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Abstract 

A data warehouse stores integrated information as materialized views over data from one or 
more remote sources. These materialized views must be maintained in response to actual relation 
updates in the remote sources. Based on whether the current materialized views will be used in 
computing the new views, and whether the data warehouse will query the remote data sources for 
additional data to do the computation, the data warehouse view maintenance techniques are 
classified into four major categories: self-maintainable recomputation, not self-maintainable 
recomputation, self-maintainable incremental maintenance, and not self-maintainable 
incremental maintenance. This paper provides a comprehensive comparison of the techniques in 
these four categories in terms of the data warehouse space usage and number of rows accessed in 
order to propagate an update from a remote data source to a target materialized view in the data 
warehouse.  The analysis shows that self-maintainable incremental maintenance performs the 
best in terms of both space usage and number of rows accessed.   
 

1 Introduction 

A data warehouse stores integrated information over data from one or more remote data sources 

for query and analysis [Hammer 95, Wiener 96]. The integrated information at the data 

warehouse is stored as materialized views. A view is a virtual relation defined using the actual 

relations stored in the database. A materialized view is the result relation of the evaluation of the 

relational algebra expression that defines the view relation [Silberschatz 97]. Using these 
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materialized views, user queries can be answered quickly as the information may be directly 

available or can be calculated using these materialized views on fly. 

A problem known as the view maintenance problem is how to maintain the materialized 

views so that they can be kept up to date in response to updates of the actual relations in the 

remote data sources.  There are numerous algorithms developed to solve the view maintenance 

problem for traditional database systems. In these database systems, query expressions defined 

views and actual relations are stored at the same database. The database systems understand view 

management and view definitions and know what data is needed for propagating updates to the 

views.   

In a data warehouse, the query expressions that define views and actual relations may be 

stored at different database sources residing at many sites. The sources may inform the data 

warehouse when an update occurs but they might not be able to determine what data is needed 

for updating the views at the data warehouse. Therefore they may send only the actual data 

updates or the entire updated relations to the data warehouse. Upon receiving this information, 

the data warehouse may find that it needs some additional source data in order to update the 

views. Then it will issue some queries to some of the sources to request the additional source 

data. Some of the sources may have updated their data again before they evaluate the requesting 

queries from the data warehouse. Therefore they will send incorrect additional data to the data 

warehouse, which subsequently will use the incorrect data to compute the views. This 

phenomenon is called distributed view maintenance anomaly.  Solving the view maintenance 

problem in data warehouses is thus more complicated than that in traditional database systems. 

The objectives of this paper are to provide a classification of different view maintenance 

techniques that have been proposed in the literature and to conduct a comprehensive comparison 
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of these techniques in terms of space usage and number of rows accessed using the TPC 

benchmark for decision support queries.  The rest of this paper is organized as follows.  Section 

2 classifies the existing view maintenance techniques.  Section 3 presents a performance analysis 

of the techniques.  Finally, Section 4 provides conclusions and future research. 

 

2 Classification of Data Warehouse View Maintenance Techniques 

Depending on whether the current materialized views in a data warehouse are used in the 

computation of their new views in response to updates that occur on the remote data sources, the 

existing data warehouse view maintenance techniques can be classified into two broad 

categories: recomputation and incremental view maintenance.  Depending on whether the data 

warehouse has to query the remote data sources in order to calculate the new views, the 

techniques can be further classified as self-maintainable or not self-maintainable.   The below 

subsections discuss these four categories. 

2.1 The Self-Maintainable Recomputation Category 

Materialized views can be computed from scratch by using the view definitions and other 

materialized views at the data warehouse. The current materialized views being maintained have 

no contribution to the calculation of the new views. Some techniques replicate all or part of the 

remote data at the data warehouse. We can view these replicated data as some kind of 

materialized views at the data warehouse. Others such as the self-maintenance warehouse 

approach discussed in [Quass 96] store the remote relations at the data warehouse as additional 

materialized views to provide data needed when the data warehouse computes the new views. 

Therefore, the data warehouse will never have to query the data sources for additional data. 



 4 
  

 

A self-maintainable materialized V view can be defined in two ways. In the first way, the 

materialized view V can be defined by using other self-maintainable materialized views. In this 

case, the view V is defined as 

V = Πproj(σcond(v1⋈v2⋈…⋈vN)) 

where all vi 's are self-maintainable materialized views stored in the data warehouse.  

In the second way, view V can be defined by using the relations residing at the remote 

sources. In this case, the view definition is 

V = Πproj(σcond(r1⋈r2⋈…⋈rN)) 

where all ri 's are self-maintainable relations stored in the remote data sources. When there is an 

update occurring at a remote data source, the data source knows what to do and will send the 

update with all related relations in the view definition to the data warehouse in a transaction. 

Therefore, the data warehouse does not have to send a query requesting additional data to the 

remote data sources as all necessary information is available. 

However, a self-maintainable data warehouse view cannot be defined as 

V = Πproj(σcond(v1⋈v2⋈…⋈vk⋈rk+1⋈rk+2⋈…⋈rN))  

where all relations vi 's are self-maintainable materialized views residing at the data warehouse, 

all relations ri 's are self-maintainable relations residing at the remote data sources, and there are 

totally N relations in the definition of view V. The reason is as follows. The data warehouse is 

still self-maintainable when an update of relation rl is propagated to the data warehouse as all vi 

's are available in the data warehouse. However, when an update of view vi is propagated to view 

V, the relation rl is not available at the data warehouse. Therefore, the data warehouse has to send 
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a query to the remote data sources to get the relation rl in order to calculate view V. Thus view V 

is not self-maintainable. 

Although the above view V is not self-maintainable, we can add some more self-

maintainable materialized views and redefine view V using these self-maintainable views to 

make it self-maintainable.  For example, in the above view V where 

V = Πproj(σcond(v1⋈v2⋈…⋈vk⋈rk+1⋈rk+2⋈…⋈rN)) 

suppose we can define the following self-maintainable views 

vk+1 = Πproj(σcond(rk+1⋈rk+2⋈…⋈ rl)) and vk+2 = Πproj(σcond(rl+1⋈rl+2⋈…⋈ rN)) 

View V can then be redefined as  

V = Πproj(σcond(v1⋈v2⋈…⋈vk⋈vk+1⋈vk+2)) 

V is thus self-maintainable by definition. 

The materialized view vi at the data warehouse can be defined either by other self-

maintainable views only, or by a collection of self-maintainable relations at the remote sites. We 

can view the relationships among the data warehouse materialized views as a hierarchy structure. 

