
A Performance Analysis of View Maintenance Techniques
for Data Warehouses

Xing Wang

Dell Computer Corporation
Round Rock, Texas

Le Gruenwald

The University of Oklahoma
School of Computer Science

Norman, OK 73019

Guangtao Zhu
University of Science and Technology of China

Department of Computer Science and Technology
Beijing, P.R. China 100039

Abstract

A data warehouse stores integrated information as materialized views over data from one or
more remote sources. These materialized views must be maintained in response to actual relation
updates in the remote sources. Based on whether the current materialized views will be used in
computing the new views, and whether the data warehouse will query the remote data sources for
additional data to do the computation, the data warehouse view maintenance techniques are
classified into four major categories: self-maintainable recomputation, not self-maintainable
recomputation, self-maintainable incremental maintenance, and not self-maintainable
incremental maintenance. This paper provides a comprehensive comparison of the techniques in
these four categories in terms of the data warehouse space usage and number of rows accessed in
order to propagate an update from a remote data source to a target materialized view in the data
warehouse. The analysis shows that self-maintainable incremental maintenance performs the
best in terms of both space usage and number of rows accessed.

1 Introduction

A data warehouse stores integrated information over data from one or more remote data sources

for query and analysis [Hammer 95, Wiener 96]. The integrated information at the data

warehouse is stored as materialized views. A view is a virtual relation defined using the actual

relations stored in the database. A materialized view is the result relation of the evaluation of the

relational algebra expression that defines the view relation [Silberschatz 97]. Using these

 2

materialized views, user queries can be answered quickly as the information may be directly

available or can be calculated using these materialized views on fly.

A problem known as the view maintenance problem is how to maintain the materialized

views so that they can be kept up to date in response to updates of the actual relations in the

remote data sources. There are numerous algorithms developed to solve the view maintenance

problem for traditional database systems. In these database systems, query expressions defined

views and actual relations are stored at the same database. The database systems understand view

management and view definitions and know what data is needed for propagating updates to the

views.

In a data warehouse, the query expressions that define views and actual relations may be

stored at different database sources residing at many sites. The sources may inform the data

warehouse when an update occurs but they might not be able to determine what data is needed

for updating the views at the data warehouse. Therefore they may send only the actual data

updates or the entire updated relations to the data warehouse. Upon receiving this information,

the data warehouse may find that it needs some additional source data in order to update the

views. Then it will issue some queries to some of the sources to request the additional source

data. Some of the sources may have updated their data again before they evaluate the requesting

queries from the data warehouse. Therefore they will send incorrect additional data to the data

warehouse, which subsequently will use the incorrect data to compute the views. This

phenomenon is called distributed view maintenance anomaly. Solving the view maintenance

problem in data warehouses is thus more complicated than that in traditional database systems.

The objectives of this paper are to provide a classification of different view maintenance

techniques that have been proposed in the literature and to conduct a comprehensive comparison

 3

of these techniques in terms of space usage and number of rows accessed using the TPC

benchmark for decision support queries. The rest of this paper is organized as follows. Section

2 classifies the existing view maintenance techniques. Section 3 presents a performance analysis

of the techniques. Finally, Section 4 provides conclusions and future research.

2 Classification of Data Warehouse View Maintenance Techniques

Depending on whether the current materialized views in a data warehouse are used in the

computation of their new views in response to updates that occur on the remote data sources, the

existing data warehouse view maintenance techniques can be classified into two broad

categories: recomputation and incremental view maintenance. Depending on whether the data

warehouse has to query the remote data sources in order to calculate the new views, the

techniques can be further classified as self-maintainable or not self-maintainable. The below

subsections discuss these four categories.

2.1 The Self-Maintainable Recomputation Category

Materialized views can be computed from scratch by using the view definitions and other

materialized views at the data warehouse. The current materialized views being maintained have

no contribution to the calculation of the new views. Some techniques replicate all or part of the

remote data at the data warehouse. We can view these replicated data as some kind of

materialized views at the data warehouse. Others such as the self-maintenance warehouse

approach discussed in [Quass 96] store the remote relations at the data warehouse as additional

materialized views to provide data needed when the data warehouse computes the new views.

Therefore, the data warehouse will never have to query the data sources for additional data.

 4

A self-maintainable materialized V view can be defined in two ways. In the first way, the

materialized view V can be defined by using other self-maintainable materialized views. In this

case, the view V is defined as

V = Πproj(σcond(v1⋈v2⋈…⋈vN))

where all vi 's are self-maintainable materialized views stored in the data warehouse.

In the second way, view V can be defined by using the relations residing at the remote

sources. In this case, the view definition is

V = Πproj(σcond(r1⋈r2⋈…⋈rN))

where all ri 's are self-maintainable relations stored in the remote data sources. When there is an

update occurring at a remote data source, the data source knows what to do and will send the

update with all related relations in the view definition to the data warehouse in a transaction.

Therefore, the data warehouse does not have to send a query requesting additional data to the

remote data sources as all necessary information is available.

However, a self-maintainable data warehouse view cannot be defined as

V = Πproj(σcond(v1⋈v2⋈…⋈vk⋈rk+1⋈rk+2⋈…⋈rN))

where all relations vi 's are self-maintainable materialized views residing at the data warehouse,

all relations ri 's are self-maintainable relations residing at the remote data sources, and there are

totally N relations in the definition of view V. The reason is as follows. The data warehouse is

still self-maintainable when an update of relation rl is propagated to the data warehouse as all vi

's are available in the data warehouse. However, when an update of view vi is propagated to view

V, the relation rl is not available at the data warehouse. Therefore, the data warehouse has to send

 5

a query to the remote data sources to get the relation rl in order to calculate view V. Thus view V

is not self-maintainable.

Although the above view V is not self-maintainable, we can add some more self-

maintainable materialized views and redefine view V using these self-maintainable views to

make it self-maintainable. For example, in the above view V where

V = Πproj(σcond(v1⋈v2⋈…⋈vk⋈rk+1⋈rk+2⋈…⋈rN))

suppose we can define the following self-maintainable views

vk+1 = Πproj(σcond(rk+1⋈rk+2⋈…⋈ rl)) and vk+2 = Πproj(σcond(rl+1⋈rl+2⋈…⋈ rN))

View V can then be redefined as

V = Πproj(σcond(v1⋈v2⋈…⋈vk⋈vk+1⋈vk+2))

V is thus self-maintainable by definition.

The materialized view vi at the data warehouse can be defined either by other self-

maintainable views only, or by a collection of self-maintainable relations at the remote sites. We

can view the relationships among the data warehouse materialized views as a hierarchy structure.

The data warehouse may consist of many levels of materialized views. At the bottom level, there

are materialized views defined by remote self-maintainable relations. The views defined by other

self-maintainable materialized views are staying on top of those defined by remote relations.

 The materialized views in the data warehouse have to be maintained in a correct order

from the bottom level to the top level in the view hierarchy. The bottom level views have to be

maintained first. Then those views in the second to the bottom level must be maintained next,

and so on. Finally, the views at the top of the hierarchy are maintained. This is the order that

updates from the remote data sources are propagated to the data warehouse.

 6

An advantage of the techniques in this category is that the view maintenance anomaly

problem is avoided as all necessary data are available at the data warehouse. The data warehouse

knows the view definitions and what to do with the views to keep them up to date. It eliminates

accesses to the remote relations, and therefore, it does not compete with the remote data sources'

local resources. The data warehouse maintenance operations can then be totally separated from

other OLTP operations. Whether a remote data source is available or not will not affect the data

warehouse view maintenance process. However, in order to make the materialized views self-

maintainable, additional materialized views that provide information necessary for view updates

must be stored. Extra storage and time are thus needed to maintain these additional views.

