
Mean Response Time Estimation for
HTTP over SCTP in Wireless

Environment

Y.J. Lee, Mohammed Atiquzzaman , S.K.
Sivagurunathan

TR-OU-TNRL-05-115
September 2005

Telecommunication & Network Research Lab

School of Computer Science

THE UNIVERSITY OF OKLAHOMA

200 Felgar Street, Room 160, Norman, Oklahoma 73019-6151
(405)-325-0582, atiq@ou.edu, www.cs.ou.edu/˜netlab

1

Mean Response Time Estimation for HTTP over
SCTP in Wireless Environment

Abstract-HTTP (Hyper Text Transfer Protocol) and
TCP (Transmission Control Protocol) are usually used
to retrieve objects in the Internet. Stream Control
Transmission Protocol (SCTP) has attractive multi-
streaming feature, which allows for independent
delivery among streams, thus can avoid the head-of-
line blocking experienced by TCP and reduce the
mean response time of users. We present an analytical
model and algorithm to estimate the mean response
time for HTTP over SCTP and compare with that of
HTTP over TCP in the wireless environment. We
validate the accuracy of our model using
experiments .It is shown that mean response time for
HTTP over SCTP is less than that for HTTP over TCP
by 20% on average.

I. INTRODUCTION

 HTTP is a transfer protocol used by the World Wide
Web distributed hypermedia systems to retrieve objects
in the Internet. HTTP is a connection-oriented protocol
and uses TCP as the transport protocol.

The current HTTP version reduces response time by
using persistent connections and pipelining. However,
there is a mismatch between the requirements of HTTP
and the functionality provided by TCP. When multiple
embedded objects are being transferred using HTTP, it is
desired that each of the objects be reliably transferred to
the destination independently, Rather than ordered
delivery, , it is more important to reduce the perceived
latency of HTTP users. An average user is only interested
in a fast response time.
 Stream Control Transfer Protocol (SCTP) [8] is a new
transport protocol that provides a message oriented and
reliable transport service to Internet users. In addition,
SCTP offers advanced delivery options, particularly
desirable for multimedia applications that TCP does not
provide. We can partition data into multiple streams that

The research reported in this paper was funded by NASA Grant NAG3-
2922.

can be delivered independently using the multi-streaming
function provided by SCTP. Message loss in any of the
streams will thus only affect delivery within that stream,
and not in other streams.
 Unlike SCTP, TCP provides a single stream of data and
strict ordered delivery. For a number of applications, this
characteristic of strict sequence preservation is not truly
necessary. Especially, for web application, it is generally
not necessary to maintain sequence between the
presentation of objects, and in some cases, it may be
possible to present parts of a single object out of
sequence. Eventually the goal is to deliver all objects as
soon as possible. Delivery of out of sequence objects may
result in better perceived performance, as parts of the
web page can be displayed rather than waiting for all of
the information to be received. This is called the head-of-
line blocking. Multi-streaming can be used for
independent delivery among streams within an SCTP
association, thus reducing the risk of head-of-line
blocking [3]. This will result in a better response time to
users through simultaneous retrieval of multiple objects
[4].

The TCP model of Padhye et al. [7] assumed steady
state bulk data TCP transfers. However, most TCP
connections carrying HTTP data in Internet today are
short transfers rather than being bulk transfers. Thus,
startup effects such as connection establishment and slow
start dominate the performance of Web. In order to
describe these effects, Cardwell et al. [2] extended the
previous steady-state model; it, however, does not
consider the TCP latency due to the slow start after
timeout. Jiong et al. [5] presented a simple model of short
TCP transfers by considering the slow start period after
retransmission timeout, and improved the model [2] on
the influence of slow start period after retransmission
timeout. However, they assumed a single packet loss. In
addition, the above studies did not consider the head-of-
line blocking effect of TCP which affects the mean
response time perceived by end users.

Previous studies have considered the performance of
Session Initiated Protocol (SIP) [1] and File Transfer

Y.J. Lee
Korea National University of Education

Dept. of Technology Education
San 7, Darakri

Chungbuk, 363-791, Korea

M. Atiquzzaman, S.K. Sivagurunathan
University of Oklahoma

School of Computer Science
200 Felgar Street, Room 120

Norman, OK 73019-6151

2

Protocol (FTP) over SCTP [6]. In this paper, we present
the analytical model and experimental results for HTTP
over SCTP with a view to comparing the mean response
time of end users. We also compare the mean response
time of HHTP over SCTP with that of HTTP over TCP.
 The rest of the paper is organized as follows. In
Section II, we describe our analytical model and
algorithm. In Section III, we describe our experimental
setup and compare the experimental results with those
obtained from the analytical model, followed by
concluding remarks in Section IV.

