
Prioritized Sequencing for Efficient Query on Broadcast
Geographical Information in Mobile-Computing

Jianting Zhang Le Gruenwald

The University of Oklahoma, School of Computer Science, Norman, OK, 73019

Contact author email: ggruenwald@ou.edu, Phone: 1-405-325-3498

ABSTRACT
Broadcasting is an effective and efficient way to disseminate
public geographical information to massive users. In this paper,
we use R-tree to index broadcast geographical data. Based on
our observation that geographical data and their accesses are
often concentrated (clustered) in real applications, we propose a
novel prioritized sequencing method by considering access
frequencies based on application semantics to reduce average
access time (latency). The key idea is to put “hot” data items
ahead of “cold” ones in the broadcast sequence while still
maintain R-Tree indexing structure.

 We evaluate our method using MapInfo Census 2000 data
sample with 576 service locations and 111 of them are hot data
items. The average reduction percentages of access time are
reduced by 60% for both point queries and range queries based
on 10 rounds experiments, each consists 10 hot data items and 5
cold items that are randomly selected. We conclude that our
simple method is very effective in improving query efficiency in

geographical information broadcast systems.
We also proved the linear relationship between wait time and the
Aggregate Data Affinity (ADA) (Lee, 2000), a parameter
measuring the “eagerness” for data experienced by a client during
a query process in broadcast wireless mobile computing
environment. Thus our conclusion also holds when using ADA
for evaluating broadcast system performance

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

General Terms
Algorithms, Management, Measurement, Performance, Design

Keywords
Prioritized Sequencing, Geographical Information, Query
Processing, Data Broadcast, Mobile Computing

1. INTRODUCTION
Most current research on mobile computing assumes point-

to-point communication. This scheme suffers from scalability
problem and is inefficient when many clients request the same
data at the same time. Public geographical information, such as
service locations and traffic conditions are playing important
roles in our everyday life. As Internet services go from fixed
networks to wireless mobile networks, services of these kinds of
information will likely to be major consumers of wireless
resources. It is our vision that digital broadcasting of public
geographical information over wireless mobile network will be an
important means in building intelligent urban information
infrastructure that can greatly reduce overall wireless resource
consumption and provide cheaper and better services.

First, broadcasting is an efficient and effective way to make
information accessible to a large quantity of users because of its
well-known excellent scalability (Imielinski, 1997). This is
especially important due to the extremely limited nature of
wireless resources. Second, as far as end user is concern,
broadcasting is more economically viable than establishing
exclusive point-to-point connection between clients and servers
in terms of bandwidth available and price rate. One additional
reason is that broadcasting is distributed in nature and can
provide good services for local users. On the other hand, servers
in a point-to-point communication architecture might be far way
from clients and thus the services provided are more expensive.
Third, much of the geographical information changes infrequently
and is mostly read-only, thus is especially suitable for
broadcasting. Finally, Digital broadcasting has significant
advantages over traditional analog voice broadcasting, such as
automatic information retrieval instead of having to tuning to a
channel all the time by a user. It is possible to integrate
geographical and non-geographical information by planning
broadcast carefully and using smart receivers when all the
broadcast information involved is in digital format.

Different from disk or memory based data processing that
allows random access to data storage media, broadcasting
sequence is one dimensional in nature and only allows sequential
access. At the same time, mobile devices at the client side have
significant constraints in terms of energy, storage and
computation power. Data organization at the server side and
query processing at the client side are two important issues in a
data broadcast system. In this paper, we present a prioritized
sequencing method to efficiently query broadcast geographical
information for personal mobile computing.

The rest of the paper is arranged as follows. Section 2 states
the problem and our motivation. Section 3 presents our

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
GIS’02, November 8-9, 2002, McLean, Virginia, USA.

Copyright 2002 ACM 1-58113-591-2/02/0011…$5.00

prioritized sequencing method. Section 4 is experimental studies
using real data. Section 5 gives a brief overview of related work.
Finally, section 6 is conclusion and future work directions.