2.2 The Not Self-Maintainable Recomputation Category

The data warehouse can recompute the materialized views from scratch using the view

definitions, possibly some other materialized views at the data warehouse, and actual source

relations periodically or whenever the source data is updated. That is, when an update occurs at

the data source or periodically, the source will inform the data warehouse. According to the

query expression that defines the view, the data warehouse may get part of data it wants from

other materialized views at the data warehouse, and issue queries to the sources to get the other

data it does not have. The sources send the query results back to the data warehouse. Based on

the query results, the data warehouse calculates the views and stores the results as materialized

views in the data warehouse.

The current materialized views have no contribution to the calculation of the new views.

The data warehouse may replicate part of the remote relations in the data warehouse. However,

these data are not enough for maintaining the materialized views. Therefore, the data warehouse

 7

will have to query the remote data sources for additional data in order to maintain the views. An

extreme case is where the data warehouse does not replicate any remote relations.

If the view maintenance process is not designed carefully, the distributed view

maintenance anomaly problem will occur. Suppose that there is a data warehouse system where

the remote data sources send updated relations to the data warehouse whenever an update occurs

at the data sources. Upon receiving the information, the data warehouse is ready to compute the

new views. But now let us assume that the data warehouse finds that it needs some other

relations at some remote data sources to compute the new views. It will issue queries to these

data sources. Suppose the data sources that sent the updated relations to the data warehouse

update the relations again before they receive the queries from the data warehouse. The data

sources answer the query and send the results to the data warehouse. These results might contain

extra information that is incorrect. The data warehouse will then use the incorrect data to

compute the new views, which will result in incorrect new views.

There are a lot of solutions to the distributed view maintenance anomaly problem. The

simplest solution is as follows. Instead of sending the updated relations to the data warehouse,

the data sources just simply inform the warehouse that there is an update that occurs at the data

sources. The data warehouse will issue queries to the data sources to request all relations

required in the view definitions. After the data sources receive the queries, they will send all

requested relations to the data warehouse. The anomaly problem is thus avoided.

The not self-maintainable recomputation approach is simple. The anomaly problem can

be avoided easily. However, the recomputation process is also time and resource consuming.

The data warehouse sends queries back to the sources and waits for answers in order to computer

 8

the new views. Processing these queries consumes the sources’ local resources. If the sources are

unavailable, the data warehouse will not get the answers it needs.

2.3 The Self-Maintainable Incremental Maintenance Category

In this category, the data warehouse views are maintained by using the view definitions, the

materialized views, and the view updates. The data warehouse will never query the remote data

sources as the information at the data warehouse is enough for maintaining the views. The data

warehouse computes the view updates, then adds them to the materialized views. The process is

incremental. Normally, only necessary remote relations, or views of the remote relations are

stored at the data warehouse as materialized views. In the extreme case, all remote relations can

be replicated at the data warehouse. The self-maintainable warehouse approaches discussed in

[Cui 99], [Hull 96] and [Quass 96] belong to this category.

Let us discuss how to maintain a view V that is defined as

V = Πproj(σcond(v1⋈v2⋈…⋈vN))

where each vi is a materialized view and is defined as either

vi = Πproj(σcond(v11⋈v12⋈…⋈v1N)) where each v1j is a view defined by other auxiliary

materialized views,

or

vi = Πproj(σcond(r11⋈r12⋈…⋈r1N)) where each r1j is a base relation.

In the first case, each view v1j is defined either as

v1j = Πproj(σcond(v21⋈v22⋈…⋈v2N)) where each v2j is a view defined by other auxiliary

materialized views,

or

 9

v1j = Πproj(σcond(r21⋈r22⋈…⋈r2N)) where each r2j is a base relation.

Finally, at the lowest level of the view hierarchy discussed earlier in this paper, view vMj can only

be defined by relations at the remote data sources as follows:

vMj = Πproj(σcond(rM1⋈rM2⋈…⋈rMN)) where each rMj is a base relation.

The above view V is thus defined by M levels of the materialized views in the view hierarchy.

 In the second case, the view can only be defined by base relations r1j.

 Each view v2j can be defined by v3j. Views can be defined by those views at one level

lower than it. The lowest level views vMj can only be defined by relations at the remote data

sources.

Suppose an update Uij occurs at a data source, where i represents the view level in the

view hierarchy and j represents the relation in the view definition where the update occurs. The

data source sends the update Uij along with the related base relations ri1, ri2, … and riN except rij

to the data warehouse. The data warehouse calculates the view update ∆v(i-1)j using the update Uij

and relations ri1, ri2, … and riN except rij as follows:

∆v(i-1)j = Πproj(σcond(ri1⋈ ri2⋈…⋈ Uij ⋈ …⋈ riN))

Then the view update ∆v(i-1)j is added to the view v(i-1)j to produce the new view. The view v(i-1)j is

thus maintained. The view update ∆v(i-1)j is propagated to the views at one level higher than it. In

this case, it is v(i-2)j. The view v(i-2)j is defined by self-maintainable views as follows:

v(i-2)j = Πproj(σcond(r(i-1)1⋈ r(i-1)2⋈…⋈ v(i-1)j ⋈ …⋈ r(i-1)N))

We can calculate the view update using the following formula:

∆v(i-2)j = Πproj(σcond(r(i-1)1⋈ r(i-1)2⋈…⋈ ∆v(i-1)j ⋈ …⋈ r(i-1) N))

This process is repeated until the top view V in the view hierarchy is updated.

 10

All intermediate materialized views can be viewed as auxiliary views. These auxiliary

views are self-maintainable. The materialized view V is self-maintainable by using the update

information and additional information from the auxiliary views. The data warehouse views,

including views such as V and auxiliary views, can be maintained starting with those views that

do not depend on any other auxiliary views, working up to the final original view V.

Figure 1. View Hierarchy Example

All related materialized primary views, auxiliary views and base relations can be drawn

in a hierarchy structure as shown in Figure 1. All leaves in the hierarchy structure are those

materialized views defined by the base relations. In this example, V is the primary materialized

view. Views v1, v2 and v12 are materialized auxiliary views defined by other materialized

auxiliary views. Views v3, v11, v13, v14, v23 and v24 are materialized auxiliary views defined by the

base relations. All relations rij 's are the base relations. The views in the leaves should be

maintained first. Suppose an update for r33 occurs in the data source. View v24 should be

maintained first. Then views v12 and view v1 must be maintained next in that order. Finally, the

primary view V is maintained.

The data warehouse never needs to query the remote data source to get additional data.

The data warehouse maintenance operations can be totally separated from other OLTP

 11

operations. Whether the remote data source is available or not will not affect the data warehouse

view maintenance process. However, in order to make the materialized views self-maintainable,

the auxiliary views are stored in the data warehouse to provide the additional information. Extra

storage and time overhead are therefore required to maintain the auxiliary views themselves.

How to design materialized views at the data warehouse so that only necessary information are

stored at the data warehouse is a major issue [Quass 96, Huyn 96a, 96b, 97b, 97c].

2.4 The Not Self-Maintainable Incremental Maintenance Category

Instead of recomputing every view from scratch, only parts of the warehouse that change are

computed. However, the data warehouse has to query the remote data sources whenever

necessary because the information at the data warehouse is not enough to maintain the view. A

number of existing approaches fall under this category. Among them are the unrestricted base

access [Zhuge 95, 96, 97a] and runtime warehouse self-maintenance [Huyn 97a].

2.4.1 Unrestricted Base Access

In the Unrestricted Base Access approach [Zhuge 95, 96, 97a], the data warehouse

accesses the actual relations from the data sources whenever necessary in order to maintain the

materialized views. There are many proposed algorithms that follow this approach. The Eager

Compensating Algorithm (ECA) is the simplest among them. It is also the fastest algorithm that

will let the data warehouse remain in a consistent state [Zhuge 98a and Zhuge 98b]. In this

algorithm, compensating queries are sent back to the sources to offset the effects of concurrent

updates [Zhuge 95]. They are used only when the next update occurs at the sources before the

sources receive the data warehouse queries.

