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ABSTRACT 
Broadcasting is an effective and efficient way to disseminate 
public geographical information to massive users.  In this paper, 
we use R-tree to index broadcast geographical data. Based on 
our observation that geographical data and their accesses are 
often concentrated (clustered) in real applications, we propose a 
novel prioritized sequencing method by considering access 
frequencies based on application semantics to reduce average 
access time (latency). The key idea is to put “hot” data items 
ahead of “cold” ones in the broadcast sequence while still 
maintain R-Tree indexing structure.  

 We evaluate our method using MapInfo Census 2000 data 
sample with 576 service locations and 111 of them are hot data 
items. The average reduction percentages of access time are 
reduced by 60% for both point queries and range queries based 
on 10 rounds experiments, each consists 10 hot data items and 5 
cold items that are randomly selected.  We conclude that our 
simple method is very effective in improving query efficiency in 

geographical information broadcast systems.    
We also proved the linear relationship between wait time and the 
Aggregate Data Affinity (ADA) (Lee, 2000), a parameter 
measuring the “eagerness” for data experienced by a client during 
a query process in broadcast wireless mobile computing 
environment. Thus our conclusion also holds when using ADA 
for evaluating broadcast system performance 
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1. INTRODUCTION 
Most current research on mobile computing assumes point-

to-point communication. This scheme suffers from scalability 
problem and is inefficient when many clients request the same 
data at the same time. Public geographical information, such as 
service locations and traffic conditions are playing important 
roles in our everyday life. As Internet services go from fixed 
networks to wireless mobile networks, services of these kinds of 
information will likely to be major consumers of wireless 
resources. It is our vision that digital broadcasting of public 
geographical information over wireless mobile network will be an 
important means in building intelligent urban information 
infrastructure that can greatly reduce overall wireless resource 
consumption and provide cheaper and better services.  

First, broadcasting is an efficient and effective way to make 
information accessible to a large quantity of users because of its 
well-known excellent scalability (Imielinski, 1997). This is 
especially important due to the extremely limited nature of 
wireless resources. Second, as far as end user is concern, 
broadcasting is more economically viable than establishing 
exclusive point-to-point connection between clients and servers 
in terms of bandwidth available and price rate.  One additional 
reason is that broadcasting is distributed in nature and can 
provide good services for local users. On the other hand, servers 
in a point-to-point communication architecture might be far way 
from clients and thus the services provided are more expensive.  
Third, much of the geographical information changes infrequently 
and is mostly read-only, thus is especially suitable for 
broadcasting. Finally, Digital broadcasting has significant 
advantages over traditional analog voice broadcasting, such as 
automatic information retrieval instead of having to tuning to a 
channel all the time by a user. It is possible to integrate 
geographical and non-geographical information by planning 
broadcast carefully and using smart receivers when all the 
broadcast information involved is in digital format.  

Different from disk or memory based data processing that 
allows random access to data storage media, broadcasting 
sequence is one dimensional in nature and only allows sequential 
access. At the same time, mobile devices at the client side have 
significant constraints in terms of energy, storage and 
computation power. Data organization at the server side and 
query processing at the client side are two important issues in a 
data broadcast system. In this paper, we present a prioritized 
sequencing method to efficiently query broadcast geographical 
information for personal mobile computing.  

The rest of the paper is arranged as follows. Section 2 states 
the problem and our motivation.  Section 3 presents our 
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prioritized sequencing method. Section 4 is experimental studies 
using real data. Section 5 gives a brief overview of related work. 
Finally, section 6 is conclusion and future work directions.   

2. PBROBLEM AND MOTIVATION 
Broadcasting can be categorized into two main categories, 

namely pull-based broadcasting and push-based broadcasting. 
Our application belongs to the later one because geographical 
data are usually public information and the system is designed to 
disseminate them to a large volume of users without explicit 
requests. It is extremely difficult, if not impossible, to schedule 
broadcasting for the number of users at such a scale.   

