z+y<w-1
I®wy~{ if z4+y>w-1
Definition 3 The w-modulated difference of two co-
ordinate values x,y € {0,1,...,w — 1} is defined by

zT—Yy
z—y+w

_ if z—y>0
3ewy—{ if z—y<0
As a simple illustration of the above definitions, note
that 692=1,6073=2,6073=3,and 36,6 = 4.
The topologies associated with the dense and sparse
BGHCs are formally defined next.

Definition 4

(a) In a dense BGHC there is a directed arc
from node X (zd-1,%d-2,...,20) to node Y
(¥a-1,Yd-2, - -, yo) if and only if there is exactly one
coordinate i for which z; ® y; = 1. We denote the
coordinate system associated with this topology as K3.
(b) In a sparse BGHC there is a directed arc
from node X = (z4-1,Zq-2,...,%0) to node Y
(Yd—1,Yd-2, .., Y0) if and only if there is ezxactly one
coordinate ¢ for which y; = z; ®y 1. We denole the
coordinate system associated with this topology as Z3.

For the case of w = 4 and d = 2, the associated
dense and sparse BGHCs are depicted in Fig. 1. An
important measure associated with two given nodes,
say X and Y, is the (minimum hop) distance from
X to Y. As stated by Proposition 1 below, the dis-
tance between two nodes is determined by applying a
simple modulated arithmetic operation to the w-based
addresses of X and Y.
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Figure 1: (a) The dense BGHC network with w = 4
and d = 2. The coordinate system for this network is
denoted by K3. (b) The sparse BGHC network with
w = 4 and d = 2. The coordinate system for this
network is denoted by Z3.
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Proposition 1
(a) In the K3 coordinate system. (the dense BGHC)
the distance from X to'Y 1is given by

-1
Dy (X,Y) =) yi @z

i=0

(b) In the Z3 coordinate system (the sparse BGHC)
the distance from X toY is given by

d-1
Dzs(X,Y)=) vi6uz

i=0

Optimal broadcasting and scattering algorithms
rely on the construction of carefully defined spanning
trees rooted at certain nodes in the network. Fortu-
nately, due to the symmetry of both the dense and
sparse BGHCs, it suffices to simply consider spanning
trees rooted at the origin node, say O .= (00---0).
In particular, given a spanning tree rooted at node O,
the corresponding spanning tree rooted at an arbitrary
node X = (z4-1,24-2,...,20) is determined by per-
forming a coordinate-wise w-modulated sum between
the node addresses of the tree rooted at O and the
address of node X. Fig. 2 shows an example of how
a tree rooted at node O = (00) in the 23 coordinate
system is converted to a tree rooted at node X = (12)
in the same coordinate system.

In defining spanning trees, it is important to classify
all nodes that are of the same distance from the root
node. The following definitions characterize the set
of nodes that are a distance ¢ from the node O =
(00 - --0). Again, due to the symmetry of the BGHCs,
the set of nodes that are a distance ¢ from an arbitrary
node X are obtained by performing coordinate-wise
w-modulated sums between members of each set and
the address associated with node X.

Definition 5
(a) In the K3 coordinate system, let Di, denote the

set of nodes that are a distance i from theworigin node,
ie.,

D;C“, = {X | D,q:”(O,X)—_-i}.

(b) In the Z3 coordinate system, let Diz, denote the
set of nodes that are a distance i from the origin node,

ie.,
b = {X | Dz(0,X) = i}.

Proposition 2 )
(a) In the K& coordinate system, Dk, # 0, for all

i€0,1,...,d] and Dy, =0, for alli ¢ [0,1,...,d.



®

Figure 2: (a) A spanning tree rooted at node (00)
on the sparse BGHC with w = 2 and d = 2. (b)
The spanning tree of part (a) rooted at node (12).
This tree is gotten by performing a coordinate-wise
w-modulated sum between each node address and the
address (12).

Furthermore, the diameler of the dense BGHC is equal
to d.

