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Abstract

A distributed service-oriented architecture comprises interconnected machines that

together support a number of computational services. Concurrent service requests

made to an individual machine are supported with shared, and limited, resources

associated with that machine. A call to a service method may in turn invoke methods

from other services, resulting in a nesting of service calls that is represented by

a call tree. Deadlock occurs when a circular dependence is formed as a result of

requests (calls) waiting for machine resources to be released by other requests. A

deadlock avoidance technique is derived from Dijkstra’s Banker’s Algorithm that

accepts or denies preferred scheduling and method-to-machine assignments proposed

by underlying policies. Assumed to be known and available are estimates for the

resource requirements of methods and the structures of the call trees. Simulation

studies are conducted that demonstrate the effectiveness of the approach in avoiding

deadlock, while not degrading (and in most cases improving) the performance of the

underlying policies.

xi



Chapter 1

Introduction

As the demand for computing power is ever increasing, so is the use of parallel

computing and parallel systems to meet this demand. Traditionally, software has

been written for serial computation; that is, to be run on a single computer having

a single central processing unit or CPU. In this paradigm, a program is broken

into a series of discrete instructions to be executed one after another, only one of

which may execute at a given moment in time. Conversely, in parallel computing, a

problem is broken into smaller subproblems that can be solved concurrently. Each

subproblem is then broken down further into a series of instructions that can be

executed simultaneously on different CPUs. Solving problems in this parallel and

distributed fashion can lead to a significant reduction in the amount of time required

to solve a given problem [1].

Historically, parallel computing has been used mostly for solving complex sci-

entific and engineering problems, especially when massive amounts of data must

be processed. Some classic examples employing the use of parallel computing in-

clude applied physics and mathematics, biomedical analysis, speech recognition, and

weather forecasting [2]. As time has progressed, the use of parallel computing and

parallel systems has become more common. Some more recent applications of par-

allel systems include financial modeling and forecasting, web search engines, large
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social networking web sites, and large e-commerce web applications.

1.1 Benefits of Parallel Computation

Parallel computation is used primarily because of the speedup it provides. It comes

as no surprise that parallel systems have the potential for significant speedup because

a large problem can often be attacked from multiple angles concurrently. A good

example of such a problem is one involving the processing of large data sets or requir-

ing many iterations or simulations to reach a solution. For these types of problems

where the running time of a sequential solution may be simply unacceptable, paral-

lel systems provide the only feasible solution [2]. In addition to providing speedup,

parallel systems can also increase the precision of a particular solution [3]. Consider

the case in which a solution to a hard problem can be reached in a specified amount

of time using a sequential algorithm, but only if some simplifying approximations

are made. If the same problem was to be solved in parallel, the assumptions may no

longer be needed as more CPU resources could be devoted to the subproblems. As

more resources are devoted to solving the problem, the precision of the solution can

be increased.

For a real world example of a hard problem in which parallel computing is used to

obtain a solution, consider the problem of searching the internet via www.google.com.

When a user enters search text into the browser, it is paramount that the results

return to the user as fast as possible. For a problem of this size, it is simply infeasible

to search the entire space with a sequential algorithm using only a single CPU. For

this reason, Google uses parallel and distributed systems to perform the search [4].
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1.2 Parallel Algorithms

As a general rule, computers that are manufactured today consist of more than

one CPU. As of the date of this writing, it is not uncommon for a commodity

workstation to have 4 or even 8 CPUs, with high performance computers having

many more. These multi-core machines can be linked together to provide massive

computational resources called distributed systems [5]. This means that it falls to

software engineers and application developers to design and implement progamming

models and algorithms that take advantage of the increasing amount of parallelism

available. This is no easy task and is an ongoing challenge facing software developers

today.

For an example of a programming model that capitalizes on the amount of avail-

able parallelism, consider MapReduce [4]. MapReduce is highly scalable and flexible,

allowing users to take advantage of parallel and distributed systems without prior

experience in the area. It was inspired by the map and reduce primitives found in

Lisp and many other functional programming languages. In this model, the user

writes two basic functions: a Map function and a Reduce function. The Map function

takes as input a key/value input pair and produces a set of intermediate key/value

pairs. The Reduce function then accepts an intermediate key and a set of values for

that key and merges them together into a set of output values [4].

For an illustrative example of MapReduce, consider Fig 1.1. First, the Map func-

tion considers the set of inputs and distributes them to the various compute nodes

as indicated by the arrows in the figure. The compute nodes then perform the calcu-

lations to produce intermediary outputs that are then collected and reduced by the

Reduce function to generate the set of outputs. For this model to work, it must be

the case that the original problem can be divided into a set of subproblems that the

compute nodes can work on in parallel. For a more detailed overview and description

of MapReduce, see [4].

3



Figure 1.1: An overview of the MapReduce programming model.

1.3 Service Oriented Architecture (SOA)

This thesis deals with the problem of scheduling computations in a type of parallel

system called a Service Oriented Architecture or SOA. An SOA is a way of orga-

nizing software components to increase overall system efficiency and performance.

More specifically, an SOA provides a flexible architecture by modularizing large ap-

plications into services that communicate with each other through specified service

interfaces using service requests. SOA is more than just a way of organizing soft-

ware. It is a way of designing a software system to create a design style, technology,

and framework that all facilitate a cost-effective and logical way of developing and
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deploying software [6]. A major advantage of the SOA concept is that the architec-

ture allows software developers to take advantage of the power of parallel computing

without having to necessarily understand every part of the larger system and how

the parts inter-operate amongst themselves.

A service in an SOA is a well-defined, self-contained software module that im-

plements some business functionality and is independent of the state or context of

other services [6]. Services are defined using a standard definition language, have a

published interface, and communicate with each other to collectively support a com-

mon task or business goal. A service within an SOA must be autonomous. That is,

the service operations must be opaque to other external components of the system.

The only information external components know about a particular service is how

to communicate with it through its published interface. This provides for the loose

coupling among services which is a hallmark of an SOA. Because of this structure, an

SOA provides a way to reduce the overall system complexity by encapsulation. Each

service encapsulates some part of the overall system logic. This makes the overall

system easier to manage and deploy.

An SOA is made up of two main participants: a service consumer (requester)

and a service provider. These participants communicate with one another using a

predefined protocol via service requests and service responses, as illustrated in Figure

1.2. A service request is a message adhering to a known standard such as the Simple

Object Access Protocol [7] or SOAP used in Web services. SOAP is a standard

protocol for exchanging structured information over the Internet and for making

service calls to a Web service. A SOAP message includes a header and a payload

section. The header contains the information needed to properly route the message

to an endpoint and the payload is the data on which the endpoint operates. An SOA

does not necessarily imply the usage of SOAP, but SOAP is a very common message

format found in SOAs.

5



Service Request

Service Response

Service
Consumers

Service
Providers

Figure 1.2: Communication between service consumers and service providers.

A service requester can use SOAP or some other mechanism to directly share

information with the service provider, but there is also another role in an SOA that

makes information sharing more robust. That role is called service aggregation and

fits the description of both a service requester and a service provider [6]. The

main job of the service aggregator is to provide one location that houses all of the

services. This alleviates some of the difficulties with discovering and locating new

services coming online as the functionality of the SOA evolves. In addition, a service

aggregator may contain additional metadata about the services it houses and can

optionally make that data available to all service clients.

In addition to the concept of service aggregation is the concept of service orches-

tration. Service orchestration is the process of integration, coordination, automa-

tion, and management of services in a composite service environment [5]. Software

that facilitates communication between web services is called middleware. Some

well known, established middleware technologies include JMS [8, 9], CORBA [8, 9],

AMQP [10], and Open-MQ. These technologies provide a layer where communica-

tion and coordination occurs between the services. This layer is sometimes called an

Enterprise Service Bus [6] or ESB. The ESB is responsible for providing a layer for
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Figure 1.3: Service orchestration in an SOA.

the implementation, deployment, and management of an SOA. Fig. 1.3 illustrates

how service orchestration can be accomplished using middleware.

1.4 The BlueBox SOA

Work started on BlueBox in 2003 at RiskMetrics Group as part of an effort to pro-

vide a highly scalable software architecture to address the growing needs of clients.

Since then, BlueBox has developed into a general-purpose, distributed SOA with

inherent support for non-domain-specific utilities and features such as AAA authen-

tication (authentication, authorization, and access control) and process monitoring

and tracking. The architecture of BlueBox is illustrated at a high level in Fig. 1.4.

Clients interact with BlueBox via the Internet through a firewall. The topmost

layer of the BlueBox system shown in the figure illustrates several different gateways

through which clients interact with BlueBox, including web applications, ftp sites,

and webservices. The layer just below the client facing layer is a messaging layer

through which all communication occurs in BlueBox. In this layer is the Enterprise

Service Bus (ESB), implemented in Java Message Service (JMS). Applications and

7



services use JMS to communicate with each other through JMS messages. Finally,

the bottommost layer in the figure represents the Framework layer. The Framework

is a service aggregator [6] that is responsible for loading and unloading the services

that make up BlueBox. Services typically have multiple instances and may depend

upon resources outside of the BlueBox environment. This is represented by the ar-

row pointing out from Service 1 to an external cloud and the arrow pointing out

from Service n to an external database. In a typical BlueBox environment, multiple

Framework’s are deployed, each loading an arbitrary number of services.

1.5 Problem Addressed in Thesis: Deadlock in an

SOA

In a distributed SOA [6], services define the different categories of computational

operations that are available. Each service includes a number of associated service

methods. Each machine in an SOA contains one or more service instances and must

supply the resources necessary to carry out the methods associated with those in-

stances. In general, machine resources include available memory, CPU capacity,

persistent storage, I/O resources, network resources, and threads. The primary ma-

chine resources considered in the simulations conducted in this thesis are memory

and CPU.

