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Abstract 

Using the DNA microarray technology, 
biologists have thousands of array data available. 
Discovering the function relations between genes 
and their involvements in biological processes 
depends on the ability to efficiently process and 
quantitatively analyze large amounts of array data. 
Clustering algorithms are among the popular tools 
that can be used to help biologists achieve their 
goals. Although some existing research projects 
employed clustering algorithms on biological data, 
none of them has examined the Escherichia coli (E. 
coli) gene expression data. This paper proposes a 
clustering algorithm called Multilayer Adjusted Tree 
Organizing Map (MATOM) to analyze the E. coli 
gene expression data. In a semi-supervised manner, 
MATOM constructs a multilayer map, and at the 
same time, removes noise data in the previously 
trained maps in order to improve the training 
process. This paper then presents the clustering 
results produced by MATOM and other existing 
clustering algorithms using the E. coli gene 
expression data, and a new evaluation method to 
assess them.  The results show that MATOM 
performs the best in terms of percentage of genes 
that are clustered correctly. 
 
 
1. Introduction 
 
1.1. Problem Statement 
 

Functional genomics aims to reveal the biological 
functions of an individual gene and its cooperative roles 
on a genome-wide scale. The DNA microarray [14] is a 
powerful experimental tool for extracting functional 
information from the genome. Microarray analysis [4]] is 
one of the latest breakthroughs in experimental molecular 

biology, which allows the monitoring of gene expression 
for tens of thousands of genes in parallel and produces 
huge amounts of valuable data. With the implementation 
of the DNA microarray technology, biologists will 
increasingly depend on the ability to efficiently process 
and quantitatively analyze large amounts of data to 
discover functional relations between genes and their 
involvement in important biological processes. 

Clustering algorithms are widely employed in 
analyzing DNA microarray data ([2] [5] [8]). Clustering 
gene expression data is to discover unknown genes with 
already identified genes in the same cluster and also to 
provide clues to their functions. When genes with similar 
expression profiles involve in similar biological 
processes, clustering algorithms can group them together. 
A gene expression is a value of a gene derived by a 
biological process. A gene expression profile refers to the 
set of the expression values for a single gene across many 
experimental conditions. This paper focuses on clustering 
the E. coli gene expression data in order to identify 
unknown genes involved in the Acid Tolerance Response 
(ATR) [13] of E. coli, which are regulated by the 
regulator gene yhiX. There are 4290 E. coli gene 
expression data under eight different conditions from the 
microarray experiments.  

The large range of gene expression values has a 
negative influence on the clustering process; therefore the 
normalized values, instead of the original values, will be 
used as data sources in order to discover more accurate 
clustering results. We normalize a gene expression value 
by dividing it by the value of the experimental condition 

Wt7-4(2)pct :
4(2)pct-Wt7

tionsOneOfCondi
 where Wt7-4(2)pct is 

a natural and original condition.  
The normalized gene expression values show the 

trend of how the gene expression values changed under 
different conditions. Therefore, the normalized expression 
values are more meaningful for biological processes. In 
the rest of this paper, the terms profile and gene 
expression will be used to mean normalized profile and 
normalized gene expression, respectively. 
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The E. coli gene expression data have the following 
special characteristics that must be taken into 
consideration when clustering them:  

• In the E. coli gene expression data, there are less 
than 1.5% genes that we may be interested in. That means 
that there are a high percentage of genes that are not 
regulated by yhiX, called noise genes. The existing 
clustering algorithms, such as CLICK [12], hierarchical 
clustering [7] and K-means [1], cannot avoid the negative 
influence of the high percentage of noise data during the 
clustering process. Noise data is not what we are 
interested in. Although some existing algorithms, such as 
SOM [11], GNG [6], and FLVQ [10], are not very 
sensitive to noise data based on their theoretical analyses, 
the exceptionally high percentage of noise data in the E. 
coli gene expression data still has a negative effect on 
their performance.  

• The expression values of noise data have similar 
values under different experimental conditions, while the 
expression values of the potential target genes increase or 
decrease in the biological processes according to the 
changes in the experimental conditions. In some 
applications, this kind of data may be treated as outlier 
data by clustering algorithms. However, genes with this 
kind of profiles are what a clustering algorithm needs to 
cluster with target genes. 

• There are 13 genes that are identified as ATR 
genes of E. coli. Clustering algorithms need to discover 
other unknown genes that have the expression profiles 
similar to those of the target genes. 

