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Abstract— Retransmission ambiguity, arising from de-
lay spikes in a wireless mobile environment, results in poor
TCP performance. Eifel improves the performance of TCP
by using the timestamp option, which requires additional
header bytes, resulting in increased overhead in bandwidth
constrained wireless networks. Moreover, the destination
needs to support the timestamp option. In this paper, we
propose a new algorithm, calledDualRTT , which increases
the performance of TCP in the presence of delay spikes,
without requiring any additional header bytes. It requires
changes only at the sender, and hence iseasier to deploy
in the existing Internet infrastructure. It also does not re-
quire the destination to support the TCP timestamp option.
Results show thatDualRTT increases the performance of
TCP, and also achieves a higher transport layer efficiency
than previous algorithms.
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I. I NTRODUCTION

TCP was originally designed for wireline environments
where packet losses are primarily due to congestion. TCP
estimates the Round Trip Time (RTT ) to set the Retrans-
mission Time Out (RTO) which is used by TCP’s conges-
tion control algorithms [1] to carry out retransmission of
packets lost due to congestion. The onset and disappear-
ance of congestion is usually a slow and gradual process;
theRTO computation of TCP is therefore based onslow
and gradualchanges inRTT .

In contrast to wireline networks, wireless mobile net-
works, such as GPRS [2] and CDMA2000 [3], encounter
high bit error ratesand temporary disconnection. These
networks generally use link layer recovery protocols, such
as Radio Link Control (RLC) [4], [5], to recover from
packet losses due to errors. Mobility, in conjunction with
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the use of wireless protocols, can result indelay spikes
which may render TCP’sRTT andRTO estimation in-
accurate. A delay spike is defined as a situation where the
round-trip time (RTT ) suddenly increases for a short du-
ration of time, and then drops to the previous value [6].
Causes of delay spikes in a wireless mobile environment
include [7]:

• Handoff of a mobile host to a new cell requires the
new base station perform channel allocation before
data can be transmitted from the mobile host. This
causes segments at the mobile host to be queued, giv-
ing rise to sudden extra delays.

• Physical disconnectionof the wireless link during a
handoff can result in a sudden increase of the RTT.

• A Radio Link Control (RLC) layer between the LLC
and MAC layers to carry out retransmissions at the
link layer in wireless mobile networks, such as GPRS
and CDMA2000, may result in delay spikes due to
repeated retransmission attempts during link outages
and high BER periods.

• Higher-priority traffic, such as circuit-switched
voice, can preempt (block) the data traffic. The dura-
tion of this blocking may be very long as compared
to TCP’s RTT estimate.

Frequent delay spikes are, therefore, more common in
wireless mobile networks than wireline networks. Delay
spikes confuse TCP’s RTT estimator, because theRTO
estimator can’t adapt quickly enough to handle sudden
RTT changes due to delay spikes. Sudden increase of
instantaneousRTT beyond theRTO of the sender re-
sults in retransmission ambiguity [8], [9], which will pro-
duceSpurious Timeout1 (ST) andSpurious Fast Retrans-

1Spurious timeout is defined as a timeout which would not have
happened if the sender waited long enough. It is a timeout resulting in
retransmission due to a segment being delayed (but NOT lost) beyond
RTO [9].
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mission2 (SFR), and causes serious end-to-end (transport
level) performance penalty [9], [10].

The Eifel algorithm [9], which has been proposed to al-
leviate TCP’s performance penalty, utilizes TCP’s times-
tamp option [11] to solve the retransmission ambiguity
by distinguishing between the acknowledgement for the
original segment (transmitted before or during the delay
spike) and the segment retransmitted after the spurious
timeout. Although Eifel increases TCP’s performance, the
timestamp option adds an additional 12 bytes to the TCP
header; this is asignificant overhead, especially for small
segments and in bandwidth-limited wireless environments.
Eifel also requires both the sender and receiver to support
the TCP timestamp option.

An alternative to Eifel has been proposed by Lud-
wig [12], where the Retransmit (RXT) flag, a bit taken
from the Reserved field of the TCP header, is used to
achieve the same function as that of Eifel. The TCP sender
sets the RXT flag of segments containing retransmitted
data. In response to such a segment, the TCP receiver im-
mediately sends a pure ACK with the RXT flag set. By
inspecting the RXT flag of the ACKs that arrive after a re-
transmission, the TCP sender can resolve retransmission
ambiguities. Note that this scheme requires changes at
both the sender and the receiver, resulting in deployment
issues.

Sarolahti et. al. proposed F-RTO [13], which also
monitors received ACKs to determine spurious timeouts.
When the first ACK is received after a retransmission, the
sender doesn’t retransmit the other un-acknowledged seg-
ments immediately. If the ACK advances the sender’s
window, the sender transmits two new segments, then
waits for another ACK. The sender infers a spurious time-
out if the second incoming ACK advances the sender’s
window again.

The proxy solution [14] proposed by Kim et. al. intro-
duced a new performance enhancing proxy (PEP), which
operates at the border of wireless networks and the Inter-
net. The PEP tracks the data and acknowledge sequence
number for each TCP connection. By filtering unnecessar-
ily retransmitted segments and removing duplicate ACKs,
the spurious fast retransmissions at the TCP sender can
be avoided. This solution needs additional infrastructure
change and it suffers scalability problem when the number
of TCP connections is large.