The implementation of a given method may itself call upon other methods, and

the called methods are not necessarily executed on the same machine as the calling

method. Furthermore, method calls can be nested to an arbitrary depth; nested

method calls are represented by a call tree. Fig. 1.5(a) illustrates two simple call

trees. The root node of a call tree corresponds to the method that defines the entire

scope of the call tree.

Fig. 1.5(b) illustrates the order in which the method segments of the calling

8
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Figure 1.5: (a) Example of two call trees. (b) Illustration of the method segments of
the call trees shown in (a).

methods of the two call trees of Fig. 1.5(a) are executed. The boundary between

adjacent segments of a method is defined by the point in the calling method where

a call is made. For example, method q first executes segment q0; after q0 executes to

completion, method q then calls out to method r. Upon r’s completion, q resumes

execution at segment q1. Leaf methods, by definition, do not call other methods,

and thus the entirety of a leaf method is defined to be a single segment.

During the time that a called method (e.g., method r in Fig. 1.5) is executing,

the calling method (e.g., q) is defined to be in a holding state. For the purposes

of this thesis, a method in a holding state does not consume CPU resources, but it

does consume (i.e., hold) memory resources of the underlying machine to which it is

assigned. A method that is executing (defined when one of its segments is executing)

generally consumes both CPU and memory resources of the machine to which it is

assigned. During the execution of a call tree, at most one method of the call tree is

actively executing at a time; however, one or more methods may be in the holding

10



Table 1.1: Machine assignments and memory requirements for service methods of
call trees in Fig. 1.5.

Service Machine Memory
Method Assignment Requirement

q machine 1 0.6
r machine 2 0.4
x machine 2 0.7
y machine 1 0.6
z machine 1 0.3

state.

Concurrent execution of two or more call trees in a distributed SOA can lead to

deadlock. To illustrate how deadlock can occur, consider the execution of the two

call trees of Fig. 1.5 on an SOA that contains two machines. Further assume that

the service methods of the call trees are assigned to machines according to Table 1.1.

This assignment of methods to machines is illustrated graphically in Fig. 1.6. In

addition to machine assignments, Table 1.1 also defines the memory requirement of

each method; it is assumed that each machine has a normalized memory capacity

of unity that cannot be overcommitted. For this scenario, deadlock may or may not

occur depending upon how the execution of each call tree’s segments are scheduled.

As illustrated in Fig. 1.7, deadlock does occur if the execution of q0 and x0 overlap

in time. In the figure, time progresses in the downward direction, and the shading of

vertical bars indicate that the corresponding segment is executing. After completion

of x0, x calls out to method y, which is assigned to execute on machine 1. However, y0

cannot be granted permission to begin executing on machine 1 because of insufficient

memory capacity; the total memory requirement of q and y is 1.2, which is beyond

machine 1’s assumed capacity of unity. Similarly, upon q0’s completion, it calls out to

r on machine 2, but r cannot begin execution because the total memory requirement

of x and r is 1.1. As a result, q and x are deadlocked.

Recognizing that the execution of q0 should be delayed until y0’s completion (as

11
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Figure 1.7: Occurrence of deadlock due to the concurrent execution of q0 and x0.

in Fig. 1.8) illustrates the fundamental concept of deadlock avoidance. Dijkstra’s

Banker’s Algorithm is the classic approach to deadlock avoidance, and is the foun-

dation of the deadlock avoidance approach developed in this thesis.

In this thesis, a distributed SOA is modeled in which clients submit jobs that

have execution deadlines. The execution deadlines define the time by which all

service requests with an associated job should be completed. In this thesis, a job is

modeled as a workflow graph (WFG), which is a structure that includes high-level

control nodes that define execution precedence constraints among its underlying
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Figure 1.8: Deadlock is avoided by staggering the execution of q0 and x0.
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service requests. WFGs can vary greatly in size and structure. For example, the

simplest WFG is comprised of a single service request. At the other extreme, a large

WFG may contain thousands of service requests. In addition, a WFG may be highly

parallelizable or it may represent a single chain of service requests in which no two

requests may be executed in parallel.

Three types of WFGs are considered in this thesis: Batch, Webservice, and Inter-

active. Batch WFGs have daily periodicity, which distinguishes them from Interac-

tive and Webservice WFGs. Batch WFGs generally have a more complex structure,

consisting of more complex call trees, compared to the other WFG types. In addition,

the different WFG types have different arrival processes and deadline characteristics.

WFGs are discussed in more detail in Chapter 4.

In the framework considered here, a simulation environment is employed in which

WFGs are submitted to a component of the system referred to as Advancer. The

responsibility of Advancer is to assign requests of submitted WFGs to machines of

the cluster with a primary objective of assigning requests in such a way to reduce

missed deadlines of all WFGs. The simulation environment models each machine

in the cluster of memory-managed multicore machines. CPU and memory resources

are the two primary factors used to characterize machines. Advancer is assumed to

have estimates for the CPU and memory requirements of each request in a WFG.

As Advancer assigns requests to machines, the simulation environment tracks ag-

gregate CPU and memory loading of each machine based on the CPU and memory

requirements of all requests currently executing on the machine. When a request is

assigned to a machine, the aggregate CPU and/or memory loading increases, which

generally decreases the overall performance of the machine. Likewise, after a re-

quest completes execution, the performance of the machine on which the request

was executing generally increases as the aggregate loading on the machine decreases.

A request may finish a portion of the work to be done but still consume memory
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resources if it is waiting on child requests to complete. Such a request is said to

be in the “holding” state. Requests of this nature originate from an intermediate

node in a call tree and can lead to deadlock if appropriate action is not taken. In

the framework developed, Advancer employs Banker to avoid deadlock. Banker is

a deadlock avoidance technique that is developed in this thesis. Banker is an adap-

tation of Dijkstra’s original Bankers Algorithm [11] for a distributed SOA modeled

here. In addition to preventing deadlock, it is shown that Banker can also improve

the performance of sub-optimal policies in terms of workflow tardiness.

The remainder of the thesis is organized in the following manner. Chapter 2

examines the phenomenon of deadlock and describes the motivation for this thesis.

Chapter 3 and Chapter 4 outline a Call Tree Execution Model and Workflow Graph

model respectively. The Banker’s algorithm for deadlock avoidance in a distributed

SOA is developed in Chapter 5. An overview of the simulation environment is given

in Chapter 6, followed by simulation results in Chapter 7, and concluding remarks

in Chapter 8.
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Chapter 2

Overview of Previous Work on the

Deadlock Problem

Deadlock describes an undesirable phenomenon in which two or more processes wait

indefinitely. Processes can enter the deadlock state—also known as the deadly em-

brace [11]—when each process is stalled because it is waiting for resources held by

another process to be freed. For the case of two processes, deadlock occurs when

the first process is waiting on the second process to free resources that the first pro-

cess needs in order to proceed; however, the second process is also stalled because

it is waiting for resources to be freed by the first. In general, deadlock can involve

more than two processes; occurring when the resource requirements of the involved

processes form a circular chain of dependencies with one another.

Deadlock can be expressed more precisely with a state-graph [12]. Assume a

system contains a set of executing tasks {T1, T2, . . . , Tn} each utilizing a distinct

resource of the available resources. The system contains one resource instance for

each resource type in the set of available resources {R1, R2, . . . , Rm}. A state graph

is constructed with the nodes representing the resources. There is an arc in the state

graph from Rj to Rk if at the time instant for which the graph represents, some

task Ti occupies resource Rj and requests Rk. It has been shown [12, 13, 11] that

a deadlock exists if the state graph contains a cycle. For example, consider Fig. 2.1
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R2 R3

R1

Figure 2.1: Example of a state graph with a cycle indicating deadlock.

which illustrates a system in a deadlocked state.

2.1 Necessary Conditions for Deadlock

The seminal paper [12] defines four necessary conditions for the occurrence of dead-

lock. The necessary conditions are summarized below.

• Mutual-Exclusion Condition: Tasks claim exclusive use of resources allocated

to them.

• Wait-For Condition: Tasks continue to hold resources already allocated to them

while waiting for additional resources.

• No-Preemption Condition: Resources cannot be revoked from a task holding

them until the task completes and releases them.

• Circular-Wait Condition: A cycle of tasks exists in which each task holds one

or more resources that are needed by the next task in the chain.

Even when these conditions are possible, it is generally not straightforward to deter-

mine if, or when, deadlock will occur.
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2.2 Combating Deadlock

Generally speaking, deadlock can be dealt with in one of three ways: preventative

measures can be taken to prevent deadlock from ever occurring, deadlock may be

allowed to happen and measures can be taken to recover, or a protocol can be em-

ployed to avoid deadlock. The following three sub-sections describe the techniques of

deadlock prevention, deadlock detection and recovery, and deadlock avoidance. The

approach developed in this thesis is categorized as a deadlock avoidance technique.

2.2.1 Deadlock Prevention

As stated in Section 2.1, for deadlock to occur the four necessary conditions must

be satisfied. Fundamental to deadlock prevention is the concept that the system be

designed in such a way such that at every point in time at least one of the necessary

conditions cannot possibly be satisfied.

The mutual-exclusion condition is one that cannot be denied for all resources

as some resources are inherently unsharable. For example, consider the scenario in

which multiple process all want to write to the same file. Only one of those processes

can be granted permission to write to the file. In this way, some resources simply

cannot be shared so the mutual-exclusion condition cannot be removed in all cases

[12].

The second of the necessary conditions, the wait-for condition, can be removed

if no task is allowed to request resources while it occupies any other resources. One

way to achieve this is to force all tasks to request all necessary resources needed for

completion before execution begins. An alternative to this approach is to force a task

release all occupied resources before requesting additional resources. Both of these

protocols have two major disadvantages. First, resource utilization is likely to be low

because resources may be allocated to a task that is not using them at the present
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time. Second, starvation is possible. If a task requires multiple resources, there is

no guarantee that all of the resources needed for that task will be free at any given

moment in time. If this occurs, the task will be forced to wait for an arbitrarily long

period of time [13]. This is known as starvation.