II. MODELING AND ALGORITHM

A. Terminology and assumptions

 In this section, we describe the terminology and
assumptions that have been used to derive the analytical
model for HTTP over SCTP.

A.1 Terminology

RTT: round trip time from the server to the client
R: transmission rate of the link from the server to the
client (bps)
O: size of the object to be transferred (bits)
MSS: maximum segment size (bits)
K: number of windows that cover the object
Q: number of times the server would stall
M: number of reference objects
N: total number of packets in object
PI: maximum number of pipelines
p: packet loss probability
a: expected number of lost packet
x: expected value of packet number when the loss occurs
C: the window number in which x is included
y: window size that covers the expected value of x
DT: data transfer time
TR: data retransmission time in the case of data loss
SC: slow start time per object
HOB: head of line blocking time
IT: initial connection setup and HTML transfer time
th: number of packets for threshold in the congestion
control
Ath: amount of packets sent until T
L: amount of packets sent during the linear phase of
congestion control
Sx: slow start time until x when packet loss occurs during
slow start phase
Sth: slow start time until threshold T when packet loss
occurs during the linear phase
Tx: total time until packet loss occurs during slow start
phase
TL: total time when packet loss occurs during congestion
avoidance
TOdetect: expected time for retransmission timeout

A.2 Assumptions

 (1) All objects to be transferred using HTTP are of
identical size.
 (2) Packets are sent to the upper layer based on the
window unit.

B. Modeling

Figure 1 illustrates sending an HTTP request for an
object and receiving an acknowledgement from the server.
If the total number of packets in an object is  MSSON /= ,
and the packet loss probability is p, the expected number
of packet loss, according to the Binomial distribution, is

 Npa = . In Figure 1, S1, S2,.., Sa represent the slow start
times until the first, second,�, ath packet loss,
respectively. DT1, DT2,.., DTa show the data transfer time
for part of object until the first, second,.., ath packet loss,
respectively. HOB1, HOB2,., HOBa represent the head-of-
line blocking time for the client to wait for the
completion of retransmission. Thus, the total response
time = RTT + object transfer time = RTT + (S1 + DT1 +
RT1 + HOB1) + ····· + (Sa + DTa + RTa + HOBa). For a
constant RTT in a given environment, the total response
time depends on the object transfer time. Since, the sum
of the data transfer times can be treated as a constant, the
slow start time, retransmission time and head-of-line
blocking time contribute to the total response time. If
there is no packet loss, the additional slow-start time,
retransmission time and head-of-line blocking time due
to loss are not necessary. We, therefore, only need the
slow start time (SC) for normal transmission and data
transfer time (O/R).

Next we consider the case of packet loss. To find the
slow start time (S1), the expected number of packets sent
before a loss (not including the lost packet) is given by
 N

N

p
p

px)1()1(1 −+−−= (1)

Thus, the expected number of packets sent before the first
loss is (x-1). Slow start time for an object is given by

R
MSS-

R
MSSRTTvSC v ⋅−



 +⋅=)12((2)

Here, v = min [Q,,K-1]. Q represents the number of times
the server would stall and is given by

 1

/
1log 2 +














 +=

RMSS
RTTQ (3)

K represents the number of windows that cover the object
without packet loss and given by















 += 1log 2 MSS

OK (4)

3

In case of packet loss, since we send only x packets
before the loss, K is given by

  )1(log 2 +≈ xK (5)

Client ServerNetwork

Packet loss 1: S2 + retransmission

RT
T

HTTP request (object)

S1

DT1

...

.

Sa

DTa

Packet loss 1: Sa + retransmissionO
bj

ec
t T

ra
ns

fe
r T

im
e

To
ta

l R
es

po
ns

e
Ti

m
e

Figure 1. HTTP Request for an object.

