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1. INTRODUCTION 
*As ensemble forecasting has been operational 

successfully for about 10 years for the global fore-
casting systems at centers such as NCEP and 
ECMWF, increasing emphasis is placed on meso-
scale ensemble forecasting in recent years [e.g., 
the Storm and Mesoscale Ensemble Experiment 
(SAMEX) of 1998 (Hou et al., 2001)].  Since en-
semble prediction provides an estimate of the 
forecast probability distribution of atmosphere 
states and generates huge amounts of data, one 
of the main problems for its operational use is the 
design of manageable products for potential users.  
The common products include the ensemble and 
cluster means, standard deviations or spread, and 
probabilities of different events (Toth et al., 1997).  
One of the most widely used products is the “spa-
ghetti” diagram where a single map contains all 
ensemble forecasts (e.g., Toth et al., 1997).  How-
ever, many questions about how to best interpret 
and evaluate ensemble forecasts still remain.   

This issue becomes even more complicated 
for mesoscale quantitative precipitation forecast 
(QPF), since QPF is a discontinuous field. Em-
ploying the technique of the ensemble mean and 
spread may yield meaningless results.  Moreover, 
due to various errors, such as phase shift, rotation, 
and deformation errors (see Fig. 1), it has been a 
challenge to generate and interpret the ensemble 
QPF products. 

Appropriate verification tools are essential in 
understanding the abilities and behaviors of an 
ensemble forecast system.  Since each member of 
the ensemble is a deterministic forecast and there-
fore each member is subjected to systematic error 
(bias), it would be helpful in understanding the en-
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semble precipitation forecasting to examine and 
extract individual systematic error distributions.  
However, for conventional statistical and other 
methods it has been very difficult to properly take 
into account spatial characteristics of forecasting 
precipitation fields including phase shift, rotation, 
and deformation. This difficulty hinders further 
studies on spatial distributions and relationships. 
 

 
 

Fig.1 Illustration of three precipitation forecasting 
(deep gray shaded region) errors against observa-
tion (light gray shaded region): a) Forecast with 
phase shifting error; b) Forecast with shifting and 
rotation error; c) Forecast with shifting, rotation 
and deformation error. 
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Aimed at overcoming the above problems, this 
study proposes a spatial data mining approach as 
a new tool for verifying and understanding ensem-
ble precipitation forecasts.  Data mining is a proc-
ess of exploring the data interrelationships or pat-
terns from a potentially large volume of data using 
techniques that go beyond a simple search 
through the data (GSFC, 1999; Fayyad, 1998).  
Data mining algorithms, in contrast to conventional 
methods, use discovery-based approaches in 
which pattern-matching and other algorithms are 
employed to determine the key relationships in the 
data.  Data mining can look at numerous multidi-
mensional data relationships concurrently, high-
lighting those that are dominant or exceptional.   
Since most of meteorological and geospatial data 
are related objects that occupy space, recent stud-
ies on data mining have extended the scope of 
data mining from relational and transactional data-
bases to spatial databases (Koperski et al., 1996). 

Spatial data mining can be classified into 
many categories based on data mining functional-
ities (Goebel and Gruenwald, 1999).  For our spe-
cific study, we mainly focus on the following three 
aspects:   
1) Pattern recognition 

Although weather systems or features are well 
understood once shown graphically, many of them 
are ill-defined and hence difficult to quantify and 
extract using brute-force numerical methods.  
However, the identification and extraction of spa-
tial objects share many similarities with the recog-
nition and figure-ground separation problems in 
computer vision (Huang and Zhao, 1999).   A spatial 
object is not just a collection of constituent objects 
but with a rich internal structure that may influence 
the aggregate properties of the object including its 
identity.  Therefore, it is feasible to bridge the se-
mantic gap between the input data of a massive 
grid field and the final symbolic description.   
2) Spatial clustering 

Clustering is usually one of the first steps in 
spatial data mining analysis and has been studied 
extensively for many years.   The main advantage 
of using this technique is that interesting structures 
of clusters or natural grouping of distribution of 
data can be found directly from the data and help 
users to focus on a particular set of clusters for 
further analysis.   

One of the well-known methods is the Parti-
tioning algorithm which constructs a partition of a 
database D of n objects into a set of K clusters.  K 
is an input parameter for these algorithms, i.e., 
some domain knowledge is required which unfor-
tunately is not available for many applications.  K-
means algorithm is an example of  Partitioning 

algorithms.  The general weakness of partitioning-
based algorithms is their inability to find arbitrarily-
shaped clusters.    

