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Abstract— Retransmission ambiguity, arising from delay
spikes in a wireless mobile environment, results in poor
TCP performance. Eifel improves the performance of TCP
by using the timestamp option, which requires additional
header bytes, resulting in increased overhead in bandwidth
constrained wireless networks. Moreover, the destination
needs to support the timestamp option. In this paper, we
propose a new algorithm, called DualRTT, which increases
the performance of TCP in the presence of delay spikes,
without requiring any additional header bytes. It requires
changes only at the sender, and hence is easier to deploy in
the existing Internet infrastructure. It also does not require
the destination to support the TCP timestamp option.
Results show that DualRTT increases the performance of
TCP, and also achieves a higher transport layer efficiency
than previous algorithms.
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mobile networks, TCP.
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I. INTRODUCTION

TCP was originally designed for wireline environ-
ments where packet losses are primarily due to con-
gestion. TCP estimates the Round Trip Time (RTT ) to
set the Retransmission Time Out (RTO) which is used
by TCP’s congestion control algorithms [1] to carry out
retransmission of packets lost due to congestion. The
onset and disappearance of congestion is usually a slow
and gradual process; the RTO computation of TCP is
therefore based on slow and gradual changes in RTT .

In contrast to wireline networks, wireless mobile net-
works, such as GPRS [2] and CDMA2000 [3], encounter
high bit error rates and temporary disconnection. These
networks generally use link layer recovery protocols,
such as Radio Link Control (RLC) [4], [5], to recover
from packet losses due to errors. Mobility, in conjunction
with the use of wireless protocols, can result in delay
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spikes which may render TCP’s RTT and RTO estima-
tion inaccurate. A delay spike is defined as a situation
where the round-trip time (RTT ) suddenly increases for
a short duration of time, and then drops to the previous
value [6]. Causes of delay spikes in a wireless mobile
environment include [7]:

• Handoff of a mobile host to a new cell requires the
new base station perform channel allocation before
data can be transmitted from the mobile host. This
causes segments at the mobile host to be queued,
giving rise to sudden extra delays.

• Physical disconnection of the wireless link during a
handoff can result in a sudden increase of the RTT.

• A Radio Link Control (RLC) layer between the
LLC and MAC layers to carry out retransmissions at
the link layer in wireless mobile networks, such as
GPRS and CDMA2000, may result in delay spikes
due to repeated retransmission attempts during link
outages and high BER periods.

• Higher-priority traffic, such as circuit-switched
voice, can preempt (block) the data traffic. The
duration of this blocking may be very long as
compared to TCP’s RTT estimate.

Frequent delay spikes are, therefore, more common in
wireless mobile networks than wireline networks. Delay
spikes confuse TCP’s RTT estimator, because the RTO
estimator can’t adapt quickly enough to handle sudden
RTT changes due to delay spikes. Sudden increase of
instantaneous RTT beyond the RTO of the sender
results in retransmission ambiguity [8], [9], which will
produce Spurious Timeout1 (ST) and Spurious Fast

1Spurious timeout is defined as a timeout which would not have
happened if the sender waited long enough. It is a timeout resulting
in retransmission due to a segment being delayed (but NOT lost)
beyond RTO [9].
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Retransmission2 (SFR), and causes serious end-to-end
(transport level) performance penalty [9], [10].

The Eifel algorithm [9], which has been proposed
to alleviate TCP’s performance penalty, utilizes TCP’s
timestamp option [11] to solve the retransmission am-
biguity by distinguishing between the acknowledgement
for the original segment (transmitted before or during
the delay spike) and the segment retransmitted after
the spurious timeout. Although Eifel increases TCP’s
performance, the timestamp option adds an additional 12
bytes to the TCP header; this is a significant overhead,
especially for small segments and in bandwidth-limited
wireless environments. Eifel also requires both the sender
and receiver to support the TCP timestamp option.

An alternative to Eifel has been proposed by Lud-
wig [12], where the Retransmit (RXT) flag, a bit taken
from the Reserved field of the TCP header, is used
to achieve the same function as that of Eifel. The
TCP sender sets the RXT flag of segments containing
retransmitted data. In response to such a segment, the
TCP receiver immediately sends a pure ACK with the
RXT flag set. By inspecting the RXT flag of the ACKs
that arrive after a retransmission, the TCP sender can
resolve retransmission ambiguities. Note that this scheme
requires changes at both the sender and the receiver,
resulting in deployment issues.

Sarolahti et. al. proposed F-RTO [13], which also
monitors received ACKs to determine spurious timeouts.
When the first ACK is received after a retransmission,
the sender doesn’t retransmit the other un-acknowledged
segments immediately. If the ACK advances the sender’s
window, the sender transmits two new segments, then
waits for another ACK. The sender infers a spurious
timeout if the second incoming ACK advances the
sender’s window again.

The proxy solution [14] proposed by Kim et. al.
introduced a new performance enhancing proxy (PEP),
which operates at the border of wireless networks and
the Internet. The PEP tracks the data and acknowledge
sequence number for each TCP connection. By filter-
ing unnecessarily retransmitted segments and removing
duplicate ACKs, the spurious fast retransmissions at
the TCP sender can be avoided. This solution needs
additional infrastructure change and it suffers scalability
problem when the number of TCP connections is large.