The data warehouse keeps a temporary table called COLLECT to keep the intermediate

answers it receives from the data sources. It also keeps a set called Unanswered Query Set

 12

(UQS) to keep track of those queries it sent to the data sources but has not received their answers

yet.

Suppose an update Ui occurs at a data source. The data source sends Ui to the data

warehouse. Suppose the data warehouse wants to update the materialized view that is defined as

V = Πproj(σcond(r1⋈r2⋈…⋈rN))

where all relations ri 's reside at a single data source. The data warehouse determines the query

for calculating the delta view as

Qi = Πproj(σcond(r1⋈r2⋈…⋈ ri-1 ⋈ Ui ⋈ ri+1⋈…⋈rN))

It then creates a temporary COLLECT table and UQS set for processing this specific query, and

sets both the COLLECT table and UQS to empty. The data warehouse writes the query Qi to the

UQS and sends the query Qi to the data source. Suppose there is another update Uj that occurs at

the same data source. The data source sends the update Uj to the data warehouse before it

receives the query Qi. The data warehouse now receives the update Uj. It knows that the

upcoming answer for Qi from the data source will contain extra information caused by

simultaneous Uj update at the data source. Therefore, it has to offset this extra information. The

data warehouse determines the query Qj for updating Uj as follows

Qj = Πproj(σcond(r1⋈r2⋈ …⋈ ri-1 ⋈ ri ⋈ ri+1⋈…⋈ rj-1 ⋈ Uj ⋈ rj+1⋈…⋈rN)) –
Πproj(σcond(r1⋈r2⋈ …⋈ ri-1 ⋈ Ui ⋈ ri+1⋈…⋈ rj-1 ⋈ Uj ⋈ rj+1⋈…⋈rN))

The first part of Qj is the same as before; the second part is used to compensate for the extra

information that query Qi will receive. The data warehouse is eager to compensate before it

receives the answer for query Qi. Then it writes query Qj to UQS and sends query Qj to the data

source. Now the UQS set contains two entries, i.e., Qi and Qj. The data source then processes

 13

query Qi and sends the answer to the data warehouse. The query answer Ai will contain the

following extra information due to the update Uj,

Πproj(σcond(r1⋈r2⋈ …⋈ ri-1 ⋈ Ui ⋈ ri+1⋈…⋈ rj-1 ⋈ Uj ⋈ rj+1⋈…⋈rN))

The data warehouse receives the answer Ai, removes entry Qi from UQS, writes the answer for Qi

to the temporary table COLLECT. Now UQS contains only one entry Qj. The COLLECT table

thus contains the following data:

Ai = Πproj(σcond(r1⋈r2⋈ …⋈ ri-1 ⋈ Ui ⋈ ri+1⋈…⋈ rj-1 ⋈ rj ⋈ rj+1⋈…⋈rN)) +
Πproj(σcond(r1⋈r2⋈ …⋈ ri-1 ⋈ Ui ⋈ ri+1⋈…⋈ rj-1 ⋈ Uj ⋈ rj+1⋈…⋈rN))

The data warehouse could not integrate the query answer into the data warehouse at this time as

it will cause the data warehouse to contain inconsistent data. Therefore it has to wait for the

query answer for query Qj to come back. The COLLECT table is used to temporarily store query

answers. After it receives the answer for the last unanswered query in UQS (in our case, Qj), it

can integrate the data in the COLLECT table into the data warehouse.

 The data source processes query Qj and sends answer Aj to the data warehouse. Aj

contains the following data:

Aj = Πproj(σcond(r1⋈r2⋈ …⋈ ri-1 ⋈ ri ⋈ ri+1⋈…⋈ rj-1 ⋈ Uj ⋈ rj+1⋈…⋈rN)) –
Πproj(σcond(r1⋈r2⋈ …⋈ ri-1 ⋈ Ui ⋈ ri+1⋈…⋈ rj-1 ⋈ Uj ⋈ rj+1⋈…⋈rN))

The data warehouse receives the answer and removes the entry Qj from the UQS set. Now UQS

is empty. The answer Aj is integrated with the data in the COLLECT table as follows:

Πproj(σcond(r1⋈r2⋈ …⋈ ri-1 ⋈ Ui ⋈ ri+1⋈…⋈ rj-1 ⋈ rj ⋈ rj+1⋈…⋈rN)) +
Πproj(σcond(r1⋈r2⋈ …⋈ ri-1 ⋈ Ui ⋈ ri+1⋈…⋈ rj-1 ⋈ Uj ⋈ rj+1⋈…⋈rN)).+
Πproj(σcond(r1⋈r2⋈ …⋈ ri-1 ⋈ ri ⋈ ri+1⋈…⋈ rj-1 ⋈ Uj ⋈ rj+1⋈…⋈rN)) –
Πproj(σcond(r1⋈r2⋈ …⋈ ri-1 ⋈ Ui ⋈ ri+1⋈…⋈ rj-1 ⋈ Uj ⋈ rj+1⋈…⋈rN))
= Πproj(σcond(r1⋈r2⋈ …⋈ ri-1 ⋈ Ui ⋈ ri+1⋈…⋈ rj-1 ⋈ rj ⋈ rj+1⋈…⋈rN)) +
Πproj(σcond(r1⋈r2⋈ …⋈ ri-1 ⋈ ri ⋈ ri+1⋈…⋈ rj-1 ⋈ Uj ⋈ rj+1⋈…⋈rN))

 14

Now the COLLECT table contains the correct answer that the data warehouse wants. The data

warehouse can then integrate the data in the COLLECT table into the data warehouse.

The Unrestricted Base Access approach is simple. Instead of discarding old materialized

views and calculating new views from scratch, this approach calculates view updates then adds

them to the old views in order to get the new views. However, the data warehouse has to access

N –1 remote source actual relations in order to propagate one source update. In the eager

compensating algorithm discussed above, all N actual relations have to be accessed if

compensating queries are used.

In this approach, the data warehouse may have to send queries back to the sources and

waits for answers in order to compute the view updates. Therefore, this approach has the same

limitation as the not self-maintainable recomputation approach. Computing these queries

consumes remote sources’ local resources, and will slow down other OLTP operations. If the

remote sources are unavailable, the data warehouse will not get the answers it needs.

2.4.2 Runtime Warehouse Self-Maintenance

In the self-maintenance warehouse approach, at design time, we determine views to be self-

maintainable and decide to add more auxiliary views for additional information. Design-time

self-maintainability is not flexible. It may be difficult or impossible for us to know the exact

contents of the views and their updates at design time. To solve this problem, a run time

warehouse maintenance approach has been introduced [Huyn 97a].

The basic idea of the runtime self-maintenance approach is that the data warehouse

generates the self-maintainable test for the views to determine whether the views are self-

maintainable for a particular update. At run time, the self-maintainable test determines the views

for self-maintainability. If a view is self-maintainable, then the view can be maintained by the

 15

update information, the view itself, and the query expression that defines the view. In this case,

the run-time self-maintainable approach is similar to the self-maintainable warehouse approach

discussed in the previous section. However, the data warehouse does not store and maintain any

auxiliary views. If the view is not self-maintainable, then the data warehouse has to query the

remote data sources for those relations it needs in order to update the view. In this case, this

approach is similar to the unrestricted base access approach.

The runtime warehouse self-maintenance approach uses the view maintainability test first

before doing any maintenance. This creates the overhead in the data warehouse. However it

maintains the views by using the views in the data warehouse or some base relations only,

without requiring auxiliary views that are necessary in the self-maintainable incremental

maintenance approach. This saves the storage space in the data warehouse.