It is often desirable to find natural clusters, i.e., 
clusters which are perceived as crowded together 
by the human eye.  To meet this need, other clus-
tering methods have been developed based on 
the notion of density (Ester et al., 1996; Han et al, 
2001).   

The first density-based algorithm is the 
DBSCAN algorithm (Ester et al., 1996), which 
judges the density around the neighborhood of an 
object to be sufficiently dense if the number of 
data points within a distance ε of an object is 
greater than MinPts number of points. As the clus-
ters discovered are dependent on the parameters 
ε and MinPts, DBSCAN relies on the user's ability 
to select a good set of parameters.  To help over-
come this problem, a cluster ordering method 
called OPTICS (Ankerst et al., 1999) was pro-
posed.  Rather than producing a data set cluster-
ing explicitly, OPTICS computes an augmented 
cluster ordering for automatic and interactive clus-
ter analysis.  One of the advantages of OPTICS is 
that OPTICS can handle very different local densi-
ties to reveal clusters in different regions.  How-
ever, the required parameters of ε and MinPts still 
rely on the user’s decision, since we may not see 
clusters of lower density. 

In order to avoid any required parameters in 
this research, we used Delaunay triangulation to 
get neighbors and local densities.  We then 
adapted the OPTICS cluster ordering idea to re-
veal clusters in different regions. 
3) Spatial association rule 

A spatial association rule is a rule which de-
scribes the implication of one feature or a set of 
features by another set of features in spatial data-
bases.  For example, a rule like “80% of schools 
are close to parks” is a spatial association rule. 

To determine a specific spatial distribution re-
gion of an ensemble member, the concept of al-
pha shapes is applied, which is an approach to 
formalize the intuitive notion of "shape" for spatial 
point sets. The clustering points are used as the 
spatial point sets to determine their shape. There-
fore, the spatial association rules between the ob-
servation and each ensemble forecast can be de-
rived with a specific spatially distributed region. 

In order to implement and test this approach, 
we generated a simulated dataset, in which ob-
served and forecast precipitation regions are ap-
proximated by ellipses. Using the dataset, pattern 
characteristics or features, such as the center, 
axis and rotation from the fields are depicted, and 
a new density-based clustering algorithm is then 



designed to extract the spatial precipitation distri-
bution information.  Finally, spatial data mining 
association rules are derived from the database to 
reveal the relationships among the observations 
and forecasts.  

The organization of the rest of this paper is as 
follows.  We will first introduce the simulated data-
set in Section 2.  Following this is an explanation 
of a pattern recognition method in Section 3.  Sec-
tions 4 and 5 describe the proposed density-based 
clustering with Delaunay triangulation and spatial 
association rules.  Discussion and conclusions are 
given in Section 6. 

 
2. GENERATION OF SIMULATED DATASET 
 

As discussed previously, for a precipitation 
forecast, there are generally three kinds of errors 
involved: phase shifting, rotation and deformation.  
Therefore, in our study, generating a 2-D precipita-
tion dataset that contains such errors is important 
and necessary. This error information will be used 
in clustering analysis and for further association 
rule analysis as well. 

To simplify the problem of extracting patterns 
with the possibility of generalization later, we use 
ellipses to represent the patterns in the precipita-
tion field.  The standard ellipse equation is: 
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where a and b are the half axes. Rotation of a 
point (x, y) with respect to the origin is given by 
 

x’ = x * cos ϕ - y * sin ϕ ,             (2) 
y’ = x * sin ϕ + y * cos ϕ,             (3) 

 
where ϕ is the angle of rotation.  Furthermore, we 
need to consider the shift (xc, yc) from the origin.  
For a given center of ellipse (xc, yc), the horizontal 
and vertical axes a and b, and a rotation angle (ϕ), 
we can specify an ellipse.  For our test, we use a 
200 × 200 domain and set precipitation to zero 
outside the ellipses and to 1" inside.  We also as-
sume that each model forecast only contains one 
precipitation field.  Figure 2 illustrates the samples 
of our datasets.  The dataset contains forecasts 
from 20 member models and all members make 
100 forecasts.  
 