The data warehouse may consist of many levels of materialized views. At the bottom level, there 

are materialized views defined by remote self-maintainable relations. The views defined by other 

self-maintainable materialized views are staying on top of those defined by remote relations. 

 The materialized views in the data warehouse have to be maintained in a correct order 

from the bottom level to the top level in the view hierarchy. The bottom level views have to be 

maintained first. Then those views in the second to the bottom level must be maintained next, 

and so on.  Finally, the views at the top of the hierarchy are maintained. This is the order that 

updates from the remote data sources are propagated to the data warehouse. 
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An advantage of the techniques in this category is that the view maintenance anomaly 

problem is avoided as all necessary data are available at the data warehouse. The data warehouse 

knows the view definitions and what to do with the views to keep them up to date.  It eliminates 

accesses to the remote relations, and therefore, it does not compete with the remote data sources' 

local resources. The data warehouse maintenance operations can then be totally separated from 

other OLTP operations.  Whether a remote data source is available or not will not affect the data 

warehouse view maintenance process.   However, in order to make the materialized views self-

maintainable, additional materialized views that provide information necessary for view updates 

must be stored.  Extra storage and time are thus needed to maintain these additional views. 

2.2 The Not Self-Maintainable Recomputation Category 

The data warehouse can recompute the materialized views from scratch using the view 

definitions, possibly some other materialized views at the data warehouse, and actual source 

relations periodically or whenever the source data is updated. That is, when an update occurs at 

the data source or periodically, the source will inform the data warehouse. According to the 

query expression that defines the view, the data warehouse may get part of data it wants from 

other materialized views at the data warehouse, and issue queries to the sources to get the other 

data it does not have. The sources send the query results back to the data warehouse. Based on 

the query results, the data warehouse calculates the views and stores the results as materialized 

views in the data warehouse. 

The current materialized views have no contribution to the calculation of the new views. 

The data warehouse may replicate part of the remote relations in the data warehouse. However, 

these data are not enough for maintaining the materialized views. Therefore, the data warehouse 
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will have to query the remote data sources for additional data in order to maintain the views. An 

extreme case is where the data warehouse does not replicate any remote relations. 

If the view maintenance process is not designed carefully, the distributed view 

maintenance anomaly problem will occur. Suppose that there is a data warehouse system where 

the remote data sources send updated relations to the data warehouse whenever an update occurs 

at the data sources.  Upon receiving the information, the data warehouse is ready to compute the 

new views.  But now let us assume that the data warehouse finds that it needs some other 

relations at some remote data sources to compute the new views. It will issue queries to these 

data sources. Suppose the data sources that sent the updated relations to the data warehouse 

update the relations again before they receive the queries from the data warehouse. The data 

sources answer the query and send the results to the data warehouse. These results might contain 

extra information that is incorrect. The data warehouse will then use the incorrect data to 

compute the new views, which will result in incorrect new views. 

There are a lot of solutions to the distributed view maintenance anomaly problem. The 

simplest solution is as follows. Instead of sending the updated relations to the data warehouse, 

the data sources just simply inform the warehouse that there is an update that occurs at the data 

sources. The data warehouse will issue queries to the data sources to request all relations 

required in the view definitions. After the data sources receive the queries, they will send all 

requested relations to the data warehouse.  The anomaly problem is thus avoided. 

The not self-maintainable recomputation approach is simple. The anomaly problem can 

be avoided easily. However, the recomputation process is also time and resource consuming.  

The data warehouse sends queries back to the sources and waits for answers in order to computer 



 8 
  

 

the new views. Processing these queries consumes the sources’ local resources. If the sources are 

unavailable, the data warehouse will not get the answers it needs. 

2.3 The Self-Maintainable Incremental Maintenance Category 

In this category, the data warehouse views are maintained by using the view definitions, the 

materialized views, and the view updates. The data warehouse will never query the remote data 

sources as the information at the data warehouse is enough for maintaining the views. The data 

warehouse computes the view updates, then adds them to the materialized views. The process is 

incremental. Normally, only necessary remote relations, or views of the remote relations are 

stored at the data warehouse as materialized views. In the extreme case, all remote relations can 

be replicated at the data warehouse.  The self-maintainable warehouse approaches discussed in  

[Cui 99], [Hull 96] and [Quass 96] belong to this category.  

Let us discuss how to maintain a view V that is defined as 

V = Πproj(σcond(v1⋈v2⋈…⋈vN)) 

where each vi is a materialized view and is defined as either 

vi  = Πproj(σcond(v11⋈v12⋈…⋈v1N)) where each v1j is a view defined by other auxiliary 

materialized views, 

or  

vi  = Πproj(σcond(r11⋈r12⋈…⋈r1N)) where each r1j is a base relation. 

In the first case, each view v1j is defined either as 

v1j = Πproj(σcond(v21⋈v22⋈…⋈v2N)) where each v2j is a view defined by other auxiliary 

materialized views, 

or 
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v1j = Πproj(σcond(r21⋈r22⋈…⋈r2N)) where each r2j is a base relation. 

Finally, at the lowest level of the view hierarchy discussed earlier in this paper, view vMj can only 

be defined by relations at the remote data sources as follows: 

vMj = Πproj(σcond(rM1⋈rM2⋈…⋈rMN)) where each rMj is a base relation. 

The above view V is thus defined by M levels of the materialized views in the view hierarchy. 

 In the second case, the view can only be defined by base relations r1j. 

 Each view v2j can be defined by v3j. Views can be defined by those views at one level 

lower than it. The lowest level views vMj can only be defined by relations at the remote data 

sources. 

Suppose an update Uij occurs at a data source, where i represents the view level in the 

view hierarchy and j represents the relation in the view definition where the update occurs. The 

data source sends the update Uij along with the related base relations ri1, ri2, … and riN except rij 

to the data warehouse. The data warehouse calculates the view update ∆v(i-1)j using the update Uij 

and relations ri1, ri2, … and riN except rij as follows: 

∆v(i-1)j = Πproj(σcond(ri1⋈ ri2⋈…⋈ Uij ⋈ …⋈ riN)) 

Then the view update ∆v(i-1)j is added to the view v(i-1)j to produce the new view. The view v(i-1)j is 

thus maintained. The view update ∆v(i-1)j is propagated to the views at one level higher than it. In 

this case, it is v(i-2)j. The view v(i-2)j is defined by self-maintainable views as follows: 

v(i-2)j = Πproj(σcond(r(i-1)1⋈ r(i-1)2⋈…⋈ v(i-1)j ⋈ …⋈ r(i-1)N)) 

We can calculate the view update using the following formula: 

∆v(i-2)j = Πproj(σcond(r(i-1)1⋈ r(i-1)2⋈…⋈ ∆v(i-1)j ⋈ …⋈ r(i-1) N)) 

This process is repeated until the top view V in the view hierarchy is updated. 
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All intermediate materialized views can be viewed as auxiliary views. These auxiliary 

views are self-maintainable. The materialized view V is self-maintainable by using the update 

information and additional information from the auxiliary views. The data warehouse views, 

including views such as V and auxiliary views, can be maintained starting with those views that 

do not depend on any other auxiliary views, working up to the final original view V. 