An introduction as well as several indexing approaches for 
push-based data broadcasting is presented in (Imielinski, 1997). 
There are two most important parameters in measuring the 
performance of broadcast schemes namely Tune In Time (TT) 
and Access Time (AT) or latency. Broadcast data indexing plays 
an important role in the tradeoff between them. In this paper, we 
do not intend to develop new indexing techniques that are better 
for data broadcasting nor to evaluate which of the existing 
techniques are more suitable. Rather, our focus is to incorporate 
application semantics into indexing techniques to achieve better 
performance. We consider Location Dependent Queries (LDQ) 
(Seydim, 2001) against broadcast geographical information. Our 
motivation is from the following simple example.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 A Simple Illustrative Example 
 

Fig. 1 represents an R-Tree (Guttman, 1984) for indexing 
geographical data. The dotted and numbered circles represent 
leaf nodes pointing to frequently accessed data items (or hot data 
items), solid circles with numbers represent leaf nodes pointing to 
less frequently accessed data items (or cold data items) and non-
numbered circles represent internal nodes. An internal node has 
several branches in the format of (MBR, Pointer) where MBR 
(Minimum Bounding Rectangle) consists of the x and y 

coordinates of the upper and the lower corner points. Each 
branch of leaf nodes point to a real data record, such as a 
restaurant record contains its geometric coordinates in the 
longitude/latitude format (-96.97,35.83), service level (3 star) and 
available seats (100). 

The conventional broadcasting sequence would be 
[1,2,3,4,5,6,7,8,9,10,11] by traveling the leaf nodes of the R-
Tree. Suppose [3,5,6,8] are hot data items. If we put the hot data 
before the rest data items then the sequence would be [3,5,6,8, 
1,2,4,7, 9,10,11]. If we query data item 3, in the conventional 
sequence the access time is 3 while it would only be 1 in the 
prioritized sequence. Another example is to query data item 8. In 
the conventional sequence, the access time is 8 while it would 
only be 4 in the prioritized sequence which is a significant saving.  

3. R-TREE BASED PRIORITIZED 
SEQUENCING 

For geographical data, in many cases, both data content and 
data utilization is highly concentrated. For example, there are 
more gas stations and restaurants along highways. On the other 
hand, users are more likely to query on these service locations 
when they are driving on highways. We call data items that are 
accessed more often as “hot” data items. From the simple 
example illustrated above, we can see that giving “hot” data items 
more priority can improve system performance. We use R-Tree 
for geographical data indexing primarily because of its popularity 
in practice (Oracle Spatial [HREF1] for example).  

3.1 Algorithm for Generating Prioritized 
Sequence 

The algorithm for generating a prioritized broadcast 
sequence based on R-Tree explore four data structures: an R-
Tree to store the index of the whole data set; a hash table to store 
the IDs of all hot data items and two vectors to store the 
sequences of IDs of hot and cold data items respectively. The 
algorithm consists of the following steps:  

1. Generate a hot data item set based on application 
semantics. For point data along a linear object (such as 
highway), the hot data item set can be defined as the 
points that fall into an area within a user-defined radius 
called a buffer of the linear object .  

2. Build a R-Tree for the whole data item set and a hash 
table for the IDs of hot data items.  

3. Travel the leaves in the R-Tree. For each leaf node: 
o Lookup the ID of the item in the hash table 

for the hot data item set.  
o If found then put the item ID in the vector of 

hot items. 
o Else put the item ID in the vector of cold 

items. 
4. Output the contents of items in the hot data vector 

followed by the ones in the cold data vector.  
 

3.2 Performance Analysis  
We compare our method with an intuitive broadcasting 

method that sequencing data items by traveling the leaf nodes of 
the R-Tree. We call this method BD-INT and our proposed 
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method BD-PRI. In BD-PRI, we do not change the structure of 
the R-tree index. Rather we only change the sequence of data 
items and their corresponding pointers in the R-Tree leaf nodes. 
Thus we do not change the tune in time. For latency, we do not 
change probe wait (i.e. time waiting for index block) either 
compared to BD-INT since both of them need to access the 
index block first. The major difference between BD-PRI and BD-
INT is the average duration between the point the index is 
encountered and the point the required records are downloaded 
(bcast wait). In the following analysis, for the sake of simplicity, 
we assume the starting point for calculating latency is the end of 
index block and all the data items are of unit length. 

