
Mean Response Time Estimation for
HTTP over SCTP in Wireless

Environment

Y.J. Lee, Mohammed Atiquzzaman , S.K.
Sivagurunathan

TR-OU-TNRL-05-115
September 2005

Telecommunication & Network Research Lab

School of Computer Science

THE UNIVERSITY OF OKLAHOMA

200 Felgar Street, Room 160, Norman, Oklahoma 73019-6151
(405)-325-0582, atiq@ou.edu, www.cs.ou.edu/˜netlab



 

1

Mean Response Time Estimation for HTTP over 
SCTP in Wireless Environment 

 
Abstract-HTTP (Hyper Text Transfer Protocol) and 
TCP (Transmission Control Protocol) are usually used 
to retrieve objects in the Internet. Stream Control 
Transmission Protocol (SCTP) has attractive multi-
streaming feature, which allows for independent 
delivery among streams, thus can avoid the head-of-
line blocking experienced by TCP and reduce the 
mean response time of users. We present an analytical 
model and algorithm to estimate the mean response 
time for HTTP over SCTP and compare with that of  
HTTP over TCP in the wireless environment. We 
validate the accuracy of our model using 
experiments .It is shown that mean response time for 
HTTP over SCTP is less than that for HTTP over TCP 
by 20% on average. 
 

I.  INTRODUCTION 
 
  HTTP is a transfer protocol used by the World Wide 
Web distributed hypermedia systems to retrieve  objects 
in the Internet. HTTP is a connection-oriented protocol 
and uses TCP as the transport protocol.  

The current HTTP version reduces response time by 
using persistent connections and pipelining. However, 
there is a mismatch between the requirements of HTTP 
and the functionality provided by TCP. When multiple 
embedded objects are being transferred using HTTP, it is 
desired that each of the objects be reliably transferred to 
the destination independently, Rather than ordered 
delivery, , it is more important to reduce the perceived 
latency of HTTP users. An average user is only interested 
in a fast  response time. 
   Stream Control Transfer Protocol (SCTP) [8] is a new 
transport protocol that provides a message oriented and 
reliable transport service to Internet users. In addition, 
SCTP offers advanced delivery options, particularly 
desirable for multimedia applications that TCP does not 
provide. We can partition data into multiple streams that  
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can be delivered independently using the multi-streaming 
function provided by SCTP. Message loss in any of the 
streams will thus only affect delivery within that stream, 
and not in other streams. 
  Unlike SCTP, TCP provides a single stream of data and 
strict ordered delivery. For a number of applications, this 
characteristic of strict sequence preservation is not truly 
necessary.  Especially, for web application, it is generally 
not necessary to maintain sequence between the 
presentation of objects, and in some cases, it may be 
possible to present parts of a single object out of 
sequence.  Eventually the goal is to deliver all objects as 
soon as possible. Delivery of out of sequence objects may 
result in better perceived performance, as parts of the 
web page can be displayed rather than waiting for all of 
the information to be received. This is called the head-of-
line blocking. Multi-streaming can be used for 
independent delivery among streams within an SCTP 
association, thus reducing the risk of head-of-line 
blocking [3]. This will result in a better response time to 
users through simultaneous retrieval of multiple objects 
[4].  

The TCP model of Padhye et al. [7] assumed steady 
state bulk data TCP transfers. However, most TCP 
connections carrying HTTP data in Internet today are 
short transfers rather than being bulk transfers.  Thus, 
startup effects such as connection establishment and slow 
start dominate the performance of Web. In order to 
describe these effects, Cardwell et al. [2] extended the 
previous steady-state model; it, however, does not 
consider the TCP latency due to the slow start after 
timeout. Jiong et al. [5] presented a simple model of short 
TCP transfers by considering the slow start period after 
retransmission timeout, and improved the model [2] on 
the influence of slow start period after retransmission 
timeout. However, they assumed a single packet loss. In 
addition, the above studies did not consider the head-of-
line blocking effect of TCP which affects the mean 
response time perceived by end users.  

Previous studies have considered the performance of 
Session Initiated Protocol (SIP) [1] and File Transfer 
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Protocol (FTP) over SCTP [6].  In this paper, we present 
the analytical model and experimental results for HTTP 
over SCTP with a view to comparing the mean response 
time of end users. We also compare the mean response 
time of HHTP over SCTP with that of HTTP over TCP.  
  The rest of the paper is organized as follows. In 
Section II, we describe our analytical model and 
algorithm. In Section III, we describe our experimental 
setup and compare the experimental results with those 
obtained from the analytical model, followed by 
concluding remarks in Section IV. 
 

II. MODELING AND ALGORITHM 
 
A. Terminology and assumptions 
 
   In this section, we describe the terminology and 
assumptions that have been used to derive the analytical 
model for HTTP over SCTP. 
 