3 Performance Analysis

We conduct an analysis to compare the performance of different algorithms in the four

categories. We consider only the problem of single view maintenance in a single source

environment because the ECA algorithm in the not self-maintainable incremental maintenance

category can only be used in this environment [Zhuge 97a, Zhuge 96]. For self-maintainable

view maintenance techniques, we also consider the case where all actual relations are replicated

at the data warehouse.

3.1 Performance Measurements

In our analysis, only Select-Project-Join views are considered. We measure the performances of

the techniques in terms of space and number of row accesses, which are defined as follows:

 16

!" Space: total space needed to store the data in the data warehouse, including space for

auxiliary views. We do not consider indices.

!" Number of rows accessed: the number of rows that must be accessed in the data

warehouse and the data sources in order to integrate the updates into the data warehouse.

3.2 Analysis Parameters

The analysis parameters and their default values are listed in Table 1. The default values

are calculated based on the TPC benchmark for decision support queries [TPC 99].

Meaning Symbol Default value Range
Cardinality of view V Card(V) 914 0 ~ 100,000
Tuple size of view V (in bytes) ts(V) 43 10 ~ 250
Number of auxiliary views per view Nav 3 1 ~ N
Number of base relations in the view
definition

N 3 1 ~ 7

Cardinality of base relation r Card(r) 108,000,000 0 ~ 1,000,000,000
Tuple size of base relation r (in
bytes)

ts(r) 116 100 ~ 180

Selectivity: the fraction of tuples that
satisfy the select condition

σ 0.003 0.00001 ~ 1.0

The join factor is roughly the fraction
of tuples in a relation that join with
others

j 0.73 0.00001 ~ 1.0

Number of tuples in a relation that
join with others

J = j ×
Card(r)

Calculated Calculated

Number of interfering updates for
each query

I 0.5 0 ~ 100

Cardinality of update Card(U) 1
Number of tuple insertions in a base
relation at data source

Nupdate 1 100

Table 1. Analysis Parameters

 17

3.3 Comparison Based on Space Needed in the Data Warehouse

3.3.1 Self-Maintainable Recomputation

The techniques in this category do not query the remote data source for additional data in order

to maintain the data warehouse materialized views. The data warehouse can replicate all or part

of the remote base relations at the data warehouse. These additional data take space at the data

warehouse. Here we consider the case where the materialized views are defined by other

materialized views (auxiliary views) at the data warehouse, and all auxiliary views are replicated

remote relations. A view V is defined as

V = Πproj(σcond(v1⋈v2⋈…⋈vN))

where all vi 's are materialized views stored in the data warehouse.

In the average case, the amount of space needed is:

∑
=

+
Nav

i
ii AV tsAVCardV tsVCard

0
)()()()(

where 0 ≤ Nav ≤ N. If all auxiliary views are the same, the above formula can be reduced to

)()()()(AV tsAVCardNavV tsVCard +

 Nav = 0 when none of the auxiliary views is needed. It means that the materialized view is a

replicated remote relation. This is the best case. The formula can be rewritten as follows:

Card(V) ts(V)

If all auxiliary views are needed to maintain the view, then Nav = N. This is the worst case. The

formula can be rewritten as follows:

∑
=

+
N

i
ii AV tsAVCardV tsVCard

0
)()()()(

If all auxiliary views are the same, the above formula can be reduced to

)()()()(AV tsAVCardNV tsVCard +

 18

3.3.2 Not Self-Maintainable Recomputation

Here we consider only the case where the data warehouse does not replicate any base relations.

Therefore, the data warehouse always has to query the remote data sources. The data warehouse

stores only materialized views. In this extreme situation, the amounts of space needed in the best

case, the average case and the worst case are the same, and are equal to Card(V) ts(V).

3.3.3 Self-Maintainable Incremental Maintenance

Similar to the self-maintainable recomputation techniques, the techniques in this category can

replicate all or part of the remote data at the data warehouse. Here we consider only the case

where the materialized views are defined by other materialized views (auxiliary views) at the

data warehouse, and all auxiliary views are replicated remote relations. A view V is defined as

V = Πproj(σcond(v1⋈v2⋈…⋈vN))

where all vi 's are materialized views stored in the data warehouse. The amount of space needed

at the data warehouse is the same as that of the self-maintainable recomputation techniques.

In the average case, the space needed is as follows:

∑
=

+
Nav

i
ii AV tsAVCardV tsVCard

0
)()()()(

where 0 ≤ Nav ≤ N. If all auxiliary views are the same, the above formula can be reduced to

)()()()(AV tsAVCardNavV tsVCard +

In the best case, no auxiliary views are needed as the view is self-maintainable. The formula can

be rewritten as follows:

Card(V) ts(V)

In the worst case, all auxiliary views are needed to maintain the view. The formula can be

rewritten as follows:

 19

∑
=

+
N

i
ii AV tsAVCardV tsVCard

0
)()()()(

In the worst case, the auxiliary view's tuple size and cardinality are equal to those of the remote

relation. If all auxiliary views are the same, the above formula can be reduced to the following:

)()()()(AV tsAVCardNV tsVCard +

3.3.4 Not Self-Maintainable Incremental Maintenance

Here we consider the Eager Compensating Algorithm (ECA) for this category. In ECA, a

temporary table COLLECT is used to store intermediate query answers. For every update, the

queries including compensated queries are sent to the data source. Note that the COLLECT table

is empty only when there is no query to the data source, or the answers for all the queries are

returned to the data warehouse before a new update occurs at the data source. This is the best

case. The space needed is as follows:

Card(V) ts(V)

In the average case, the size of the COLLECT table for a specific update with all its

interfering updates I is equal to the sum of the cardinalities of the final query answers for all

queries. The total number of queries sent to the data source can be calculated as below [Zhuge

97b]:

()∑ ∑
−

=

−−

=

−− 




=

1

1

1

0

11
N

k

kN

i

iikkk JjINq σσ

In the worst case, the number of queries sent to the data source is:

()∑ ∑
−

=

−−

=

− 




=

1

1

1

0

1)(
N

k

kN

i

ik rCardINq .

Let us derive the formula for the multiple tuple update case. We follow the method used

in [Zhuge 97b]. At first, we have to find the number of wrapper queries sent from a view

 20

manager to the query processor [Zhuge 95, Zhuge 97b]. In the single tuple update case,

Card(A1) = σ1×1=σ1. In the multiple tuple update case, Card(A1) = σ1Card(U).

The total number of wrapper queries to evaluate the update query is













>



×

=
=

=

∑ ∏
=

−

=

2:)(

2:)(
1:0

2

1

2
1

1

NJUCard

NUCard
N

Nq
N

k

k

i
iiσσ

σ

Assume all the σs and Js are the same, the formula is simplified to the following:

()









>×

=

= ∑
−

=

1:)(
1:0

2

0
NJUCard
N

Nq
N

i

iiσσ

The compensating query is defined as:

CQ = Πproj(σcond (U1⋈U2⋈ … ⋈ Un ⋈ Rn+1⋈Rn+2⋈ … ⋈RN))

There are n multiple tuple updates and N-n actual (base) relations. The number of wrapper

queries to evaluate the query is:

()









>

=

= ∑
−−

=

− 1:)(
:0

1

0

1 NJUCardj
Nn

Nq
nN

i

iinnn σσ

Then, we estimate the number of compensating queries as ∑
−

=

1

0

N

i

iI , where I is defined as

the maximum number of interfering updates that occur between the time when the data

warehouse sends a query to the remote data source and the time when the data warehouse

receives the corresponding answer [Zhuge 98b]. In the worst case, there are I interfering updates

for each query. The number of wrapper queries is:

 21

()∑ ∑
−

=

−−

=

−− 




=

1

1

1

0

11)(
N

k

kN

i

iikkkk JUCardjINq σσ

When Card(U) = 1, the above formula is reduced to the following:

()∑ ∑
−

=

−−

=

−− 




=

1

1

1

0

11
N

k

kN

i

iikkk JjINq σσ

which is the formula of the single tuple update case [Zhuge 98b].