The third condition requires that there be no preemption of resources that have

already been allocated to a task. To ensure that this condition is not satisfied, the

following protocol can be used. When a task T requests resources that cannot be

immediately allocated to it (i.e. the task must wait), then all resources allocated to

T are immediately preempted. Then, at some point in the future when all resources

previously occupied and newly requested by task T are available, T can resume

execution. As an alternative, another protocol may be used. This protocol states

that when a task requests resources, a check is done to ensure that adequate resources

are available. If adequate resources are available, they are allocated to the requesting

task. Otherwise, if another task in the holding state is occupying adequate resources

to satisfy the requesting task, the resources are preempted from the holding task. The

waiting task will then have to regain the preempted resources before it can continue

with its execution. If resources are neither freely available nor held by a waiting task,

the requesting task must wait. During the waiting period, the resources held by the

requesting task may be preempted if another task requests them. This protocol can

only be used with resources whose state can be easily saved and restored. Of course,

not all resources meet this criteria. In addition, it may not always be practical

to save and restore the state of resources, especially if the system is one in which

computational deadlines exist.

The final condition for deadlock, the circular-wait condition, can be removed if

a total ordering is imposed on the set of all resource types and each task is required

to request resources only in an increasing order of enumeration [13]. For example,

consider a system with the following set of resource types R = {R1, R2, . . . , Rn}. The
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circular-wait condition is removed if all tasks request resources in only an increasing

order. Initially, a task can request any amount of Ri. After that, the task can request

resource Rj if and only if the number assigned to Rj in the total ordering is strictly

greater than that assigned to Ri. For example, if task T needs both R1 and R3 to

complete execution, it must request the resources in exactly that order.

2.2.2 Deadlock Detection and Recovery

Sometimes designing a system such that deadlock can never occur is impractical.

Another solution to dealing with the deadlock problem is deadlock detection and

recovery. For this two pronged approach to be successful, the system must provide

an efficient algorithm for detecting when deadlock has occurred and some recovery

algorithm that removes the deadlock.

For the case of one resource instance of each resource type, a deadlock detection

scheme can be implemented by maintaining and observing a wait-for graph [13]. The

graph contains an edge from Ti to Tj if Ti is waiting for resources currently occupied

by Tj. A deadlock exists in the system if and only if there exists a cycle in the

wait-for graph. For a deadlock to be detected in the system, the system must track

resource allocations in the wait-for graph and periodically invoke an algorithm to

check for a cycle in the wait-for graph.

The wait-for graph and cycle detection algorithm works well for detecting dead-

lock in a system where all resources have only a single instance but is insufficient

for systems in which resources may have muliple instances. For such systems, a

more complicated approach is needed. Such an approach is discussed in detail in

[13] and is summarized here. The algorithm utilizes several data structures that

track the amount of available resources, the allocation of resources to each task, and

the amount of resources each task is currently requesting. When the algorithm is

invoked, it uses these data structures to examine every possible allocation sequence
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for the tasks that have been started but have yet to complete. If all started tasks can

not be completed, deadlock is declared. Of major concern when utilizing a deadlock

detection algorithm is the decision of under what conditions to run the detection

algorithm. If the nature of the system is such that deadlocks occur frequently, the

detection algorithm should be invoked frequently. Another factor that should be

considered is the amount of overhead required to run the algorithm. If this overhead

is extremely high, it may be infeasible to run the detection algorithm as often as

necessary.

Deadlock detection algorithms are alone not enough to solve the deadlock prob-

lem. A detection algorithm must be paired with some form of a recovery algorithm

whose responsibility is to rid the system of all deadlocks. Recovering from deadlock

is a domain specific problem and can be very complex. For example, in the case of a

system where tasks must be completed before hard deadlines, the recovery algorithm

should find the most efficient way to recover from deadlocks while not causing any

more deadlines to be missed than are absolutely necessary. In general, two main

approaches are considered to recover from deadlock. The first approach is to abort

all tasks involved in the deadlock. Of course, this approach will clear the deadlock

but will also most likely terminate tasks that need not be terminated. This is ineffi-

cient, especially if long-running tasks are involved because any partial computations

will have to be recomputed. Another, seemingly more efficient, approach involves

aborting individual processes until the deadlock cycle is removed. The problem with

this approach is that a deadlock detection algorithm must be invoked after the ter-

mination of each individual task. This too can lead to inefficiencies. Sometimes the

costs associated with a detection and recovery scheme are simply too great to be

feasible. An example of a real-world system in which this is the case is BlueBox

described in Section 1.4. In BlueBox, jobs submitted by clients have specific service

level agreements (SLAs) [14] that define agreed upon deadlines for each job. Failing
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to meet these SLAs results in penalties.

2.2.3 Deadlock Avoidance

An alternative approach to both deadlock prevention and deadlock detection and

recovery is deadlock avoidance. Critical to the success of deadlock avoidance is

some advance information indicating how tasks will request resources in the future.

This information can then be used to determine for each request whether or not

serving the request, thereby allocating resources, will put the system in a state of

possible deadlock. The amount of information required varies depending on the

model used by the specific deadlock avoidance algorithm. The simplest model, and

the one employed by the algorithm presented in this thesis, makes use of worst case

estimates of resource requirements for each request. Given the information from the

model, a deadlock avoidance algorithm can ensure that at every point in time, the

circular-wait condition necessary for deadlock is not satisfied by ensuring the system

remains in a “safe” state.

A “safe” state is one in which deadlock will not occur. An “unsafe” state does

not always lead to deadlock, but indicates that the possibility for deadlock exists.

Fig. 2.2 illustrates the relationship between “unsafe” states and deadlock. From

the figure, note that the system could operate in the “unsafe” region and never

encounter deadlock. However, if the system remains in the “safe” region, deadlock

can never occur. Whenever a task makes a request for resources, a deadlock avoidance

algorithm will utilize the knowledge it possesses of the current system coupled with

knowledge of future estimates of resource requirements to determine whether or not

granting the resources to the requesting task will put the system in a “safe” or

“unsafe” state. If the resulting state is “safe” the resources can be granted to the

requesting task. Otherwise, the requesting task must wait until adequate resources

become available that keep the system in a “safe” state.
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Unsafe Safe 

Figure 2.2: Safe, unsafe, and deadlock regions.

A state is said to be “safe” when it is possible, using the currently available

resources and those that will be returned by currently executing tasks, to form a

“safe sequence” [13] (consisting of all tasks in the system) such that all tasks in the

sequence complete. It is important to note that the initial state (when no resources

have been allocated) is a “safe” state because a valid sequence can always be formed

by executing all tasks in a serial fashion. It follows from this observation that if

a “safe sequence” can be determined for currently executing tasks, remaining tasks

that have yet to start can always be run to completion [12]. It is the job of the

employed deadlock avoidance algorithm to ensure that the system is always in a

“safe” state by discovering a “safe sequence” each time a request for resources is

made.

An algorithm for deadlock avoidance in the context of operating systems is given

in [15]. In addition, an algorithm for deadlock avoidance in distributed systems is

given in [16]. While both of these algorithms are based upon extensions of Dijkstra’s
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Banker’s Algorithm, neither address certain complexities inherent to an SOA. For

example neither handle integration into an SOA at the service orchestration layer or

facilitate the dynamic assignment of requests by a SelectionPolicy. For these reasons,

a novel approach is developed in this thesis.
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Chapter 3

Call Tree Execution Model

The execution of call tree T of Fig. 3.1 involves calls to six service methods, labeled a

through e. A method is a sequence of one or more method segments; the boundaries

between segments are defined where a method calls another method. Also shown in

the figure is an expanded view of T , illustrating the sequential ordering in which the

methods’ segments are interleaved. Thus, during execution of a call tree, at most

one of its methods is executing at a time. Methods that do not call other methods

are the single-segment leaves of the tree, e.g., b0, d0, e0, and f0 in the figure. The

non-leaf methods (a and c in the figure) each include calls to other methods and thus

are comprised of multiple segments.

Once a method’s initial segment is assigned to a machine, it is assumed that its

subsequent segments are pre-assigned to the same machine, i.e., method migration

is not considered. Thus, the segments subsequent to the initial segment are shaded

in Fig. 3.1 to indicate that their assignment is inherited from the assignment of the

initial segment of the method.

3.1 Method Segment States

Fig. 3.2 illustrates the sequential ordering (vertically) in which the chain of segments

of call tree T of Fig. 3.1 are executed. The possible states of the segments are defined
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Figure 3.1: Example call tree T and expanded view illustrating sequential ordering
of its method segments.

by the labeled columns: blocked (B); ready (R); executing (E); and completed (C).

Upon initialization of call tree T , segment a0 transitions from blocked to ready,

and all other segments remain blocked. After zero or more time units in the ready

state, a0 is assigned to a machine (by some independent assignment policy) and

begins executing, which is represented by a0’s transition from the ready state to the

executing state.

Segment a0 stays in the executing state until the segment completes execution.

The completed state is a terminal state for a segment. The dashed transition arc

emanating from the completed state signifies that the completion of a segment trig-

gers the next segment in the chain to transition out of the blocked state. For the
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Figure 3.2: Execution ordering of method segments of call tree T from Fig. 3.1 (shown
vertically) with state transition diagram for each segment (shown horizontally).

transition from a0 to b0, note that b0 moves from blocked to ready upon a0’s comple-

tion. However, upon b0’s completion, the next segment, a1, transitions directly from

blocked to executing, bypassing the ready state. This is because a1 is pre-assigned

according to a0’s assignment. Fig. 3.2 incudes the state transition diagram for the

entire execution of T of Fig. 3.1.