Blanton [15] proposed using TCP DSACKs [16] to give
the sender more information (than TCP SACKS can pro-

2Spurious fast retransmission occurs when segments get re-
ordered beyond the DUPACK-threshold in the network before reach-
ing the receiver [9], i.e. the reordering length is greater than the DU-
PACK threshold (three for TCP).

vide) about the ”spuriously retransmitted” duplicate seg-
ments received by the receiver. Since spurious retrans-
missions occur between spurious timeouts and the notifi-
cation from the receiver about duplication segments, the
mechanism can only detect spurious retransmissions but
not spurious timeouts, and hencecannot prevent spurious
retransmissions. Gurtov et. al. suggests restarting the re-
transmission timer, and ignoring the DupAcks that arrive
after a timeout [6] (more conservative than RFC2581).
As in RFC2581 withbugFixenabled, this mechanism can
only prevent spurious fast retransmissions.

A large body of research, such as AIRMAIL [17], I-
TCP [18] and Snoop Protocol [19], have been carried
out to improve TCP’s performance in wireless environ-
ments by alleviating the effects of non-congestion-related
losses [20]. This paper focuses on improving TCP perfor-
mance due to delay spikes (excessive delays) rather than
packet losses, and hence is different from the above re-
search efforts.

The objectiveof this paper is to improve the perfor-
mance of TCP in the presence of delay spikes. We propose
a new TCP sender based algorithm, calledDualRTT , to
improve the end to end performance by detecting spurious
timeouts. It has the advantage of not requiring any addi-
tional headers in the packets, or any change at the TCP
destination or the network infrastructure.DualRTT is
based on adding a new RTT measurement (at the sender),
which records the time between the most recent retrans-
mission of a packet and the acknowledgement of that
packet. The minimum value of RTT observed until the
current time is also stored in a variable. Spurious time-
outs are detected by comparing the new RTT value and
the minimum value of the RTT observed so far.

Our work differs from previous workin the sense that
DualRTT takes into account the dynamics of packet
queueing at the wireless link during a delay spike. To
detect spurious timeouts, it exploits the fact that packets,
delayed due to a delay spike, are queued consecutively at
the sender side of the wireless link. Similar to F-RTO,
the algorithm has theadvantagethat it does not require
TCP timestamp option support at the sender and receiver,
thereby eliminating the timestamp option overhead, which
is desirable in bandwidth limited wireless environments.

Real world measurements by National Laboratory for
Applied Network Research (NLANR) show that58.5% of
the uplink web traffic packets have a small payload (be-
tween 0-64 bytes) [21]. For small packet sizes,DualRTT
results in a higher transport layer efficiency, as will be
shown in Sec. VII-E.

The maincontributionsof this paper can be summa-
rized as follows:
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• Proposed a new algorithm(DualRTT ) that can de-
tect TCP spurious timeouts caused by delay spikes
in a wireless mobile environment without the sup-
port of TCP timestamp option, thereby eliminating
the dependence on the TCP timestamp option.3

• DualRTT is sender-based, and no modification is
required at the receiver or the network infrastructure,
thereby making it easier to deploy in existing net-
works.

• Shown that the transport layer efficiency of
DualRTT is higher than previous algorithms for
small packet sizes. Note that a higher transport layer
efficiency translates to greater network bandwidth
being available for carrying the payload.

• Demonstratedthat the new algorithm can enhance
TCP performance without using any additional
header bytes.

The rest of the paper is organized as follows. In Sec. II,
we lay the groundwork for the motivation of the problem
by discussing the effect of delay spikes on transport proto-
cols. To facilitate comparison between our algorithm and
Eifel, we review the Eifel algorithm in Sec. III. Our pro-
posed algorithm (DualRTT ) for detecting spurious time-
outs is described in Secs. IV, followed by an analytical
model to determine the parameters of our algorithm in
Sec. V. Sec. VI compares the proposed algorithm with
Eifel. Performance comparison of the proposed algo-
rithm and Eifel, based onns-2simulation, is presented in
Sec. VII, followed by concluding remarks in Sec. VIII.

II. EFFECT OFDELAY SPIKE ON TRANSPORT

PROTOCOLS

In this section, we use segment trace plots obtained
from thens-2simulator [23] to illustrate the adverse ef-
fect of a delay spike on the throughput of TCP.

A. Simulation setup

The following parameters are used for the simulation
topology shown in Fig. 1.
• The end-to-end delay between source (S) to desti-

nation (D) is 1.4 second (corresponding to the av-
erage delay in GPRS networks [4]) for both uplink
and downlink.

• Without loss of generality, for illustration purpose,
we use a link bandwidth of 46.8Kbps in this section.
A range of link bandwidths will be used when we
evaluateDualRTT in Sec. VII.

3Recent Internet measurements (April 2003) shows that even though
80.51% current server OSs support the timestamp option by default,
most common client OSs do not have the option enabled by default
during the connection setup [22].

TABLE I
SIMULATION PARAMETERS.

Protocol: TCP Reno
TCP Header size: 20 bytes
Payload size: 536 bytes
rwnd limit 20 segments
Initial cwnd 1 segment
Initial ssthresh 20 segments

D

Link Queue

S

Hiccup

Fig. 1. Simulation Topology.
• A delay spike occurs in the uplink, beginning at time

t = 28.0s and lasting for 12 seconds. The delay
spike was simulated using anns-2 module called
”hiccup” [24] which holds all the arriving segments
for 12 seconds.

• To ensure a continuous supply of data, an FTP source
was used at the sender.