Suppose the cardinality of the final query answer AN for all interfering updates are equal.

∑
=

=
N

i
ii

N JACard
2

1)(σσ for the single tuple update case [Zhuge 98b]. For the multiple tuple

update case, ∑
=

=
N

i
ii

N JUCardACard
2

1)()(σσ .

When all σs and Js are equal, 1)()(−= NNN JUCardACard σ . For a query with n update

relations and N–n base relations, nNnnNN JjUCardACard −−= 1)()(σ , where 1 ≤ n ≤ N.

The max cardinality of the COLLECT table for updates at a time is:

() ()∑ ∑
−

=

−−

=

−−−− 




1

1

1

0

111)()(
N

k

kN

i

iikNkkNkkkk JJjUCardUCardjI σσσ

= ()∑ ∑
−

=

−−

=

−−+− 




1

1

1

0

2)1(21)(
N

k

kN

i

iikNkkkNk JJUCardjI σσ .

The space needed is

())()()()(
1

1

1

0

2)1(21 VtsJJUCardjIVtsVCard
N

k

kN

i

iikNkkkNk∑ ∑
−

=

−−

=

−−+− 




+ σσ .

In the worst case, when σ = 1, j = 1, J = j × Card (r) = Card (r). The space needed at the

data warehouse is

())()()()()()(
1

1

1

0

21 VtsrCardrCardUCardIVtsVCard
N

k

kN

i

ikNkk∑ ∑
−

=

−−

=

−− 




+ .

 22

3.3.5 Comparison Results

In summary, for a given view V, the amounts of space needed in the data warehouse for

the four categories are listed in Table 3, where AV stands for Auxiliary View.

Category Space needed in the data warehouse
The best case: Card(V) ts(V)
The average case:

)()()()(AV tsAVCardNavV tsVCard +
0 ≤ Nav ≤ N

Self-Maintainable Recomputation
(SMR)

The worst case:
)()()()(AV tsAVCardNV tsVCard +

Not Self-Maintainable Recomputation
(NSMR)

Card(V) ts(V)

The best case: Card(V) ts(V)
The average case:

)()()()(AV tsAVCardNavV tsVCard +
0 ≤ Nav ≤ N

Self-Maintainable Incremental
Maintenance (SMIM)

The worst case:
)()()()(AV tsAVCardNV tsVCard +

The best case: Card(V) ts(V)
The average case:

())()(

)()(
1

1

1

0

2)1(21 VtsJJUCardjI

VtsVCard
N

k

kN

i

iikNkkkNk∑ ∑
−

=

−−

=

−−+− 






+

σσ

Not Self-Maintainable Incremental
Maintenance (NSIM)

The worst case:

())()()()(

)()(
1

1

1

0

21 VtsrCardrCardUCardI

VtsVCard
N

k

kN

i

ikNkk∑ ∑
−

=

−−

=

−− 






+

Table 2. Space needed in the data warehouse

We draw the graphs for the formulas derived above using the parameters' defaults values

listed in Table 1. Due to space limitation, we will only discuss the results of the average case.

In this case, the not self-maintainable recomputation approach does not require extra space at the

data warehouse. However, for the self-maintainable recomputation and self-maintainable

incremental approaches, extra space is required at the data warehouse to store the replicated

 23

source data as auxiliary views. This extra space is proportional to the total number of auxiliary

views Nav, the auxiliary view cardinality Card(AV) and the auxiliary view tuple size ts(AV).

For NSIM, extra space is required to store the COLLECT table. Suppose that the tuple

size of the COLLECT table is equal to the view's tuple size. In some cases, the space used to

store the COLLECT table in NSIM is small compared to the space used for storing the

materialized views in SMR and SMIM. In other cases, the space used for storing the COLLECT

table can be grown much larger than that of materialized views. Let us examine Figures 2-4,

where NSMR is not shown since it overlaps with the x-axis. At first, the space used for storing

the COLLECT table is smaller and growing slower than that used for storing the materialized

auxiliary views when the cardinality of auxiliary views is small (Figure 2). Then, the space used

for storing the COLLECT table grows faster. At some point (Card(AV) = 6.0 ×107 in our case),

the space used for storing the COLLECT table exceeds the space used for storing the

materialized auxiliary views (Figure 3). When the cardinalities of auxiliary views (or base

relations) are large, the space used for storing the COLLECT table is much larger than that used

to store the auxiliary views (Figure 4).

From Table 2, we can see that the space needed for the NSIM approach grows

exponentially with the select factor, join factor, and cardinality of updates.

In summary, in the average case, as no additional space is required at the data warehouse

for the not self-maintainable approach, it is the best approach in terms of space used in the data

warehouse. The amounts of space used for both the self-maintainable approaches, SMR and

SMIR, are the same. When there are very few conflicting updates and the cardinalities of the

base relations are relatively small, the space used for the not self-maintainable approach is less

than those of both the self-maintainable approaches. However, if there are a lot of conflicting

 24

updates and the cardinalities of the base relations are large, the space used for the not self-

maintainable approaches are much larger than those of both the self-maintainable approaches.

Figure 2. Space used in the data warehouse (The average case)

Figure 3. Space used in the data warehouse (The average case)

 25

Figure 4. Space used in the data warehouse (The average case)

3.4 Comparison Based on the Number of Rows Accessed

To analyze the number of rows accessed at the data warehouse by the techniques, we made the

following assumptions:

!" The set of a primary view and its auxiliary views (if any) is independent to other sets of

primary views and their auxiliary views.

!" We do not consider indices. Linear search is thus used to check if a record satisfies a

select or join condition.

!" All auxiliary views are self-maintainable and are replicated base relations.

!" Updates to auxiliary views and primary views are for appending only.

 26

3.4.1 Self-Maintainable Recomputation

The data warehouse will never query the remote data sources as all necessary data are available

at the data warehouse. Updates from the remote data sources have to be propagated to the

replicated relations at the data warehouse first, then the data warehouse recalculates the view

relation and stores the result at the data warehouse as the new materialized view. In order to

propagate an update to data warehouse replicated relation, the number of rows to be accessed at

the data warehouse is the cardinality of the relation itself plus the cardinality of the update. That

is,

Card(r) + Card(U).

Then the data warehouse recomputes the materialized view using the view definition. Suppose

the data warehouse materialized view is defined as:

Q = Πproj(σcond(v1⋈v2⋈…⋈vN))

The strategy such as the one described in [Zhuge 97b] can be used to evaluate the query Q that

defines the view V. Let us rename the actual relations according to the join order. The query Q

that defines the view becomes

Q = Πproj(σcond(R1⋈R2⋈…⋈RN))

Using the equivalence rules [Silberschatz 97], the select condition cond can be decomposed into

a sequence of individual selections σi 's on individual actual relations Ri 's. Let T1 be the

temporary relation after σ1 is applied to R1, and let Tk be the temporary relation after the join and

selection with relation Rk is done. TN is the new view. To compute Tk, each tuple in Rk has to be

accessed for Card(Tk-1) times. Tk = Tk-1⋈σk(Rk). Card(Tk) = σkJk Card(Tk-1) and Card(T1) =

 27

σ1Card(R1). Each tuple in R1 is accessed once. R2 is accessed Card(T1) = σ1 Card(R1) times. The

number of tuples accessed for R1 and R2 is

Card(R1) + Card(R2) σ1Card(R1)

Thus,

Card(T2) = σ2J2 Card(T1) = σ2J2 σ1 Card(R1).