(b) In the Z3 coordinate system, Di.,,:' # 8, for
all i € [0,1,...,(w—1)d] and D4, = 0, for all
i € [0,1,...,(w— 1)d]. Furthermore, the diameter
of the sparse BGHC is equal to (w — 1)d.

3 Intensive Communications on

BGHCs

Lower bounds for the complexities associated with
intensive communication algorithms for both the
dense and sparse BGHC topologies are derived in this
section. For a given communication pattern and a
given topology, the optimal time and transmission
complexities are derived. The results for the case of
dense and sparse BGHCs are summarized below in
Tables 1 and 2, respectively (CB = Complete Broad-
cast, SNS = Single-Node Scatter, and TE = Total
Exchange). The derivation of each entry in each table
is presented in Subsections 3.1 and 3.2. In tabulating
the results, all occurrences of w? are expressed as N
and all occurrences of d are expressed as '1%53% The
proofs of all required lemmas and theorems are in the
Appendix. For the sake of comparison, Table 3 shows
the complexities for the case of an N node binary hy-
percube. Table 1 and Table 2 (both) reduce to Table
3 by setting w = 2.

In Table 1 note that the complexities decrease as w
is increased. This is to be expected because a dense
BGHC becomes more dense as w is increased (i.e.,
more bandwidth is available as w is increased). In
contrast, in Table 2 note that the complexities increase
as w is increased. This is to be expected because a
sparse BGHC becomes more sparse as w is increased
(i.e., less bandwidth is available as w is increased).

Table 1: Optimal time and transmission complexities
for an N node dense BGHC, w > 2.
[ Pattern | Time | Transmission ||

N-1)I]
CB [ieiag] | N(V-1)
N-1)} NI N
SNS l‘gw— 1))|:gjx.| w lgg: w
N3] N
TE Free=nl ogaw
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Table 2: Optimal time and transmission complexities
for an N node sparse BGHC, w > 2.
[ Pattern | Time | Transmission ||

cB | [l | NV -1)

SNS l-!N—l!loEzw-l !w-—lleoEzN
logy N 2log, w
-1)N —1)N?log, N

TE [ﬂ_a)_] Lw_z)l_ggﬁaa_

Table 3: Optimal time and transmission complexities
for an N node binary hypercube.

[[ Pattern | Time | Transmission ||
CB v N(N-1)
_ Nlogz N
SNS | [cH] ==
N3log, N
TE ¥ s

3.1 Intensive Communications on the
Dense BGHC

3.1.1 Complete Broadcast on the Dense

BGHC

Consider for a moment the simple single-node broad-
cast pattern in which a given node needs to dis-
tribute a single message to all other nodes. This
pattern obviously requires at least w? — 1 transmis-
sions. Now, for the complete broadcast pattern, at
least w9(w? — 1) transmissions are required because in
a complete broadcast there are w? single-node broad-
casts occurring at once. In the dense BGHC recall
that there are (w — 1)dw? directed communication
links. Therefore, if all of the communication resources
are fully utilized at each time step, then the total
time required to complete all required transmissions

is bounded below by i'%"wj_ﬂlzﬁ:}.l = |wizl

w=1)d |’
3.1.2 Single-Node Scatter on the Dense
BGHC

In the single-node scatter pattern, a given node must
send w? — 1 distinct packets successively through
(w—1)d incident links. Therefore, the amount of time
required to send all packets out the node is bounded
below by [Zﬁlﬁ]’ which is a time lower bound for
the single-node scatter pattern.

In order to derive a bound for the transmission com-
plexity of the single-node scatter pattern, the number
of nodes that are a distance ¢ away from the given
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node must be known for each i € [0,1,...,d]. The
following lemma provides the needed result.

Lemma 1 In the K3 coordinate system, the following
holds:

Dk | = ( ‘:)(w-l)‘, i€0,1...,d.