Blanton [15] proposed using TCP DSACKs [16] to
give the sender more information (than TCP SACKS
can provide) about the ”spuriously retransmitted” du-

2Spurious fast retransmission occurs when segments get re-
ordered beyond the DUPACK-threshold in the network before reach-
ing the receiver [9], i.e. the reordering length is greater than the
DUPACK threshold (three for TCP).

plicate segments received by the receiver. Since spu-
rious retransmissions occur between spurious timeouts
and the notification from the receiver about duplica-
tion segments, the mechanism can only detect spurious
retransmissions but not spurious timeouts, and hence
cannot prevent spurious retransmissions. Gurtov et. al.
suggests restarting the retransmission timer, and ignoring
the DupAcks that arrive after a timeout [6] (more con-
servative than RFC2581). As in RFC2581 with bugFix
enabled, this mechanism can only prevent spurious fast
retransmissions.

A large body of research, such as AIRMAIL [17], I-
TCP [18] and Snoop Protocol [19], have been carried
out to improve TCP’s performance in wireless envi-
ronments by alleviating the effects of non-congestion-
related losses [20]. This paper focuses on improving TCP
performance due to delay spikes (excessive delays) rather
than packet losses, and hence is different from the above
research efforts.

The objective of this paper is to improve the per-
formance of TCP in the presence of delay spikes. We
propose a new TCP sender based algorithm, called
DualRTT, to improve the end to end performance by
detecting spurious timeouts. It has the advantage of
not requiring any additional headers in the packets,
or any change at the TCP destination or the network
infrastructure. DualRTT is based on adding a new RTT
measurement (at the sender), which records the time
between the most recent retransmission of a packet and
the acknowledgement of that packet. The minimum value
of RTT observed until the current time is also stored in
a variable. Spurious timeouts are detected by comparing
the new RTT value and the minimum value of the RTT
observed so far.

Our work differs from previous work in the sense that
DualRTT takes into account the dynamics of packet
queueing at the wireless link during a delay spike. To
detect spurious timeouts, it exploits the fact that packets,
delayed due to a delay spike, are queued consecutively
at the sender side of the wireless link. Similar to F-
RTO, the algorithm has the advantage that it does not
require TCP timestamp option support at the sender and
receiver, thereby eliminating the timestamp option over-
head, which is desirable in bandwidth limited wireless
environments.

Real world measurements by National Laboratory for
Applied Network Research (NLANR) show that 58.5%
of the uplink web traffic packets have a small pay-
load (between 0-64 bytes) [21]. For small packet sizes,
DualRTT results in a higher transport layer efficiency,
as will be shown in Sec. VII-E.

The main contributions of this paper can be summa-
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rized as follows:
• Proposed a new algorithm (DualRTT) that can de-

tect TCP spurious timeouts caused by delay spikes
in a wireless mobile environment without the sup-
port of TCP timestamp option, thereby eliminating
the dependence on the TCP timestamp option. 3

• DualRTT is sender-based, and no modification is
required at the receiver or the network infrastruc-
ture, thereby making it easier to deploy in existing
networks.

• Shown that the transport layer efficiency of
DualRTT is higher than previous algorithms for
small packet sizes. Note that a higher transport layer
efficiency translates to greater network bandwidth
being available for carrying the payload.

• Demonstrated that the new algorithm can enhance
TCP performance without using any additional
header bytes.

The rest of the paper is organized as follows. In
Sec. II, we lay the groundwork for the motivation of
the problem by discussing the effect of delay spikes on
transport protocols. To facilitate comparison between our
algorithm and Eifel, we review the Eifel algorithm in
Sec. III. Our proposed algorithm (DualRTT) for detect-
ing spurious timeouts is described in Secs. IV, followed
by an analytical model to determine the parameters of
our algorithm in Sec. V. Sec. VI compares the proposed
algorithm with Eifel. Performance comparison of the
proposed algorithm and Eifel, based on ns-2 simulation,
is presented in Sec. VII, followed by concluding remarks
in Sec. VIII.

II. EFFECT OF DELAY SPIKE ON TRANSPORT

PROTOCOLS

In this section, we use segment trace plots obtained
from the ns-2 simulator [23] to illustrate the adverse
effect of a delay spike on the throughput of TCP.

A. Simulation setup

The following parameters are used for the simulation
topology shown in Fig. 1.
• The end-to-end delay between source (S) to destina-

tion (D) is 1.4 second (corresponding to the average
delay in GPRS networks [4]) for both uplink and
downlink.

• Without loss of generality, for illustration purpose,
we use a link bandwidth of 46.8Kbps in this section.

3Recent Internet measurements (April 2003) shows that even
though 80.51% current server OSs support the timestamp option by
default, most common client OSs do not have the option enabled by
default during the connection setup [22].

TABLE I
SIMULATION PARAMETERS.

Protocol: TCP Reno
TCP Header size: 20 bytes
Payload size: 536 bytes
rwnd limit 20 segments
Initial cwnd 1 segment
Initial ssthresh 20 segments

D

Link Queue

S

Hiccup

Fig. 1. Simulation Topology.

A range of link bandwidths will be used when we
evaluate DualRTT in Sec. VII.

• A delay spike occurs in the uplink, beginning at
time t = 28.0s and lasting for 12 seconds. The
delay spike was simulated using an ns-2 module
called ”hiccup” [24] which holds all the arriving
segments for 12 seconds.

• To ensure a continuous supply of data, an FTP
source was used at the sender.

TCP parameters used in our simulation are shown in
Table I.