 Substituting the above values into SC, we can obtain the
slow start time until x (Sx) as

R
MSS

R
MSSRTTvS vx ⋅−



 +⋅=)1(2 -

 
]1,min[

1log

1
/

1log

2

2

−=
+=

+













 +=

KQv
xK

RMSS
RTTQ

 (6)

Now, let�s consider the initial threshold (T). The total

number of packets sent until T is

 
 





≠+−
=−=

+

+

kth

kth

th
thifth
thifA

2 ,12
2 ,12

)1(log

)1(log

2

2
 (7)

In Figure 1, S1 can be different depending on the

following two cases: In the case of x+1≤ Ath, S1 = Sx,
otherwise, S1 = Sth.

If x+1≤ Ath, it means that packet loss occurred in the
slow start phase as shown in Figure 2. Sx represents the
slow start time for x packets.

Next, the current window number is given by

 )1(log)}1(log:min{
}12:min{

}222:min{

22

110

+=+=
≥−=

≥+⋅⋅⋅++= −

xxK
xK

xKC
K

K

 (8)

Co
ng

es
tio

n
w

in
do

w

Time

slo
w st

art

y

th = y / 2

TOdetect

Sx

 Figure 2. Packet loss during slow-start phase.

Thus, the window size (y) which covers the expected
number of packets when loss occurs (x) is given by



 <+−−

=
−

−

otherwise ,2
2 if ,1)2(2

1

1

C

CCC NN
y (9)

If y > th, we set th = y. The number of packets sent before
the loss in the Cth windows is

1

210

21
)222(1

−

−

−+=

+⋅⋅⋅++−+=
C

C

x
xb (10)

The number of packets to be resent, including the lost
packet, is (y-b). This number will be added to the
remainder and processed in the next step as shown in the
algorithm. Since b packets must wait in the Cth window,
and (y-b) packets are to be sent in the next slow-start time,
head-of-line blocking time is given by

R
MSSbyHOB ⋅−=)(1

 (11)

Thus, total time for slow start phase, including the
transmission time of the lost packet is

 Tx= Sx+(x+1)·MSS/R+HOB1+TOdetect (12)

In Equation (12), TOdetect = 3/2 RTT which represents
receiving three duplicate ACKs for detecting a lost packet
for fast retransmission. Before proceeding to the next
step, we set N = N�x+(y-b) and  2/TT = .

x+1>Ath implies a packet loss in the congestion avoidance
phase, as shown in Figure 3, where x = Ath+L. So, the
number of packets sent before the loss during this phase
is

 L = x � Ath (13)

4

 In this phase, each packet is followed by an
acknowledgement. The additional time to send L packets
is L×RTT. Slow start time until th (Sth) is

R

MSS
R

MSSRTTvS v
th ⋅−



 +⋅=)1(2 -

 
]1,min[

log

1
/

1log

2

2

−=
=

+













 +=

KQv
AK

RMSS
RTTQ

th (14)

C
on

ge
st

io
n

w
in

do
w

Time

fast retransmit /
fast recovery

th = (th+L)/2

slow start

Sth

L*RTT

TOdetect

th

th + L

Figure 3. Packet loss during congestion avoidance Phase.

Thus, total time for the congestion avoidance phase,
including the transmission time of the lost packet is

 TL=Sth +(x+1)·MSS/R+L·RTT+ TOdetect (15)

In Eqn. (15), TOdetect = 3/2 RTT corresponding to the
reception of three duplicate ACKs for detecting a lost
packet. By setting N = N � x + 1 and  2/)(Lthth += ,
we can obtain the rest of the values, such as Tx or TL, by
using the same method iteratively. It should be noted that
Sx or Sth can be found for i=1,.., a+1, but HOBi can be
found for i=1,..,a.

C. Algorithm

Based on the model in the previous section, the complete
procedure to find the object transfer time is given as
follows.

ALGORITHM FOR OBJECT TRANSFER TIME
VARIABLE i: count variable, tot_hob: sum of HOBi
 OT: total object transfer time
(1) Set OT = 0 and tot_hob = 0.
(2) Compute the total number of packets in object is

 MSS/ON = and the expected number of packet loss

 Npa = .