A.1 Terminology 
 
RTT: round trip time from the server to the client 
R: transmission rate of the link from the server to the 
client (bps)  
O: size of the object to be transferred (bits) 
MSS: maximum segment size (bits)  
K: number of windows that cover the object  
Q: number of times the server would stall 
M: number of reference objects 
N: total number of packets in object 
PI: maximum number of pipelines  
p: packet loss probability 
a: expected number of lost packet 
x: expected value of packet number when the loss occurs 
C: the window number in which x is included 
y: window size that covers the expected value of x 
DT: data transfer time 
TR: data retransmission time in the case of data loss 
SC: slow start time per object 
HOB: head of line blocking time 
IT: initial connection setup and HTML transfer time 
th: number of packets for threshold in the congestion 
control 
Ath: amount of packets sent until T 
L: amount of packets sent during the linear phase of 
congestion control 
Sx: slow start time until x when packet loss occurs during 
slow start phase 
Sth: slow start time until threshold T when packet loss 
occurs during the linear phase 
Tx: total time until packet loss occurs during slow start 
phase 
TL: total time when packet loss occurs during congestion 
avoidance 
TOdetect: expected time for retransmission timeout  
 

A.2 Assumptions 
 
 (1) All objects to be transferred using HTTP are of 
identical size. 
 (2) Packets are sent to the upper layer based on the 
window unit. 
 
B. Modeling 
 

Figure 1 illustrates sending an HTTP request for an 
object and receiving an acknowledgement from the server. 
If the total number of packets in an object is  MSSON /= , 
and the packet loss probability is p, the expected number 
of packet loss, according to the Binomial distribution, is 

 Npa = . In Figure 1, S1, S2,.., Sa represent the slow start 
times until the first, second,�, ath packet loss, 
respectively. DT1, DT2,.., DTa show the data transfer time 
for part of object until the first, second,.., ath packet loss, 
respectively. HOB1, HOB2,., HOBa represent the head-of-
line blocking time for the client to wait for the 
completion of retransmission. Thus, the total response 
time = RTT + object transfer time = RTT + (S1 + DT1 + 
RT1 + HOB1) + ····· + (Sa + DTa + RTa + HOBa). For a 
constant RTT in a given environment, the total response 
time depends on the object transfer time. Since, the sum 
of the data transfer times can be treated as a constant, the 
slow start time, retransmission time and head-of-line 
blocking time contribute to the total response time. If 
there is no packet loss, the additional slow-start time, 
retransmission time and head-of-line blocking time due 
to loss are not necessary. We, therefore, only need the 
slow start time (SC) for normal transmission and data 
transfer time (O/R).  

Next we consider the case of packet loss. To find the 
slow start time (S1), the expected number of packets sent 
before a loss (not including the lost packet) is given by 
        N

N

p
p

px )1()1(1 −+−−=        (1)          

Thus, the expected number of packets sent before the first 
loss is (x-1). Slow start time for an object is given by  
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Here, v = min [Q,,K-1]. Q represents the number of times 
the server would stall and is given by 
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K represents the number of windows that cover the object 
without packet loss and given by 
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In case of packet loss, since we send only x packets 
before the loss, K is given by 
 
          )1(log 2 +≈ xK                   (5) 
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Figure 1. HTTP Request for an object. 
 
 
 Substituting the above values into SC, we can obtain the 
slow start time until x (Sx) as 
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Now, let�s consider the initial threshold (T). The total 

number of packets sent until T is 
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In Figure 1, S1 can be different depending on the 

following two cases:  In the case of x+1≤ Ath, S1 = Sx, 
otherwise, S1 = Sth. 

If x+1≤ Ath, it means that packet loss occurred in the 
slow start phase as shown in Figure 2. Sx represents the 
slow start time for x packets. 
 
Next, the current window number is given by 
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      Figure 2. Packet loss during slow-start phase. 
                           
Thus, the window size (y) which covers the expected 
number of packets when loss occurs (x) is given by 
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If y > th, we set th = y. The number of packets sent before 
the loss in the Cth windows is 
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The number of packets to be resent, including the lost 
packet, is (y-b). This number will be added to the 
remainder and processed in the next step as shown in the 
algorithm. Since b packets must wait in the Cth window, 
and (y-b) packets are to be sent in the next slow-start time, 
head-of-line blocking time is given by 
 
          

R
MSSbyHOB ⋅−= )(1

                (11)       

 
Thus, total time for slow start phase, including the 
transmission time of the lost packet is 
 
    Tx= Sx+(x+1)·MSS/R+HOB1+TOdetect               (12) 

 
In Equation (12), TOdetect =  3/2 RTT  which represents 
receiving three duplicate ACKs for detecting a lost packet 
for fast retransmission. Before proceeding to the next 
step, we set N = N�x+(y-b) and  2/TT = .      

        
x+1>Ath implies a packet loss in the congestion avoidance 
phase, as shown in Figure 3, where x = Ath+L. So, the 
number of packets sent before the loss during this phase 
is 

 
         L = x � Ath                         (13) 
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 In this phase, each packet is followed by an 
acknowledgement. The additional time to send L packets 
is L×RTT. Slow start time until th (Sth) is 
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Figure 3. Packet loss during congestion avoidance Phase. 
 