In general, a segment gi is in exactly one defined state at a time. Let σ(gi)

denote a mapping from a segment gi to a representation of its state. Making use of

the abbreviations for the states provided in Fig. 3.2, the set of possible states for an

initial segment g0 is defined by:

σ(g0) ∈ {B,R,E,C}. (1)
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Similarly, the set of possible states for a subsequent segment gi, i > 0 is defined by:

σ(gi) ∈ {B,E,C}. (2)

The R (ready) state is not a possible state for a subsequent segment because a

subsequent segment inherits its assignment from its associated initial segment; thus,

it transitions directly from B to E.

The total number of segments associated with a call tree is an important parame-

ter, and shall be denoted by NT . For the call tree T of Fig. 3.1, NT = 11. In general,

the value of NT is the sum of the number of vertices and edges in the call tree graph,

which for T of Fig. 3.1 is NT = 6 + 5.

The two time instances when each of the NT segments of a call tree begin exe-

cuting, and complete executing, are important markers in defining life cycle phases

of a call tree. Define tEi
as the ith begin execution time marker for a call tree, which

is the time instant when the ith segment of a call tree begins executing. Similarly,

define tCi
as the ith completion time marker for a call tree, which is the time instant

when the ith segment of a call tree completes executing.

To illustrate examples of execution and completion markers, consider call tree T

of Fig. 3.1, with its corresponding chain of NT = 11 segments shown in Fig. 3.2.

The instant that the fourth segment c0 begins executing, i.e., the instant that σ(c0)

transitions from R to E, defines tE4 . Similarly, tC4 is defined as the instant that c0

completes executing, i.e., the instant that σ(c0) transitions from E to C.

3.2 Method States

In general, a method g can be in one of five possible states. Four of the states

for a method g are named the same as the four possible states of a segment, i.e.,

{B,R,E,C}. The definitions for these states for method g follow logically from the
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states of g’s underlying segments.

σ(g) = B⇔ σ(g0) = B (3)

σ(g) = R⇔ σ(g0) = R (4)

σ(g) = E⇔ ∃i s.t. σ(gi) = E (5)

σ(g) = C⇔ σ(gi) = C,∀i (6)

In addition to the four states defined above, a method has another possible state

called holding (H), defined as follows:

σ(g) = H⇔


σ(g0) = C &

∃i s.t. σ(gi) 6= C &

σ(gi) 6= E,∀i > 0

(7)

As an example of method a in Fig. 3.1 in the holding state, i.e., σ(a) = H,

consider the following states of a’s segments: σ(a0) = C, σ(a1) = C, σ(a2) = B, and

σ(a3) = B. This represents a state in which a is partially completed, and none of

a’s segments are executing. From the structure of the call tree, it is apparent that

this state for a implies that σ(b0) = C, and that only c, d, or e could possibly be

executing.

Based on the definition of the holding state provided by Eq. 7, a method that is

a leaf of a call tree can never be in the holding state. To show this, recall that a leaf

method has only one segment, e.g., g0. Thus, it is not possible for such a method

to be in the holding state because it is not possible to satisfy the two conditions

σ(g0) = C & σ(g0) 6= C, refer to Eq. 7.
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Figure 3.3: State transition diagrams for non-leaf and leaf methods.

Fig. 3.3 illustrates the state transition diagrams for both non-leaf and leaf meth-

ods. For non-leaf methods, notice the presence of the cycle involving states E and

H. The state transition for a leaf method contains no cycle; its transitions are the

same as the initial segment transitions illustrated previously in Fig. 3.2.

3.3 Life Cycle Phases of a Call Tree

Recall from Subsection 3.1 that a call tree T has NT begin execution time markers

and NT completion time markers, which define time instances when each of the NT

segments of a call tree begin and complete execution, respectively. These markers

are denoted by tEi
and tCi

, and are used here in partitioning the time line of a call

tree’s life cycle into NT + 2 phases, numbered 0, 1, . . . , NT + 1. The ith phase of a

call tree’s life cycle is denoted by φi and defined by

φi =



[0, tE1), i = 0[
tEi
, tEi+1

), i ∈ {1, 2, . . . , NT − 1}

[tEi
, tCi

), i = NT

[tCi
,∞), i = NT + 1

(8)

Phases φi, i ∈ {1, 2, . . . , NT − 1}, can be further partitioned into two sub-phases

called the ith primary sub-phase, denoted φ1
i , and the ith secondary sub-phase, denoted

φ2
i :
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φ1
i = [tEi

, tCi
), i ∈ {1, 2, . . . , NT − 1} (9)

φ2
i =

[
tCi
, tEi+1

), i ∈ {1, 2, . . . , NT − 1} (10)

From Eqs. 8 through 10, it follows that

φi = φ1
i ∪ φ2

i , i ∈ {1, 2, . . . , NT − 1} (11)

and

φ1
i ∩ φ2

i = ∅, i ∈ {1, 2, . . . , NT − 1} (12)

The primary sub-phase φ1
i represents the time interval when segment i is execut-

ing. The secondary sub-phase φ2
i represents the time interval after segment i has

completed execution, but before segment i+ 1 begins executing. Thus, φ2
i represents

a “delay” time in which neither segment i nor segment i+ 1 is executing.

In general, the length of φ2
i is impacted by the characteristics of the underlying

scheduling policy. To illustrate, consider the chain of segments in Fig. 3.2. The

completion of the 4th segment (c0) marks the value of tC4 and triggers the 5th segment

(d0) to transition from state B to R. Once d0 is assigned, d0 transitions to state

E. The underlying scheduling policy dictates when d0 should begin executing, i.e.,

transition from state R to state E, which defines the value tE5 as well as the length

of φ2
4 = [tC4 , tE5 ).

3.4 Resource Requirements

A method g that is in the executing state (i.e, σ(g) = E) is assumed to require both

memory and CPU resources. A method g in the holding state (i.e., σ(g) = H) is

assumed to require only memory resources. A method in a state other than E or H
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is assumed to have no resource requirement.

The notation T (i) is used to indicate that call tree T is in life cycle phase φi.

Furthermore, T
(i)
E denotes the set of executing methods associated with T (i):

T
(i)
E = {g ∈ T (i) : σ(g) = E}. (13)

Because at most one method can execute at a time, T
(i)
E either contains zero or one

elements.

Similarly, T
(i)
EH denotes the set of methods of T (i) that are either executing or

holding:

T
(i)
EH = {g ∈ T (i) : (σ(g) = E) ∨ (σ(g) = H)}. (14)

The resource requirements of a call tree change when it transitions from one phase

of its life cycle to the next. To illustrate, Table 3.1 defines the sets T
(i)
E and T

(i)
EH for

each of the twelve phases of call tree T of Fig. 3.1. Technically, the sets provided

in the table are associated with T ’s primary sub-phases, φ1
i for i ∈ {1, 2, . . . , 11}.

During T ’s ith secondary sub-phase (φ2
i ) T

(i)
E = ∅ because φ2

i defines the period of

time after completion of segment i but before beginning the execution of segment

i+ 1.
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Table 3.1: Life cycle phases, φi, for call tree T of Fig. 3.1. Also tabulated are sets
of methods requiring CPU resources, T

(i)
E , and sets of methods requiring memory

resources, T
(i)
EH, during each phase.

i φi T
(i)
E T

(i)
EH

0 [0, tE1) ∅ ∅
1 [tE1 , tE2) {a} {a}
2 [tE2 , tE3) {b} {a, b}
3 [tE3 , tE4) {a} {a}
4 [tE4 , tE5) {c} {a, c}
5 [tE5 , tE6) {d} {a, c, d}
6 [tE6 , tE7) {c} {a, c}
7 [tE7 , tE8) {e} {a, c, e}
8 [tE8 , tE9) {c} {a, c}
9 [tE9 , tE10) {a} {a}

10 [tE10 , tE11) {f} {a, f}
11 [tE11 , tC11) {a} {a}
12 [tC11 ,∞) ∅ ∅
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Chapter 4

Workflow Graph (WFG)

Workflow graphs (WFGs) are used to model computational jobs submitted to an SOA

by users. A WFG is a structure that is a generalization of the call tree structure

defined in Chapter 3. Although a single call tree is itself a special case of a WFG, a

WFG generally includes multiple call trees.

A WFG includes high-level control nodes that define execution precedence con-

straints among its member call trees. Two types of control nodes are considered

here: parallel and sequential. A parallel control construct indicates that its child call

trees may be executed concurrently. A sequential control construct indicates that its

child call trees must be executed in sequence (left to right order).

Workflows of the BlueBox system are written in the Gozer [17] workflow language.

In practice, these workflows contain client-specific customizations but generally con-

sist of a structure close to the structure of the sample workflow shown in Fig. 4.2.

Fig. 4.1 outlines pseudocode associated with the structure of the sample workflow.

Fig. 4.2(a) shows an example WFG containing eleven call trees, that are repre-

sented with triangular shapes. The circular nodes in Fig. 4.2(a) are control nodes

that indicate that their direct children can be executed in parallel, represented by

nodes labeled with horizontal dots (· · · ), or must be executed sequentially, repre-

sented by nodes labeled with vertical dots (
... ). Fig. 4.2(b) is a representation of
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1 begin workflow

2 parse configuration

3 prepare report templates

4 for each report to run

5 gather portfolios

6 run analysis

7 generate report

8 store report

9 aggregate report outputs

10 end workflow

Figure 4.1: Pseudocode for a basic Gozer workflow.

the WFG of Fig. 4.2(a) as a directed acyclic graph in which the directed arcs denote

precedence constraints among the call trees.