TCP parameters used in our simulation are shown in Ta-
ble I.

B. Spurious Timeout (ST) and Spurious Fast Retransmis-
sion (SFT)

The time plot of the simulation is shown in Fig. 2. After
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Fig. 2. Spurious Transmission and Spurious Fast Retransmission in
TCP Reno.

the delay spike begins, the first segment leaving the sender
is segment 131 at timet = 28.99s whenRTO = 4s (see
Figs. 2). This segment, as well as later segments 132-150,
are held up in the hiccup queue untilt = 28 + 12 = 40s,
when all the segments in the hiccup queue are released to
the link queue. Because only one timer is maintained for
this connection, and ACKs for earlier segments (prior to
131) arrive at the sender during the delay spike, the timer
doesn’t time out untilt = 34.54s (point Fig2-A4) when
segment 131 is spuriously retransmitted,RTO is updated

4We use the notation Figx-y to represent point(y) in Figurex
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to 7.6s, and the congestion window of sender is reduced
to one segment. Because original segment 131 is not lost,
but only delayed,this timeout is a spurious timeout.

The above spurious retransmission of segment 131 oc-
curs during the delay spike, and is thus also delayed until
the end of the delay spike att = 40.0s, when all the seg-
ments which are held up in the hiccup queue (segments
131-150) are released to the link queue, as shown in Fig. 2.
Note that the original and spuriously retransmitted seg-
ment 131 are overlapped att = 40.0s, and hence can not
be distinguished from one another.

The sender again times out att = 42.14s (which equals
the time of last timeout (34.54s) plus theRTO value of
7.6s) as shown at point Fig2-B. The sender, on receiving
the ACK for original segment 131 att = 42.89s (point
Fig2-C), starts retransmitting the outstanding segments
using the Slow Start algorithm. The effect of go-back-
N behavior of the Slow-Start algorithm is evident from
the retransmission, starting at point Fig2-D, of segments
132-150.

Although not shown in the figure, up tot = 47.5s the
receiver receives segments in the following order:

131, 132, . . . , 150, 131, 132, . . . , 150︸ ︷︷ ︸
spuriously retransmitted segments

, 151, . . .

On receipt of the spuriously retransmitted (duplicate) seg-
ments 131-150, the receiver generates a series of DupAcks
acknowledging segment 150. When the Reno TCP sender
receives the 3rd DupAck, it does fast retransmission of
segment 151, as shown in Fig2-E. Since segment 151 is
not lost, this is aSpurious Fast Retransmissionresulting
in the congestion window being halved unnecessarily. It’s
important to note that the above Spurious Fast Retrans-
mission is a consequence of the go-back-N Spurious Re-
transmission which started at point Fig2-D. It has been
pointed out by Ludwig et.al. [9] that the fundamental rea-
son for ST and SFR isretransmission ambiguityarising
from TCP sender’s inability to distinguish between ACKs
from an original segment and the corresponding retrans-
mitted segment.

C. Effect of Delay Spike on TCP Reno

In this section, we start with the assumption of a loss-
free network to present the effect of delay spikes on the
behavior of Reno. The simulation topology, link delay,
and link bandwidth are the same as stated in Sec. II-A.

It was shown in Sec. II-B that the current Reno con-
gestion control algorithm results in Spurious Timeout and
the associated go-back-N behavior in the presence of de-
lay spikes. However, a bug fix proposed in RFC 2582 [25]

implements a ”more careful policy” than that of standard
Reno in treating the TCP DupAck series. The policy dis-
ables fast retransmissions until all the segments outstand-
ing at timeout are Acked. When this bug fix is used, fast
retransmissions can be eliminated. Fig. 3 shows the seg-
ment plot for this scenario. Note that the sender still re-
transmits all the outstanding segments starting from point
Fig3-B, but att = 45.8s (point Fig3-C there is no re-
transmission of segment 151, and the sender’s congestion
window is not halved.
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Fig. 3. TCP Reno behavior with RFC 2582 bug fix.

III. E IFEL ALGORITHM

Eifel [9] was designed specifically to improve TCP per-
formance in the presence of delay spikes. The fundamen-
tal reason for a go-back-N retransmission in TCP is the
retransmission ambiguity (see Sec. II-B) when the sender
gets acknowledgements after timeout. The idea of Eifel is
straight-forward: use the TCP timestamp option to elimi-
nate this ambiguity.

In Eifel, every TCP segment sent by the sender is times-
tamped using the TCP timestamp option. The sender also
stores the timestamp of the first retransmitted segment, ir-
respective of whether the retransmission is triggered by a
timeout or a fast retransmission. The receiver echoes back
the timestamp in the ACK segment. When the ACK for
the retransmitted segment comes back, the sender com-
pares the ACK’s timestamp with the one it stored earlier.
If the ACK’s timestamp is smaller than the one stored, the
sender concludes that the timeout and retransmission were
spurious and unnecessary. The sender then restorescwnd
andssthreshto the values before the timeout, andtrans-
mits new segments instead of going through go-back-N.

Fig. 4 shows the segment plot for the Eifel algorithm
using the same topology and simulation parameters as in
Sec. II-A. In Fig. 4, two timeouts occur att = 34.1s and
t = 40.5s. Note that when the sender gets the ACK for
the original segment 131 att = 42.9s (point Fig4-A), it
detected the spurious timeout. As a result, in contrary to
Fig. 2 for TCP Reno, segments 132-150 arenot retrans-
mitted, and the congestion window is restored to the pre-
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Fig. 4. Detection of spurious timeout by Eifel.
vious value. No DupAcks are generated by the receiver,
thereby eliminating Spurious Retransmissions.