2. PBROBLEM AND MOTIVATION
Broadcasting can be categorized into two main categories,

namely pull-based broadcasting and push-based broadcasting.
Our application belongs to the later one because geographical
data are usually public information and the system is designed to
disseminate them to a large volume of users without explicit
requests. It is extremely difficult, if not impossible, to schedule
broadcasting for the number of users at such a scale.

An introduction as well as several indexing approaches for
push-based data broadcasting is presented in (Imielinski, 1997).
There are two most important parameters in measuring the
performance of broadcast schemes namely Tune In Time (TT)
and Access Time (AT) or latency. Broadcast data indexing plays
an important role in the tradeoff between them. In this paper, we
do not intend to develop new indexing techniques that are better
for data broadcasting nor to evaluate which of the existing
techniques are more suitable. Rather, our focus is to incorporate
application semantics into indexing techniques to achieve better
performance. We consider Location Dependent Queries (LDQ)
(Seydim, 2001) against broadcast geographical information. Our
motivation is from the following simple example.

Fig. 1 A Simple Illustrative Example

Fig. 1 represents an R-Tree (Guttman, 1984) for indexing
geographical data. The dotted and numbered circles represent
leaf nodes pointing to frequently accessed data items (or hot data
items), solid circles with numbers represent leaf nodes pointing to
less frequently accessed data items (or cold data items) and non-
numbered circles represent internal nodes. An internal node has
several branches in the format of (MBR, Pointer) where MBR
(Minimum Bounding Rectangle) consists of the x and y

coordinates of the upper and the lower corner points. Each
branch of leaf nodes point to a real data record, such as a
restaurant record contains its geometric coordinates in the
longitude/latitude format (-96.97,35.83), service level (3 star) and
available seats (100).

The conventional broadcasting sequence would be
[1,2,3,4,5,6,7,8,9,10,11] by traveling the leaf nodes of the R-
Tree. Suppose [3,5,6,8] are hot data items. If we put the hot data
before the rest data items then the sequence would be [3,5,6,8,
1,2,4,7, 9,10,11]. If we query data item 3, in the conventional
sequence the access time is 3 while it would only be 1 in the
prioritized sequence. Another example is to query data item 8. In
the conventional sequence, the access time is 8 while it would
only be 4 in the prioritized sequence which is a significant saving.

3. R-TREE BASED PRIORITIZED
SEQUENCING

For geographical data, in many cases, both data content and
data utilization is highly concentrated. For example, there are
more gas stations and restaurants along highways. On the other
hand, users are more likely to query on these service locations
when they are driving on highways. We call data items that are
accessed more often as “hot” data items. From the simple
example illustrated above, we can see that giving “hot” data items
more priority can improve system performance. We use R-Tree
for geographical data indexing primarily because of its popularity
in practice (Oracle Spatial [HREF1] for example).

3.1 Algorithm for Generating Prioritized
Sequence

The algorithm for generating a prioritized broadcast
sequence based on R-Tree explore four data structures: an R-
Tree to store the index of the whole data set; a hash table to store
the IDs of all hot data items and two vectors to store the
sequences of IDs of hot and cold data items respectively. The
algorithm consists of the following steps:

1. Generate a hot data item set based on application
semantics. For point data along a linear object (such as
highway), the hot data item set can be defined as the
points that fall into an area within a user-defined radius
called a buffer of the linear object .

2. Build a R-Tree for the whole data item set and a hash
table for the IDs of hot data items.

3. Travel the leaves in the R-Tree. For each leaf node:
o Lookup the ID of the item in the hash table

for the hot data item set.
o If found then put the item ID in the vector of

hot items.
o Else put the item ID in the vector of cold

items.
4. Output the contents of items in the hot data vector

followed by the ones in the cold data vector.

3.2 Performance Analysis
We compare our method with an intuitive broadcasting

method that sequencing data items by traveling the leaf nodes of
the R-Tree. We call this method BD-INT and our proposed

1 2 3 4 5 6 7 9 8 10 11

(-96.97,35.83), 3, 100

(-97.01,35.13), (-96.54,36.41)

method BD-PRI. In BD-PRI, we do not change the structure of
the R-tree index. Rather we only change the sequence of data
items and their corresponding pointers in the R-Tree leaf nodes.
Thus we do not change the tune in time. For latency, we do not
change probe wait (i.e. time waiting for index block) either
compared to BD-INT since both of them need to access the
index block first. The major difference between BD-PRI and BD-
INT is the average duration between the point the index is
encountered and the point the required records are downloaded
(bcast wait). In the following analysis, for the sake of simplicity,
we assume the starting point for calculating latency is the end of
index block and all the data items are of unit length.