3. PATTERN CHARACTERISTICS SELECTION 
 

The spatial objects or features perceived by 
scientists have common characteristics: they are 
all visually salient.  Therefore, the symbolic de-
scription must impose a conceptual structure on 

the system so that the complexity of the system 
can be understood in terms of well-defined parts 
and subparts, and the interactions among them. It 
is important to represent properly and objectively 
some specific properties of the objects with aggre-
gate spatial properties.  We choose the center, 
major and minor axis and its rotation for the sym-
bolic descriptions.  Moreover, additional specific 
properties for further descriptions with a given 
classified object are developed.  For example, for 
a closed space curve, except for characteristics 
like center, major and minor axis, additional prop-
erties and constraints are needed to distinguish 
whether the object is similar to an ellipse, circle or 
square.  With this feature selection technique, it 
becomes feasible to measure the errors of phase 
shifting, rotation and deformation for further data 
mining. 
 

 
Fig.2 Multiple model precipitation forecasts and ob-
servation (dark and thick-line ellipse) 

 
This mining process will result in the spatial 

data in terms of the center (x, y), minor and major 
axis (a, b) and rotation angle. Adding the model 
number and the sample number information, the 
output of relative forecasting information of phase 
shift, azimuth and rotation against observation will 
be depicted in this order: 

 
(modelNo, sampleNo, x_center, y_center, minor_axis, ma-

jor_axis, rotation). 
 

4. DENSITY-BASED CLUSTERING WITH 
DELAUNAY TRIANGULATION 

 
The Delaunay triangulation of a point set is a 

collection of edges, which satisfies an "empty cir-
cle" property: for each edge we can find a circle 
containing the edge's endpoints but not containing 
any other points (Cetin, 2000). With this character-
istic, Delaunay triangulation becomes an excellent 
method for solving the nearest neighbor problem, 



because each point in the diagram is connected to 
its nearest neighbor (Fig. 3).  For a point set, p1, 
p2, …, pn, let NDE(pi) denote the number of De-
launay edges incident to pi.  Therefore, the local 
mean distance or edge of a point and global mean 
distance can be calculated by the following equa-
tions: 
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where dj is the length of Delaunay edge.  We use 
the GlobalMean as a radius to get the local den-
sity, density(pi), which is the number of points 
within a circle centered at point pi.  To create an 
ordering of the object, instead of using core-
distance and reachability-distance as in OPTICS 
(Ankerst et al., 1999), we search the point with 
minimum distance, di, among the points not yet 
searched and record the local density, density(pi) 
(Fig. 4).   

 

 
 

Fig.3 Illustration for Delaunay triangulation of 100 
samples of model No. 4. 

 
With the ordered points, one can obtain vari-

ous clustering results, which are constrained by 
different thresholds. For example, in this study, we 
use maximum polygon area, Maxσ, and minimum 
confidence, Min c%, to be introduced in the next 
section, as the specific constraints in our cluster-
ing analysis.  Those points not satisfying the 
thresholds of constraints are viewed as noises.  
Figure 5 shows one of the clustering results, in 

which the solid gray circles are clustering points 
and others are noises. 
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Fig.4 Cluster ordering of Model 4. 
 

 
 

Fig.5 Clustering results of model No. 4.  Solid gray circles 
are those points satisfying the threshold and constraints. 

 
5. SPATIAL ASSOCIATION RULE ANALYSIS 
 

In order to discover the knowledge about the 
hidden relationships among the observations and 
forecasts, spatial association rules, which  can be 
derived through the data mining,provide very im-
portant information. An association rule is a rule 
that associates one or more spatial objects with 
other spatial objects, which is of the form X→ Y 
(c%), where X and Y are sets of spatial or non-
spatial predicates and c% is the confidence of the 
rule. 

There are various kinds of spatial predicates 
that could constitute a spatial association rule. Ex-
amples include: spatial orientations like left_of, 



west_of, etc.; and distance information, such as 
close_to, far_away, etc.   

With the spatial distribution of individual model 
forecasts revealed by our density-based clustering 
algorithm, it is possible to quantitatively describe 
the location, size and shape of the clustering ob-
jects for spatial association rule analysis. The con-
cept of alpha shapes  formalizes our intuitive no-
tion of "shape" for a spatial point set of data.  Al-
pha shapes can be viewed as generalizations of 
the convex hull of the point set (Edelsbrunner and 
Mucke, 1994). It formalizes the intuitive notion of 
shape, and for a varying parameter alpha, it 
ranges from crude to fine shapes. The most crude 
shape is the convex hull itself, which is obtained 
for very large values of alpha. As alpha decreases, 
the shape shrinks and develops cavities that may 
join to form tunnels and voids.  Fig. 6 represents 
an alpha shape for the clustering data.  The alpha 
shape forms a polygon region, which indicates that 
one ensemble member forecast appearing in this 
area with respect to the observation has a higher 
probability.  