As in web searches, often only a partial list of LDQ results 
is really needed. The client may stop the query at any time after 
he/she feels the retrieved data items are sufficient. For example, a 
client looking for a used car at Yahoo.com might only need to 
browse the first 20 used cars in the first retrieved page while there 
might be 10 pages of cars meet his/her search criteria. It is very 
likely that all the data items the client wants are in the hot data 
item set. If not, the cold data item set is explored subsequently. 
Assume all the required data are in the hot data set, then it is easy 
to see that BD-PRI reduces bcast time from (Lind+Lw)/2 to 
(Lind+Lh)/2 where Lind is the length of the index blocks, Lw is the 
total length of the whole data items and Lh is the total length of 
the hot data items. If the required data items include both “hot” 
and “cold” ones, it is possible that BD_PRI has greater latency 
than BD_INT for cold data items due to the prioritized 
sequencing scheme. However, since hot data items are accessed 
more frequently, the average latency is reduced. The greater the 
ratio of access frequencies of hot data items to cold ones, the 
greater average latency reduction. In the running example shown 
in Fig. 1, the average latency for retrieving data items 1 and 8 is 
reduced from 5.5 to 2.5, more than 55% reduction.   

Two other parameters called data affinity index and 
aggregate data affinity are adopted from (Lee, 2000) to measure 
the “eagerness” for data experienced by a client Intuitively, as 
client browsing through a partial list of search results, his/her 
eagerness for information might drop significantly and eventually 
decides to stop accepting more results. Data Affinity Index (DAI) 
is defined as Ai=(1-Ni/N) where Ni is the total number of data 
items received so far and N is the number of total data items in 
the query results. The Aggregate Data Affinity (ADA) is defined 
as the summation of Ai over the process of receiving data items.  
In the running example shown in Fig.1, let us include a cold data 
item in the query result. Suppose the query result consists of data 
items 6 and 7. For the whole broadcast cycle, from time slice 1 
to 11, the DAIs for BD-INT are 1, 1, 1, 1, 1, 0.5, 0.5, 0, 0, 0, 0 
and DAIs for BD-PRI are 1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0, 0, 0 
respectively. Thus the aggregate data affinity is reduced from 6 to 
5. If the client decides to stop receiving data items at time slice 5, 
then the aggregate data affinity is further reduced from 5 to 2.5. 
In Fig. 2, we have proved that ADA (A) has a linear relationship 
with bcast wait time (T) as A=T/N. Due to the linear relationship 
between the two parameters, we only use latency for evaluation in 
our experiments and make similar conclusion on ADA.  

Note that, in multidimensional indexing and query, data 
items in the query results are not necessarily consecutive. They 
might fall in different branches from the root to the leaves in the 
multidimensional index tree. In this case, both average latency 

and ADA are expected to be larger in the multidimensional case 
than in the one-dimensional case. 

3.3 Algorithm Complexity 
In this subsection we analyze the time complexity of the 

proposed BD-PRI algorithm. We do not include the costs 
required to build the R-Tree in the comparison since it is needed 
by both BD-INT and BD-PRI as discussed before. We only 
discuss the extra overhead in achieving improvements by 
prioritized sequencing. The overhead of the proposed method is 
very low. The major overhead is to traverse the R-Tree and 
lookup on the hash table to identify whether an item is hot or not.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 Proof of Relationship between ADA and Wait Time 
 
Assume the number of data items to index is N and the 

minimum number of branches in each node is M, then the height 

of the R-tree is at most   1)(log −= NH M  (Guttman, 

1984). The maximum number of internal nodes is as follows: 

1-M
1-N

1-M
1-M

MMM1I
1

H2 ==+…+++=
+H

, thus I is in the order of O(N/M).  

Since the number of leaf nodes of the R-tree is N, the time 
complexity of traversing the whole R-Tree is O(N/M)+N=O(N). 
Since looking up a hash table is O(1) using a reasonable good 
quality hash function, the total time complexity of the hash table 
lookup is also O(N). Thus the overall time complexity of the 
proposed method is O(N). Given the rich computation power at 
the server side compared to the stringent access time requirement 
at the client side, the overhead of the proposed method is 
negligible. Indeed, our focus is to find out how well the proposed 

Assume clients begin to tune in the broadcast channel at 
time 0. Suppose there are N items in the query result, each is 
accessed at time ti. Then the total wait time is obviously T=∑ti 
(i=1…N; t0=0). On the other hand, according to the definition of 
ADA (A) we have the following equations:  
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approach is in reducing latency at the client side that is resource 
constrained. We will evaluate the performance by experiments 
using real data in the following section. 