To get the new view, the total number of tuples that must be accessed is

Card(R1) + Card(R2) σ1 Card(R1) + Card(R3) σ1Card(R1) σ2J2 + … +
Card(RN) σ1Card(R1) Πi=2

N-1σiJi
= Card(R1) (1+ Card(R2) σ1 + Card(R3) σ1σ2J2 + … + Card(RN) σ1Πi=2

N-1σiJi)

Suppose all the select and join conditions, and cardinalities of all base relations are the same, the

total number of tuples to be accessed in order to recompute the view is equal to

Card(AV) + Card(AV)2 (σ + σ2J + σ3J2 +…+ σN-1JN-2)

= ()




+ ∑

−

=

−
1

1

12)()(
N

i

ii JAVCardAVCard σ

This is the average case. In the worst case, when σ = 1, j = 1, J = j Card(AV) = Card(AV), the

total number of tuples to be accessed is equal to

Card(AV) + Card(AV)2 (1 + Card(AV) + Card(AV)2 +…+ Card(AV)N-2)
= Card(AV) (1 + Card(AV) + Card(AV)2 +…+ Card(AV)N-1)

= ()




× ∑

−

=

1

0
)()(

N

i

iAVCardAVCard

For Nupdate updates, the total number of tuples to be accessed in the average case is

() 










×+× ∑

−

=

−
1

1

12)()(
N

i

ii JAVCardAVCardNupdate σ

In the worst case, the formula is

() 










×× ∑

−

=

1

0
)()(

N

i

iAVCardAVCardNupdate

 28

Including the number of rows that need to be accessed to maintain the view and

replicated data at the data warehouse, the total number of rows to be accessed in the average case

is

() 










×++×+× ∑

−

=

−
1

1

12)()()(2)(
N

i

ii JAVCardUCardAVCardVCardNupdate σ

In the worst case, the number becomes

() 










 +×++× ∑

−

=

1

0
)(1)()()(

N

i

iAVCardAVCardUCardVCardNupdate

3.4.2 Not Self-Maintainable Recomputation

Only source data is required to be accessed. The reason is that the warehouse recalculates the full

view using the source data each time. It does not use the data warehouse data. Suppose the

system locks all base relations in order to evaluate the query expression that defines the view. If

the nested-loop join method [Silberschatz 97] is used to evaluate it, the total number of rows to

be accessed is Card(r)N.

Another strategy such as the one described in [Zhuge 97b] can also be used to evaluate

the query Q that defines the view V. It will reduce the total number of rows to be accessed. Let us

rename the actual relations according to the join order. The query Q that defines the view

becomes

Q = Πproj(σcond(R1⋈R2⋈…⋈RN))

Using the same method presented in Section 3.4.1, suppose all select and join conditions, and

cardinalities of all base relations are the same, the total number of tuples to be accessed in order

to recompute the view is equal to

Card(r) + Card(r)2 (σ + σ2J + σ3J2 +…+ σN-1JN-2)

 29

= ()




×+ ∑

−

=

−
1

1

12)()(
N

i

ii JrCardrCard σ

This is the average case. In the worst case, when σ = 1, j = 1, J = j Card (r) = Card (r), the total

number of tuples to be accessed is equal to

Card(r) + Card(r)2 (1 + Card(r) + Card(r)2 +…+ Card(r)N-2)

= Card(r) (1 + Card(r) + Card(r)2 +…+ Card(r)N-1)

= ()




× ∑

−

=

1

0
)()(

N

i

irCardrCard

For Nupdate updates, the total number of tuples to be accessed in the average case is

() 










×+× ∑

−

=

−
1

1

12)()(
N

i

ii JrCardrCardNupdate σ .

In the worst case, the formula is

() 










×× ∑

−

=

1

0
)()(

N

i

irCardrCardNupdate

3.4.3 Self-Maintainable Incremental Maintenance

No queries are sent to the data sources for additional information. Therefore, the number of rows

accessed in the data source is equal to 0. For N base relations in a view, Nav should be less than

or equal to N. In the worst case, Nav is equal to N.

At first, the auxiliary view itself has to be maintained before the primary materialized

view can be maintained. Let Card(U) stand for the cardinality of update U. According to our

assumption that auxiliary views are self-maintainable and updates are used for appending only,

the number of rows needed to be accessed in order to maintain the auxiliary view is Card(U) +

Card(AV). Let Card(∆AV) stand for the cardinality of the auxiliary view update, which is the

same as Card(U). Then the update is propagated to the primary view. We need to calculate the

 30

primary view update. The number of rows accessed can be estimated using the same method

presented in Section 3.4.1. Suppose the all select and join conditions, and cardinalities of all

auxiliary views are the same, the total number of tuples to be accessed in order to calculate the

primary view update is equal to

Card(∆AV) + Card(∆AV) Card(AV) (σ + σ2J + σ3J2 + … + σNav-1JNav-2)

= () 










×+×∆ ∑

−

=

+
2

0

1)(1)(
Nav

i

ii JAVCardAVCard σ

 Finally, the view update is appended to the primary view. The total number of rows to be

accessed in order to propagate a source update U to the data warehouse is

()




 ×+×∆+++ ∑

−

=

+
2

0

1)(1)()()()(
Nav

i

ii JAVCardAVCardAVCardUCardVCard σ

Since Card(∆AV) = Card(U), we have

()




 ×+×∆++ ∑

−

=

+
2

0

1)(2)()()(
Nav

i

ii JAVCardAVCardAVCardVCard σ

This is the average case. In the worst case, when σ = 1, j = 1, J = j Card(AV) = Card(AV), Nav =

N, the total number of tuples to be accessed is equal to

()




 ×+×∆++ ∑

−

=

2

0
)()(2)()()(

N

i

iAVCardAVCardAVCardAVCardVCard

= ()




 +×∆++ ∑

−

=

1

1
)(2)()()(

N

i

iAVCardAVCardAVCardVCard

In the single tuple update case, i.e., Card(U) = Card(∆AV) = 1, the total number of tuples

to be accessed is equal to

()




 +++ ∑

−

=

1

1
)(2)()(

N

i

iAVCardAVCardVCard

For Nupdate updates, the average number of tuples to be accessed for the multiple tuple

update case is

 31

() 










 ×+×∆++× ∑

−

=

+
2

0

1)(2)()()(
Nav

i

ii JAVCardAVCardAVCardVCardNupdate σ

For the worst case, the total number of tuples to be accessed is

() 










 +×∆++× ∑

−

=

1

1
)(2)()()(

N

i

iAVCardAVCardAVCardVCardNupdate

3.4.4 Not Self-Maintainable Incremental Maintenance

In the ECA algorithm, all tuples in the view table have to be accessed in order to find a tuple to

integrate with the view update. However, the data warehouse may have to access data from

remote sites except for the best case. Parts of these queries are compensated.

In Section 3.3.4, we derive the number of wrapper queries corresponding to queries with

N – n relations in the multiple tuple update case as

()∑ ∑
−

=

−−

=

−− 




=

1

1

1

0

11)(
N

k

kN

i

iikkkk JUCardjINq σσ

When there are totally Nupdate updates, the number of wrapper queries is

()∑ ∑
−

=

−−

=

−− 




×=

1

1

1

0

11)(
N

k

kN

i

iikkkk JUCardjINupdateNq σσ

In general, for a query that is defined as Q = Πproj(σcond(R1⋈R2⋈…⋈RN)), the total

number of tuples to be accessed in order to process the query is

Card(R1) (1+ Card(R2) σ1 + Card(R3) σ1σ2J2 + … + Card(RN) σ1Πi=2
N-1σiJi)

For a compensating query Q = Πproj(σcond (U1⋈U2⋈ …⋈Uk ⋈ Rk+1⋈Rk+2⋈ … ⋈RN)),

there are k multiple tuple updates and N-k base relations. Suppose all updates are evaluated first,

the number of rows to be accessed in order to evaluate a query is

Card(U) + Card(U) σ Card(U) + Card(U) σ Card(U) σ j Card(U) + … +
σk-1 jk-2 Card(U)k + σk jk-1 Card(U)k Card(r) Πi = k