(3) Set i = 0.
(4) Set i = i + 1.
(5) If i = a+1 or p = 0, Set x = N and go to (7).
(6) Compute the expected number of packets sent
 before the loss
 N

N

p1
p

p11x)()(−+−−=

(7) Compute the object transfer time for slow start
If (x+1≤ Ath) {

 Compute slow-start time (Sx);
If a = 0 or i = a+1 {
 Set Tx = Sx+ (x+1)·MSS / R;

 Set OT = OT + Tx}
else { Compute C, y, b, and HOBi;
Set Tx = Sx+(x+1)·MSS/R+HOBi+TOdetect;

 Set OT = OT +Tx ; Set T = T/2 ;
Set tot_hob = tot_hob+HOBi;
Set N = N-x+(y-b) }

 };
 If (x+1 > Ath) {

 Compute slow-start time (Sth), L ;
 If a = 0 or i = a+1 {

Set TL= Sth+(x+1)·MSS/R+L×RTT;
 Set OT = OT +TL ;}

 else {
 SetTL = Sth+(x+1)·MSS/R+L·RTT+TOdetect;
 Set OT = OT+TL; Set  2/)(Lthth += ;

Set tot_hob = tot_hob+HOBi;
 Set N = N � x+1; }

};

(8) Set i = i+1.
(9) If i = a+1 or p = 0, Set x = N and go to (11).

(10) Compute the expected number of packets sent before

the loss
 N

N

p1
p

p11x)()(−+−−=

(11) Compute the object transfer time after initial loss.
 Compute C, y, b, and HOBi
 If a = 0 or i = a+1 {

Set TL= (x+1)·MSS/R + L.RTT ;
 Set OT = OT + TL ; Go to (12). }

 else {
 Compute L, HOBi;
 Set TL = (x+1)·MSS/R+L·RTT+HOBi +TOdetect ;
 Set OT = OT+TL; Set  2/)(Lthth += ;

Set tot_hob = tot_hob+HOBi;
 Set N = N � x+1; }

};

(12) If i = a+1, then proceed to (13). Otherwise, go to

(11).
 (13) Find the total object transfer time (OT).

5

When the number of packets is N, time complexity of our
algorithm is O(N). Based on our model, Table 1 shows
the response time of HTTP over TCP and SCTP,
respectively.

TABLE I:
 Comparison of response time

Protocol Total Response Time
HTTP
over TCP

IT +RTT+OT, if PI ≥ M
IT +Μ/PI * (RTT+OT), Otherwise
(PI�Pipeline Index (depth of the pipeline))

HTTP
over
SCTP

IT +RTT+(OT �tot_hob)

III. PERFORMANCE EVALUATION

A. Experimental Setup

In this section, we validate our model presented in Sec.
II. Our objective is to compare the results obtained
analytically to those obtained experimentally. Since the
current HTTP servers do not yet support the new SCTP
protocol, we simulated the web server and client by
transferring objects between two machines using TCP
and SCTP, but emulating the HTTP protocol. (We didn�t
use TCP based HTTP server, because we want to make a
fair comparison between TCP and SCTP using the same
experimental setup). Since the model developed in this
paper is concerned with object transfer time between a
web server and a user, our simulated experiment
consisting of just transferring objects to find object
transfer time, is appropriate for validation of our model.

Figure 4 shows our experimental setup. Dell desktops
have been used as servers and clients to transfer data
between machines. NIST emulator [9] was used to
simulate various network conditions, such as packet loss,
bandwidth, RTT, etc., between the server and client.

 Figure 4. Experimental Setup.

The various object transfer times were calculated from
packets captures by Ethereal [10] during transfer of
objects between the client and the server for different
network conditions. From the the experiment setup, the
mean transfer time of HTTP over TCP and HTTP over

SCTP were obtained. The collected results are compared
and analyzed in the next section.

B. Results Analysis

Table II shows the mean response time (sec), for the
proposed model and for the experiment as a function of
the packet loss ratio (p) for RTT = 256 ms, O = 13.5 KB,
R = 40 Kbps, MSS = 536 B, and M = 5. As p decreases,
head-of-line blocking becomes very
clsoe to zero. This is due to the fact that head-of-line
blocking occurrs only in the case of packet loss.
Because the size of object for HTTP application is very
small, head-of-line blocking time of the HTTP
application is very small. Accordingly, the head-of-line
blocking time becomes very small as the transmission
rate of the link (R) increases, thus overcoming any gain
of HTTP over SCTP (when compared against HTTP over
TCP). Nevertheless, since HTTP over SCTP can be
supported over only one association, it has the
advantages of requiring less resources than HTTP over
TCP.

TABLE II

Result for varying packet loss ratio (p)

Table III shows the total response time according to RTT
when p = 1 %, O = 13.5 KB, R = 40 Kbps, MSS = 536 B,
and M = 5. Table 3 shows that the mean response time
increases sharply with an increase of RTT.