 

Figure 1. View Hierarchy Example 

All related materialized primary views, auxiliary views and base relations can be drawn 

in a hierarchy structure as shown in Figure 1. All leaves in the hierarchy structure are those 

materialized views defined by the base relations. In this example, V is the primary materialized 

view. Views v1, v2 and v12 are materialized auxiliary views defined by other materialized 

auxiliary views. Views v3, v11, v13, v14, v23 and v24 are materialized auxiliary views defined by the 

base relations. All relations rij 's are the base relations. The views in the leaves should be 

maintained first. Suppose an update for r33 occurs in the data source. View v24 should be 

maintained first. Then views v12 and view v1 must be maintained next in that order. Finally, the  

primary view V is maintained. 

The data warehouse never needs to query the remote data source to get additional data. 

The data warehouse maintenance operations can be totally separated from other OLTP 
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operations.  Whether the remote data source is available or not will not affect the data warehouse 

view maintenance process. However, in order to make the materialized views self-maintainable, 

the auxiliary views are stored in the data warehouse to provide the additional information.  Extra 

storage and time overhead are therefore required to maintain the auxiliary views themselves.  

How to design materialized views at the data warehouse so that only necessary information are 

stored at the data warehouse is a major issue [Quass 96, Huyn 96a, 96b, 97b, 97c]. 

2.4 The Not Self-Maintainable Incremental Maintenance Category 

Instead of recomputing every view from scratch, only parts of the warehouse that change are 

computed. However, the data warehouse has to query the remote data sources whenever 

necessary because the information at the data warehouse is not enough to maintain the view.   A 

number of existing approaches fall under this category.  Among them are the unrestricted base 

access [Zhuge 95, 96, 97a] and runtime warehouse self-maintenance [Huyn 97a]. 

2.4.1 Unrestricted Base Access 

In the Unrestricted Base Access approach [Zhuge 95, 96, 97a], the data warehouse 

accesses the actual relations from the data sources whenever necessary in order to maintain the 

materialized views. There are many proposed algorithms that follow this approach. The Eager 

Compensating Algorithm (ECA) is the simplest among them. It is also the fastest algorithm that 

will let the data warehouse remain in a consistent state [Zhuge 98a and Zhuge 98b]. In this 

algorithm, compensating queries are sent back to the sources to offset the effects of concurrent 

updates [Zhuge 95]. They are used only when the next update occurs at the sources before the 

sources receive the data warehouse queries. 

The data warehouse keeps a temporary table called COLLECT to keep the intermediate 

answers it receives from the data sources. It also keeps a set called Unanswered Query Set 
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(UQS) to keep track of those queries it sent to the data sources but has not received their answers 

yet. 

Suppose an update Ui occurs at a data source. The data source sends Ui to the data 

warehouse. Suppose the data warehouse wants to update the materialized view that is defined as 

V = Πproj(σcond(r1⋈r2⋈…⋈rN)) 

where all relations ri 's reside at  a single data source. The data warehouse determines the query 

for calculating the delta view as 

Qi = Πproj(σcond(r1⋈r2⋈…⋈ ri-1 ⋈ Ui ⋈ ri+1⋈…⋈rN)) 

It then creates a temporary COLLECT table and UQS set for processing this specific query, and 

sets both the COLLECT table and UQS to empty.  The data warehouse writes the query Qi to the 

UQS and sends the query Qi to the data source. Suppose there is another update Uj that occurs at 

the same data source. The data source sends the update Uj to the data warehouse before it 

receives the query Qi. The data warehouse now receives the update Uj.   It knows that the 

upcoming answer for Qi from the data source will contain extra information caused by 

simultaneous Uj update at the data source. Therefore, it has to offset this extra information. The 

data warehouse determines the query Qj for updating Uj as follows 

Qj = Πproj(σcond(r1⋈r2⋈ …⋈ ri-1 ⋈ ri ⋈ ri+1⋈…⋈ rj-1 ⋈ Uj ⋈ rj+1⋈…⋈rN)) – 
Πproj(σcond(r1⋈r2⋈ …⋈ ri-1 ⋈ Ui ⋈ ri+1⋈…⋈ rj-1 ⋈ Uj ⋈ rj+1⋈…⋈rN)) 
 

The first part of Qj is the same as before; the second part is used to compensate for the extra 

information that query Qi will receive. The data warehouse is eager to compensate before it 

receives the answer for query Qi. Then it writes query Qj to UQS and sends query Qj to the data 

source. Now the UQS set contains two entries, i.e., Qi and Qj.  The data source then processes 
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query Qi and sends the answer to the data warehouse. The query answer Ai will contain the 

following extra information due to the update Uj, 

Πproj(σcond(r1⋈r2⋈ …⋈ ri-1 ⋈ Ui ⋈ ri+1⋈…⋈ rj-1 ⋈ Uj ⋈ rj+1⋈…⋈rN)) 

The data warehouse receives the answer Ai, removes entry Qi from UQS, writes the answer for Qi 

to the temporary table COLLECT. Now UQS contains only one entry Qj. The COLLECT table 

thus contains the following data: 

Ai = Πproj(σcond(r1⋈r2⋈ …⋈ ri-1 ⋈ Ui ⋈ ri+1⋈…⋈ rj-1 ⋈ rj ⋈ rj+1⋈…⋈rN)) + 
Πproj(σcond(r1⋈r2⋈ …⋈ ri-1 ⋈ Ui ⋈ ri+1⋈…⋈ rj-1 ⋈ Uj ⋈ rj+1⋈…⋈rN)) 
 

The data warehouse could not integrate the query answer into the data warehouse at this time as 

it will cause the data warehouse to contain inconsistent data. Therefore it has to wait for the 

query answer for query Qj to come back. The COLLECT table is used to temporarily store query 

answers. After it receives the answer for the last unanswered query in UQS (in our case, Qj),  it 

can integrate the data in the COLLECT table into the data warehouse. 