B. Spurious Timeout (ST) and Spurious Fast Retrans-
mission (SFT)

The time plot of the simulation is shown in Fig. 2.
After the delay spike begins, the first segment leaving
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Fig. 2. Spurious Transmission and Spurious Fast Retransmission in
TCP Reno.

the sender is segment 131 at time t = 28.99s when
RTO = 4s (see Figs. 2). This segment, as well as
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later segments 132-150, are held up in the hiccup queue
until t = 28 + 12 = 40s, when all the segments in the
hiccup queue are released to the link queue. Because
only one timer is maintained for this connection, and
ACKs for earlier segments (prior to 131) arrive at the
sender during the delay spike, the timer doesn’t time
out until t = 34.54s (point Fig2-A4) when segment
131 is spuriously retransmitted, RTO is updated to 7.6s,
and the congestion window of sender is reduced to one
segment. Because original segment 131 is not lost, but
only delayed, this timeout is a spurious timeout.

The above spurious retransmission of segment 131
occurs during the delay spike, and is thus also delayed
until the end of the delay spike at t = 40.0s, when all
the segments which are held up in the hiccup queue
(segments 131-150) are released to the link queue, as
shown in Fig. 2. Note that the original and spuriously
retransmitted segment 131 are overlapped at t = 40.0s,
and hence can not be distinguished from one another.

The sender again times out at t = 42.14s (which
equals the time of last timeout (34.54s) plus the RTO
value of 7.6s) as shown at point Fig2-B. The sender,
on receiving the ACK for original segment 131 at t =
42.89s (point Fig2-C), starts retransmitting the outstand-
ing segments using the Slow Start algorithm. The effect
of go-back-N behavior of the Slow-Start algorithm is
evident from the retransmission, starting at point Fig2-
D, of segments 132-150.

Although not shown in the figure, up to t = 47.5s the
receiver receives segments in the following order:

131, 132, . . . , 150, 131, 132, . . . , 150︸ ︷︷ ︸
spuriously retransmitted segments

, 151, . . .

On receipt of the spuriously retransmitted (duplicate)
segments 131-150, the receiver generates a series of
DupAcks acknowledging segment 150. When the Reno
TCP sender receives the 3rd DupAck, it does fast
retransmission of segment 151, as shown in Fig2-E.
Since segment 151 is not lost, this is a Spurious Fast
Retransmission resulting in the congestion window being
halved unnecessarily. It’s important to note that the
above Spurious Fast Retransmission is a consequence
of the go-back-N Spurious Retransmission which started
at point Fig2-D. It has been pointed out by Ludwig
et.al. [9] that the fundamental reason for ST and SFR
is retransmission ambiguity arising from TCP sender’s
inability to distinguish between ACKs from an original
segment and the corresponding retransmitted segment.

4We use the notation Figx-y to represent point (y) in Figure x

C. Effect of Delay Spike on TCP Reno

In this section, we start with the assumption of a loss-
free network to present the effect of delay spikes on the
behavior of Reno. The simulation topology, link delay,
and link bandwidth are the same as stated in Sec. II-A.

It was shown in Sec. II-B that the current Reno
congestion control algorithm results in Spurious Timeout
and the associated go-back-N behavior in the presence
of delay spikes. However, a bug fix proposed in RFC
2582 [25] implements a ”more careful policy” than that
of standard Reno in treating the TCP DupAck series.
The policy disables fast retransmissions until all the
segments outstanding at timeout are Acked. When this
bug fix is used, fast retransmissions can be eliminated.
Fig. 3 shows the segment plot for this scenario. Note that
the sender still retransmits all the outstanding segments
starting from point Fig3-B, but at t = 45.8s (point Fig3-
C there is no retransmission of segment 151, and the
sender’s congestion window is not halved.
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Fig. 3. TCP Reno behavior with RFC 2582 bug fix.

III. EIFEL ALGORITHM

Eifel [9] was designed specifically to improve TCP
performance in the presence of delay spikes. The fun-
damental reason for a go-back-N retransmission in TCP
is the retransmission ambiguity (see Sec. II-B) when the
sender gets acknowledgements after timeout. The idea of
Eifel is straight-forward: use the TCP timestamp option
to eliminate this ambiguity.

In Eifel, every TCP segment sent by the sender
is timestamped using the TCP timestamp option. The
sender also stores the timestamp of the first retransmitted
segment, irrespective of whether the retransmission is
triggered by a timeout or a fast retransmission. The
receiver echoes back the timestamp in the ACK segment.
When the ACK for the retransmitted segment comes
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Fig. 4. Detection of spurious timeout by Eifel.

back, the sender compares the ACK’s timestamp with the
one it stored earlier. If the ACK’s timestamp is smaller
than the one stored, the sender concludes that the timeout
and retransmission were spurious and unnecessary. The
sender then restores cwnd and ssthresh to the values
before the timeout, and transmits new segments instead
of going through go-back-N.

Fig. 4 shows the segment plot for the Eifel algorithm
using the same topology and simulation parameters as
in Sec. II-A. In Fig. 4, two timeouts occur at t = 34.1s
and t = 40.5s. Note that when the sender gets the
ACK for the original segment 131 at t = 42.9s (point
Fig4-A), it detected the spurious timeout. As a result, in
contrary to Fig. 2 for TCP Reno, segments 132-150 are
not retransmitted, and the congestion window is restored
to the previous value. No DupAcks are generated by the
receiver, thereby eliminating Spurious Retransmissions.