 

 
 

be low.  We are only interested in strong rules, 
which are rules with large confidence, i.e., no less 
than the minimum confidence threshold, Minc%. 
With the alpha shaped polygon, we first calculate 
the polygon area, σ, and confidence, c%.  Then, 
we check if the c% > Minc%, and σ < Maxσ.  In the 
study, Minc% is 60% of all samples.  This thresh-
old should be determined and verified based on 
real case studies. 

Therefore, spatial association rules can be de-
rived and represented as "model(X) → 
event_in(polygon Px) (c%)".  Since the polygon 
location is a relative location with respect to the 
observation, we can further interpret it with infor-
mation such as, distance (close_to, 
far_away_to,…), azimuth (northeast_of, west_of, 
…), and orientation (normal, left_bias, …), etc.  
This information reveals each ensemble member's 
spatial distribution and behavior.  These spatial 
association rules will help us in evaluating and 
understanding the ensemble precipitation fore-
casts. 

 
6. DISCUSSIONS AND CONCLUSIONS 
 

This paper proposed a spatial data mining ap-
proach as a new tool for verifying and understand-
ing ensemble precipitation forecasts. With this ap-
proach, particular attention is given to the spatial 
distribution characteristics of precipitation. Two 
particular issues are addressed in this paper: first, 
the assessment of forecast quality through pattern 
recognition which can identify errors due to phase 
shift or displacement, rotation and deformation, 
and second, the investigation of association 
among observations and forecasts.   

With the feature selection process, spatial 
characteristics such as center of forecasting pre-
cipitation field, axis, and rotation can be selected.  
These results make it possible and convenient to 
depict quantitatively the spatial distribution of each 
ensemble member.  Our proposed density-based 
clustering algorithm using Delaunay triangulation 
can automatically find out natural clusters of en-
semble members’ precipitation forecasts.  More-
over, the proposed algorithm allows users to apply 
additional constraints, such as confidence and 
 
 
 

Fig.6 Alpha shape for clustering results of Model 4.
Solid gray circles are those points satisfied the threshold 
and constrains.
 
To confine the number of discovered rules, the 

concept of minimum confidence is used. The con-
fidence is the proportion of database transactions 
containing X that also contain Y.  The intuition be-
hind this is that in large databases, there may exist 
a large number of associations between objects 
but most of them will be applicable to only a small 
number of objects, or the confidence of rules may 

polygon area, for interested clusters.  The alpha 
shape concept is applied to represent graphically 
the shape of the clusters.   

Based on the knowledge gained from the dis-
tributions, a further step is taken to derive associa-
tion rules between the observations and forecasts 
from the database. Eventually, the approach pro-
vides information on the distribution of individual 



ensemble members and reveals the relative spa-
tial associations among the observations and fore-
casts with a certain confidence.  In our experience 
with our simulated dataset of 20 ensemble mem-
bers, most members have a strong association 
rule with observations, although their spatial distri-
butions vary in a wide range.  Some ensemble 
member forecasts do not have a strong associa-
tion rule with the observation, which implies that 
these members have less value in the ensemble 
forecast. 

Therefore, this approach can not only take into 
account the spatial distribution characteristics of 
individual ensemble members, which are other-
wise difficult to quantify with conventional compos-
ite charts or “spaghetti” charts, but also provides 
strong spatial association rules between the ob-
servation and each ensemble member.  These 
properties can help users in verifying and under-
standing the ensemble precipitation forecasting.  
Since the spatial association rules indicate sys-
tematic errors for each member and provide confi-
dence in a specific polygon region, users can 
make use of the information in generating and in-
terpreting ensemble products. 

It should be mentioned that we used a simu-
lated dataset so that we can focus on the devel-
opment of the procedure for mining and deriving 
spatial characteristics, distributions and relation-
ships of individual ensemble members. Extending 
this procedure to realistic precipitation data sets is 
our next step.  We envision that by adding more 
shapes and characteristic representations, we will 
be able to apply the procedure to real ensemble 
forecasts to reveal much valuable information so 
as to help us understand, verify and interpret the 
ensemble forecast. 
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