 The data source processes query Qj and sends answer Aj to the data warehouse. Aj 

contains the following data: 

Aj = Πproj(σcond(r1⋈r2⋈ …⋈ ri-1 ⋈ ri ⋈ ri+1⋈…⋈ rj-1 ⋈ Uj ⋈ rj+1⋈…⋈rN)) – 
Πproj(σcond(r1⋈r2⋈ …⋈ ri-1 ⋈ Ui ⋈ ri+1⋈…⋈ rj-1 ⋈ Uj ⋈ rj+1⋈…⋈rN)) 
 

The data warehouse receives the answer and removes the entry Qj from the UQS set. Now  UQS 

is empty. The answer Aj is integrated with the data in the COLLECT table as follows: 

Πproj(σcond(r1⋈r2⋈ …⋈ ri-1 ⋈ Ui ⋈ ri+1⋈…⋈ rj-1 ⋈ rj ⋈ rj+1⋈…⋈rN)) + 
Πproj(σcond(r1⋈r2⋈ …⋈ ri-1 ⋈ Ui ⋈ ri+1⋈…⋈ rj-1 ⋈ Uj ⋈ rj+1⋈…⋈rN)).+ 
Πproj(σcond(r1⋈r2⋈ …⋈ ri-1 ⋈ ri ⋈ ri+1⋈…⋈ rj-1 ⋈ Uj ⋈ rj+1⋈…⋈rN)) – 
Πproj(σcond(r1⋈r2⋈ …⋈ ri-1 ⋈ Ui ⋈ ri+1⋈…⋈ rj-1 ⋈ Uj ⋈ rj+1⋈…⋈rN)) 
= Πproj(σcond(r1⋈r2⋈ …⋈ ri-1 ⋈ Ui ⋈ ri+1⋈…⋈ rj-1 ⋈ rj ⋈ rj+1⋈…⋈rN)) + 
Πproj(σcond(r1⋈r2⋈ …⋈ ri-1 ⋈ ri ⋈ ri+1⋈…⋈ rj-1 ⋈ Uj ⋈ rj+1⋈…⋈rN)) 
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Now the COLLECT table contains the correct answer that the data warehouse wants. The data 

warehouse can then integrate the data in the COLLECT table into the data warehouse. 

The Unrestricted Base Access approach is simple. Instead of discarding old materialized 

views and calculating new views from scratch, this approach calculates view updates then adds 

them to the old views in order to get the new views. However, the data warehouse has to access 

N –1 remote source actual relations in order to propagate one source update. In the eager 

compensating algorithm discussed above, all N actual relations have to be accessed if 

compensating queries are used. 

In this approach, the data warehouse may have to send queries back to the sources and 

waits for answers in order to compute the view updates. Therefore, this approach has the same 

limitation as the not self-maintainable recomputation approach. Computing these queries 

consumes remote sources’ local resources, and will slow down other OLTP operations.  If the 

remote sources are unavailable, the data warehouse will not get the answers it needs. 

2.4.2 Runtime Warehouse Self-Maintenance  

In the self-maintenance warehouse approach, at design time, we determine views to be self-

maintainable and decide to add more auxiliary views for additional information. Design-time 

self-maintainability is not flexible. It may be difficult or impossible for us to know the exact 

contents of the views and their updates at design time. To solve this problem, a run time 

warehouse maintenance approach has been introduced [Huyn 97a]. 

The basic idea of the runtime self-maintenance approach is that the data warehouse 

generates the self-maintainable test for the views to determine whether the views are self-

maintainable for a particular update. At run time, the self-maintainable test determines the views 

for self-maintainability. If a view is self-maintainable, then the view can be maintained by the 
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update information, the view itself, and the query expression that defines the view. In this case, 

the run-time self-maintainable approach is similar to the self-maintainable warehouse approach 

discussed in the previous section. However, the data warehouse does not store and maintain any 

auxiliary views.  If the view is not self-maintainable, then the data warehouse has to query the 

remote data sources for those relations it needs in order to update the view. In this case, this 

approach is similar to the unrestricted base access approach. 

The runtime warehouse self-maintenance approach uses the view maintainability test first 

before doing any maintenance. This creates the overhead in the data warehouse. However it 

maintains the views by using the views in the data warehouse or some base relations only, 

without requiring auxiliary views that are necessary in the self-maintainable incremental 

maintenance approach.   This saves the storage space in the data warehouse.  

 

3 Performance Analysis 

We conduct an analysis to compare the performance of different algorithms in the four 

categories.   We consider only the problem of single view maintenance in a single source 

environment because the ECA algorithm in the not self-maintainable incremental maintenance 

category can only be used in this environment [Zhuge 97a, Zhuge 96]. For self-maintainable 

view maintenance techniques, we also consider the case where all actual relations are replicated 

at the data warehouse.  

3.1 Performance Measurements 

In our analysis, only Select-Project-Join views are considered.   We measure the performances of 

the techniques in terms of space and number of row accesses, which are defined as follows: 
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!" Space: total space needed to store the data in the data warehouse, including space for 

auxiliary views. We do not consider indices. 

!" Number of rows accessed: the number of rows that must be accessed in the data 

warehouse and the data sources in order to integrate the updates into the data warehouse. 

3.2 Analysis Parameters 

The analysis parameters and their default values are listed in Table 1.  The default values 

are calculated based on the TPC benchmark for decision support queries [TPC 99]. 

Meaning Symbol Default value Range 
Cardinality of view V Card(V) 914 0 ~ 100,000 
Tuple size of view V (in bytes) ts(V) 43 10 ~ 250 
Number of auxiliary views per view Nav 3 1 ~ N 
Number of base relations in the view 
definition 

N 3 1 ~ 7 

Cardinality of base relation r Card(r) 108,000,000 0 ~ 1,000,000,000 
Tuple size of base relation r (in 
bytes) 

ts(r) 116 100 ~ 180 

Selectivity: the fraction of  tuples that 
satisfy the select condition 

σ 0.003 0.00001 ~ 1.0 

The join factor is roughly the fraction 
of tuples in a relation that join with 
others 

j 0.73 0.00001 ~ 1.0 

Number of tuples in a relation that 
join with others 

J = j × 
Card(r) 

Calculated Calculated 

Number of interfering updates for 
each query 

I 0.5 0 ~ 100 

Cardinality of update Card(U) 1  
Number of tuple insertions in a base 
relation at data source 

Nupdate 1 100 

 
Table 1.  Analysis Parameters  
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3.3 Comparison Based on Space Needed in the Data Warehouse 

3.3.1 Self-Maintainable Recomputation 

The techniques in this category do not query the remote data source for additional data in order 

to maintain the data warehouse materialized views. The data warehouse can replicate all or part 

of the remote base relations at the data warehouse. These additional data take space at the data 

warehouse. Here we consider the case where the materialized views are defined by other 

materialized views (auxiliary views) at the data warehouse, and all auxiliary views are replicated 

remote relations. A view V is defined as 

V = Πproj(σcond(v1⋈v2⋈…⋈vN)) 

where all vi 's are materialized views stored in the data warehouse. 