The Eifel algorithm uses the same congestion control
mechanisms (Slow start, Congestion Avoidance, Fast Re-
transmit and Fast Recovery) which are used by TCP Reno.
One deviation of Eifel from TCP Reno is the action taken
after detection of ST (Sec. I): On detection of a spurious
timeout, Eifel restores the congestion window and slow
start threshold as if the timeout hadn’t occurred [9].

The problem with Eifel is the header overhead incurred
by additional 12 bytes required for the TCP timestamp
option field in the TCP header. This reduces the transport
layer efficiency (see Sec. VII), which measures the actual
amount of the link bandwidth used for carrying useful data
(payload). Eifel also requires the receiver to support the
timestamp option, giving rise to deployment issues.

IV. DualRTT : THE PROPOSEDALGORITHM TO

DETECT SPURIOUSTIMEOUTS

In this section, we describe our proposedDualRTT
algorithm for the detection of spurious timeouts arising
from delay spikes in mobile wireless environments.

A. TCP retransmission timer variables

TCP uses Karn’s algorithm [8] to carry outRTT mea-
surements andRTO updates when a timeout occurs. The
algorithm restrictsRTO updates for retransmitted seg-
ments as follows:

.... When an acknowledgement arrives for a packet
that has been sent more than once (i.e., retransmitted
at least once), ignore any round-trip measurement
based on this packet, thus avoiding retransmission
ambiguity ....

Note that Karn’s algorithm avoids incorrectRTT mea-
surements by avoiding retransmission ambiguity, i.e. the
sender does not perform RTT measurements on retrans-
mitted segments. The reason is that if RTT measurement
are based on the transmission time of the original packet,
the RTT estimate may be too pessimistic. On the other
hand, an RTT measurement based on the transmission

TABLE II
RTT AND RTO MEASUREMENT BY KARN’ S ALGORITHM.

Time RTO RTT

17.545 4.6 2.9
30.840 3.8 2.9
42.905 15.2 2.9
43.004 15.2 2.9
43.102 15.2 2.9
43.791 15.2 2.9
43.890 15.2 2.9
43.988 15.2 2.9
44.481 15.2 2.9
44.579 15.2 2.9
47.780 4.0 3.3
52.704 3.8 2.9

time of the most recent retransmitted packet may result
in a too optimistic estimate. Therefore, neitherRTT is
taken into account for updatingRTO.

Table II shows severalRTT andRTO values near the
long delay (which occurs between 28 to 40 seconds) cor-
responding to the TCP simulation in Fig. 2. Between
t = 30.840s and 42.905s, two timeouts occurred, and the
RTO doubled twice to3.8 × 2 × 2 = 15.2s. Follow-
ing that, although the sender received some acknowledge-
ments, it didn’t update theRTT andRTO values because
the acknowledgements were for retransmitted segments
which were ineligible for updatingRTT andRTO. After
t = 47.780s, the acknowledgement of new segments (not
retransmitted) are used to updateRTT andRTO.

B. TheDualRTT algorithm

In our proposedDualRTT algorithm, we assume the
time interval between the arrival of adjacent delayed seg-
ments at the receiver is small. This assumption is based
on the observation that during a delay spike in a wireless
mobile communication system, the segments are queued
at the link buffer of the wireless link [26]. When these
segments are released from the buffer at the end of the
delay spike, they will arrive at the receiver almost back-
to-back, the arrival interval being approximately equal to
the queueing delay in the buffer.

DualRTT addstwo new variables at the sender:
• A new RTT measurement variable calledNRTT .

NRTT records the time between the ”most recent
retransmission” and the ”arrival of acknowledge-
ment” of the corresponding segment at the sender.
Note that if the segment is not a retransmitted seg-
ment,NRTT = RTT . TheRTO update still uses
Karn’s algorithm, i.e.NRTT is not used to update
RTO. The function ofNRTT is to detect spurious
timeouts.



6

TABLE III
RTO, RTT , MinRTT AND NRTT DURING A DELAY SPIKE.

Time RTO RTT NRTT MinRTT

17.545 4.6 2.9 2.9 2.8
30.840 3.8 2.9 2.9 2.8
42.905 15.2 2.9 13.9 2.8
43.004 15.2 2.9 0.1 2.8
43.102 15.2 2.9 0.1 2.8
43.791 15.2 2.9 0.2 2.8
43.890 15.2 2.9 0.3 2.8
43.988 15.2 2.9 0.3 2.8
44.481 15.2 2.9 0.4 2.8
44.579 15.2 2.9 0.4 2.8
47.780 4.0 3.3 3.3 2.8
52.704 3.8 2.9 2.9 2.8

• A new variable, calledMinRTT , which records the
minimum value ofRTT observed so far since the
transport level connection was established.

To get a better understanding of the two new variables,
we show the values ofNRTT and MinRTT near the
long delay in Table III. To illustrate the relationship be-
tween the two new variables,RTO and RTT , we also
reproduce the values ofRTO andRTT from Table II.

We can see from Table III that before the long delay
starting att = 28s, NRTT = RTT , andMinRtt is
a good estimate of the smallest time the sender can ex-
pect for a segment to be acknowledged. In our example,
the round trip propagation delay was 2.8s (1.4 × 2). The
function of MinRtt is to protect the algorithm against
RTT oscillations caused by temporal changes in network
conditions.