Note that the summation over all i of |D;C, I should
equal to the total number of nodes, namely w®. Thus,

as a simple check of Lemma 1:
) w1y

Zdl [Pk i (¢
i=0 i=0
({)@-var-=w-1+1¢=v,

d
i=0
where the third equality is from the binomial theorem.
A lower bound for the number of transmissions
needed for the single node scatter pattern is proven
by the next theorem.

Theorem 1 The number of iransmissions needed to
process the single-node scatter pattern in the K3 coor-
dinate system is bounded below by dwd=1.

3.1.3 Total Exchange on the Dense BGHC

The total exchange pattern is equivalent to w? ver-
sions of the single-node scatter pattern taking place
simultaneously. Therefore, the total number of trans-
missions required for the total exchange pattern is
w? times that of the single-node scatter pattern, or
w? - dw?"! = dw?¥-!. Now, if all of the (w — 1)dw?

links are used for transmission at each time unit, then
(w‘fz‘);;d] = [ (‘:'”tll)-l time units are required for pro-

cessing the total exchange pattern.

3.2 Intensive Communications on the
Sparse BGHC

3.2.1 Complete Broadcast on the Sparse
BGHC

In deriving a bound for the number of transmissions
required for complete broadcast, only the total num-
ber of nodes in the network needs to be considered
(i.e., the derivation is independent of the network
topology). Thus, by following the same arguments
stated in Subsection 3.1.1, a lower bound of w?(w?—1)
is obtained. To get a time lower bound, first note



that the sparse BGHC has dw? directed links. There-
fore, if all of the communication resources are fully
utilized at each time step, then the total time to com-
plete all required transmissions is bounded below by

[w‘(;::i-l)] = [wdd-l]'

3.2.2 Single-Node Scatter on the Sparse
BGHC

In the single-node scatter pattern, a given node must
send w? — 1 distinct packets successively through d
incident links. Therefore, the amount of time required
to send all packets out the node is bounded below by

d
[w d—l
node scatter pattern.

In deriving a bound for the transmission complex-
ity of the single-node scatter pattern, first consider
the issue of determining the number of nodes which
are of a distance i from the given node, where ¢ €
[0,1,...,(w — 1)d]. The following lemma provides a

], which is a time lower bound for the single-

recursive equation for expressing (D%, |.
A

Lemma 2 In the Z¢ coordinate system, the following
holds:

w=1

k=0
with initial conditions (DL, = 1 for all i €
[0,1,...,(w = 1)] and 2a| = 0 for all i ¢

0,1,...,(w—1)d].

By assuming for a moment that w = 2 in Lemma 2,
notice that the resulting recursion generates the well-
known Pascal triangle. Thus, the recursion equation
of Lemma 2 can be viewed as a natural generalization
of the recursion associated with the Pascal triangle.
Figure 3 shows example computations from the recur-
sion for the case w = 3. Each nonzero value in each
row of the “generalized” triangle correspond to values

of ID‘E§|, ielo1,...,2d.

From Figure 3 it is clear that the sequence of num-

(w~1)d
bers { ea }
zw i=0 . .
of numbers {c;}/, is said to be symmetric if and only

if ¢, = ep—y, for all i € [0,1,...,(3] — 1].) Now,
}(w-—l)d A

is symmetric. (Note: a sequence

based on the fact that the sequence { is

(w-1)d
1=0

i d
2 =0

symmetric and the fact that ) I'Dg,, | =u? a

closed form expression for the sum EE:O_ D lD%. is

derived (which is a bound for the required number of
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1 11 d=1

1 23 21 d=2
13676 31 d=3

1 41016191610 4 1 d= 4
1 5153045 51453015 5 1 d=5

Figure 3: Example computations from the recursion
equation of Lemma 2 with w = 3. For instance, note

that [ DL, | = 30.

transmissions), see Theorem 2. The key in deriving
the closed form result is based on the the following
lemma.