In the average case, the amount of space needed is: 

∑
=

+
Nav

i
ii AV tsAVCardV tsVCard

0
)()()()(  

where 0 ≤ Nav ≤ N. If all auxiliary views are the same, the above formula can be reduced to  

)()()()( AV tsAVCardNavV tsVCard +  

 Nav = 0 when none of the auxiliary views is needed. It means that the materialized view is a 

replicated remote relation. This is the best case. The formula can be rewritten as follows: 

Card(V) ts(V) 

If all auxiliary views are needed to maintain the view, then Nav = N. This is the worst case. The 

formula can be rewritten as follows: 

∑
=

+
N

i
ii AV tsAVCardV tsVCard

0
)()()()(  

If all auxiliary views are the same, the above formula can be reduced to  

)()()()( AV tsAVCardNV tsVCard +  
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3.3.2 Not Self-Maintainable Recomputation 

Here we consider only the case where the data warehouse does not replicate any base relations. 

Therefore, the data warehouse always has to query the remote data sources. The data warehouse 

stores only materialized views. In this extreme situation, the amounts of space needed in the best 

case, the average case and the worst case are the same, and are equal to Card(V) ts(V). 

3.3.3 Self-Maintainable Incremental Maintenance 

Similar to the self-maintainable recomputation techniques, the  techniques in this category can 

replicate all or part of the remote data at the data warehouse.  Here we consider only the case 

where the materialized views are defined by other materialized views (auxiliary views) at the 

data warehouse, and all auxiliary views are replicated remote relations. A view V is defined as 

V = Πproj(σcond(v1⋈v2⋈…⋈vN)) 

where all vi 's are materialized views stored in the data warehouse. The amount of space needed 

at the data warehouse is the same as that of the self-maintainable recomputation techniques. 

In the average case, the space needed is as follows: 

∑
=

+
Nav

i
ii AV tsAVCardV tsVCard

0
)()()()(  

where 0 ≤ Nav ≤ N. If all auxiliary views are the same, the above formula can be reduced to  

)()()()( AV tsAVCardNavV tsVCard +  

In the best case, no auxiliary views are needed as the view is self-maintainable. The formula can 

be rewritten as follows: 

Card(V) ts(V) 

In the worst case, all auxiliary views are needed to maintain the view. The formula can be 

rewritten as follows: 
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∑
=

+
N

i
ii AV tsAVCardV tsVCard

0
)()()()(  

In the worst case, the auxiliary view's tuple size and cardinality are equal to those of the remote 

relation.  If all auxiliary views are the same, the above formula can be reduced to the following:  

)()()()( AV tsAVCardNV tsVCard +  

3.3.4 Not Self-Maintainable Incremental Maintenance 

Here we consider the Eager Compensating Algorithm (ECA) for this category. In ECA, a 

temporary table COLLECT is used to store intermediate query answers. For every update, the 

queries including compensated queries are sent to the data source. Note that the COLLECT table 

is empty only when there is no query to the data source, or the answers for all the queries are 

returned to the data warehouse before a new update occurs at the data source. This is the best 

case. The space needed is as follows: 

Card(V) ts(V) 

In the average case, the size of the COLLECT table for a specific update with all its 

interfering updates I is equal to the sum of the cardinalities of the final query answers for all 

queries.  The total number of queries sent to the data source can be calculated as below [Zhuge 

97b]: 

( )∑ ∑
−

=

−−

=

−− 




=

1

1

1

0

11
N

k

kN

i

iikkk JjINq σσ  

In the worst case, the number of queries sent to the data source is: 

( )∑ ∑
−

=

−−

=

− 




=

1

1

1

0

1 )(
N

k

kN

i

ik rCardINq . 

Let us derive the formula for the multiple tuple update case.  We follow the method used 

in [Zhuge 97b]. At first, we have to find the number of wrapper queries sent from a view 
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manager to the query processor [Zhuge 95, Zhuge 97b].  In the single tuple update case, 

Card(A1) = σ1×1=σ1. In the multiple tuple update case, Card(A1) = σ1Card(U). 

The total number of wrapper queries to evaluate the update query is 













>



×

=
=

=

∑ ∏
=

−

=

2:)(

2:)(
1:0

2

1

2
1

1

NJUCard

NUCard
N

Nq
N

k

k

i
iiσσ

σ  

Assume all the σs and Js are the same, the formula is simplified to the following: 

( )









>×

=

= ∑
−

=

1:)(
1:0

2

0
NJUCard
N

Nq
N

i

iiσσ  

The compensating query is defined as: 

CQ = Πproj(σcond (U1⋈U2⋈ … ⋈ Un ⋈ Rn+1⋈Rn+2⋈ … ⋈RN)) 

There are n multiple tuple updates and N-n actual (base) relations. The number of wrapper 

queries to evaluate the query is: 

( )









>

=

= ∑
−−

=

− 1:)(
:0

1

0

1 NJUCardj
Nn

Nq
nN

i

iinnn σσ  

Then, we estimate the number of compensating queries as ∑
−

=

1

0

N

i

iI , where I is defined as 

the maximum number of interfering updates that occur between the time when the data 

warehouse sends a query to the remote data source and the time when the data warehouse 

receives the corresponding answer [Zhuge 98b]. In the worst case, there are I interfering updates 

for each query. The number of wrapper queries is: 
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When Card(U) = 1, the above formula is reduced to the following: 

( )∑ ∑
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which is the formula of the single tuple update case [Zhuge 98b]. 

Suppose the cardinality of the final query answer AN for all interfering updates are equal. 

∑
=

=
N

i
ii

N JACard
2

1)( σσ for the single tuple update case [Zhuge 98b]. For the multiple tuple 

update case, ∑
=

=
N

i
ii

N JUCardACard
2

1 )()( σσ . 

When all σs and Js are equal, 1)()( −= NNN JUCardACard σ . For a query with n update 

relations and N–n base relations, nNnnNN JjUCardACard −−= 1)()( σ , where 1 ≤ n ≤  N. 