Detection of a spurious timeout byDualRTT is shown
in Fig. 5. At t = 42.905s (see point Fig 5-A), the sender
receives the acknowledgement for the first retransmitted
segment (segment 131). The sender increasescwnd from
1 to 2 and sends out two segments: segments 132 and
133 (point Fig5-B). Shortly after the transmission of seg-
ment 132, it is acknowledged att = 43.004s, resulting in
NRTT = 0.1s. Compared toMinRtt at this time (2.8s),
NRTT is only 1/28-th ofMinRtt, which is apparently
impossible in a normal network.We use this as an indi-
cation of spurious timeout. More specifically,DualRTT
uses the condition that if

NRTT < τ ∗MinRtt (1)

then spurious timeout is detected.τ is a threshold which
depends on network conditions such as link bandwidth,
path delay, and segment size. In response to detection
of spurious transmission, the sender restorescwnd and
ssthreshto the values before the timeout, and resumes
sending new segments starting from point Fig5-C.
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Fig. 5. Detection of spurious timeout byDualRTT .BEGIN
Initialization:

MinRTT=65535
NRTT=0

New Ack segment arrives:
if acked segment retransmitted
then

NRTT = current time− last sent time
else

NRTT = RTT
end if
updateRTT, MinRTT
if NRTT < τ ∗MinRTT
then

/*spurious timeout detected*/
restore saved cwnd and ssthresh
start transmitting new data

end if
END

Fig. 6. TheDualRTT algorithm.

The DualRTT algorithm is shown in Fig. 6. At the
start of the connection (the initialization phase), a large
value ofMinRTT should be used to prevent it from be-
ing assigned a wrong value when the actual path delay is
large. Our chosen value (65535 ticks) should be enough
for almost all networks, and is easy to implement.
C. Choice ofThreshold, τIt is very important to select an optimal value ofτ . A
low value ofτ results in a conservative algorithm. This
is because, for given values ofNRTT andMinRTT at
any instant of time, the lower the value ofτ , the harder
it is to satisfy Eqn. (1). For example, forτ = 0.025 in
the example given in Sec. IV-B, the sender will not detect
the spurious timeout because Eqn. (1) will not be satisfied.
The value ofτ needs to be adaptively adjusted depending
on network conditions. In Sec. V, we develop an algo-
rithm to adaptively determine the optimal value ofτ to
minimize the detection error as seen in Eqn. (2).

V. DETERMINING THE OPTIMAL VALUE OF τ

Now we turn our attention to the problem of dynami-
cally finding an optimal value ofτ . We first analyze the
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relationship betweenτ and wireless bandwidth, propaga-
tion delay along the path, and path MTU in Sec. V-A. In
Sec. V-B, we develop a linear model forτ .
A. Log-Linear relationship betweenτ and wireless band-
width, propagation delay, and PMTU

From Eqn. (1), we can observe that a small value of
NRTT should allow us to use a small value ofτ , and
likewise a large value ofNRTT implies a largerτ , i.e.
the value ofτ should reflect NRTT, which represents the
proximity in time of adjacent Acks come back just after
the delay spike. This time interval between two Acks de-
pends on the network bandwidth, propagation delay along
the path, and segment size. So we expressτ as a function
of bandwidth, propagation delay and PMTU. In order to
develop a model for this function, we find the relationship
betweenτ and network bandwidth, propagation delay, and
path MTU through simulations.

The simulations were performed with the following val-
ues: wireless bandwidth (B) was varied between 31.2
Kbps -1.5 Mbps, path delay (D) ranged from 100 ms to
2000 ms, path MTU (M ) ranged from 576 Bytes to 4352
Bytes, andτ varied between 0.01 and 0.6. All values are
chosen as discrete values. For every combination ofB,
D, andM , we simulated 300 randomly generated delay
spikes.

The optimal value ofτ for each combination ofB, D,
andM is determined by minimizing the detection error of
DualRTT . The detection errors can be of two types: True
timeouts which are misinterpreted as Spurious timeouts
(TMS), and Spurious timeouts which are misinterpreted
as True timeouts (SMT). Generally speaking,DualRTT
is more conservative for a smaller value ofτ as described
in Sec. IV-C, thereby resulting in a higher SMT. On the
contrary, a larger value ofτ makes the algorithm more
aggressive, and therefore tends to generate a higher TMS.

We determine the value ofτ such that the overall detec-
tion error (ε), given byε = φ1 ∗ SMT + φ2 ∗ TMS (2)

is minimized, whereφ1 andφ2 are weighting coefficients,
andφ1 + φ2 = 1. Because a TMS error means that a
segment loss was not detected by the sender before trans-
mitting a new window of data, and it is very expensive to
recover from such a loss [27], we assign a higher value
to φ2. A higher value ofφ2 will allow the TMS errors in
Eqn. (2) to get more priority during the error minimiza-
tion, resulting in a more conservative algorithm. In our
simulation, we selectedφ2 = 0.8.

For example, the simulation results obtained by vary-
ing B, with D = 200ms andMTU = 1500 for 300
delay spikes, are shown in Tables IV and V. Table IV
shows the actual number of Spurious Timeouts detected
by Eifel during 300 delay spikes. Since Eifel uses the

TABLE IV
ACTUAL NUMBER OF SPURIOUSTIMEOUT DETECTED BY EIFEL.