TABLE III

Result for varying RTT

Table IV shows the total response time as a function of R
for p = 1 %, O = 13.5 KB, RTT= 0.256 sec, MSS =
536 B, and M = 5. In Table 5, as R increases,

 RTT(Sec)
Protocol

0.055 0.08 0.256 1.0

TCP (Model) (Sec) 14.89 14.94 18.73 21.56

TCP
(Experimental)
(Sec)

13.82 14.63 21.84 28.17

SCTP (Model) (Sec) 14.83 14.92 18.64 19.40

SCTP
(Experimental)
(Sec)

13.71 14.71 21.33 26.17

 p
Protocol

0.4 % 1% 2 % 5 %

TCP (Model) (Sec) 21.27

21.33 21.77 25.84

TCP (Experimental) (Sec) 18.70 18.73 19.00 21.77

SCTP (Model) (Sec) 20.76 20.81 21.26 24.86

SCTP (Experimental)
(Sec)

18.62 18.64 18.85 19.56

6

meanresponse times for persistent connection with
pipelining of HTTP/1.1 and HTTP over SCTP are almost
same
This implies that the head-of-line (HOB) blocking time is
close to zero. This can be explained by the fact that the
value of MSS/R to affect the HOB decreases as R
increases.
 TABLE IV

Result for varying bandwidth (R)

The small differences between the results from model
and those from experimental were due to the inaccuracies
of the NIST emulator we used in our experiment, to
simulate the packet loss ratio, bandwidth, RTT, etc for
small objects. We transferred small objects to reflect the
real world scenario of HTTP transfers.

IV. CONCLUSIONS

 We investigated the mean response time of HTTP file
transfers over SCTP that had not been considered in the
literature. The multi-streaming feature of SCTP allows a
web server to simultaneously send several objects in an
SCTP association without degrading the server
performance as observed with pipelining and parallel
connections for HTTP over TCP. We derived an
analytical model for the mean response time for HTTP
over SCTP. Previous traffic models for HTTP over TCP
only assumed packet losses during the slow start phase;
our model also considers the loss during the congestion
avoidance phase. Furthermore, it estimates the head-of-
line blocking time that is not included in the response
time of HTTP over SCTP. Our results show that the
mean end user response time for HTTP over SCTP is
better than HTTP over TCP.

REFERENCES

[1] G. Camarllo, R. Kantola and H. Schulzrinne,
�Evaluation of Transport Protocols for the Session
Initiation Protocol�, IEEE Network, Vol. 17, No. 5, pp.
40-46, 2003.

[2] N. Cardwell, S. Savage and T. Anderson, �Modeling
TCP Latency�, IEEE Infocom, Tel Aviv, Vol. 3, pp.
1742-1751, March 2000.

[3] A. L. Caro, J. R. Iyengar, P. D. Amer, S.
Ladha, G. Heinz and K. Shah, �SCTP: A Proposed
Standard for Robust Internet Data Transport�, IEEE
Computer, Vol. 36, No. 11, pp. 56-63, November 2003.

[4] S. Fu and M. Atiquzzaman, �SCTP: State of the art in
Research, Products, and Technical Challenges�, IEEE
Communication Magazine, pp. 64-76, 2004.

 [5] Z. Jiong, Z. Shu-jing and Qi-gang, �An Adapted Full
Model for TCP Latency�, Proceedings of IEEE
TENCON �02, Beijing, Vol. 2, pp. 801-804, October
2002.

[6] S. Ladha and P. Amer, �Improving Multiple File
Transfer Using SCTP Multistreaming�, University of
Delaware, TR, 2003.

[7] J. Padhye, V. Firoiu, D. F. Towsley and J. F. Kurose,
�Modeling TCP Reno Performance: A Simple Model and
Its Empirical Validation�, ACM Transactions on
Networking, Vol. 8, No. 2, pp. 133-145, 2000.

[8] R. Stewart, Q. Xie, et al, Stream Control
Transmission Protocol, RFC 2960, 2000.

[9] http://snad.ncsl.nist.gov/itg/nistnet/

[10] www.ethereal.com

 R
Protocol

40
Kbps

400
Kbps

 3
Mbps

10
Mbp

s
TCP (Model)
(Sec)

18.73 5.42 4.20 2.59

TCP (Experimental)
(Sec)

21.84 5.60 4.50 4.40

SCTP (Model)
(Sec)

18.64 4.92 3.79 2.59

SCTP (Experimental)
(Sec)

21.33 5.09 3.99 3.89