As in web searches, often only a partial list of LDQ results
is really needed. The client may stop the query at any time after
he/she feels the retrieved data items are sufficient. For example, a
client looking for a used car at Yahoo.com might only need to
browse the first 20 used cars in the first retrieved page while there
might be 10 pages of cars meet his/her search criteria. It is very
likely that all the data items the client wants are in the hot data
item set. If not, the cold data item set is explored subsequently.
Assume all the required data are in the hot data set, then it is easy
to see that BD-PRI reduces bcast time from (Lind+Lw)/2 to
(Lind+Lh)/2 where Lind is the length of the index blocks, Lw is the
total length of the whole data items and Lh is the total length of
the hot data items. If the required data items include both “hot”
and “cold” ones, it is possible that BD_PRI has greater latency
than BD_INT for cold data items due to the prioritized
sequencing scheme. However, since hot data items are accessed
more frequently, the average latency is reduced. The greater the
ratio of access frequencies of hot data items to cold ones, the
greater average latency reduction. In the running example shown
in Fig. 1, the average latency for retrieving data items 1 and 8 is
reduced from 5.5 to 2.5, more than 55% reduction.

Two other parameters called data affinity index and
aggregate data affinity are adopted from (Lee, 2000) to measure
the “eagerness” for data experienced by a client Intuitively, as
client browsing through a partial list of search results, his/her
eagerness for information might drop significantly and eventually
decides to stop accepting more results. Data Affinity Index (DAI)
is defined as Ai=(1-Ni/N) where Ni is the total number of data
items received so far and N is the number of total data items in
the query results. The Aggregate Data Affinity (ADA) is defined
as the summation of Ai over the process of receiving data items.
In the running example shown in Fig.1, let us include a cold data
item in the query result. Suppose the query result consists of data
items 6 and 7. For the whole broadcast cycle, from time slice 1
to 11, the DAIs for BD-INT are 1, 1, 1, 1, 1, 0.5, 0.5, 0, 0, 0, 0
and DAIs for BD-PRI are 1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0, 0, 0
respectively. Thus the aggregate data affinity is reduced from 6 to
5. If the client decides to stop receiving data items at time slice 5,
then the aggregate data affinity is further reduced from 5 to 2.5.
In Fig. 2, we have proved that ADA (A) has a linear relationship
with bcast wait time (T) as A=T/N. Due to the linear relationship
between the two parameters, we only use latency for evaluation in
our experiments and make similar conclusion on ADA.

Note that, in multidimensional indexing and query, data
items in the query results are not necessarily consecutive. They
might fall in different branches from the root to the leaves in the
multidimensional index tree. In this case, both average latency

and ADA are expected to be larger in the multidimensional case
than in the one-dimensional case.

3.3 Algorithm Complexity
In this subsection we analyze the time complexity of the

proposed BD-PRI algorithm. We do not include the costs
required to build the R-Tree in the comparison since it is needed
by both BD-INT and BD-PRI as discussed before. We only
discuss the extra overhead in achieving improvements by
prioritized sequencing. The overhead of the proposed method is
very low. The major overhead is to traverse the R-Tree and
lookup on the hash table to identify whether an item is hot or not.

Fig. 2 Proof of Relationship between ADA and Wait Time

Assume the number of data items to index is N and the

minimum number of branches in each node is M, then the height

of the R-tree is at most   1)(log −= NH M (Guttman,

1984). The maximum number of internal nodes is as follows:

1-M
1-N

1-M
1-M

MMM1I
1

H2 ==+…+++=
+H

, thus I is in the order of O(N/M).