The Eifel algorithm uses the same congestion control
mechanisms (Slow start, Congestion Avoidance, Fast
Retransmit and Fast Recovery) which are used by TCP
Reno. One deviation of Eifel from TCP Reno is the
action taken after detection of ST (Sec. I): On detection
of a spurious timeout, Eifel restores the congestion
window and slow start threshold as if the timeout hadn’t
occurred [9].

The problem with Eifel is the header overhead in-
curred by additional 12 bytes required for the TCP
timestamp option field in the TCP header. This reduces
the transport layer efficiency (see Sec. VII), which mea-
sures the actual amount of the link bandwidth used for
carrying useful data (payload). Eifel also requires the
receiver to support the timestamp option, giving rise to
deployment issues.

IV. DualRTT: THE PROPOSED ALGORITHM TO

DETECT SPURIOUS TIMEOUTS

In this section, we describe our proposed DualRTT
algorithm for the detection of spurious timeouts arising
from delay spikes in mobile wireless environments.

A. TCP retransmission timer variables

TCP uses Karn’s algorithm [8] to carry out RTT
measurements and RTO updates when a timeout occurs.
The algorithm restricts RTO updates for retransmitted
segments as follows:

.... When an acknowledgement arrives for a packet
that has been sent more than once (i.e., retransmit-
ted at least once), ignore any round-trip measure-
ment based on this packet, thus avoiding retrans-
mission ambiguity ....

Note that Karn’s algorithm avoids incorrect RTT
measurements by avoiding retransmission ambiguity, i.e.
the sender does not perform RTT measurements on
retransmitted segments. The reason is that if RTT mea-
surement are based on the transmission time of the orig-
inal packet, the RTT estimate may be too pessimistic.
On the other hand, an RTT measurement based on the
transmission time of the most recent retransmitted packet
may result in a too optimistic estimate. Therefore, neither
RTT is taken into account for updating RTO.

Table II shows several RTT and RTO values near
the long delay (which occurs between 28 to 40 seconds)
corresponding to the TCP simulation in Fig. 2. Between
t = 30.840s and 42.905s, two timeouts occurred, and the
RTO doubled twice to 3.8 × 2 × 2 = 15.2s. Following
that, although the sender received some acknowledge-
ments, it didn’t update the RTT and RTO values
because the acknowledgements were for retransmitted
segments which were ineligible for updating RTT and
RTO. After t = 47.780s, the acknowledgement of new
segments (not retransmitted) are used to update RTT
and RTO.

B. The DualRTT algorithm

In our proposed DualRTT algorithm, we assume the
time interval between the arrival of adjacent delayed
segments at the receiver is small. This assumption is
based on the observation that during a delay spike in a
wireless mobile communication system, the segments are
queued at the link buffer of the wireless link [26]. When
these segments are released from the buffer at the end
of the delay spike, they will arrive at the receiver almost
back-to-back, the arrival interval being approximately
equal to the queueing delay in the buffer.
DualRTT adds two new variables at the sender:
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TABLE II
RTT AND RTO MEASUREMENT BY KARN’S ALGORITHM.

Time RTO RTT
17.545 4.6 2.9
30.840 3.8 2.9
42.905 15.2 2.9
43.004 15.2 2.9
43.102 15.2 2.9
43.791 15.2 2.9
43.890 15.2 2.9
43.988 15.2 2.9
44.481 15.2 2.9
44.579 15.2 2.9
47.780 4.0 3.3
52.704 3.8 2.9

TABLE III
RTO, RTT , MinRTT AND NRTT DURING A DELAY SPIKE.

Time RTO RTT NRTT MinRTT
17.545 4.6 2.9 2.9 2.8
30.840 3.8 2.9 2.9 2.8
42.905 15.2 2.9 13.9 2.8
43.004 15.2 2.9 0.1 2.8
43.102 15.2 2.9 0.1 2.8
43.791 15.2 2.9 0.2 2.8
43.890 15.2 2.9 0.3 2.8
43.988 15.2 2.9 0.3 2.8
44.481 15.2 2.9 0.4 2.8
44.579 15.2 2.9 0.4 2.8
47.780 4.0 3.3 3.3 2.8
52.704 3.8 2.9 2.9 2.8

• A new RTT measurement variable called NRTT .
NRTT records the time between the ”most recent
retransmission” and the ”arrival of acknowledge-
ment” of the corresponding segment at the sender.
Note that if the segment is not a retransmitted
segment, NRTT = RTT . The RTO update still
uses Karn’s algorithm, i.e. NRTT is not used to
update RTO. The function of NRTT is to detect
spurious timeouts.

• A new variable, called MinRTT , which records
the minimum value of RTT observed so far since
the transport level connection was established.

To get a better understanding of the two new variables,
we show the values of NRTT and MinRTT near the
long delay in Table III. To illustrate the relationship
between the two new variables, RTO and RTT , we also
reproduce the values of RTO and RTT from Table II.

We can see from Table III that before the long delay
starting at t = 28s, NRTT = RTT , and MinRtt is a
good estimate of the smallest time the sender can expect
for a segment to be acknowledged. In our example, the
round trip propagation delay was 2.8s (1.4 × 2). The

function of MinRtt is to protect the algorithm against
RTT oscillations caused by temporal changes in network
conditions.