B D M Number of
(bps) (ms) (KB) Spurious Timeouts

31.2K 200 1.5 156
62.4K 200 1.5 300
130K 200 1.5 300
360K 200 1.5 300
1.0M 200 1.5 300
1.5M 200 1.5 300

TABLE V
NUMBER OF SPURIOUSTIMEOUT DETECTED BY DualRTT .

B D M τ
(bps) (ms) (KB) 0.01 0.025 0.04 0.08 0.1 0.2 0.6

31.2K 200 1.5 0 1 3 1 3 6 158
62.4K 200 1.5 0 0 0 0 3 300 300
130K 200 1.5 0 1 0 300 300 300 300
360K 200 1.5 1 0 300 300 300 300 300
1.0M 200 1.5 0 300 300 300 300 300 300
1.5M 200 1.5 300 300 300 300 300 300 300

TCP timestamp option to detect Spurious Timeouts reli-
ably, we obtain the table using Eifel. Table V shows the
number of Spurious Timeouts detected by DualRTT for
various value ofτ . To make the comparison fair, we en-
sured that Tables V and IV were based on the simulations
having exactly the same long delay patterns.

By comparing Tables IV and V, we can determine the
optimal value ofτ for each case; as shown by the bold
numbers in Table V. The size of the table depends on
the number of combinations ofB, D, andM used in the
simulation. For example, if we choose sixB values, seven
D, and fourM values, then the table will have 168 rows.

We now want to establish the relationship betweenτ
andB, D, & M by averagingτ over B, D, andM in
Table V. For example, in order to obtain theB-τ relation-
ship, we plot optimalτ values versus differentB values
for oneD andM combination. We repeat this process
for four sets ofD andM combinations; the resulting re-
lationship is shown in Fig. 7. Similarly, we can obtain
the relationship betweenτ andD, M as shown in Figs. 8
and 9, respectively.

From Figs. 7, 8, and 9, we can observe that the relation-
ship of τ versusB andD is exponential, whileτ versus
M is rather close to linear. This analysis justifies our se-
lection of a log-linear model in Sec. V-B.
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B. A log-linear model forτ

Based on the analysis in Sec. V-A, we can expressτ as
a linear combination of log(B), log(D), andM :

τ = α log(B) + λ log(D) + ωM (3)

whereα, λ, andω are constant coefficients. Next, we
determine the empirical values ofα, λ, andω from simu-
lation data.

We can now rewrite Eqn. (3) in terms of a matrix ex-
pression as follows:

τ = H ∗




α
λ
ω


 (4)

Here, the columns ofH represent the values oflog(B),
log(D), andM . The size ofH and τ in this equation
depend on the number of combinations ofB, D & M
used in the simulation. For example, if we choose sixB
values, sevenD values, and fourM values,H will have a
size of168× 3, andτ will have a size of168× 1.

Extracting optimal values ofτ from Table V, we get:




...
0.6
0.2
0.08
0.04
0.025
0.01
...




=




...
log(31.2K) log(0.2) 576
log(62.4K) log(0.2) 576
log(130K) log(0.2) 576
log(360K) log(0.2) 576
log(1.0M) log(0.2) 576
log(1.5M) log(0.2) 576

...




(
α
λ
ω

)
(5)

By using the least square method, we can determine the
best estimation ofα, λ, andω as:

(
α
λ
ω

)
= (HT H)−1 ∗HT ∗ τ =

(
8.022 ∗ 10−3

−5.803 ∗ 10−2

1.463 ∗ 10−6

)
(6)

whereHT means the transpose of matrixH.
For given values ofB,D, andM , and using the val-

ues ofα, λ, ω obtained from Eqn. (6), we can determine
an optimalτ using Eqn. (3).B andD can be estimated
from the sender’s statistics about the network path prop-
erties [28], andM can be found through a PMTU discov-
ery mechanism as discussed in [29]. Note that during the
startup period of TCP connection, or when the mobile host
has just moved to a new cell,B andD cannot be obtained
accurately from earlier statistics. At these times, a conser-
vative value ofτ should be used to start, simulation results
from Tables IV and V indicate that a value ofτ=0.1 re-
sults in no TMS errors and low SMT errors, therefore it is
suitable in such cases.
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C. Detection error of the model

We examined the accuracy of the above log-linear
model forτ by measuring the detection errors for the sim-
ulation setup of Sec. V-A. In each of the 168 configu-
rations, we simulated 300 delay spikes. Among a total
number of 50400 delay spikes, there were 37500 actual
spurious timeouts as measured by Eifel. DualRTT pro-
duces an SMT error of 11.3%, and a TMS error of 0.12%,
which is consistent with our objective of minimizing the
TMS error (see Sec. V-A).

VI. COMPARISON OFEIFEL AND DualRTT

The time line ofDualRTT and Eifel are shown in
Figs. 10 and 11 which correspond to the time plots in
Figs. 5 and 4 respectively. Every segment is labelled as
”S#”, where ”S” represents the segment type which can
be one of the following: ”S” for original transmission of
a segment; ”R” for retransmission of a segment; and ”A”
for an acknowledgment of a segment. ”#” represents the
sequence number of the segment.

detected
timeout

R
T

O

S150

. . .

Spurious 

R131

R132
S151

A132A131

S131S132

R133

NRTT

NRTT

Delayed
segments

Fig. 10. Detection of spurious timeout inDualRTT .

R
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R131

. . .