As described in Chapter 3, call trees are composed of service methods. When a

call tree of Fig. 4.2 is executed, a series of service methods is invoked in order to

complete the execution of the call tree. To illustrate, Fig. 4.3 defines the service

methods invoked when the call tree labled “Analyze” of Fig. 4.2 executes. The

root of the “Analyze” call tree is denoted by method AnalyzeMain(AM). The first

step in the execution of the “Analyze” call tree is a call to a service known as

SecurityManger (SM). This service is responsible for authentication, authorization,

and access control. After a successful authentication, the report query will be sent

to an external risk engine called RiskServer. Communication to RiskServer occurs

through the RSQueryService (RS). The final step of the “Analyze” call tree is a

call to the AccontingService (AS), which is repsonsible for various bookkeeping and

statistic collection tasks. The statistics collecting step again requires authentication

so another call to SM is required. When the call to AS returns to AM, the execution

for the “Analyze” tree is complete and the call tree will transition to the completed

state.
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...

...

Parse Prep Aggregate

Gather Analyze Generate Store Gather Analyze Generate Store

...

...

(a)

(b)

... ...

Parse

Prep

Gather

Analyze

Generate

Store

Aggregate

Figure 4.2: (a) Example WFG derived from the pseudocode of Fig. 4.1 with parallel

(· · · ) and sequential (
... ) control nodes. (b) Representation of the WFG of (a) as a

directed acyclic graph, illustrating the precedence constraints among the call trees.
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AM

SM RS AS

SM

Analyze

Figure 4.3: An expanded view of the “Analyze” call tree in Fig. 4.2.
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Chapter 5

Deadlock Avoidance Algorithm

5.1 Dijkstra’s Banker’s Algorithm

The classic approach to deadlock avoidance in a resource-constrained environment

is Dijkstra’s Banker’s algorithm [11]. In the original formulation, Banker is assumed

to have control of a finite amount of capital (resource), which may be loaned to

borrowers. Banker is responsible for accepting or denying (postponing) loan requests

made by borrowers. Each borrower has a maximum loan limit, which bounds the

total amount of capital each borrower may owe Banker at any instant. In addition to

receiving loans, borrowers may pay back all or part of their outstanding loan balance

to Banker. A key assumption is this: once a borrower’s loan amount reaches its

maximum, the borrower will repay this amount back to Banker in finite time.

Banker is tasked with not accepting loan request combinations that could lead

to an “unsafe” state (see Subsection 2.2.3). To illustrate, consider the following

scenario: Banker has $9 of capital to loan; Borrower 1 has a credit limit of $7; and

Borrower 2 has a credit limit of $5. Suppose that Borrower 1 requests a loan for $5

and Borrower 2 requests a loan for $3. Although Banker has sufficient capital ($9) to

accept both loan requests ($8 = $5 + $3), doing so would be unsafe because the $1

remaining with Banker would not be sufficient to cover either borrowers’ maximum
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credit limit. Thus, if either borrower was to request an additional loan of more than

$1 (before either borrower was to pay back any of their current loan) then the result

is deadlock.

To illustrate a request scenario involving Borrower 1 and Borrower 2 that would

be safe for Banker to grant, suppose Borrower 1 requests a loan for $5 and Borrower

2 requests a loan for $2. Granting both of these requests is safe because Banker is

left with $2, which is sufficient to cover Borrower 1’s maximum limit ($7 = $5 + $2).

Thus, when Borrower 1 (eventually) reaches this max limit, all $7 will then (in finite

time) be paid back to Banker, which provides sufficient capital for Banker to cover

Borrower 2’s maximum limit. Thus, in this case Banker can guarantee the existence

of acceptable (safe) future loan/repayment events to avoid deadlock.

5.2 Banker’s Algorithm for a Distributed SOA

The Banker’s Algorithm is used here as a basis for avoiding deadlock when scheduling

the execution of call trees in a distributed SOA. Assumed to be known to Banker

is a phase number for each call tree and the requirements (e.g., memory and CPU)

of the methods associated with the call trees. Having access to such information

is realistic in the assumed environment in which off-line profiling and/or historical

logging can be performed to collect/estimate these requirements. In this context,

each call tree is a borrower of resources from the machines of the distributed SOA.

As illustrated through the example presented in Section 1.5, deadlock can occur if too

many methods from distinct call trees are allowed to advance their phase concurrently

(refer to Figs. 1.5 – 1.7); but deadlock can be avoided if proper phasing (i.e., timing

for the execution of the underlying methods) is employed, refer to Fig. 1.8.

Unlike the implicit assumption of a centralized pool of resources — used to de-

scribe the original Banker’s Algorithm — the resources in an SOA are distributed
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across multiple machines. Thus, when applying Banker’s Algorithm in this context,

an accounting must be made for the machine location(s) associated with available

resources.

Let Banker denote the implementation of the Banker’s Algorithm developed here

for avoiding deadlock in a distributed SOA. In this context, Banker serves as a con-

sultant to Advancer, which is the orchestration component of the system responsible

for incrementing the phases of “advance-able” call trees in order to meet desired

system objectives. Examples of such objectives might include maximizing through-

put, minimizing latency, and/or minimizing WFG tardiness. The role of Banker is

to declare whether a proposed phase advancement is safe. In order to meet desired

system objective(s), Advancer relies on an underlying SelectionPolicy module.

Thus, Advancer first consults with SelectionPolicy to obtain a proposed phase

advancement, and then consults with Banker to determine if it is safe to imple-

ment the (proposed) phase advancement. In its attempt to meet desired objectives,

SelectionPolicy may propose the execution of many call trees and/or aggressively

advance the phasing of many call trees. Before committing to the proposed advance-

ment, Advancer consults with Banker to determine safety. If Banker declares the

proposed phasing to be UNSAFE, then Advancer again calls on upon SelectionPolicy

to produce a modified phasing until one is determined that Banker declares to be

SAFE. The interaction between Advancer, SelectionPolicy, and Banker is provided

in Fig. 5.2. The notation and definitions used in the pseudocode of Fig. 5.2 are pro-

vided in Fig. 5.1.

From Fig. 5.2 Advancer takes as input the set of call trees under consideration,

along with their current phasing, and the set of machines. At line 1, a temporary

set T̃ is constructed containing all trees that do not have a method executing; these

represent trees that are eligible for phase advancement, i.e., they are advance-able.

SelectionPolicy selects a tree, T ∗, and a machine assignment, M∗, on which T ∗’s
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T: set of all call trees

I: current phasing; maps trees to phase numbers
I : T→ {0, 1, . . . , Nmax}
where Nmax = max{NT : T ∈ T}

I∗: proposed phasing; maps trees to phase numbers

M: set of machines where methods assigned to each
M ∈M are associated with current phasing I

M∗: set of machines where methods assigned to each
M ∈M are associated with proposed phasing I∗

Figure 5.1: Notation and definitions used by pseudocode of Fig. 5.2

Advancer(T, I,M)

1 T̃← {T ∈ T : TE 6= ∅}
2 while(T̃ 6= ∅)
3 (T ∗, g∗,M∗)← SelectionPolicy(T̃, I,M)

4 if(!M∗)

5 break

6 I∗ ← I− {(T ∗, I(T ∗))}+ {(T ∗, I(T ∗) + 1)}
7 M∗ ← update(g∗,M∗,M)

8 if(Banker(T, I∗,M∗)=SAFE)

9 I← I∗

10 M←M∗

11 T̃← T̃− {T ∗}

Figure 5.2: Banker used as a consultant by Advancer.

ready method g∗ should execute (line 3). Assuming an assignment is made, a cor-

responding proposed phasing is constructed by incrementing the phase number of

the selected tree (line 6). Likewise, the proposed states of the machines are updated

by assigning ready method g∗ to machine M∗ (line 7). Banker is then consulted to

determine safety of the proposed phasing and associated machine states. If safety is

declared by Banker, then the proposed phasing and machine states are committed

(lines 8 through 10). The selected tree T ∗ is removed from the temporary set T̃

(line 11) and execution continues until T̃ = ∅ (line 2) or SelectionPolicy does not
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return a machine assignment (lines 4 and 5).

The pseudocode for Banker is provided in Fig. 5.4. Banker returns a value of

either SAFE or UNSAFE. By returning SAFE, Banker asserts that given the call trees’

proposed phase numbers, there exists future scheduling phases to complete execution

(without deadlock) of all call trees in T. By returning UNSAFE, Banker declares that

continuing execution of call trees from their current state could lead to deadlock.

u

v

w

Figure 5.3: Three-level aggregate tree structure associated with tree T of Fig. 3.1.

Assumed to be known for each tree phase is a worst-case estimate of future re-

source requirements for executing the tree to completion. This estimate is modeled

by an aggregate tree and denoted by A(T(I∗(T))). The depth of an aggregate tree

equals the depth of the original tree and the number of methods comprising an ag-

gregate tree equals its depth (i.e., it is a linear tree). For example, an aggregate

tree associated with tree T of Fig. 3.1 has three methods and a depth of three. The

resource requirements of each method of an aggregate tree equals the maximum re-

source requirements of methods yet to be completed at that level. Shown in Fig. 5.3

is the structure of the aggregate tree associated with tree T of Fig. 3.1. For phase

0 (before beginning execution of segment a0) the resource requirements of the asso-

ciated aggregate tree are as follows: R(u) = R(a); R(v) = max{R(b), R(c), R(f)};

R(w) = max{R(d), R(e)}. For phase 3 (after completion of segment a1 and before

beginning execution of c0) the resource requirements of the associated aggregate tree
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are as follows: R(u) = 0; R(v) = max{R(c), R(f)}; R(w) = max{R(d), R(e)}.

From Fig. 5.4, Banker takes as input the set of call trees under consideration,

along with their proposed phasing, and the set of machines with proposed method

assignments. At line 1, a temporary copy of T is constructed, denoted by T̂. For each

tree, Banker determines if sufficient resources are available to satisfy future resource

requirements for that tree. This is accomplished by employing SelectionPolicy to

assign a machine to each method of the associated aggregate tree (lines 7 and 8). If

all methods of the aggregate tree are assigned to a machine, then resources consumed

by the tree are released (line 14). Also, the tree is removed from T̂. Banker iterates

over T̂ until either: T̂ is empty, in which case Banker returns SAFE (line 19) or all

remaining trees’ future resource requirements cannot be satisfied (lines 17 and 18).