Detection of a spurious timeout by DualRTT is shown
in Fig. 5. At t = 42.905s (see point Fig 5-A), the sender
receives the acknowledgement for the first retransmitted
segment (segment 131). The sender increases cwnd from
1 to 2 and sends out two segments: segments 132 and 133
(point Fig5-B). Shortly after the transmission of segment
132, it is acknowledged at t = 43.004s, resulting in
NRTT = 0.1s. Compared to MinRtt at this time
(2.8s), NRTT is only 1/28-th of MinRtt, which is
apparently impossible in a normal network. We use this
as an indication of spurious timeout. More specifically,
DualRTT uses the condition that if

NRTT < τ ∗MinRtt (1)

then spurious timeout is detected. τ is a threshold which
depends on network conditions such as link bandwidth,
path delay, and segment size. In response to detection
of spurious transmission, the sender restores cwnd and
ssthresh to the values before the timeout, and resumes
sending new segments starting from point Fig5-C.
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Fig. 5. Detection of spurious timeout by DualRTT.

The DualRTT algorithm is shown in Fig. 6. At
the start of the connection (the initialization phase), a
large value of MinRTT should be used to prevent it
from being assigned a wrong value when the actual
path delay is large. Our chosen value (65535 ticks)
should be enough for almost all networks, and is easy
to implement.

C. Choice of Threshold, τ

It is very important to select an optimal value of τ . A
low value of τ results in a conservative algorithm. This
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BEGIN
Initialization:

MinRTT=65535
NRTT=0

New Ack segment arrives:
if acked segment retransmitted
then

NRTT = current time− last sent time
else

NRTT = RTT
end if
update RTT, MinRTT
if NRTT < τ ∗MinRTT
then

/*spurious timeout detected*/
restore saved cwnd and ssthresh
start transmitting new data

end if
END

Fig. 6. The DualRTT algorithm.

is because, for given values of NRTT and MinRTT at
any instant of time, the lower the value of τ , the harder
it is to satisfy Eqn. (1). For example, for τ = 0.025
in the example given in Sec. IV-B, the sender will not
detect the spurious timeout because Eqn. (1) will not be
satisfied. The value of τ needs to be adaptively adjusted
depending on network conditions. In Sec. V, we develop
an algorithm to adaptively determine the optimal value
of τ to minimize the detection error as seen in Eqn. (2).

V. DETERMINING THE OPTIMAL VALUE OF τ

Now we turn our attention to the problem of dynami-
cally finding an optimal value of τ . We first analyze the
relationship between τ and wireless bandwidth, propa-
gation delay along the path, and path MTU in Sec. V-A.
In Sec. V-B, we develop a linear model for τ .

A. Log-Linear relationship between τ and wireless
bandwidth, propagation delay, and PMTU

From Eqn. (1), we can observe that a small value of
NRTT should allow us to use a small value of τ , and
likewise a large value of NRTT implies a larger τ , i.e.
the value of τ should reflect NRTT, which represents
the proximity in time of adjacent Acks come back just
after the delay spike. This time interval between two
Acks depends on the network bandwidth, propagation
delay along the path, and segment size. So we express
τ as a function of bandwidth, propagation delay and
PMTU. In order to develop a model for this function, we
find the relationship between τ and network bandwidth,
propagation delay, and path MTU through simulations.

The simulations were performed with the following
values: wireless bandwidth (B) was varied between 31.2

TABLE IV
ACTUAL NUMBER OF SPURIOUS TIMEOUT DETECTED BY EIFEL.

B D M Number of
(bps) (ms) (KB) Spurious Timeouts
31.2K 200 1.5 156
62.4K 200 1.5 300
130K 200 1.5 300
360K 200 1.5 300
1.0M 200 1.5 300
1.5M 200 1.5 300

Kbps -1.5 Mbps, path delay (D) ranged from 100 ms to
2000 ms, path MTU (M ) ranged from 576 Bytes to 4352
Bytes, and τ varied between 0.01 and 0.6. All values are
chosen as discrete values. For every combination of B,
D, and M , we simulated 300 randomly generated delay
spikes.

The optimal value of τ for each combination of B,
D, and M is determined by minimizing the detection
error of DualRTT. The detection errors can be of
two types: True timeouts which are misinterpreted as
Spurious timeouts (TMS), and Spurious timeouts which
are misinterpreted as True timeouts (SMT). Generally
speaking, DualRTT is more conservative for a smaller
value of τ as described in Sec. IV-C, thereby resulting in
a higher SMT. On the contrary, a larger value of τ makes
the algorithm more aggressive, and therefore tends to
generate a higher TMS.

We determine the value of τ such that the overall
detection error (ε), given by

ε = φ1 ∗ SMT + φ2 ∗ TMS (2)

is minimized, where φ1 and φ2 are weighting coeffi-
cients, and φ1 + φ2 = 1. Because a TMS error means
that a segment loss was not detected by the sender
before transmitting a new window of data, and it is very
expensive to recover from such a loss [27], we assign
a higher value to φ2. A higher value of φ2 will allow
the TMS errors in Eqn. (2) to get more priority during
the error minimization, resulting in a more conservative
algorithm. In our simulation, we selected φ2 = 0.8.