4. EXPERIMENTS AND RESULTS 
We use a data set from the MapInfo census 2000 data 

samples ([HREF 2]). There are 586 points in the area 
representing service locations, such as hospitals and parks. We 
first build 0.5 mile buffers for the highways in the study area, i.e., 
areas within 0.5 miles radius of the highways. We then select all 
the points that falls into the buffer as the hot data items, which 
results in 111 points (Fig. 4), and treat the rest as cold data items. 
Fig. 5 shows the R-tree built for the area. Exact point query and 
spatial range query are two most frequently used query types for 
spatial information (Gaede, 1998). We perform two groups of 
tests for each of them respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.1 Point Query Result 
For a point query, we know the exact location of the data 

item to query on. An example of such a query is the following: 

Select nLevel, nSeats  
from Restaurant  
where location=(-96.97,35.83)  

In our test, we randomly select 10 points from the hot data 
items and 5 points from the cold data items. For each point 
query, we compute the latency for both BD-INT and BD-PRI. 
The test result is shown in Table 1.  From the result, we can see 
that latency for the 10 hot data items are reduced by 2581 time 
units at the expense of an increase of 393 time units for cold data 
items. The overall improvement percentage is 52.24%.  

We perform this group of tests for 10 times. The 
improvement ranges from 49% to 64% with an average of 
57.65%. From the test, we can safely say that the average latency 
is reduced by more than a half in BD-PRI for point queries. 

Fig. 3 Distributions of service 
locations in the study area 

Fig. 4 Buffers (0.5 mile radius) from highways 
and their associated hot locations 

Fig 5 Visualization of the R-Tree of the service 
locations in the study area 



Table 1. Result of the for Point Query Test 

Dat
a 
Item 
ID 

Type Latency 
(BD-
PRI) 

Latency 
(BD-
INT) 

Latency 
Improv. 

Latency 
Improv. 
(%) 

14 Hot 61 381 320 83.99% 
375 Hot 52 548 496 90.51% 
534 Hot 27 405 378 93.33% 
316 Hot 45 219 174 79.45% 
24 Hot 49 217 168 77.42% 
414 Hot 68 225 157 69.78% 
244 Hot 66 384 318 82.81% 
277 Hot 10 94 84 89.36% 
166 Hot 8 438 430 98.17% 
56 Hot 84 140 56 40.00% 
20 Cold 346 273 -74 -27.11% 
443 Cold 398 333 -65 -19.52% 
379 Cold 152 53 -99 -186.79% 
41 Cold 388 323 -65 -20.12% 
407  Cold 247 157 -90 -57.32% 
Avg  133.4 279.3 145.9 52.24% 

 
4.2 Range Query Result 

For a range query, given a query center and a query range, 
we want to find all the points that fall in the area defined by these 
two parameters. The region could be either a circle or a square. 
Since distance calculation to decide whether points fall inside a 
circle is more expensive than coordinate comparison to decide 
whether points fall inside a square, we use the later approach in 
considering compute resource constraints at the mobile client 
side. An example of such query is the following: 

Select nLevel, nSeats  
from Restaurant  
where  
( 
(location.x >=center.x –range) 
 and  (location.x <=center.x +range) 
 and (location.y >=center.y –range)  
 and (location.y <=center.y +range) 
) 

Unlike the point query result which consists only one data 
item, the range query result might consist of multiple (including 0) 
data items (possibly include both hot and cold data items). For 
demonstration purposes, in each test, we randomly select 10 hot 
data items and 5 cold data items and use their locations as the 
centers in the test. The ranges are determined as follows: for hot 
data items the range is a random number between 0.2 miles and 
0.5 miles; for cold data items the range is a random number 
between 0.5 miles and 1 mile. The reason for using different 
ranges for hot and cold data items is to have the approximately 
the same number of data items in the query result. The range 
values used here are quite arbitrary since they are highly 
application dependent. 

A test result is shown in Table 2. From the result, we can 
see that the weighted average latency is reduced from 355.65 to 
133.3 and the reduction percentage is 60.29%. As in point 

queries, we also perform the test for range queries 10 times. The 
overall reduction percentage of latency is 56.86%.  

Table 2. Result of the Range Query Test 

Item ID  
(Center 
Point ) 

Range 
(mile) 

#Data 
Items in 
Results 

 Latency 
(BD-
PRI) 

Latency 
(BD-
INT) 

Latency 
Improve
-ment. 