Lemma 3 Given two symmelric sequences {a;}7-,
ang {bi}?=0‘ If Z:'.:U a = Z?:O bi’ then Z?:O iai

i=0 t0i-

Theorem 2 The number of transmissions needed to
process the single-node scatter pattern in the Z3 coor-

jw—l!dw‘

dinate system is bounded below by 5

3.2.3 Total Exchange on the Sparse BGHC

The total exchange pattern is equivalent to w® ver-
sions of the single-node scatter pattern taking place
simultaneously. Therefore, the total number of trans-
missions required for the total exchange pattern is
w? times that of the single-node scatter pattern, or
wid . oldwt _ (wode™ NGy if )] of the duwd
links are used for transmission at each time unit, then
(w=1)dw?? — (w=1)w?

time units are required for pro-

: 2dw
cessing the total exchange pattern.

4 Cost and Performance Analysis

Here, the cost of a network is defined as the number
of directed links used. Thus, assuming N is a power
of two, the cost of an N node binary hypercube is

Cbinary(N) =N lOg;, N. (1)

The cost of an N node dense BGHC with parameters
w and d is (w — 1)dN. Recalling that N = w9, the



cost of an N node dense BGHC can be expressed as a
function of N and w:

w-1
log, w

Cdense(Nyw)’: ( )NlogzN, w€[2,...,N].

(2
Similarly, the cost of an N node sparse BGHC with
parameters w and d is dN. Therefore, expressing this
as a function of N and w:

C’PGT‘C(N’w)=( )Nlc‘gZN; w€[21---1N]’

3)

For a fixed number of nodes N, if the parameter w is

increased, then the dense BGHC becomes more dense

(i.e., more expensive), and the sparse BGHC becomes

more sparse (i.e., less expensive). For the limiting case
of w = N, the dense BGHC is a completely connected
graph and the sparse BGHC is a unidirectional ring.

From Equations (1) and (2), note that an N node
dense BGHC (with parameter w > 2) costs h‘"’g:fu
times more than an N node binary hypercube. Also,
from Tables 1 and 3 (of Section 3), note that the
time complexity for performing the complete broad-
cast and the single-node scatter on a dense BGHC
are (both) l:)"g’;fu times smaller than the correspond-
ing complexities on a binary hypercube. Thus, with
respect to these two patterns, increasing the cost of
the underlying network by a factor of K improves the
performance by a factor of K. However, for the to-
tal exchange pattern, note that the time complexity
on the dense BGHC is w(w — 1) times smaller than
that of the binary hypercube. Thus, with respect to
the total exchange pattern, by increasing the cost of
the underlying network by a factor of K, the resulting
performance is improved by more than K(K —1).

From Equations (1) and (3), note that an N node
sparse BGHC (with parameter w > 2) costs log, w
times less than an N node binary hypercube. Also,
from Tables 2 and 3, note that the time complexity
for performing the complete broadcast and the single-
node scatter on a sparse BGHC are (both) log, w times
larger than the corresponding complexities on a binary
hypercube. Thus, with respect to these two patterns,
decreasing the cost of the underlying network by a
factor of L degrades the performance by a factor of L.
However, for the total exchange pattern, note that the
time complexity on the sparse BGHC is (w — 1) times
larger than that of the binary hypercube. Thus, with
respect to the total exchange pattern, by decreasing
the cost of the underlying network by a factor of L,
the resulting performance is degraded by a factor of
oL

log, w
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5 Summary

Lower bound time and transmission complexity for-
mulas were derived for three intensive communication
patterns assuming two separate classes of generalized
hypercubes. The two classes of generalized hyper-
cubes are called dense BGHCs and sparse BGHCs.
For a fixed number of nodes, the dense BGHC is more
dense than the corresponding binary hypercube and
the sparse BGHC is more sparse than the correspond-
ing binary hypercube (given that all graphs have the
same number of nodes and that w > 2). Cost and
performance analysis shows that for processing the
most intensive of the three communication patterns
(i.e., the total exchange pattern), a slight cost penalty
which may result by employing the dense BGHC (over
the binary hypercube) is compensated by a substan-
tial gain in performance. Also, it is shown that a slight
decrease in cost resulting from using the sparse BGHC
(instead of the binary hypercube) can degrade perfor-
mance dramatically.