 

Thus, total time for the congestion avoidance phase, 
including the transmission time of the lost packet is  

 
   TL=Sth +(x+1)·MSS/R+L·RTT+ TOdetect          (15)                         
 

In Eqn. (15), TOdetect = 3/2 RTT  corresponding to the 
reception of three duplicate ACKs for detecting a lost 
packet. By setting N = N � x + 1 and  2/)( Lthth += , 
we can obtain the rest of the values, such as Tx or TL, by 
using the same method iteratively. It should be noted that 
Sx or Sth can be found for i=1,.., a+1, but HOBi can be 
found for i=1,..,a.  
 
C. Algorithm 
 
Based on the model in the previous section, the complete 
procedure to find the object transfer time is given as 
follows. 
 
ALGORITHM FOR OBJECT TRANSFER TIME  
VARIABLE   i: count variable, tot_hob: sum of HOBi 
            OT: total object transfer time 
(1) Set OT = 0 and tot_hob = 0. 
(2) Compute the total number of packets in object is 

 MSS/ON = and the expected number of packet loss 

 Npa = .  

(3) Set i = 0.  
(4) Set i = i + 1.   
(5) If i = a+1 or p = 0, Set x = N and go to (7). 
(6) Compute the expected number of packets sent  
   before the loss 
        N

N

p1
p

p11x )()( −+−−=   

(7) Compute the object transfer time for slow start  
If (x+1≤ Ath) { 

   Compute slow-start time (Sx); 
If a = 0 or i = a+1 {  
 Set Tx = Sx+ (x+1)·MSS / R;                                          

       Set OT = OT + Tx} 
else { Compute C, y, b, and HOBi; 
Set Tx = Sx+(x+1)·MSS/R+HOBi+TOdetect;                 

  Set OT = OT +Tx ; Set T = T/2 ;  
Set tot_hob = tot_hob+HOBi; 
Set N = N-x+(y-b) } 

   };  
 If (x+1 > Ath) { 

     Compute slow-start time (Sth), L ; 
      If a = 0 or i = a+1 {  

Set TL= Sth+(x+1)·MSS/R+L×RTT;                                 
   Set OT = OT +TL ;} 

   else { 
       SetTL = Sth+(x+1)·MSS/R+L·RTT+TOdetect;                 
       Set OT = OT+TL; Set  2/)( Lthth += ;                          

Set tot_hob = tot_hob+HOBi; 
      Set N = N � x+1; } 

}; 
 

(8) Set i = i+1.   
(9) If i = a+1 or p = 0, Set x = N and go to (11). 
 
(10) Compute the expected number of packets sent before 

the loss 
        N

N

p1
p

p11x )()( −+−−=  

(11) Compute the object transfer time after initial loss. 
     Compute C, y, b, and HOBi 
      If a = 0 or i = a+1 {  

Set TL= (x+1)·MSS/R + L.RTT ;                                      
   Set OT = OT + TL ; Go to (12). } 

   else { 
       Compute L, HOBi; 
       Set TL = (x+1)·MSS/R+L·RTT+HOBi +TOdetect ;             
       Set OT = OT+TL; Set  2/)( Lthth += ;                            

Set tot_hob = tot_hob+HOBi; 
      Set N = N � x+1; } 

}; 
  
(12) If i = a+1, then proceed to (13). Otherwise, go to 

(11). 
 (13) Find the total object transfer time (OT). 
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When the number of packets is N, time complexity of our 
algorithm is O(N). Based on our model, Table 1 shows 
the response time of HTTP over TCP and SCTP, 
respectively. 
 

TABLE I: 
 Comparison of response time 

Protocol Total Response Time 
HTTP 
over TCP 

IT +RTT+OT,    if PI ≥ M 
IT +Μ/PI * (RTT+OT), Otherwise 
(PI�Pipeline Index (depth of the pipeline)) 

HTTP 
over 
SCTP 

IT +RTT+(OT �tot_hob) 

 
 

III. PERFORMANCE EVALUATION 
 
A. Experimental Setup 
   

In this section, we validate our model presented in Sec. 
II. Our objective is to compare the results obtained 
analytically to those obtained experimentally. Since the 
current HTTP servers do not yet support the new SCTP 
protocol, we simulated the web server and client by 
transferring objects between two machines using TCP 
and SCTP, but emulating the HTTP protocol. (We didn�t 
use TCP based HTTP server, because we want to make a 
fair comparison between TCP and SCTP using the same 
experimental setup). Since the model developed in this 
paper is concerned with object transfer time between a 
web server and a user, our simulated experiment 
consisting of just transferring objects to find object 
transfer time, is appropriate for validation of our model.  