For example, the simulation results obtained by vary-
ing B, with D = 200ms and MTU = 1500 for 300
delay spikes, are shown in Tables IV and V. Table IV
shows the actual number of Spurious Timeouts detected
by Eifel during 300 delay spikes. Since Eifel uses
the TCP timestamp option to detect Spurious Timeouts
reliably, we obtain the table using Eifel. Table V shows
the number of Spurious Timeouts detected by DualRTT
for various value of τ . To make the comparison fair,
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TABLE V
NUMBER OF SPURIOUS TIMEOUT DETECTED BY DualRTT.

B D M τ
(bps) (ms) (KB) 0.01 0.025 0.04 0.08 0.1 0.2 0.6
31.2K 200 1.5 0 1 3 1 3 6 158
62.4K 200 1.5 0 0 0 0 3 300 300
130K 200 1.5 0 1 0 300 300 300 300
360K 200 1.5 1 0 300 300 300 300 300
1.0M 200 1.5 0 300 300 300 300 300 300
1.5M 200 1.5 300 300 300 300 300 300 300

we ensured that Tables V and IV were based on the
simulations having exactly the same long delay patterns.

By comparing Tables IV and V, we can determine the
optimal value of τ for each case; as shown by the bold
numbers in Table V. The size of the table depends on
the number of combinations of B, D, and M used in
the simulation. For example, if we choose six B values,
seven D, and four M values, then the table will have
168 rows.

We now want to establish the relationship between τ
and B, D, & M by averaging τ over B, D, and M
in Table V. For example, in order to obtain the B-τ
relationship, we plot optimal τ values versus different
B values for one D and M combination. We repeat
this process for four sets of D and M combinations;
the resulting relationship is shown in Fig. 7. Similarly,
we can obtain the relationship between τ and D, M as
shown in Figs. 8 and 9, respectively.
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Fig. 7. Relationship between B and τ .

From Figs. 7, 8, and 9, we can observe that the
relationship of τ versus B and D is exponential, while τ
versus M is rather close to linear. This analysis justifies
our selection of a log-linear model in Sec. V-B.
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Fig. 8. Relationship between D and τ .
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Fig. 9. Relationship between M and τ .

B. A log-linear model for τ

Based on the analysis in Sec. V-A, we can express τ
as a linear combination of log(B), log(D), and M :

τ = α log(B) + λ log(D) + ωM (3)

where α, λ, and ω are constant coefficients. Next, we
determine the empirical values of α, λ, and ω from
simulation data.

We can now rewrite Eqn. (3) in terms of a matrix
expression as follows:

τ = H ∗




α
λ
ω


 (4)

Here, the columns of H represent the values of log(B),
log(D), and M . The size of H and τ in this equation
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depend on the number of combinations of B, D & M
used in the simulation. For example, if we choose six B
values, seven D values, and four M values, H will have
a size of 168× 3, and τ will have a size of 168× 1.

Extracting optimal values of τ from Table V, we get:



...
0.6
0.2
0.08
0.04
0.025
0.01
...




=




...
log(31.2K) log(0.2) 576
log(62.4K) log(0.2) 576
log(130K) log(0.2) 576
log(360K) log(0.2) 576
log(1.0M) log(0.2) 576
log(1.5M) log(0.2) 576

...




(
α
λ
ω

)
(5)

By using the least square method, we can determine
the best estimation of α, λ, and ω as:

(
α
λ
ω

)
= (HT H)−1 ∗HT ∗ τ =

(
8.022 ∗ 10−3

−5.803 ∗ 10−2

1.463 ∗ 10−6

)
(6)

where HT means the transpose of matrix H .
For given values of B, D, and M , and using the

values of α, λ, ω obtained from Eqn. (6), we can
determine an optimal τ using Eqn. (3). B and D can be
estimated from the sender’s statistics about the network
path properties [28], and M can be found through a
PMTU discovery mechanism as discussed in [29]. Note
that during the startup period of TCP connection, or
when the mobile host has just moved to a new cell, B and
D cannot be obtained accurately from earlier statistics.
At these times, a conservative value of τ should be used
to start, simulation results from Tables IV and V indicate
that a value of τ=0.1 results in no TMS errors and low
SMT errors, therefore it is suitable in such cases.

C. Detection error of the model

We examined the accuracy of the above log-linear
model for τ by measuring the detection errors for
the simulation setup of Sec. V-A. In each of the 168
configurations, we simulated 300 delay spikes. Among
a total number of 50400 delay spikes, there were 37500
actual spurious timeouts as measured by Eifel. DualRTT
produces an SMT error of 11.3%, and a TMS error
of 0.12%, which is consistent with our objective of
minimizing the TMS error (see Sec. V-A).

VI. COMPARISON OF EIFEL AND DualRTT

The time line of DualRTT and Eifel are shown in
Figs. 10 and 11 which correspond to the time plots in
Figs. 5 and 4 respectively. Every segment is labelled as
”S#”, where ”S” represents the segment type which can
be one of the following: ”S” for original transmission of

a segment; ”R” for retransmission of a segment; and ”A”
for an acknowledgment of a segment. ”#” represents the
sequence number of the segment.
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O

S150
. . .

Spurious 

R131

R132
S151

A132A131
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R133

NRTT

NRTT

Delayed
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Fig. 10. Detection of spurious timeout in DualRTT.
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. . .
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timeout
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S131S132

Delayed
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Fig. 11. Detection of spurious timeout in Eifel.