The max cardinality of the COLLECT table for updates at a time is: 
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The space needed is 
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In the worst case, when σ = 1, j = 1, J = j × Card (r) = Card (r). The space needed at the 

data warehouse is 

( ) )()()()()()(
1
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3.3.5 Comparison  Results 

In summary, for a given view V, the amounts of space needed in the data warehouse for 

the four categories are listed in Table 3, where AV stands for Auxiliary View.  

Category Space needed in the data warehouse 
The best case: Card(V) ts(V) 
The average case: 

)()()()( AV tsAVCardNavV tsVCard +  
0 ≤ Nav ≤ N 

Self-Maintainable Recomputation 
(SMR) 

The worst case: 
)()()()( AV tsAVCardNV tsVCard +  

Not Self-Maintainable Recomputation 
(NSMR) 

Card(V) ts(V) 

The best case: Card(V) ts(V) 
The average case: 

)()()()( AV tsAVCardNavV tsVCard +  
0 ≤ Nav ≤ N 

Self-Maintainable Incremental 
Maintenance (SMIM) 

The worst case: 
)()()()( AV tsAVCardNV tsVCard +  

The best case: Card(V) ts(V) 
The average case: 

( ) )()(

)()(
1

1

1

0

2)1(21 VtsJJUCardjI

VtsVCard
N

k
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i
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Not Self-Maintainable Incremental 
Maintenance (NSIM) 

The worst case:  

( ) )()()()(
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1
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Table 2. Space needed in the data warehouse 

We draw the graphs for the formulas derived above using the parameters' defaults values 

listed in Table 1.  Due to space limitation, we will only discuss the results of the average case.   

In this case, the not self-maintainable recomputation approach does not require extra space at the 

data warehouse. However, for the self-maintainable recomputation and self-maintainable 

incremental approaches, extra space is required at the data warehouse to store the replicated 
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source data as auxiliary views. This extra space is proportional to the total number of auxiliary 

views Nav, the auxiliary view cardinality Card(AV) and the auxiliary view tuple size ts(AV). 

For NSIM, extra space is required to store the COLLECT table. Suppose that the tuple 

size of the COLLECT table is equal to the view's tuple size.  In some cases, the space used to 

store the COLLECT table in NSIM is small compared to the space used for storing the 

materialized views in SMR and SMIM.  In other cases, the space used for storing the COLLECT 

table can be grown much larger than that of materialized views. Let us examine Figures 2-4, 

where NSMR is not shown since it overlaps with the x-axis. At first, the space used for storing 

the COLLECT table is smaller and growing slower than that used for storing the materialized 

auxiliary views when the cardinality of auxiliary views is small (Figure 2). Then, the space used 

for storing the COLLECT table grows faster. At some point  (Card(AV) = 6.0 ×107 in our case), 

the space used for storing the COLLECT table exceeds the space used for storing the 

materialized auxiliary views (Figure 3). When the cardinalities of auxiliary views (or base 

relations) are large, the space used for storing the COLLECT table is much larger than that used 

to store the auxiliary views (Figure 4).   

From Table 2, we can see that the space needed for the NSIM approach grows 

exponentially with the select factor, join factor, and cardinality of updates. 

In summary, in the average case, as no additional space is required at the data warehouse 

for the not self-maintainable approach, it is the best approach in terms of space used in the data 

warehouse.  The amounts of space used for both the self-maintainable approaches, SMR and 

SMIR,  are the same. When there are very few conflicting updates and the cardinalities of the 

base relations are relatively small, the space used for the not self-maintainable approach is less 

than those of both the self-maintainable approaches. However, if there are a lot of conflicting 
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updates and the cardinalities of the base relations are large, the space used for the not self-

maintainable approaches are much larger than those of both the self-maintainable approaches. 

 
Figure 2. Space used in the data warehouse (The average case) 

 
Figure 3. Space used in the data warehouse (The average case) 
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Figure 4. Space used in the data warehouse (The average case) 

 
3.4 Comparison Based on the Number of Rows Accessed 

To analyze the number of rows accessed  at the data warehouse by the techniques, we made the 

following assumptions: 

!" The set of a primary view and its auxiliary views (if any) is independent to other sets of 

primary views and their auxiliary views. 

!" We do not consider indices.  Linear search is thus used to check if  a record satisfies a 

select or join condition. 

!" All auxiliary views are self-maintainable and are replicated base relations. 

!" Updates to auxiliary views and primary views are for appending only. 
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3.4.1 Self-Maintainable Recomputation 

The data warehouse will never query the remote data sources as all necessary data are available 

at the data warehouse. Updates from the remote data sources have to be propagated to the 

replicated relations at the data warehouse first, then the data warehouse recalculates the view 

relation and stores the result at the data warehouse as the new materialized view.  In order to 

propagate an update to data warehouse replicated relation, the number of rows to be accessed at 

the data warehouse is the cardinality of the relation itself plus the cardinality of the update. That 

is, 

Card(r) + Card(U). 

Then the data warehouse recomputes the materialized view using the view definition. Suppose 

the data warehouse materialized view is defined as: 

Q = Πproj(σcond(v1⋈v2⋈…⋈vN)) 

The strategy such as the one described in [Zhuge 97b] can be used to evaluate the query Q that 

defines the view V. Let us rename the actual relations according to the join order. The query Q 

that defines the view becomes 

Q = Πproj(σcond(R1⋈R2⋈…⋈RN)) 

Using the equivalence rules [Silberschatz 97], the select condition cond can be decomposed into 

a sequence of individual selections σi 's on individual actual relations Ri 's.  Let T1 be the 

temporary relation after σ1 is applied to R1, and let Tk be the temporary relation after the join and 

selection with relation Rk is done. TN is the new view. To compute Tk, each tuple in Rk has to be 

accessed for Card(Tk-1) times. Tk = Tk-1⋈σk(Rk). Card(Tk) = σkJk Card(Tk-1) and Card(T1) = 
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σ1Card(R1). Each tuple in R1 is accessed once. R2 is accessed Card(T1) = σ1 Card(R1) times. The 

number of tuples accessed for R1 and R2 is 

Card(R1) + Card(R2) σ1Card(R1) 

Thus, 

Card(T2) = σ2J2 Card(T1) = σ2J2 σ1 Card(R1). 