N-1σiJi

 32

= Card(U) + σ Card(U)2 + σ2 j Card(U)3 + … + σk-1 jk-2 Card(U)k +
 + … + σk jk-1 Card(U)k Card(r) + …+σk jk-1 Card(U)k Card(r) Πi=k

N-1σiJi

= () ()∑∑
−−

=

−
−

=

++ ++
1

0

1
2

0

21)()()()(
kN

i

iikkk
k

i

iii JrCardUCardjUCardjUCard σσσ

For the multiple tuple update case, the total number of tuples to be accessed in order to

propagate Nupdate updates from the remote source to the target data warehouse view is:

()∑
−

=

− ×××
1

1

1 _____
N

k

k queryperaccessedtuplesqueriesofnumberINupdate

=
()

() ())))()()(

)(()((

1

0

1
2

0

21

1

1

1

0

11

∑∑

∑ ∑
−−

=

−
−

=

++

−

=

−−

=

−−

+

+××

kN

i

iikkk
k

i

iii

N

k

kN

i

iikkkk

JrCardUCardjUCardj

UCardJUCardjINupdate

σσσ

σσ

In the worst case, the total number is

()

() ())))()()()(

)(()()((

1

0

2

0

2

1

1

1

0

1

∑∑

∑ ∑
−−

=

−

=

+

−

=

−−

=

−

+

+××

kN

i

ik
k

i

i

N

k

kN

i

ikk

rCardrCardUCardUCard

UCardrCardUCardINupdate

3.4.5 Comparison Results

The formulas to calculate the number of rows that need to be accessed in order to

maintain a materialize view for all four categories are listed in Tables 3 and 4. We use the

parameters' default values listed in Table 2 to draw the graphs showing the number of rows that

need to be accessed to maintain a materialized view. Due to space limitation, here we will

discuss the results for the average case only.

 33

Category Number of rows accessed in data
warehouse

Number of rows accessed in data source

The average case:

()))()(

)(2)((
1

1

12 




+

++×

∑
−

=

−
N

i

ii JAVCardUCard

AVCardVCardNupdate

σ

SMR

The worst case:

()))(1)(

)()((
1

0





 +×

++×

∑
−

=

N

i

iAVCardAVCard

UCardVCardNupdate

0

The best case: 0

The average case:

() 










×+

×

∑
−

=

−
1

1

12)()(
N

i

ii JrCardrCard

Nupdate

σ

NSMR Nupdate × Card(V)

The worst case:

() 










×

×

∑
−

=

1

0
)()(

N

i

irCardrCard

Nupdate

The average case:
Nupdate×

()))(2

)()()((
2

0

1 




 ×+×

∆++

∑
−

=

+
Nav

i

ii JAVCard

AVCardAVCardVCard

σ

0 ≤ Nav ≤ N

SMIM

The worst case:
Nupdate×

()))(2

)()()((
1

1





 +×

∆++

∑
−

=

N

i

iAVCard

AVCardAVCardVCard

0

Table 3. Number of Rows Accessed (Part 1 of 2)

 34

Category Number of rows accessed in data
warehouse

Number of rows accessed in data source

The best case: 0

The average case:

()

()

())))()(

)()((

)((

1

0

1

2

0

21

1

1

1

0

11

∑

∑

∑ ∑

−−

=

−

−

=

++

−

=

−−

=

−−

++

×

×

kN

i

iikkk

k

i

iii

N

k

kN

i

iikkkk

JrCardUCardj

UCardjUCard

JUCardjI

Nupdate

σσ

σ

σσ

NSMIM Nupdate / I × Card(V)

The worst case:

()

()

())))()()(

)()((

)()((

1

0

2

0

2

1

1

1

0

1

∑

∑

∑ ∑

−−

=

−

=

+

−

=

−−

=

−

++

×

×

kN

i

ik

k

i

i

N

k

kN

i

ikk

rCardrCardUCard

UCardUCard

rCardUCardI

Nupdate

Table 4. Number of Rows Accessed (Part 2 of 2)

In the average case, the total numbers of rows accessed for the not self-maintainable

recomputation (NSMR) approach and the self-maintainable recomputation (SMR) approach are

very similar. As the same base relations are replicated at the data warehouse in the self-

maintainable recomputation approach, actually these data will be accessed twice. The first time

is for maintaining the auxiliary views and the second time is for maintaining the target

materialized views at the data warehouse. When the cardinality of the base relations/auxiliary

views, Card(r), is small, the number of rows accessed for the self-maintainable recomputation

approach is somewhat larger than that of the not self-maintainable recomputation approach

(Figure 5). When Card(r) becomes larger, the difference is small enough to be neglected (Figure

6).

 35

Figure 5. Number of rows accessed in the data warehouse (The average case)

Figure 6. Number of rows accessed in the data warehouse (The average case)

 36

Figure 7. Number of rows accessed in the data warehouse (The average case)

Figure 8. Number of rows accessed in the data warehouse (The average case)

 37

When Card(r) is small, the numbers of rows accessed for self-maintainable

recomputation and not self-maintainable recomputation grow faster than those for self-

maintainable incremental maintenance and not self-maintainable incremental maintenance

(Figure 7). When Card(r) becomes very large, the number of rows accessed for both the

recomputation approaches are much larger that those of both the incremental approaches (Figure

8). In order to see the differences, we redrew Figure 8 using a logarithmic scale in the y-axis; the

results are shown in Figure 9. From Figure 9, we can see that the number of rows accessed in

SMR is the same as that in NSMR, but is higher than that of NSIM, which is higher than that of

SMIM. We also observe the similar results when varying the values of the select factor σ and

join factor j .

Figure 9. Number of rows accessed in the data warehouse (The average case)

 38

4.0 Conclusions and Future Research

Category Advantage Disadvantage
Self-Maintainable
Recomputation

-Data warehouse view maintenance
operations are totally separated from
OLTP operations;
-Unavailable source will not block the
data warehouse view maintenance
process;

-Data are replicated at data warehouse;
-Need extra data storage for replicate
data;
-Have to implement and maintain data
transfer processes to transfer data from
sources to data warehouse;

Not Self-
Maintainable
Recomputation

-Very simple to implement;
-No replicate data at the data warehouse;
-No extra data storage for replicate data;
-Do not have to implement and maintain
data transfer processes to transfer data
from sources to data warehouse;

-Unavailable source will block the
data warehouse view maintenance
process;
-Evaluating queries at the data sources
consumes local resources;
-Data warehouse view maintenance
operations are not separated from
OLTP operations;

Self-Maintainable
Incremental
Maintenance

-Data warehouse view maintenance
operations are totally separated from
OLTP operations;
-Unavailable source will not block the
data warehouse view maintenance
process;
-In the worst case, the number of rows
accessed to maintain a view is the lowest;

-Data are replicated at data warehouse;
-Need extra data storage for replicate
data;
-Have to implement and maintain data
transfer processes to transfer data from
sources to data warehouse;

Not Self-
Maintainable
Incremental
Maintenance

-No replicate data at the data warehouse;
-No extra data storage for replicate data;
-Do not have to implement and maintain
data transfer processes to transfer data
from sources to data warehouse;

-Unavailable source will block the
data warehouse view maintenance
process;
-Evaluating queries at the data sources
consume local resources;
-Data warehouse view maintenance
operations are not separated from
OLTP operations;
-Have to design the view maintenance
process carefully to avoid the anomaly
problem;
-In the worst case the number of rows
accessed is the highest;
-Performance is down-graded rapidly;
-Need extra storage for intermediate
data (COLLECT tables);

Table 5. Advantages and disadvantages of the view maintenance techniques

All data warehouse view maintenance techniques can be classified into four major

categories. They are self-maintainable recomputation, not self-maintainable recomputation, self-

 39

maintainable incremental maintenance, and not self-maintainable incremental maintenance.