The practical insight from the paper is summarized
as follows. In order to achieve reasonable cost perfor-
mance ratios for extremely intensive communication
patterns, the underlying network should be at least as
dense as a binary hypercube.

Finally, we note that communication algorithms
that achieve all of the lower bound complexities pre-
sented in this paper have been derived and will be
submitted for publication in the near future.

Appendix

This appendix contains the proofs of all lemmas
and theorems used to derive the complexity results of
Section 3.

Lemma 1 In the K& coordinate system, the following
holds:

ID;J: ( ?)(w—l)i, ielo,1...,d).

Proof: There are ( d . ) = ( d
. d—1 i

to place d — i zeros among d coordinate positions.
Moreover, each of the remaining ¢ nonzero coordinate

positions can take on (w — 1) possible values.
Q.E.D.

) different ways

Theorem 1 The number of transmissions needed to
process the single-node scatter pattern in the K3 coor-
dinate system is bounded below by dwi™!.




Proof: Transmitting a distinct packet from the ori-
gin node to any given node in the set D;cz, requires ¢
transmissions. Now, because the sets ’D;'C:,” partition
the set of all nodes (taken over all i) and because a
distinct packet must be sent from the origin to every
other node, the total number of transmissions required
is necessarily bounded below by

d d
S ifote] - 3
=0

i=1
Q.E.D.

( : ) (w — (1) = duwd-1,

Lemma 2 In the 23 coordinate system, the following
holds:

w-1
i iek
[Pts| = X [Pt

k=0
with initial conditions |’Diz.| = 1 for all i €
[0,1,...,(w — 1)] and lD‘zd = 0 for all i ¢
[0,1,...,(w—-1)d].
Proof: First note that I’D’z'llll =1 for all i €

[0,1,...,(w—1)] because Z} is simply a unidirectional
ring. Now, from Definition 5(b) and Proposition 1(b)
the following alternate definition for D', is apparent:

d-1
’D‘Z;‘., = {X = (Td-1,%a-2,...,21,20) | Zxk = i}'
k=0

So, the number of ways to choose d coordinates (hav-
ing values in the range [0, 1, ...(w — 1)]) so that their
sum is ¢ can be expressed as the sum of the number
of ways to sum d — 1 coordinates so that their sum
is ¢ (i.e., choose z4_; = 0) plus the number of ways
to choose d — 1 coordinates so that their sum is i — 1
(i.e., choose z4_; = 1), etc, until reaching i — w + 1
(because the the maximum possible value of z4_; is
(w—1)).

Q.E.D

Lemma 3 Given two symmetric sequences {a;}7,

and {bi}?=0' If E?:O a; = Z?:O b'" then Z?:o iai =
?:0 ib‘ .

Proof: Define S=)"_ja;i= 3"

=0 bi.
i=0 73
If n is odd, then Y !, ia; E}EJ’I ia; + (n —
Dani = DI+ n—da = n T e = 52,
Likewise, i ib; = 25
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If n is even, then 3°0_;ia; = ag + Z,-ng'l ia; +

(n —ian_; = a3 + ST 40— e = ey +
}Zg_l a = ag + % - ag = 22, Likewise,

z?=0 Zb‘ = %

Q.E.D

Theorem 2 The number of transmissions needed to
process the single-node scatter pattern in the Z:f, coor-

dinate system is bounded below by -(w—_lg)dl‘.

Proof:
fine a; = |‘D"z4

D

e
and b; = (w —z 1)d ) (%)(w—l)dwd’

i €[0,1,...,(w— 1)d]. By Lemma 2, the sequence
{ai}5 " is symmetric and Te-Dd g = wi. Like-
wise, because each b; is simply a scaled binomial coeffi-
cient, note that the sequence {bi}S:o_ D4 is symmetric
and that Zg:gl)db.‘ = 2w-1)d (%)(w-l)dw‘Jl = wi.
Finally, by applying Lemma 3, it is apparent that

E.D.
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