To get the new view, the total number of tuples that must be accessed is 

Card(R1) + Card(R2) σ1 Card(R1) + Card(R3) σ1Card(R1) σ2J2 + … +  
Card(RN) σ1Card(R1) Πi=2

N-1σiJi  
= Card(R1) (1+ Card(R2) σ1 + Card(R3) σ1σ2J2 + … +  Card(RN) σ1Πi=2

N-1σiJi ) 
 

Suppose all the select and join conditions, and cardinalities of all base relations are the same, the 

total number of tuples to be accessed in order to recompute the view is equal to 

Card(AV) + Card(AV)2 (σ + σ2J + σ3J2 +…+ σN-1JN-2)  
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



+ ∑

−

=

−
1

1

12)()(
N

i
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This is the average case. In the worst case, when σ = 1, j = 1, J = j Card(AV) = Card(AV), the 

total number of tuples to be accessed is equal to 

Card(AV) + Card(AV)2 (1 + Card(AV) + Card(AV)2 +…+ Card(AV)N-2) 
= Card(AV) (1 + Card(AV) + Card(AV)2 +…+ Card(AV)N-1) 
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For Nupdate updates, the total number of tuples to be accessed in the average case is 
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In the worst case, the formula is 

( ) 










×× ∑

−

=

1

0
)()(

N

i

iAVCardAVCardNupdate  



 28 
  

 

Including the number of rows that need to be accessed to maintain the view and 

replicated data at the data warehouse, the total number of rows to be accessed in the average case 

is 

( ) 
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In the worst case, the number becomes 
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3.4.2 Not Self-Maintainable Recomputation 

Only source data is required to be accessed. The reason is that the warehouse recalculates the full 

view using the source data each time. It does not use the data warehouse data. Suppose the 

system locks all base relations in order to evaluate the query expression that defines the view. If 

the nested-loop join method [Silberschatz 97] is used to evaluate it, the total number of rows to 

be accessed is Card(r)N. 

Another strategy such as the one described in [Zhuge 97b] can also be used to evaluate 

the query Q that defines the view V. It will reduce the total number of rows to be accessed. Let us 

rename the actual relations according to the join order. The query Q that defines the view 

becomes 

Q = Πproj(σcond(R1⋈R2⋈…⋈RN)) 

Using the same method presented in Section 3.4.1, suppose all select and join conditions, and 

cardinalities of all base relations are the same, the total number of tuples to be accessed in order 

to recompute the view is equal to 

Card(r) + Card(r)2 (σ + σ2J + σ3J2 +…+ σN-1JN-2)  
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This is the average case. In the worst case, when σ = 1, j = 1, J = j Card (r) = Card (r), the total 

number of tuples to be accessed is equal to 

Card(r) + Card(r)2 (1 + Card(r) + Card(r)2 +…+ Card(r)N-2) 

= Card(r) (1 + Card(r) + Card(r)2 +…+ Card(r)N-1) 
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For Nupdate updates, the total number of tuples to be accessed in the average case is 
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In the worst case, the formula is 
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3.4.3 Self-Maintainable Incremental Maintenance 

No queries are sent to the data sources for additional information.  Therefore, the number of rows 

accessed in the data source is equal to 0. For N base relations in a view, Nav should be less than 

or equal to N. In the worst case, Nav is equal to N. 

At first, the auxiliary view itself has to be maintained before the primary materialized 

view can be maintained. Let Card(U) stand for the cardinality of update U. According to our 

assumption that auxiliary views are self-maintainable and updates are used for appending only, 

the number of rows needed to be accessed in order to maintain the auxiliary view is Card(U) + 

Card(AV). Let Card(∆AV) stand for the cardinality of the auxiliary view update, which is the 

same as Card(U).  Then the update is propagated to the primary view. We need to calculate the 
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primary view update. The number of rows accessed can be estimated using the same method  

presented in Section 3.4.1.  Suppose the all select and join conditions, and cardinalities of all 

auxiliary views are the same, the total number of tuples to be accessed in order to calculate the 

primary view update is equal to 

Card(∆AV) + Card(∆AV) Card(AV)  (σ + σ2J + σ3J2 + … + σNav-1JNav-2)  
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 Finally, the view update is appended to the primary view. The total number of rows to be 

accessed in order to propagate a source update U to the data warehouse is 
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Since Card(∆AV) = Card(U), we have 
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This is the average case. In the worst case, when σ = 1, j = 1, J = j Card(AV) = Card(AV), Nav = 

N, the total number of tuples to be accessed is equal to 
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In the single tuple update case, i.e., Card(U) = Card(∆AV) = 1, the total number of tuples 

to be accessed is equal to 
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For Nupdate updates, the average number of tuples to be accessed for the multiple tuple 

update case is 
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For the worst case, the total number of tuples to be accessed is 
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3.4.4 Not Self-Maintainable Incremental Maintenance 

In the ECA algorithm, all tuples in the view table have to be accessed in order to find a tuple to 

integrate with the view update. However, the data warehouse may have to access data from 

remote sites except for the best case.  Parts of these queries are compensated. 

In Section 3.3.4, we derive the number of wrapper queries corresponding to queries with 

N – n relations in the multiple tuple update case as 
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When there are totally Nupdate updates, the number of wrapper queries is 
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In general, for a query that is defined as Q = Πproj(σcond(R1⋈R2⋈…⋈RN)), the total 

number of tuples to be accessed in order to process the query is 

Card(R1) (1+ Card(R2) σ1 + Card(R3) σ1σ2J2 + … +  Card(RN) σ1Πi=2
N-1σiJi ) 

For a compensating query Q = Πproj(σcond (U1⋈U2⋈ …⋈Uk ⋈ Rk+1⋈Rk+2⋈ … ⋈RN)), 

there are k multiple tuple updates and N-k base relations. Suppose all updates are evaluated first, 

the number of rows to be accessed in order to evaluate a query is 

Card(U) + Card(U) σ Card(U) + Card(U) σ Card(U) σ j Card(U)  + … +  
σk-1 jk-2 Card(U)k + σk jk-1 Card(U)k Card(r) Πi = k

N-1σiJi 
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= Card(U) + σ Card(U)2 + σ2 j Card(U)3 + … + σk-1 jk-2 Card(U)k + 
 + … + σk jk-1 Card(U)k Card(r) + …+σk jk-1 Card(U)k Card(r) Πi=k
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For the multiple tuple update case, the total number of tuples to be accessed in order to 

propagate Nupdate updates from the remote source to the target data warehouse view is: 
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In the worst case, the total number is 
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3.4.5 Comparison Results 

The formulas to calculate the number of rows that need to be accessed in order to 

maintain a materialize view for all four categories are listed in Tables 3 and 4.  We use the 

parameters' default values listed in Table 2 to draw the graphs showing the number of rows that 

need to be accessed to maintain a materialized view.  Due to space limitation, here we will 

discuss the results for the average case only. 
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Category Number of rows accessed in data 
warehouse 

Number of rows accessed in data source 
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Table 3. Number of Rows Accessed (Part 1 of 2) 
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Category Number of rows accessed in data 
warehouse 

Number of rows accessed in data source 

The best case: 0 

The average case: 
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Table 4. Number of Rows Accessed (Part 2 of 2) 

In the average case, the total numbers of rows accessed for the not self-maintainable 

recomputation (NSMR) approach and the self-maintainable recomputation (SMR) approach are 

very similar. As the same base relations are replicated at the data warehouse in the self-

maintainable recomputation approach, actually these data will be accessed twice. The first time 

is for maintaining the auxiliary views and the second time is for maintaining the target 

materialized views at the data warehouse. When the cardinality of the base relations/auxiliary 

views, Card(r), is small, the number of rows accessed for the self-maintainable recomputation 

approach is somewhat larger than that of the not self-maintainable recomputation approach 

(Figure 5). When Card(r) becomes larger, the difference is small enough to be neglected (Figure 

6). 