Spurious
timeout
detected

S151
A132A131

S131S132

Delayed
segments

Fig. 11. Detection of spurious timeout in Eifel.

Referring to Fig. 10 forDualRTT , T1 and T2 corre-
spond to theNRTTfor segments 131 and 132 respectively.
DualRTT detects spurious timeout when A132 arrives.
In comparison, Eifel detects spurious timeout when A131
arrives. DualRTT therefore needs to wait for slightly

TABLE VI
COMPARISON OFEIFEL AND DualRTT .

Algorithm Advantages Disadvantages

Eifel

• More robust under
certain network con-
ditions.
• Detects spuri-
ous timeout after
receiving acknowl-
edgement from the
first retransmitted
segment.

• Needs TCP Times-
tamp option support
at both endpoints.
• 12 bytes of header
overhead.

DualRTT

• No requirement for
Timestamp option.
• Less header over-
head, and hence more
efficient than Eifel in
the case of wireless
networks.

• Less robust in
congested networks.
• Needs acknowl-
edgement from
two retransmitted
segments before
detecting spurious
timeout.

longer (time T2) than Eifel to detect spurious timeout.
After the detection of ST, bothDualRTT and Eifel start
transmitting new segments starting at S151. Table VI
summarizes the pros and cons of Eifel andDualRTT in
detecting spurious timeout.

VII. PERFORMANCEEVALUATION

To measure the performance of our proposedDualRTT
algorithm, we implemented the algorithm as a subclass of
Agent/TCP/FullTCP in thens-2 simulator [23]. In this
section, we evaluate the performance ofDualRTT to de-
termine the increase in the transport layer throughput in
the presence of delay spikes. We then compare the trans-
port layer efficiency (defined in Sec. VII-E) ofDualRTT
and Eifel.

A. Network topology and traffic sources

To evaluate the performance of the new algorithm, we
use the parking lot network topology shown in Fig. 12
with three traffic flows: MH→W9 and W7→W2 carry
TCP/FTP traffic, and W8→W1 has a TCP/Exponential
traffic. MH→W9 represents traffic originating from a
Mobile Host (MH) which is affected by delay spikes,
and W7→W2 and W8→W1 simulate background traf-
fic. Both the FTP traffic are greedy sources that try to
consume as much network resource as possible. The Ex-
ponential traffic is an ON/OFF source with burst time
1500ms, idle time 50ms, and sending rate 4.0Mbps. The
propagation delay and bandwidth for the links are shown
in Table VII.
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Fig. 12. Network topology for performance evaluation.

TABLE VII
L INK BANDWIDTH AND DELAY OF THE SIMULATION TOPOLOGY.

Links Link BW Prop. Delay
(Kbps) (ms)

W0-W3, W3-W7, W5-W4
W4-W8 1500 200

W5-W1, W6-W2, W6-W9
MH-W0 15.6-1500 400
W4-W5 200-3500 200

The bandwidth of the wireless link (MH-W0) was var-
ied between 15.6Kbps and 1.5Mbps to investigate the im-
pact of different wireless bandwidth; the bandwidth of the
bottleneck link (W4-W5) was varied between 0.2Mbps
and 3.5Mbps to investigate the effect of varying band-
width at the bottleneck link. The wireless link (MH-W0)
delay was set to 400ms to take into account the RLC layer
ARQ handling delay [4]. Wired link delays were cho-
sen to make the end-to-end delay of TCP traffic equal to
1.4sec, a commonly encountered end-to-end link delay in
GPRS networks [4].

B. Delay Spikes

We used thens-2 ”hiccup” module [24] to randomly
insert three delay spikes in the MH→W0 connection dur-
ing a 150 second FTP session. Large delay spikes (due to
cell re-selection) with small interval between spikes (aris-
ing from frequent handoffs) makes it difficult for TCP to
adapt to RTT changes. To simulate such difficult scenar-
ios [27], our simulation uses delay spikes whose lengths
are uniformly distributed between (3, 15) seconds, with
the interval between the delay spikes also being uniformly
distributed between (20, 40) seconds.

C. Transport protocols

Extensive simulation was performed for the following
three protocols at the Mobile Host, using the same pay-

TABLE VIII
PROTOCOLS PARAMETERS FOR THE THREE PROTOCOLS.

Header size (Bytes): 20 (Reno)
32 (Eifel)
20 (DualRTT )

Payload size: 536 bytes
rwnd limit 20 segments
Initial cwnd 1 segment
Initial ssthresh 20 segments

load size for all the protocols.
1) TCP Reno (ns-2 ver. 2.1.b.8 implementation);
2) Eifel (implemented by Technical University of

Berlin [24]);
3) DualRTT .
To obtain a comprehensive comparison among the three

protocols, the bandwidth of the wireless link (MH-W0)
and bottleneck link (W4-W5) were varied to generate a
total of 65 simulation scenarios, with each scenario run for
50 times independently to ensure the statistical fairness of
the results. Each simulation run consisted of a 150-second
FTP session. Results presented in this section represent
the average of all the simulation runs. To ensure fairness
among the protocols, the parameters were kept the same
for the three protocols as shown in Table VIII.

D. Transport Layer Throughput

We define the Transport Layer Throughput (TLT) of a
protocol as the total number of segments delivered to the
destination during a fixed duration of FTP session.