Since the number of leaf nodes of the R-tree is N, the time
complexity of traversing the whole R-Tree is O(N/M)+N=O(N).
Since looking up a hash table is O(1) using a reasonable good
quality hash function, the total time complexity of the hash table
lookup is also O(N). Thus the overall time complexity of the
proposed method is O(N). Given the rich computation power at
the server side compared to the stringent access time requirement
at the client side, the overhead of the proposed method is
negligible. Indeed, our focus is to find out how well the proposed

Assume clients begin to tune in the broadcast channel at
time 0. Suppose there are N items in the query result, each is
accessed at time ti. Then the total wait time is obviously T=∑ti
(i=1…N; t0=0). On the other hand, according to the definition of
ADA (A) we have the following equations:

N
T

tt
N

tNttt
N

tt

ttNtttt
N

tt

tt
N
i

tt

tt
N
i

AA

i

NN

NNN

N

i

N

i

iiii

N

i

iii

=

−=

+−−−−−=

−−++−+−−−=

−−−=

−−==

∑

∑ ∑

∑∑

−

−

=

−

=

++

−

=

+

0

3210

123120

1

0

1

0

11

1

0

1

)*
1

(

)*...(
1

)(

)](*)1(....)(*2)(*1[
1

)(

)(*)(

)(*)1(

approach is in reducing latency at the client side that is resource
constrained. We will evaluate the performance by experiments
using real data in the following section.

4. EXPERIMENTS AND RESULTS
We use a data set from the MapInfo census 2000 data

samples ([HREF 2]). There are 586 points in the area
representing service locations, such as hospitals and parks. We
first build 0.5 mile buffers for the highways in the study area, i.e.,
areas within 0.5 miles radius of the highways. We then select all
the points that falls into the buffer as the hot data items, which
results in 111 points (Fig. 4), and treat the rest as cold data items.
Fig. 5 shows the R-tree built for the area. Exact point query and
spatial range query are two most frequently used query types for
spatial information (Gaede, 1998). We perform two groups of
tests for each of them respectively.

4.1 Point Query Result
For a point query, we know the exact location of the data

item to query on. An example of such a query is the following:

Select nLevel, nSeats
from Restaurant
where location=(-96.97,35.83)

In our test, we randomly select 10 points from the hot data
items and 5 points from the cold data items. For each point
query, we compute the latency for both BD-INT and BD-PRI.
The test result is shown in Table 1. From the result, we can see
that latency for the 10 hot data items are reduced by 2581 time
units at the expense of an increase of 393 time units for cold data
items. The overall improvement percentage is 52.24%.

We perform this group of tests for 10 times. The
improvement ranges from 49% to 64% with an average of
57.65%. From the test, we can safely say that the average latency
is reduced by more than a half in BD-PRI for point queries.

Fig. 3 Distributions of service
locations in the study area

Fig. 4 Buffers (0.5 mile radius) from highways
and their associated hot locations

Fig 5 Visualization of the R-Tree of the service
locations in the study area

Table 1. Result of the for Point Query Test

Dat
a
Item
ID

Type Latency
(BD-
PRI)

Latency
(BD-
INT)

Latency
Improv.

Latency
Improv.
(%)

14 Hot 61 381 320 83.99%
375 Hot 52 548 496 90.51%
534 Hot 27 405 378 93.33%
316 Hot 45 219 174 79.45%
24 Hot 49 217 168 77.42%
414 Hot 68 225 157 69.78%
244 Hot 66 384 318 82.81%
277 Hot 10 94 84 89.36%
166 Hot 8 438 430 98.17%
56 Hot 84 140 56 40.00%
20 Cold 346 273 -74 -27.11%
443 Cold 398 333 -65 -19.52%
379 Cold 152 53 -99 -186.79%
41 Cold 388 323 -65 -20.12%
407 Cold 247 157 -90 -57.32%
Avg 133.4 279.3 145.9 52.24%

4.2 Range Query Result

For a range query, given a query center and a query range,
we want to find all the points that fall in the area defined by these
two parameters. The region could be either a circle or a square.
Since distance calculation to decide whether points fall inside a
circle is more expensive than coordinate comparison to decide
whether points fall inside a square, we use the later approach in
considering compute resource constraints at the mobile client
side. An example of such query is the following:

Select nLevel, nSeats
from Restaurant
where
(
(location.x >=center.x –range)
 and (location.x <=center.x +range)
 and (location.y >=center.y –range)
 and (location.y <=center.y +range)
)

Unlike the point query result which consists only one data
item, the range query result might consist of multiple (including 0)
data items (possibly include both hot and cold data items). For
demonstration purposes, in each test, we randomly select 10 hot
data items and 5 cold data items and use their locations as the
centers in the test. The ranges are determined as follows: for hot
data items the range is a random number between 0.2 miles and
0.5 miles; for cold data items the range is a random number
between 0.5 miles and 1 mile. The reason for using different
ranges for hot and cold data items is to have the approximately
the same number of data items in the query result. The range
values used here are quite arbitrary since they are highly
application dependent.

A test result is shown in Table 2. From the result, we can
see that the weighted average latency is reduced from 355.65 to
133.3 and the reduction percentage is 60.29%. As in point

queries, we also perform the test for range queries 10 times. The
overall reduction percentage of latency is 56.86%.

Table 2. Result of the Range Query Test

Item ID
(Center
Point)

Range
(mile)

#Data
Items in
Results

 Latency
(BD-
PRI)

Latency
(BD-
INT)

Latency
Improve
-ment.

Latency
Improve-
ment(%)

212 0.24 2 126 759 633 83.40%

294 0.50 1 67 376 309 82.18%

100 0.29 3 122 1386 1264 91.20%

24 0.29 1 49 217 168 77.42%

404 0.29 7 1033 3642 2609 71.64%

360 0.43 1 23 13 -10 -76.92%

294 0.34 1 67 376 309 82.18%

534 0.25 4 85 1510 1425 94.37%

392 0.25 1 53 241 188 78.01%

98 0.46 1 2 74 72 97.30%

151 0.37 4 405 1002 597 59.58%

356 0.64 1 234 144 -90 -62.50%

478 0.33 6 1211 2416 1205 49.88%

346 0.39 3 573 294 -279 -94.90%

479 0.76 4 1282 976 -306 -31.35%

Avg 0.39 2.67 133.3 355.65 202.35 60.29%

5. Related Work
A comprehensive overview of multidimensional indexing

and access methods is presented in (Gaede, 1998). The original
R-Tree method is proposed by (Guttman, 1984). Two R-Tree
variations, namely R+-Tree (Sellis, 1987) and R*-Tree
(Beckmann, 1990) are introduced later. There are several
implementations of R-Tree indexing techniques available ([HREF
3], [HREF 4]). Our experiment is based on ([HREF 4]) with
necessary modifications and extensions.

 A good introduction of data broadcasting is presented in
(Imielinski, 1997). The authors also propose algorithms for
multiplexing clustering and non-clustering indexes along with data
on a broadcast channel. However, their work only takes one-
dimensional tree indexing (B-tree) into consideration. For the
multiple-attributes case, they propose to build multiple indices for
each interval of the first attribute. This is actually using one-
dimensional indexing methods consecutively for multidimensional
indexing which is inefficient (Kriegel, 1984). In our study, we
apply multi-dimensional R-tree indexing for geographical data.

(Hambrusch, 2001) studies the execution of spatial queries
on broadcast tree-based spatial index structures. Their work
assumes the client has very limited memory that the whole R-tree
cannot fit into the client memory and the client has to discard
some retrieved R-Tree nodes to hold more useful ones during the
query process. Their work focuses on reducing extra access time
incurred by having to access multiple broadcast cycles due to the
replacement. We do not have such a strict requirement and we
assume the whole R-Tree can fit into the client’s memory. Our

focus is how to reduce access time within a broadcast cycle by
considering access frequencies. Since memory is becoming
cheaper and a 16M configuration is now a standard, we believe
our assumption is more realistic.

There are several works on handling access frequencies in
broadcast data organization. (Shivakumar, 1996) proposes a
method based on alphabetic Huffman coding that handles access
frequency and keeps key ordering for fast search. However, the
method only works for one-dimensional and categorical data and
cannot be applied for geographical data. Further more, access
frequency in our application is a “semantic” one rather than
accurate statistics. Since it is generally hard to find accurate
statistics of access frequencies in a push-based broadcast
system, we believe our method is more practical than Huffman
coding tree based methods in handling access frequencies.