Referring to Fig. 10 for DualRTT, T1 and T2 cor-
respond to the NRTT for segments 131 and 132 respec-
tively. DualRTT detects spurious timeout when A132
arrives. In comparison, Eifel detects spurious timeout
when A131 arrives. DualRTT therefore needs to wait
for slightly longer (time T2) than Eifel to detect spurious
timeout. After the detection of ST, both DualRTT and
Eifel start transmitting new segments starting at S151.
Table VI summarizes the pros and cons of Eifel and
DualRTT in detecting spurious timeout.

VII. PERFORMANCE EVALUATION

To measure the performance of our proposed
DualRTT algorithm, we implemented the algorithm as
a subclass of Agent/TCP/FullTCP in the ns-2 simula-
tor [23]. In this section, we evaluate the performance
of DualRTT to determine the increase in the transport
layer throughput in the presence of delay spikes. We
then compare the transport layer efficiency (defined in
Sec. VII-E) of DualRTT and Eifel.
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TABLE VI
COMPARISON OF EIFEL AND DualRTT.

Algorithm Advantages Disadvantages

Eifel

• More robust under
certain network con-
ditions.
• Detects spurious
timeout after receiv-
ing acknowledgement
from the first retrans-
mitted segment.

• Needs TCP
Timestamp option
support at both
endpoints.
• 12 bytes of header
overhead.

DualRTT

• No requirement for
Timestamp option.
• Less header over-
head, and hence more
efficient than Eifel in
the case of wireless
networks.

• Less robust in
congested networks.
• Needs
acknowledgement
from two
retransmitted
segments before
detecting spurious
timeout.

A. Network topology and traffic sources

To evaluate the performance of the new algorithm, we
use the parking lot network topology shown in Fig. 12
with three traffic flows: MH→W9 and W7→W2 carry
TCP/FTP traffic, and W8→W1 has a TCP/Exponential
traffic. MH→W9 represents traffic originating from a
Mobile Host (MH) which is affected by delay spikes,
and W7→W2 and W8→W1 simulate background traffic.
Both the FTP traffic are greedy sources that try to
consume as much network resource as possible. The
Exponential traffic is an ON/OFF source with burst time
1500ms, idle time 50ms, and sending rate 4.0Mbps. The
propagation delay and bandwidth for the links are shown
in Table VII.

W7

W2

W9W8

W0

W3 W4 W6

TCP2/ExponentialTCP1/FTP Testing Protocol Sink

Bottleneck Link

W5

MH

W1

W
ir

el
es

s 
L

in
k

Testing Protocol/FTP

TCP2 Sink TCP1 Sink

Fig. 12. Network topology for performance evaluation.

The bandwidth of the wireless link (MH-W0) was
varied between 15.6Kbps and 1.5Mbps to investigate the
impact of different wireless bandwidth; the bandwidth
of the bottleneck link (W4-W5) was varied between

TABLE VII
LINK BANDWIDTH AND DELAY OF THE SIMULATION TOPOLOGY.

Links Link BW Prop. Delay
(Kbps) (ms)

W0-W3, W3-W7, W5-W4
W4-W8 1500 200

W5-W1, W6-W2, W6-W9
MH-W0 15.6-1500 400
W4-W5 200-3500 200

0.2Mbps and 3.5Mbps to investigate the effect of varying
bandwidth at the bottleneck link. The wireless link (MH-
W0) delay was set to 400ms to take into account the RLC
layer ARQ handling delay [4]. Wired link delays were
chosen to make the end-to-end delay of TCP traffic equal
to 1.4sec, a commonly encountered end-to-end link delay
in GPRS networks [4].

B. Delay Spikes

We used the ns-2 ”hiccup” module [24] to randomly
insert three delay spikes in the MH→W0 connection
during a 150 second FTP session. Large delay spikes
(due to cell re-selection) with small interval between
spikes (arising from frequent handoffs) makes it difficult
for TCP to adapt to RTT changes. To simulate such
difficult scenarios [27], our simulation uses delay spikes
whose lengths are uniformly distributed between (3, 15)
seconds, with the interval between the delay spikes also
being uniformly distributed between (20, 40) seconds.

C. Transport protocols

Extensive simulation was performed for the following
three protocols at the Mobile Host, using the same
payload size for all the protocols.

1) TCP Reno (ns-2 ver. 2.1.b.8 implementation);
2) Eifel (implemented by Technical University of

Berlin [24]);
3) DualRTT.
To obtain a comprehensive comparison among the

three protocols, the bandwidth of the wireless link (MH-
W0) and bottleneck link (W4-W5) were varied to gener-
ate a total of 65 simulation scenarios, with each scenario
run for 50 times independently to ensure the statistical
fairness of the results. Each simulation run consisted
of a 150-second FTP session. Results presented in this
section represent the average of all the simulation runs.
To ensure fairness among the protocols, the parameters
were kept the same for the three protocols as shown in
Table VIII.
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TABLE VIII
PROTOCOLS PARAMETERS FOR THE THREE PROTOCOLS.

Header size (Bytes): 20 (Reno)
32 (Eifel)
20 (DualRTT)

Payload size: 536 bytes
rwnd limit 20 segments
Initial cwnd 1 segment
Initial ssthresh 20 segments

D. Transport Layer Throughput

We define the Transport Layer Throughput (TLT) of
a protocol as the total number of segments delivered to
the destination during a fixed duration of FTP session.