Figs. 13 and 14 show the TLT of the three protocols for
a bottleneck bandwidth of 200kbps and 1.5Mbps respec-
tively obtained from a 150 second FTP session. Fig. 13
shows that the TLT of TCP Reno, Eifel andDualRTT ini-
tially increase with an increase in the wireless link band-
width. However, if the wireless link bandwidth is fur-
ther increased, the bottleneck link becomes congested and
starts dropping packets. Timeouts in delay spikes increase
the RTO to a large value, and if packets are lost in the same
window as the delay spike, Eifel has to wait a long time
to retransmit the lost packet and, therefore, becomes very
sensitive to packet losses occurring after a delay spike
as reported in [27]. As a result, in Fig. 13 the TLT of
Eifel drops with an increase in the wireless link band-
width above 200Kbps. Since packet losses inDualRTT
are handled the same way as Eifel, the TLT ofDualRTT
also drops when packets are lost after a delay spike. How-
ever, when the bottleneck link bandwidth is sufficiently
large (for example, 1.5 Mbps), the probability of packet
losses after a delay spike due to congestion is very small.
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The above negative impact of packet losses on Eifel and
DualRTT is not seen in Fig. 14.

We can see in Figs. 13 and 14 that the TLT reaches a
saturation point when the wireless link bandwidth reaches
around 31.2 Kbps. This is because the receiver window
size of 20 segments (see Table VIII) and an end to end
round trip delay of 2.8s (Sec. VII-A) limits the TLT of a
connection to a maximum of(20 ∗ 576 ∗ 8)/2.8 = 32.9
Kbps for TCP Reno andDualRTT , and 33.6Kbps for
Eifel, where 576 is the payload size 536 bytes plus 40
bytes of TCP/IP header size.

Fig. 15 shows the 150-second FTP session TLT aver-
aged over different wireless link bandwidths ranging from
15.6Kbps-1.5Mbps for various combinations of protocol
and bottleneck link bandwidths. From Fig. 15, we can
see thatDualRTT significantly increases the TLT of TCP
Reno. The TLT ofDualRTT is better than Eifel for
low bottleneck link bandwidths (under 1Mbps); for other
cases, its performance is at least equal to that of Eifel.It
is to be noted that although Eifel detects spurious time-
out slightly earlier thanDualRTT , the TLT ofDualRTT
is better than Eifel because of the fewer header bytes re-
quired byDualRTT . The TLT enhancement ofDualRTT
over Eifel is not significant because we used a payload
size of 536 bytes in our simulation which is large as com-
pared to the 12-byte TCP timestamp option.
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Fig. 13. Comparison of TLT of TCP Reno, Eifel andDualRTT for
bottleneck bandwidth of 0.2 Mbps.

E. Transport Layer Efficiency
We now compare the Transport Layer Efficiency of

Eifel and DualRTT . We define Transport Layer Effi-
ciency (TLE) as the ratio of bandwidth used by the trans-
port layer segment payload to the total size of a segment
as follows:

TLE =
Payload Size of a segment

Total Size of a segment
(7)

Table IX shows the TLE of Eifel andDualRTT for var-
ious values of payload sizes, with segment header size of
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Fig. 14. Comparison of TLT of TCP Reno, Eifel andDualRTT for
bottleneck bandwidth of 1.5 Mbps.
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Fig. 15. Average TLT of TCP Reno, Eifel andDualRTT for different
bottleneck bandwidth.

20+12=32 bytes for Eifel and 20 bytes forDualRTT . It
also shows the percentage increase of TLE ofDualRTT
as compared to Eifel. The first and second column of the
table show the payload size distribution of an NLANR
Passive Measurement [21]. The payload size in the first
column is the average payload for each group of packets
measured: for example, 32 bytes is used for the payloads
of length 0-64 bytes.

As can be seen from the table, the 12-bytes of header
required by Eifel, due to the use of the timestamp option,
results in low TLE for small payloads. For example, for
a payload of 32 bytes, the TLE ofDualRTT is (0.615-
0.5)/0.5 = 23.1% higher than Eifel. Note that higher TLE
results in less wastage of network bandwidth, which trans-
lates to greater availability of the bandwidth for the trans-
mission of real data (payload). The average percentage
TLE increase is calculated by taking the weighed average
of column 5, where the weights are taken from the column
2 which shows the percentage of the traffic for a specific
payload. We have calculated the average percentage TLE
increase is 16.86%.

VIII. C ONCLUSION

In this paper, we have proposedDualRTT , a new al-
gorithm to improve the end-to-end performance of TCP
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TABLE IX
COMPARISON OFTLE FOR EIFEL AND DualRTT .

Payload % Traffic TLE % Increase
(Bytes) Eifel DualRTT

32 58.49 0.500 0.615 23.1
96 29.73 0.750 0.828 10.3
192 1.72 0.857 0.906 5.7
376 3.98 0.922 0.949 3.0
768 3.37 0.960 0.975 1.5
1460 2.70 0.979 0.986 0.8

in the presence of delay spikes in wireless mobile en-
vironments. DualRTT does not require any additional
header bytes, and is therefore suitable for bandwidth con-
strained mobile wireless networks.DualRTT alsodoes
not require any change at the destination or the Internet
infrastructure, nor does it require the destination to sup-
port the TCP timestamp option; it requires changes only
at the sender, and hence iseasy to deploy in the existing
Internet infrastructure.

Performance comparison ofDualRTT and Eifel shows
that DualRTT has a higher transport layer efficiency
which translates to more network bandwidth being avail-
able to carry the payload data (useful information).
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