Broadcast disks (Acharya, 1995) based methods have been
widely used for broadcast data scheduling for items with different
access frequencies, however generally broadcast disk method
itself does not involve indexing. (Hu, 2001) proposes to build
index for each minor cycle in broadcast disks but it works for
one attribute only.

6. CONCLUSION AND FUTURE WORK
We proposed a simple yet effective prioritized sequencing

method for reducing total access time (latency) in R-Tree based
geographical data broadcasting. Based on our experiments using
the real MapInfo Census 2000 sample data set, the total access
time is reduced by 60% in both point queries and range queries.
Since we have proved the linear relationship between total access
time and Aggregated Data Affinity (ADA), the same conclusion
can be applied to ADA as well.

Our method essentially provides progressive data access in
wireless broadcast channels that is very similar to progressive
multimedia transfer in web-based applications. Since progressive
data transfer has been proved to be effective and accepted by
users, we are expecting our method to have a similar good
performance in wireless mobile computing.

For future work, we will consider moving continuous LDQ
against broadcast geographical information. We will also
consider semantic caching of retrieved data and index based on
the client’s mobility, such as speed and direction. A further
challenge is to consider queries against broadcast spatial and
temporal information for moving objects.

7. REFERENCES
[1] S.Acharya, R.Alonso, M.Franklin, S.Zdonik, Broadcast

disks: data management for asymmetric communication
environments, ACM SIGMOD Conference, 1995:199-210

[2] N.Beckmann, H.-P. Kriegel, R.Schneider, B.Seeger,The R*-
tree: An efficient and robust access method for points and
rectangles, ACM SIGMOD Conference, 1990:322-331

[3] V.Gaede, O.Günther ,Multidimensional access methods,
ACM Computing Survey, 30(2), 1998:170-231

[4] A.Guttman, R-trees: A dynamic index structure for spatial
searching, ACM SIGMOD Conference, 1984:47-54

[5] S. Hambrusch, C.-M. Liu, W. Aref, S. Prabhakar, Query
Processing in Broadcasted Spatial Index Trees, 7th
International Symposium on Advances in Spatial and
Temporal Databases (SSTD), 2001:502-521

[6] Qinglong Hu, Wang-Chien Lee, Dik Lun Lee: A Hybrid
Index Technique for Power Efficient Data Broadcast,
Distributed and Parallel Databases 9(2), 2001:151-177

[7] T.Imielinski, S Viswanathan, B.R.Badrinath, Data on air:
organization and access,
IEEE Transactions on Knowledge and Data Engineering,
9(3), 1997:353 –372

[8] H.-P.Kriegel, Performance comparison of index structures
for multikey retrieval, SIGMOD Conference, 1984:186-196

[9] Ken Lee, Hong Va Leong, Antonio Si: A Semantic
Broadcast Scheme for a Mobile Environment based on
Dynamic Chunking, the 20th International Conference on
Distributed Computing Systems (ICDCS), 2000: 522-529

[10] T. Sellis, N. Roussopoulos and C. Faloutsos. The R+-Tree:
A Dynamic Index for Multi-Dimensional Objects, the VLDB
Journal, 1987:507-518

[11] A.Y.Seydim, M.H.Dunham, V.Kumar: Location dependent
query processing. the Second ACM International Workshop
on Data Engineering for Wireless and Mobile Access
(MobiDE), 2001: 47-53

[12] N.Shivakumar, S.Venkatasubramanian, Efficient Indexing
for broadcast based wireless systems, ACM Baltzer Mobile
Networks and Applications (MONET), 1(4), 1996:433-446

[HREF 1] http://download-west.oracle.com

/otndoc/oracle9i/901_doc/appdev.901/a88805/sdo_inde.htm

[HREF 2] http://www.mapinfo.com

[HREF 3] http://www.dbnet.ece.ntua.gr/~theodor/files/rtrees/

[HREF 4] http://www.cs.ucr.edu/~marioh/rtree/index.html