Banker(T, I∗,M∗)

1 T̂← T

2 while(T̂ 6= ∅)
3 aTreeFits ← FALSE

4 for(T ∈ T̂)

5 futurePhasesFit ← TRUE

6 M̂←M∗

7 for(g ∈ A(T (I∗(T ))))

8 M∗ ← SelectionPolicy({g}, 0, M̂)

9 if(!M∗)

10 futurePhasesFit ← FALSE

11 break

12 M̂← update(g,M∗, M̂)

13 if(futurePhasesFit)

14 M∗ ← release(T (I∗(T )),M∗)

15 aTreeFits ← TRUE

16 T̂← T̂− {T}
17 if(!aTreeFits)

18 return UNSAFE

19 return SAFE

Figure 5.4: Banker: Dijkstra’s Banker’s Algorithm for a distributed SOA.
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Chapter 6

Simulation Environment

6.1 Overview

Fig. 6.1 illustrates the major components of the simulation environment considered

in this thesis. The framework considered here models a real-world service oriented

architecture (SOA) known as BlueBox currently in use at RiskMetrics Group. Clients

of RiskMetrics Group submit workflows to BlueBox in a number of different ways.

The workflows are then executed and the results are sent back to the clients. In the

simulation environment, clients’ workflows are modeled by WFG Generator, shown

in the figure. The WFG Generator generates WFGs that are one of three types:

Interactive, Batch, and Webservice. After the WFGs are generated, they are sent to

Advancer to be executed.

Advancer is responsible for the execution of the generated WFGs on the cluster

of machines. The generated WFGs are composed of call trees. As described in

Chapter 3, call trees are composed of service methods. An invoked service method is

synonymous with a service request in an SOA and is referred to simply as a request

for the remainder of this chapter.

Advancer relies on Selection Policy to determine exactly what and where requests
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Figure 6.1: Major components of the simulation environment.

are executing. A selection policy is made of two sub-components. The first sub-

component, responsible for selecting the next request to execute, is referred to as

Request Selection Policy (RSP). The second sub-component, responsible for finding

the most appropriate machine to execute the selected request, is referred to as the

Machine Selection Policy (MSP). The four RSPs considered in this thesis are First

Come First Serve (FCFS), Earliest Deadline First (EDF) [18], Least Laxity First

(LLF) [19, 18], and Proportional Least Laxity First (PLLF) [14]. The MSP used in

this thesis is Best Post Mapping (BPOM) [14]. Each of the main components of the

scheduling framework are described in further detail in the sections to follow.

6.2 WFG Generator

The model for a WFG used in this thesis is similar to that used in [5] with one signif-

icant variation. That is, all requests forming a WFG originate from a call tree. WFG

Generator uses a call tree generator to generate call trees for each WFG. The call

tree generator employed by WFG Generator is probabilistic and generates different
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Table 6.1: Definitions of CPU and heap memory requirements for request r.

Cr > 0 Cr is the total number of CPU cycles
required to execute r on the fastest
unloaded machine.

Dr ≥ Cr Dr is the ideal execution time duration
of r on the fastest unloaded machine.

Ur = Cr/Dr Ur is the CPU utilization factor of r.
Hr > 0 Hr is the maximum reachable heap

memory requirement of r.
Ar ≥ Hr Ar is the total heap space allocated by r.

Gr = Ar/Hr Gr is the garbage generation factor of r.

call trees for the three different types of WFGs. In the WFG model assumed in [14],

a simple chain of requests is used in place of the call tree structures assumed here.

In the model of [14] , requests do not call other requests but are themselves atomic.

The inclusion of call trees in the WFG model makes scheduling and execution much

more difficult because it introduces the possibility for deadlock and the necessity for

an algorithm to avoid deadlock, such as the one presented in Chapter 5.

The primary function of WFG Generator in Fig. 6.1 is to provide synthetically

generated WFGs to Advancer for the purpose of evaluating scheduling policies. The

WFG generation process used in this thesis is probabilistic. Parameters for WFG

generation rates, WFG structure, and CPU and memory requirements of the individ-

ual requests that form a WFG are defined for each WFG type. Table 6.1 summarizes

the notation and definitions of basic computational and memory requirements for an

individual request r. For a detailed explanation of the requirements specified in

Table 6.1, refer to [5].

Each WFG has a deadline that defines the time by which all computations of

a WFG should be complete. The WFG’s deadline is calculated by multiplying the

expected WFG duration Dw by a parameter called the deadline factor, df ≥ 1. Low

values of deadline factor indicate tight deadlines, and higher values indicates looser

deadlines. The deadline of a WFG, denoted as dw, is defined in Eq. 15.
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dw = dfDw. (15)

[5]

After WFG Generator generates the interactive, webservice, or batch WFG, it

sends the generated WFG to WFG Pool, which is maintained by Advancer. An

interactive WFG represents a workflow generated by a client using an interactive

component of the system such as a web application. These WFGs typically have a

relatively small number of requests, each one having a relatively short duration and

low resource requirements. Because clients demand an immediate response to inter-

active requests, the deadlines associated with interactive WFGs are very tight, i.e.,

df is close to unity. Webservice WFGs are typically more complex than interactive

WFGs and have relatively more requests with longer durations, moderate resource

requirements, and slightly looser deadlines. Batch WFGs are the most complicated

of the three structures and typically have the most requests with the longest dura-

tions, greatest resource requirements, and loosest deadlines. Furthermore, the arrival

times of batch WFGs generally have daily periodicity, which further distinguishes

them from the other WFG types.

In addition to differences in arrival processes, number of requests, and deadline

characteristics, the different WFG types have structural differences as well. In-

teractive WFGs have less opportunity for parallelization compared to webservice

and batch WFGs. Batch WFGs usually have rich WFG structure with the highest

chances of parallelization.

6.3 Advancer

Advancer, shown in Fig. 6.1, takes WFGs as input and assigns requests of the WFGs

to machines of the cluster for execution. Advancer maintains WFG Pool to hold all
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Figure 6.2: Components of WFG Pool.

the incoming WFGs. The Assigner module of Advancer is responsible for selecting

requests to be considered for execution and the machines on which the selected

requests should execute. The various components of Advancer are described in more

detail in the subsections that follow.

6.3.1 WFG Pool

The structure WFG Pool consists of two components: Active WFG Pool and Ready

Request Pool as shown in Fig. 6.2. Active WFG Pool holds all WFGs that have

started but have not yet completed execution. Ready Request Pool contains requests

of the WFGs that are in the “ready” state and can be considered for assignment and

execution. Assigner makes use of this pool when determining which request(s) to

start executing.

6.3.2 Assigner

The Assigner component of Advancer shown in Fig. 6.1 is built on the Assigner

specified in [5] but has an important enhancement. This enhancement is an im-

plementation of Banker described in the previous chapter. With the introduction

of call trees into the WFG model, Assigner must employ some mechanism to deal

with deadlock or risk infinitely tying up resources with deadlocked requests that will
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never finish. Still, the primary responsibility of Assigner is to select ready requests of

the WFGs and assign them to machines of the cluster for execution. When making

assignment decisions, Assigner can make use of computational and memory require-

ments assumed to be known and available for each request. As stated in Chapter 5,

having access to such information is realistic in the assumed dedicated environment

in which off-line profiling and/or historical logging can be performed to collect and

estimate such data. Assigner can also utilize the deadline information associated

which each WFG when making request scheduling decisions. Assigner employs an

underlying selection policy to make decisions related to advancement of call trees

in order to meet the deadlines of WFGs and consults Banker to ensure that these

advancement decisions do not risk putting the system into a state of deadlock.

At any point during the execution of a WFG, the requests associated with one

or more call trees are considered by Assigner for assignment to machines. Assigner

tracks the status of each request (i.e., method instance) according to one of the

following state values: blocked, ready, executing, holding, or completed. These are

the same state values described earlier in Chapter 3 and shown in Fig. 3.2.

The time instant that the state of a request r transitions from blocked to ready is

defined as the request’s birth time and is denoted by br. Assigner employs a Request

Selection Policy (RSP) to select the next ready request to be executed, and the

Best Post Mapping [5] Machine Selection Policy (MSP) to select the best available

machine for the execution. Before a selected request can be assigned to the machine

selected by the MSP, Assigner must ensure that if the assignment does occur, the

system cannot possibly enter a state of deadlock. To perform this task, Assigner

employs an implementation of Banker. The implementation of Banker used in the

simulations can have one of three results. First, Banker may declare that the selected

request-to-machine assignment is SAFE. In this case, the assignment will occur and

the selected request will begin executing on the selected machine. Second, Banker
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Assigner(R(ti), RSP)
1 for scheduling instant ti
2 rlist ← RSP(R(ti))
3 for each r ∈ rlist do

4 M∗ ← BestPostMapping(r,M)

5 if M∗ 6= ∅
6 M ← Banker(T,r,M∗,M)

7 if M 6= ∅
8 assign(r,M)

9 rlist ← rlist − {r}

Figure 6.3: Pseudocode for Assigner

may declare SAFE for the selected request but require that it execute on a machine

other than the one selected by the MSP. In this case, the selected request will begin

executing on the machine deemed suitable (i.e., SAFE by Banker). Third, Banker

may detect that it is UNSAFE to execute the selected request on any machine. In

the last case, the request will not be removed from the pool of requests, and the

request with the next highest priority will be selected and checked for safety to begin

execution on a machine.

When a request is assigned to a machine, the state of the request transitions

from ready to executing. The time instant that the state of a request transitions

from ready to executing is denoted as the request’s start time and is denoted by sr.