Their advantages and disadvantages are listed in Table 5.

Both self-maintainable recomputation and self-maintainable incremental maintenance

approaches totally separate the data warehouse view maintenance operations from the OLTP

operations. Therefore, the view maintenance operations will not consume data sources’ local

resources. These operations only consume the data warehouse's resources. Even if the remote

data sources are not available, the data warehouse view maintenance process can continue

running. However, a part or all source data are replicated at the data warehouse to make the data

warehouse view maintenance process self-maintainable. These replicated data take space. Data

transfer processes are implemented to transfer data from the remote data sources to the data

warehouse. Design, implement and maintain these processes are time-consuming. A lot of

unnecessary data may be duplicated at the data warehouse. However, these are the approaches

that probably many large companies have to take if they want to separate their data warehouse

view maintenance operations from their OLTP operations.

Both the not self-maintainable recomputation and not self-maintainable incremental

maintenance approaches suffer from some common disadvantages. As the remote data sources

have to process queries from the data warehouse that consume their limited local resources, the

OLTP system will be slow. Once a data source is unavailable, the data source will not be able to

answer queries sent from the data warehouse in time. It will block the data warehouse view

maintenance process. The not self-maintainable incremental maintenance approach has some

additional disadvantages. To avoid the anomaly problem, the view maintenance process must be

designed carefully. If a lot of updates happen at the data sources, the data warehouse may issue

many compensating queries. It is very possible that the data warehouse may never get the final

 40

query results. Both approaches also have some common advantages. As there is no replicate data

stored at the data warehouse, no data transfer process has to be implemented and maintained.

There is no extra space for storing replicate data. Both approaches are good for small to mid-

sized companies whose OLTP database systems are not too busy.

Among all the four categories, self-maintainable incremental maintenance is the best in

terms of space used in the data warehouse and number of rows accessed in order to propagate an

update to the target materialized view in the data warehouse. As the cost of data storage becomes

increasingly low, this is the best approach to implement a data warehouse.

For future work, we plan to consider another important performance measurement called

the view refresh time, which is defined as the elapse time from the time the system receives a

source update to the time the update is reflected in the view. We will also address the problem

of multiple view maintenance in a multiple source environment.

References

[Cui 99] Y. Cui and J. Widom. "Storing Auxiliary Data for Efficient View Maintenance and
Lineage Tracing." http://www-db.stanford.edu/pub/papers/auxview.ps Techincal Report,
Stanford University, 1999.
[Hammer 95] J. Hammer, H. Garcia-Molina, J. Widom, W. Labio, and Y. Zhuge, “The Stanford
Data Warehousing Project.” IEEE Data Engineering Bulletin, June 1995.
[Huyn 96a] N. Huyn, “Efficient View Self-Maintenance.” Proceedings of the ACM Workshop on
Materialized Views: Techniques and Applications, Montreal, Canada, June 7, 1996.
[Huyn 96b] N. Huyn, “Efficient Self-Maintenance of Materialized Views.” http://www-
db.stanford.edu/pub/papers/vsm-2-tr.ps. Technical Note, 1996.
[Huyn 97a] N. Huyn, “Maintaining Data Warehouse Under Limited Source Access.” Ph.D.
Thesis, Stanford University, August 1997.
[Huyn 97b] N. Huyn, “Exploiting Dependencies to Enhance View Self-Maintainability.”
http://www-db.stanford.edu/pub/papers/fdvsm.ps. Technical Note, 1997.
[Huyn 97c] N. Huyn, “Multiple-View Self-Maintenance in Data Warehousing Environments.”
Proceedings of the 23rd VLDB Conference, Athens, Greece, 1997.
[Hull 96] R. Hull and G. Zhou, “A framework for supporting data integration using the
materialized and virtual approaches,” In SIGMOD 1996.
[Labio 97b] W. Labio, D. Quass, and B. Adelberg, “Physical Database Design for Data
Warehousing.” Proceedings of the International Conference on Data Engineering, Binghamton,
UK, April, 1997.

http://www-db.stanford.edu/pub/papers/auxview.ps

 41

[Quass 96] D. Quass, A. Gupta, I. S. Mumick, and J. Widom, “Making Views Self-Maintainable
for Data Warehousing.” Proceedings of the Conference on Parallel and Distributed Information
Systems, Miami Beach, FL, December 1996.
[Silberschatz 97] A. Silberschatz, H. F. Korth and S. Sudarshan, Database System Concepts, 3rd.
Edition, McGraw-Hill, 1997.
[TPC 99] Transaction Processing Performance Council (TPC), “TPC BenchmarkTM R (Decision
Support) Standard Specification, Revision 1.0.1.” http://www.tpc.org, 1999
[Widom 95] J. Widom, “Research Problems in Data Warehousing.” Proceedings of the 4th
International Conference on Information and Knowledge Management (CIKM), November
1995.
[Wiener 96] J. L. Wiener, H. Gupta, W. J. Labio, Y. Zhuge, H. Garcia-Molina, and J. Widom,
“A System Prototype for Warehouse View Maintenance.” Proceedings of the ACM Workshop on
Materialized Views: Techniques and Applications, Montreal, Canada, June 7, 1996, pp. 26-33.
[Zhuge 95] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom, “View Maintenance in a
Warehousing Environment.” Proceedings of the ACM SIGMOD Conference, San Jose,
California, June 1995, pp 316-327.
[Zhuge 96] Y. Zhuge, H. Garcia-Molina, and J. L. Wiener, “The Strobe Algorithms for Multi-
Source Warehouse Consistency.” Proceedings of the Conference on Parallel and Distributed
Information Systems, Miami Beach, FL, December 1996.
[Zhuge 97a] Y. Zhuge, J. L. Wiener, and H. Garcia-Molina, “Multiple View Consistency for
Data Warehousing.” Proceedings of the International Conference on Data Engineering,
Binghamton, UK, April, 1997.
[Zhuge 97b] Y. Zhuge, “Whips Performance: Model and Experiments.” http://www-
db.stanford.edu/pub/papers/perf-tech.ps. Technical Note, December, 1997.
[Zhuge 98a] Y. Zhuge and H. Garcia-Molina. “Performance Analysis of WHIPS Incremental
Maintenance.” Submitted for publication. September 1998.
[Zhuge 98b] Y. Zhuge and H. Garcia-Molina. “Performance Analysis of WHIPS Incremental
Maintenance.” Full version of [Zhuge 98a]. September 1998.

http://www.tpc.org/

	A Performance Analysis of View Maintenance Techniques
	for Data Warehouses
	
	
	
	
	Abstract
	1 Introduction
	2 Classification of Data Warehouse View Maintenance Techniques
	2.1 The Self-Maintainable Recomputation Category
	2.2 The Not Self-Maintainable Recomputation Category
	2.3 The Self-Maintainable Incremental Maintenance Category
	2.4 The Not Self-Maintainable Incremental Maintenance Category
	2.4.1 Unrestricted Base Access
	2.4.2 Runtime Warehouse Self-Maintenance
	3 Performance Analysis
	3.1 Performance Measurements
	3.2 Analysis Parameters
	3.3 Comparison Based on Space Needed in the Data Warehouse
	3.3.1 Self-Maintainable Recomputation
	3.3.2 Not Self-Maintainable Recomputation
	3.3.3 Self-Maintainable Incremental Maintenance
	3.3.4 Not Self-Maintainable Incremental Maintenance
	3.3.5 Comparison Results
	3.4 Comparison Based on the Number of Rows Accessed
	3.4.1 Self-Maintainable Recomputation
	3.4.2 Not Self-Maintainable Recomputation
	3.4.3 Self-Maintainable Incremental Maintenance
	3.4.4 Not Self-Maintainable Incremental Maintenance
	3.4.5 Comparison Results
	4.0 Conclusions and Future Research