 35 
  

 

 
Figure 5. Number of rows accessed in the data warehouse (The average case) 

 
 

 
Figure 6. Number of rows accessed in the data warehouse (The average case) 
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Figure 7. Number of rows accessed in the data warehouse (The average case) 

 

 
Figure 8. Number of rows accessed in the data warehouse (The average case) 
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When Card(r) is small, the numbers of rows accessed for self-maintainable 

recomputation and not self-maintainable recomputation grow faster than those for self-

maintainable incremental maintenance and not self-maintainable incremental maintenance 

(Figure 7). When Card(r) becomes very large, the number of rows accessed for both the 

recomputation approaches are much larger that those of both the incremental approaches (Figure 

8). In order to see the differences, we redrew Figure 8 using a logarithmic scale in the y-axis; the 

results are shown in Figure 9. From Figure 9, we can see that the number of rows accessed in 

SMR is the same as that in NSMR, but is higher than that of NSIM, which is higher than that of 

SMIM. We also observe the similar results when varying the values of the select factor σ and 

join factor j . 

 
Figure 9. Number of rows accessed in the data warehouse (The average case) 
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4.0 Conclusions and Future Research 

Category Advantage Disadvantage 
Self-Maintainable 
Recomputation 

-Data warehouse view maintenance 
operations are totally separated from 
OLTP operations; 
-Unavailable source will not block the 
data warehouse view maintenance 
process; 
 

-Data are replicated at data warehouse; 
-Need extra data storage for replicate 
data; 
-Have to implement and maintain data 
transfer processes to transfer data from 
sources to data warehouse; 

Not Self-
Maintainable 
Recomputation 

-Very simple to implement; 
-No replicate data at the data warehouse; 
-No extra data storage for replicate data; 
-Do not have to implement and maintain 
data transfer processes to transfer data 
from sources to data warehouse; 

-Unavailable source will block the 
data warehouse view maintenance 
process; 
-Evaluating queries at the data sources 
consumes local resources; 
-Data warehouse view maintenance 
operations are not separated from 
OLTP operations; 
 

Self-Maintainable 
Incremental 
Maintenance 

-Data warehouse view maintenance 
operations are totally separated from 
OLTP operations; 
-Unavailable source will not block the 
data warehouse view maintenance 
process; 
-In the worst case, the number of rows 
accessed to maintain a view is the lowest; 

-Data are replicated at data warehouse; 
-Need extra data storage for replicate 
data; 
-Have to implement and maintain data 
transfer processes to transfer data from 
sources to data warehouse; 

Not Self-
Maintainable 
Incremental 
Maintenance 

-No replicate data at the data warehouse; 
-No extra data storage for replicate data; 
-Do not have to implement and maintain 
data transfer processes to transfer data 
from sources to data warehouse; 

-Unavailable source will block the 
data warehouse view maintenance 
process; 
-Evaluating queries at the data sources 
consume local resources; 
-Data warehouse view maintenance 
operations are not separated from 
OLTP operations; 
-Have to design the view maintenance 
process carefully to avoid the anomaly 
problem; 
-In the worst case the number of rows 
accessed is the highest; 
-Performance is down-graded rapidly; 
-Need extra storage for intermediate 
data (COLLECT tables); 

Table 5. Advantages and disadvantages of the view maintenance techniques 

All data warehouse view maintenance techniques can be classified into four major 

categories. They are self-maintainable recomputation, not self-maintainable recomputation, self-
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maintainable incremental maintenance, and not self-maintainable incremental maintenance. 

Their advantages and disadvantages are listed in Table 5.   

Both self-maintainable recomputation and self-maintainable incremental maintenance 

approaches totally separate the data warehouse view maintenance operations from the OLTP 

operations. Therefore, the view maintenance operations will not consume data sources’ local 

resources. These operations only consume the data warehouse's resources. Even if the remote 

data sources are not available, the data warehouse view maintenance process can continue 

running. However, a part or all source data are replicated at the data warehouse to make the data 

warehouse view maintenance process self-maintainable. These replicated data take space. Data 

transfer processes are implemented to transfer data from the remote data sources to the data 

warehouse. Design, implement and maintain these processes are time-consuming. A lot of 

unnecessary data may be duplicated at the data warehouse. However, these are the approaches 

that probably many large companies have to take if they want to separate their data warehouse 

view maintenance operations from their OLTP operations.  

Both the not self-maintainable recomputation and not self-maintainable incremental 

maintenance approaches suffer from some common disadvantages. As the remote data sources 

have to process queries from the data warehouse that consume their limited local resources, the 

OLTP system will be slow. Once a data source is unavailable, the data source will not be able to 

answer queries sent from the data warehouse in time. It will block the data warehouse view 

maintenance process. The not self-maintainable incremental maintenance approach has some 

additional disadvantages. To avoid the anomaly problem, the view maintenance process must be 

designed carefully. If a lot of updates happen at the data sources, the data warehouse may issue 

many compensating queries. It is very possible that the data warehouse may never get the final 
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query results. Both approaches also have some common advantages. As there is no replicate data 

stored at the data warehouse, no data transfer process has to be implemented and maintained. 

There is no extra space for storing replicate data. Both approaches are good for small to mid-

sized companies whose OLTP database systems are not too busy. 

Among all the four categories, self-maintainable incremental maintenance is the best in 

terms of space used in the data warehouse and number of rows accessed in order to propagate an 

update to the target materialized view in the data warehouse. As the cost of data storage becomes 

increasingly low, this is the best approach to implement a data warehouse. 

For future work, we plan to consider another important performance measurement called  

the view refresh time, which is defined as the elapse time from the time the system receives a 

source update to the time the update is reflected in the view.   We will also address the problem 

of multiple view maintenance in a multiple source environment.  
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