The function of Assigner is to define the machine assignment and start time (sr) for

each request r.

Fig. 6.3 describes the pseudocode for Assigner. For scheduling instant ti, As-

signer uses an RSP to prioritize the collection of ready requests, which is denoted

as R(ti). Associated with the collection of ready requests is a set of active call trees

in the system, which is denoted as T. RSP returns ordered ready requests, which is

assigned to rlist (line 2). For each request r in rlist, Assigner uses the Best Post Map-

ping (BPOM) Machine Selection Policy (MSP) to determine a proposed machine,

denoted as M∗, on which the execution of r should take place (line 4). When the
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proposed request-to-machine mapping has been determined, Banker is then invoked

to determine if that mapping is SAFE. The result of Banker is a machine M for which

Banker declares the assignment of r to M to be SAFE (line 6). M may or may not

be the same machine as M∗. For most time instances in the studies conducted, M

was in fact the same machine as the proposed M∗. The time instants for which M

was a different machine were times where the system was under extreme load. If

a SAFE request-to-machine mapping is determined by Banker, r is assigned to the

machine returned by Banker and r begins executing on M (line 8). Whether or not

a SAFE request-to-machine mapping is determined for r, r is removed from rlist and

the process is repeated for each r in rlist.

Assigner has knowledge of machines in the cluster. Symbol M is used to rep-

resent the collection of machines in the cluster. A ready request can only be as-

signed to a machine that is declared to be available. The availability of a machine

is determined using a defined threshold value associated with the machine’s current

efficiency. Specifically, a machine is declared to be available only if it’s efficiency

is above the defined threshold value. Depending on the resource requirements and

threshold values, the MSP may or may not return any available machines. If it

does not return any machines then Assigner excludes that request for consideration

at this scheduling instant. It further considers the requests from rlist that may be

appropriate for execution at the current time instant.

6.4 Cluster of Machines

Cluster of Machines in Fig.6.1 is modeled as a group of machines each of which follows

an efficiency-based machine model. The efficiency value for a machine depends on the

aggregate CPU and memory loading due to all requests executing on the machine.

At each scheduling instant, the machine model provides the Assigner with updated

51



efficiency values for all machines and also notifies Advancer of any requests that have

completed execution. The machine model is described in greater detail in [5].
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Chapter 7

Simulation Studies

In this chapter, the performance of the proposed deadlock avoidance Banker’s algo-

rithm is evaluated in the simulation environment along with the performance conse-

quences it imposes on a collection of Request Selection Policies (RSPs). The exclusive

use of the Best Post Mapping Machine Selection Policy (MSP) is used for all RSPs

considered.

The utility of Banker is evaluated through simulation studies. Two important

objectives of the simulation studies are to determine: (1) the efficacy of Banker at

avoiding deadlock and (2) the impact that Banker has on the performance character-

istics of the selection policies considered. Related to the first objective, a number of

simulations are performed to verify that the use of Banker by Advancer does indeed

prevent deadlock from occurring in the simulations. For the second objective, special

simulation realizations are identified (through trial and error) for which deadlock does

not occur without the use of Banker. For each of these realizations, the performance

obtained by SelectionPolicy is measured both with and without the consultancy

of Banker. Because Banker is conservative in making declarations of safety, Banker

will generally declare some assignments proposed by SelectionPolicy to be UNSAFE

even for a realization where deadlock does not occur without using Banker’s dec-

larations. It is discovered that the use of Banker actually enhances performance for
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the case study and implementations of SelectionPolicy considered.

7.1 Selection Policies

For the studies considered here, SelectionPolicy is composed of two steps. In the

first step, ready requests associated with call trees are prioritized. In the second step,

ready requests are considered in priority order and assigned to machines with suffi-

cient resources to satisfy resource requirements. The priority of requests is defined

according to a request selection policy (RSP). The following four RSPs are evaluated:

First Come First Serve (FCFS), Earliest Deadline First (EDF), Least Laxity First

(LLF), and Proportional Least Laxity First (PLLF).

The FCFS policy uses the value of the time instant that a WFG is generated to

define the priority for all requests associated with the WFG. To illustrate, assume

WFG A is generated before WFG B. In this case, the FCFS policy will assign a

higher priority to all requests associated with WFG A (compared to the priority of

all requests associated with WFG B). The FCFS policy is the simplest of the policies

considered; it can make poor decisions because it does not consider the deadline of

the WFGs in assigning priorities.

The EDF policy [18] prioritizes all requests of a WFG using the deadline associ-

ated with the WFG. Thus, if WFG B has a deadline that is earlier than the deadline

of WFG A, the EDF policy would prioritize the execution of all requests associated

with WFG B over those associated with WFG A.

The LLF policy [19, 18] prioritizes requests of a WFG according to their laxity,

which is defined as the difference between the deadline of the WFG and the estimated

finish time of the WFG. The rationale for giving requests with smaller values of laxity

priority over larger values is because smaller values of laxity correspond to WFGs that

are projected to miss their deadlines. Laxity values can be negative, and negative
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laxity values have priority over positive laxity values because negative laxity is an

indication that the WFG deadline will likely be missed.

The PLLF policy [14] is an enhancement of the LLF policy that uses a “propor-

tional” laxity value to prioritize ready requests of a WFG. The proportional laxity

value is defined as the laxity value divided by the ideal execution of the WFG.

Unlike the FCFS and EDF scheduling policies, which assign a static priority value

upon the arrival of a WFG, the priority values assigned by LLF and PLLF generally

vary with time. At each simulation cycle, an estimate of each WFG’s finish time

is first calculated. This estimated finish time is then subtracted from the WFG’s

deadline, which yields the WFG’s laxity value at that time instant. These and other

RSPs are described in further detail in [14].

7.2 Expiremental Setup

In this thesis, a WFG generation scenario is considered representing a 24 hour period.

Further detail for the experimental setup is given in the sections below.

7.2.1 Case Study

A case study is considered in which a single day is divided into three consecutive

epochs. These three epochs are associated with WFG generation characteristics for a

typical operational business day. The first epoch is from time = 0 to time = 11 hours;

the second epoch is from time = 11 to time = 12 hours; and the third epoch is from

time = 12 to time = 24 hours (refer to Fig. 7.1). During the first and third epochs,

only Interactive and Webservice WFGs are generated. During the second epoch, all

three types of WFGs are generated. The first and third epochs represent periods of

time before and after a relatively short epoch in which Batch WFGs arrive. The start

and end times of the second epoch are defined by terms of service-level agreements
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Figure 7.1: Time-line illustrating the three epochs.

1 2

Figure 7.2: WFG structure used in simulations.

(SLAs) related to timing of Batch WFG submission and execution. Typical terms of

SLAs specify that daily Batch WFGs submitted within a specified time period will

be completed by an agreed upon deadline.

Fig. 7.2 shows the structure of the two-level WFGs assumed in the simulations.

In this figure, β is the number of control nodes that are direct children of the root and

are assumed to be sequentially executed. Note that the structure of the WFG used

in the simulation studies (Fig. 7.2) is similar to the example WFG associated with

the BlueBox SOA discussed in Chapter 4 (see Fig. 4.2). The notation γi represents

the number of call trees associated with the ith parallel control node. The call trees

of each parallel control node are assumed to be independent and may be executed

concurrently. The values for β and γi vary for the three different WFG types. The

parameter value ranges and distributions associated with the simulation studies are

summarized in Table 7.1. The parallelization factor is needed in determining a base
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Figure 7.3: Arrival count realization for Case Study.

deadline for each generated WFG; it defines the degree of parallelism assumed for

executing parallel call trees associated with a common control node. Once a base

deadline is determined for a WFG, it is multiplied by the Deadline Factor (last row

in the table) to define the deadline for the synthetically generated WFG.

Table 7.1: WFG parameter value ranges used for case study. Values in [Min, Max]
sampled from uniform distribution.

Parameter Interactive Webservice Batch
WFG WFG WFG

Inter-Arrival Time (secs) 60 120 60
β [1, 1] [1, 3] [3, 5]
γi [1, 2] [2, 3] [5, 20]
Parallelization Factor 2 2 2
WFG Deadline Factor [1.1, 1.2] [1.3, 1.5] [1.3, 1.5]

Interarrival times of the Interactive and Webservice WFGs in the Case Study are
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Figure 7.4: Chain of segments from the expansion of call tree T .

60 seconds and 120 seconds respectively. The interarrival time of the Batch WFGs

is assumed to be 60 seconds during the second time epoch from hour 11 to hour

12; Batch WFGs do not arrive outside this one-hour interval. All interarrival times

are generated using a Poisson process. An example arrival count realization of the

arrivals of WFGs into the system are shown in Fig 7.3.

A chain of method segments is formed by performing a depth first traversal of

a call tree. For an illustrative example, consider Fig. 7.4. The call tree on the left

is expanded into the chain of segments on the right that represents “requests” with

precedence constraints. For the simulations conducted, three call tree stuctures were

considered for each WFG type. The structures for Interactive and Webservice WFGs

are shown in Fig. 7.5. Likewise, Fig. 7.6 shows the structures for Batch WFGs.

Requests belonging to a call tree are assumed to have certain CPU and memory
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Figure 7.6: Call Tree structures for Batch WFG types.

characteristics associated with the specific WFG type to which they belong. The

CPU and memory characteristics for the three WFG types are summarized in Table

7.2.

Table 7.2: Parameter value ranges for requests associated with call trees of Figs. 7.5
and 7.6.

Request Parameter Interactive Webservice Batch
WFG WFG WFG

Ideal Duration (secs) [1.0, 2.5] [10.0, 50.0] [50.0, 175.0]
CPU Utilization [0.5, 1.0] [0.5, 1.0] [0.5, 1.0]
Memory Usage [0.05, 0.15] [0.05, 0.10] [0.05, 0.10]
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Figure 7.7: RSPs’ likelihood to deadlock without utilizing Banker.