Figure 4 shows our experimental setup. Dell desktops 
have been used as servers and clients to transfer data 
between machines. NIST emulator [9] was used to 
simulate various network conditions, such as packet loss, 
bandwidth, RTT, etc., between the server and client.  
 
 

 
          Figure 4. Experimental Setup. 
 

The various object transfer times were calculated from 
packets captures by Ethereal [10] during transfer of 
objects between the client and the server for different 
network conditions. From the the experiment setup, the 
mean transfer time of HTTP over TCP and HTTP over 

SCTP were obtained. The collected results are compared 
and analyzed in the next section.   

 
B. Results Analysis 
 
Table II shows the mean response time (sec), for the 
proposed model and for the experiment as a function of 
the packet loss ratio (p) for RTT = 256 ms, O = 13.5 KB,  
R = 40 Kbps, MSS = 536 B, and M = 5. As p decreases, 
head-of-line blocking becomes very          
clsoe to zero. This is due to the fact that head-of-line 
blocking occurrs only in the case of packet loss.  
Because the size of object for HTTP application is very 
small, head-of-line blocking time of the HTTP 
application is very small. Accordingly, the head-of-line 
blocking time becomes very small as the transmission 
rate of the link (R) increases, thus overcoming any gain 
of HTTP over SCTP (when compared against HTTP over 
TCP). Nevertheless, since HTTP over SCTP can be 
supported over only one association, it has the 
advantages of requiring less resources than HTTP over 
TCP.  

 
TABLE II 

Result for varying packet loss ratio (p) 

 
Table III shows the total response time according to RTT 
when p = 1 %, O = 13.5 KB, R = 40 Kbps, MSS = 536 B, 
and M = 5. Table 3 shows that the mean response time 
increases sharply with an increase of RTT.  

 
TABLE III 

Result for varying RTT 

Table IV shows the total response time as a function of R 
for p = 1 %, O  =  13.5 KB,  RTT= 0.256 sec, MSS = 
536 B, and M = 5. In Table 5, as R increases, 

         RTT(Sec) 
Protocol 

0.055 0.08 0.256 1.0 

TCP (Model) (Sec) 14.89 14.94 18.73 21.56 

TCP 
(Experimental) 
(Sec) 

13.82 14.63 21.84 28.17 

SCTP (Model) (Sec) 14.83 14.92 18.64 19.40 

SCTP 
(Experimental) 
(Sec) 

13.71 14.71 21.33 26.17 

           p     
Protocol 

0.4 % 1% 2 % 5 % 

TCP (Model) (Sec) 21.27 
 

21.33 21.77 25.84 

TCP (Experimental) (Sec) 18.70 18.73 19.00 21.77 

SCTP (Model) (Sec) 20.76 20.81 21.26 24.86 

SCTP (Experimental) 
(Sec) 

18.62 18.64 18.85 19.56 
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meanresponse times for persistent connection with 
pipelining of HTTP/1.1 and HTTP over SCTP are almost 
same  
This implies that the head-of-line (HOB) blocking time is 
close to zero. This can be explained by the fact that the 
value of MSS/R to affect the HOB decreases as R 
increases.   
                TABLE IV 

Result for varying bandwidth (R) 

The small differences between the results from model 
and those from experimental were due to the inaccuracies 
of the NIST emulator we used in our experiment, to 
simulate the packet loss ratio, bandwidth, RTT, etc for 
small objects. We transferred small objects to reflect the 
real world scenario of HTTP transfers. 
 

IV. CONCLUSIONS 
 
  We investigated the mean response time of HTTP file 
transfers over SCTP that had not been considered in the 
literature. The multi-streaming feature of SCTP allows a 
web server to simultaneously send several objects in an 
SCTP association without degrading the server 
performance as observed with pipelining and parallel 
connections for HTTP over TCP. We derived an 
analytical model for the mean response time for HTTP 
over SCTP. Previous traffic models for HTTP over TCP 
only assumed packet losses during the slow start phase; 
our model also considers the loss during the congestion 
avoidance phase. Furthermore, it estimates the head-of-
line blocking time that is not included in the response 
time of HTTP over SCTP. Our results show that the 
mean end user response time for HTTP over SCTP is 
better than HTTP over TCP.    
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