Latency 
Improve-
ment(%) 

212 0.24 2 126 759 633 83.40% 

294 0.50 1 67 376 309 82.18% 

100 0.29 3 122 1386 1264 91.20% 

24 0.29 1 49 217 168 77.42% 

404 0.29 7 1033 3642 2609 71.64% 

360 0.43 1 23 13 -10 -76.92% 

294 0.34 1 67 376 309 82.18% 

534 0.25 4 85 1510 1425 94.37% 

392 0.25 1 53 241 188 78.01% 

98 0.46 1 2 74 72 97.30% 

151 0.37 4 405 1002 597 59.58% 

356 0.64 1 234 144 -90 -62.50% 

478 0.33 6 1211 2416 1205 49.88% 

346 0.39 3 573 294 -279 -94.90% 

479 0.76 4 1282 976 -306 -31.35% 

Avg 0.39 2.67 133.3 355.65 202.35 60.29% 
 

5. Related Work 
A comprehensive overview of multidimensional indexing 

and access methods is presented in (Gaede, 1998). The original 
R-Tree method is proposed by (Guttman, 1984). Two R-Tree 
variations, namely R+-Tree (Sellis, 1987) and R*-Tree 
(Beckmann, 1990) are introduced later.  There are several 
implementations of R-Tree indexing techniques available ([HREF 
3], [HREF 4]). Our experiment is based on ([HREF 4]) with 
necessary modifications and extensions.   

 A good introduction of data broadcasting is presented in 
(Imielinski, 1997). The authors also propose algorithms for 
multiplexing clustering and non-clustering indexes along with data 
on a broadcast channel. However, their work only takes one-
dimensional tree indexing (B-tree) into consideration. For the 
multiple-attributes case, they propose to build multiple indices for 
each interval of the first attribute. This is actually using one-
dimensional indexing methods consecutively for multidimensional 
indexing which is inefficient (Kriegel, 1984).  In our study, we 
apply multi-dimensional R-tree indexing for geographical data.  

(Hambrusch, 2001) studies the execution of spatial queries 
on broadcast tree-based spatial index structures. Their work 
assumes the client has very limited memory that the whole R-tree 
cannot fit into the client memory and the client has to discard 
some retrieved R-Tree nodes to hold more useful ones during the 
query process. Their work focuses on reducing extra access time 
incurred by having to access multiple broadcast cycles due to the 
replacement. We do not have such a strict requirement and we 
assume the whole R-Tree can fit into the client’s memory. Our 



focus is how to reduce access time within a broadcast cycle by 
considering access frequencies. Since memory is becoming 
cheaper and a 16M configuration is now a standard, we believe 
our assumption is more realistic.  

There are several works on handling access frequencies in 
broadcast data organization. (Shivakumar, 1996) proposes a 
method based on alphabetic Huffman coding that handles access 
frequency and keeps key ordering for fast search. However, the 
method only works for one-dimensional and categorical data and 
cannot be applied for geographical data. Further more, access 
frequency in our application is a “semantic” one rather than 
accurate statistics. Since it is generally hard to find accurate 
statistics of access frequencies in a push-based broadcast 
system, we believe our method is more practical than Huffman 
coding tree based methods in handling access frequencies.  

Broadcast disks (Acharya, 1995) based methods have been 
widely used for broadcast data scheduling for items with different 
access frequencies, however generally broadcast disk method 
itself does not involve indexing. (Hu, 2001) proposes to build 
index for each minor cycle in broadcast disks but it works for 
one attribute only.  

6. CONCLUSION AND FUTURE WORK 
We proposed a simple yet effective prioritized sequencing 

method for reducing total access time (latency) in R-Tree based 
geographical data broadcasting. Based on our experiments using 
the real MapInfo Census 2000 sample data set, the total access 
time is reduced by 60% in both point queries and range queries. 
Since we have proved the linear relationship between total access 
time and Aggregated Data Affinity (ADA), the same conclusion 
can be applied to ADA as well.   

Our method essentially provides progressive data access in 
wireless broadcast channels that is very similar to progressive 
multimedia transfer in web-based applications. Since progressive 
data transfer has been proved to be effective and accepted by 
users, we are expecting our method to have a similar good 
performance in wireless mobile computing.  

For future work, we will consider moving continuous LDQ 
against broadcast geographical information. We will also 
consider semantic caching of retrieved data and index based on 
the client’s mobility, such as speed and direction. A further 
challenge is to consider queries against broadcast spatial and 
temporal information for moving objects.   
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