7.3 Deadlock Avoidance Results

For the case study described in the previous subsection, one hundred simulations

were conducted with the four RSPs described in Section 7.1. Each of the RSPs have

different characteristics leading to different likelihoods for experiencing deadlock.

Assuming Advancer does not utilize Banker’s declaration of safety, the observed

statistics for the occurrence of deadlock for each RSP are summarized in Fig. 7.7. A

second set of simulations was conducted in which Banker’s declaration of safety was

utilized. For this set of simulations, deadlock was avoided for all RSPs.

As an illustration of how Banker interacts with the SelectionPolicy to avoid

deadlock, consider Fig. 7.8. The figure shows the number of active call trees in

the system for two simulations conducted, both employing PLLF as the RSP. In

one simulation, Advancer utilizes Banker’s declarations of safety, and in the other

it does not. From the figure, it is apparent that when the system is underloaded
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Figure 7.8: Active call trees with and without Banker for a select simulation.

(hour one to hour eleven) Banker does not interfere after the scheduling decisions of

SelectionPolicy. This is because the system is under-loaded and any decision made

by SelectionPolicy will leave the system in a SAFE state. However, as resources

become scarce, Banker begins to force Assigner to use alternate SelectionPolicy

decisions to ensure the system is left in a SAFE state. Just after hour eleven, large

quantities of batch WFGs start arriving. When this occurs, more and more call

trees become active. As illustrated by the inset portion of the figure, if decisions of

SelectionPolicy go unchecked, deadlock occurs. In the simulation without Banker,

deadlock is observed at the time instant where the graph ends, just after hour eleven.

Also from inset portion of the figure, it is apparent precisely when Banker forces some

active call trees to finish, thereby relieving memory pressure, before allowing more

call trees to begin executing. Banker delays the start/execution of certain call trees

in order to ensure sufficient resources necessary for active call trees to complete.
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Because Banker sometimes forces SelectionPolicy to make decisions different

than it would if it was running standalone, it follows that Banker has influence on the

performance of SelectionPolicy in terms of tardiness relative to workflow deadlines.

Interestingly, Banker does not negatively affect the performance of SelectionPolicy

in terms of tardiness for the simulations considered. In fact, in most cases considered,

Banker actually improves the performance of SelectionPolicy. In the sections to

follow, the effects of Banker’s are evaluated for each of the RSPs considered in this

thesis.

7.4 Banker’s Effect on FCFS

Compared to the other policies evaluated for the case study considered here, FCFS

without Banker performs the poorest in terms of the percentage of workflows tardy.

This is not a surprising result and similar results were realized in [5] for WFGs

comprised of atomic requests. One possible explanation for the poor performance is

that as the system becomes overloaded with the arrival of batch workflows around

hour eleven, the system becomes congested and eventually devotes all available re-

sources to executing the batch workflows. In the meantime, all arriving workflows

are queued behind long-running batch workflows, regardless of deadline or duration,

and are not executed until adequate system resources are no longer consumed by

the batch workflows. Fig. 7.9 illustrates the effect Banker has on FCFS for the case

study considered. Positive values of normalized tardiness indicate a WFG completed

after its deadline; negative values indicate a WFG finished before its deadline. In-

terestingly, when FCFS employs Banker the percentage of tardy workflows decreases

dramatically. This occurs, at least in part, because Banker, while ensuring dead-

lock does not occur, does not allow the system to devote all resources to servicing

the resource-intensive batch workflows. As a side effect, enough system resources
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Figure 7.9: Percentage of workflows as a function of normalized tardiness for FCFS
and FCFS utilizing Banker (B-FCFS) for a select simulation.

are available to service the smaller interactive and webserivce workflows that arrive

during the time of heavy load. The same performance data of Fig. 7.9 is provided in

Fig. 7.10 on a tighter normalized tardiness scale.

Fig. 7.11 illustrates how Banker influences the number of “active” call trees in the

system. A call tree T is said to be “active” from the time instant the first request of

T begins execution until the time instant the last request in T is completed. In this

particular case, the simulation did not deadlock when Banker was not employed. Of

particular importance is the portion of the graph corresponding to hours 0-11. During

this time, the load on the system is relatively light and Banker does not influence

the system to do anything different than the FCFS dictates. In this way, Banker

is a passive algorithm and does not interfere with the decisions of the underlying
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Figure 7.10: Percentage of workflows as a function of normalized tardiness for
FCFS and FCFS utilizing Banker (B-FCFS) for the same simulation of Fig. 7.9 on
a normalized tardiness scale from -1 to 10.
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Figure 7.11: Active Call Trees with and without Banker for a select simulation
employing the FCFS RSP.
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scheduling policy unless it is necessary to avoid deadlock. According to the figure,

the number of active call trees with Banker in place is not dramatically different than

the number of active call trees without Banker. One explanation for this is that when

Banker delays a long-running, resource-intensive call tree, it allows another smaller

less resource-intensive call tree to execute in its place. However, it is important to

note that the use of Banker does generally reduce the number of “active” call trees,

thus reducing resource utilization.

7.5 Banker’s Effect on EDF
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Figure 7.12: Percentage of workflows as a function of normalized tardiness for EDF
and EDF utilizing Banker (B-EDF) for a select simulation.

For the case study considered, EDF outperformed every other policy running
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Figure 7.13: Active Call Trees with and without Banker for a select simulation
employing the EDF RSP.
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without Banker. Fig. 7.12 shows the effects of Banker in terms of percentage of

tardy workflows. Overall, Banker does not seem to either improve or inhibit the

performance of EDF for the simulations conducted.

Fig. 7.13 shows the active call trees for a simulation conducted with and without

Banker. According to the figure, Banker reduces the number of active call trees in

the system for most times throughout the duration of the simulation.

7.6 Banker’s Effect on LLF
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Figure 7.14: Percentage of workflows as a function of normalized tardiness for LLF
and LLF utilizing Banker (B-LLF) for a select simulation.

Recall from Fig. 7.7 that LLF exhibited the highest likelihood for deadlock of all

the RSPs considered. In addition, LLF without Banker did not perform particularly
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Figure 7.15: Percentage of workflows as a function of normalized tardiness for LLF
and LLF utilizing Banker for a select simulation on a normalized tardiness scale from
-1 to 10.

well in terms of workflow tardiness. In fact, only FCFS performed worse. However,

when Banker is used in conjunction with LLF, the performance of LLF in terms of

workflow tardiness improves drastically. Fig. 7.14 and Fig. 7.15 illustrates this.

Intrinsic to LLF is a tendency to context switch between executing workflows.

As a result of this tendency, LLF tends to leave many active call trees in the holding

state. Fig. 7.16 illustrates this characteristic and also the substantial difference

Banker makes when coupled with LLF. One explanation for this large difference is

that Banker forces LLF to finish active call trees before starting new ones. Intuitively,

the higher the number of active call trees in the system, the more system resources

are consumed in general. This simulation provides yet another case where Banker
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Figure 7.16: Active Call Trees with and without Banker for a select simulation
employing the LLF RSP.
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drastically improves the performance of the RSP.

7.7 Banker’s Effect on PLLF

Just as it was determined in [14], PLLF outperformed LLF in terms of workflow

tardiness for the case study considered. In fact, PLLF performed quite well in this

category for the case study considered here. Only EDF showed better performance

without Banker. However, Fig. 7.17 shows that Banker still improved PLLF perfor-

mance in terms of workflow tardiness for this select simulation.
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Figure 7.17: Percentage of workflows as a function of normalized tardiness for PLLF
and PLLF utilizing Banker (B-PLLF) for a select simulation.

Though not quite as poor as LLF, PLLF exhibits the same intrinsic tendency

to context switch between executing workflows. Again, this tendency leads to an
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Figure 7.18: Active Call Trees with and without Banker for a select simulation
employing the PLLF RSP.

increased number of active call trees in the system. Fig. 7.18 shows the active call

trees for a select simulation conducted with and without Banker. From the figure,

it is quite obvious that Banker makes very different decisions in terms of what call

trees get started and finished. The end result, however, is a more efficient and better

performing overall SelectionPolicy.
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Chapter 8

Conclusions

A new deadlock avoidance algorithm, derived from Dijkstra’s Bankers Algorithm

[11], is introduced for avoiding deadlock on a distributed SOA. The algorithm works

by observing the current state of the resources in the system along with a worst

case estimate of future resource requirements and permitting the execution of only

those call trees that will keep the system in a safe state. Through simulation studies,

it is observed that the algorithm is “non-intrusive” when the system resources are

plentiful and does not influence the decisions of the underlying selection policy.

The simulation results indicate that using Banker has multiple benefits. The

selection policies considered in the simulations: FCFS, EDF, LLF, and PLLF have

different characteristics leading to different likelihoods for experiencing deadlock.

However, when Banker is utilized in conjunction with any of the selection policies,

deadlock is avoided. In addition to ensuring deadlock avoidance, Banker can influ-

ence SelectionPolicy to make decisions that improve the performance of the sys-

tem in terms of workflow tardiness. One hypothesis is that the performance benefits

observed when utilizing Banker are attributed to Banker forcing SelectionPolicy

to concurrently execute different collections of call trees, prefering to run a larger

number of shallow and/or undemanding call trees as opposed to a fewer number of

deeply nested and/or resource intensive call trees.
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Future work is planned in two areas. The first of which is the integration of

the deadlock avoidance algorithm developed in this thesis into the BlueBox SOA.

Another area of future work is the application of the algorithm in an environment

where task migration is possible.
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SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

WSDL Web Service Definition Language
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FCFS First Come First Serve

LLF Least Laxity First
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EDF Earliest Deadline First

BPOM Best Post-Mapping

SLA Service Level Agreements

CORBA Common Object Request Broker Architecture
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