Figs. 13 and 14 show the TLT of the three protocols
for a bottleneck bandwidth of 200kbps and 1.5Mbps
respectively obtained from a 150 second FTP session.
Fig. 13 shows that the TLT of TCP Reno, Eifel and
DualRTT initially increase with an increase in the
wireless link bandwidth. However, if the wireless link
bandwidth is further increased, the bottleneck link be-
comes congested and starts dropping packets. Timeouts
in delay spikes increase the RTO to a large value, and if
packets are lost in the same window as the delay spike,
Eifel has to wait a long time to retransmit the lost packet
and, therefore, becomes very sensitive to packet losses
occurring after a delay spike as reported in [27]. As a
result, in Fig. 13 the TLT of Eifel drops with an increase
in the wireless link bandwidth above 200Kbps. Since
packet losses in DualRTT are handled the same way as
Eifel, the TLT of DualRTT also drops when packets are
lost after a delay spike. However, when the bottleneck
link bandwidth is sufficiently large (for example, 1.5
Mbps), the probability of packet losses after a delay
spike due to congestion is very small. The above negative
impact of packet losses on Eifel and DualRTT is not
seen in Fig. 14.

We can see in Figs. 13 and 14 that the TLT reaches
a saturation point when the wireless link bandwidth
reaches around 31.2 Kbps. This is because the receiver
window size of 20 segments (see Table VIII) and an
end to end round trip delay of 2.8s (Sec. VII-A) limits
the TLT of a connection to a maximum of (20 ∗ 576 ∗
8)/2.8 = 32.9 Kbps for TCP Reno and DualRTT, and
33.6Kbps for Eifel, where 576 is the payload size 536
bytes plus 40 bytes of TCP/IP header size.

Fig. 15 shows the 150-second FTP session TLT av-
eraged over different wireless link bandwidths ranging
from 15.6Kbps-1.5Mbps for various combinations of
protocol and bottleneck link bandwidths. From Fig. 15,
we can see that DualRTT significantly increases the

TLT of TCP Reno. The TLT of DualRTT is better
than Eifel for low bottleneck link bandwidths (under
1Mbps); for other cases, its performance is at least equal
to that of Eifel. It is to be noted that although Eifel
detects spurious timeout slightly earlier than DualRTT,
the TLT of DualRTT is better than Eifel because of
the fewer header bytes required by DualRTT. The TLT
enhancement of DualRTT over Eifel is not significant
because we used a payload size of 536 bytes in our
simulation which is large as compared to the 12-byte
TCP timestamp option.
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Fig. 13. Comparison of TLT of TCP Reno, Eifel and DualRTT for
bottleneck bandwidth of 0.2 Mbps.
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Fig. 14. Comparison of TLT of TCP Reno, Eifel and DualRTT for
bottleneck bandwidth of 1.5 Mbps.

E. Transport Layer Efficiency
We now compare the Transport Layer Efficiency of

Eifel and DualRTT. We define Transport Layer Effi-
ciency (TLE) as the ratio of bandwidth used by the
transport layer segment payload to the total size of a
segment as follows:

TLE =
Payload Size of a segment

Total Size of a segment
(7)
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Fig. 15. Average TLT of TCP Reno, Eifel and DualRTT for
different bottleneck bandwidth.

TABLE IX
COMPARISON OF TLE FOR EIFEL AND DualRTT.

Payload % Traffic TLE % Increase
(Bytes) Eifel DualRTT

32 58.49 0.500 0.615 23.1
96 29.73 0.750 0.828 10.3
192 1.72 0.857 0.906 5.7
376 3.98 0.922 0.949 3.0
768 3.37 0.960 0.975 1.5

1460 2.70 0.979 0.986 0.8

Table IX shows the TLE of Eifel and DualRTT for
various values of payload sizes, with segment header
size of 20+12=32 bytes for Eifel and 20 bytes for
DualRTT. It also shows the percentage increase of TLE
of DualRTT as compared to Eifel. The first and second
column of the table show the payload size distribution of
an NLANR Passive Measurement [21]. The payload size
in the first column is the average payload for each group
of packets measured: for example, 32 bytes is used for
the payloads of length 0-64 bytes.

As can be seen from the table, the 12-bytes of header
required by Eifel, due to the use of the timestamp option,
results in low TLE for small payloads. For example,
for a payload of 32 bytes, the TLE of DualRTT is
(0.615-0.5)/0.5 = 23.1% higher than Eifel. Note that
higher TLE results in less wastage of network bandwidth,
which translates to greater availability of the bandwidth
for the transmission of real data (payload). The average
percentage TLE increase is calculated by taking the
weighed average of column 5, where the weights are
taken from the column 2 which shows the percentage of
the traffic for a specific payload. We have calculated the
average percentage TLE increase is 16.86%.

VIII. CONCLUSION

In this paper, we have proposed DualRTT, a new
algorithm to improve the end-to-end performance of
TCP in the presence of delay spikes in wireless mobile
environments. DualRTT does not require any additional

header bytes, and is therefore suitable for bandwidth
constrained mobile wireless networks. DualRTT also
does not require any change at the destination or the
Internet infrastructure, nor does it require the destination
to support the TCP timestamp option; it requires changes
only at the sender, and hence is easy to deploy in the
existing Internet infrastructure.

Performance comparison of DualRTT and Eifel
shows that DualRTT has a higher transport layer ef-
ficiency which translates to more network bandwidth
being available to carry the payload data (useful infor-
mation).
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