The existing data clustering algorithms (CLICK, 
Hierarchical Clustering, K-means and SOM) do not use 
the data set similar to ours for testing and do not consider 
the above characteristics of the E. coli gene expression 
data though they perform well when analyzing other 
biological data. The objective of this paper is to propose a 
new clustering algorithm to analyze the E. coli gene 
expression data by taking all their characteristics into 
consideration. In order to compare the proposed algorithm 
with the six existing clustering algorithms, CLICK, 
Hierarchical Clustering, K-means, SOM, GNG, and 
FLVQ, this paper then proposes an evaluation model to 
assess their performance on analyzing the E. coli gene 
expression data.   

The rest of this paper is organized as follows. Section 
2 presents the proposed algorithm called Multilayer 
Adjusted Tree Organizing Map (MATOM). Section 3 
proposes an evaluation model to compare MATOM with 
the existing clustering algorithms. Finally, Section 4 
provides conclusions and future research. 

 
2. The Multilayer Adjusted Tree 
Organizing Map Algorithm 
 

2.1 Introduction 
 
The Multilayer Adjusted Tree Organizing Map (MATOM) 

algorithm proposed in this section is a semi-supervised 
algorithm based on the neural network model. MATOM consists 
of multi-layers of maps. A map is a particular neural network, 
which can define a lattice of connections of neural nodes and a 
shape of a map in the multidimensional space [11]. In the 
following discussion, the term "map layer" and "map" will be 
used interchangeably. Using the batch training algorithm [11], 
MATOM builds a multilayer neural network and a relation tree 
of the resulting clusters. In a semi-supervised manner, MATOM 
tracks the target data and deletes the map nodes that contain 
only noise data in order to save training time on clustering noise 
data. The target genes for the E. coli gene expression data are 
already known.   

Below we identify the existing clustering algorithms' 
deficiencies and address them in MATOM: 

• Hierarchical clustering produces only the relation 
tree of all data elements in the whole dataset, not of only 
the resulting clusters. The limitation of the hierarchical 
clustering algorithm is that it only produces the 
dendrogram tree, not the final resulting clusters directly 
even though they can be produced by cutting off the tree.  
The relations of clusters are more helpful than those of 
single data elements because they can be used for 
merging or splitting the resulting clusters. A dendrogram 
tree produced by the hierarchical clustering algorithm 
does not provide such information. MATOM produces the 
final clustering results directly while providing the 
relation tree of clusters. 

• K-means requires the number of clusters, K, to 
be predefined.  With different values of K, K-means 
produces different clustering results. The algorithm does 
not provide any information of how to choose a correct 
value for K. If a correct value of K is not available, it is 
not easy to achieve the desired clusters. The same 
problem also exists in FLVQ. On the contrary, MATOM 
does not require the number of clusters to be specified in 
advance. The relation tree of clusters provided by 
MATOM can be employed to adjust the algorithm 
parameters for use in its next executions. 

• GNG adapts the outlier data to the growing map 
structure effectively. Therefore, GNG has a high 
percentage of accuracy of clustering results and a low 
percentage of false genes in the clusters. However, GNG 
uses a huge amount of execution time because it inserts 
only one new node into the map during each training 
epoch. MATOM, with the multilayer neural network 
model, avoids the influence of noise data to save time on 
training the map nodes of noise data. 

• The advantage of SOM is the use of the 
Kohonen updating rule [11], which trains a map 
efficiently and produces accurate clustering results. 
However, SOM wastes time to train noise data resulting 
in a negative impact on the correct training process. It is 
not easy to adjust the map size in SOM because SOM 
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does not provide the relations of the map nodes directly. 
The termination of SOM is not based on any optimization 
process.  

• The existing clustering algorithms do not allow 
users to determine the size of the final clusters.  This size 
is useful for biologists because they need to screen a 
limited number of target genes from huge amounts of data 
to study them in the next step of biological analysis. 
MATOM provides a function to allow users to determine 
the size of the final clusters and uses this to decide when 
it should terminate its execution. 

 
2.2. The MATOM Algorithm 

2.2.1. Basic Ideas 
During the training process, MATOM trains the map 

nodes that contain the target genes, employing the batch 
training algorithm [11]. MATOM is terminated when the 
desired clusters are achieved by testing the size of the 
final clusters. Using Best Match Unit, MATOM finds the 
centroids of the map nodes and uses them to construct the 
relation tree's leaves. In other words, MATOM constructs 
each new layer of the maps on the nodes that contain the 
target genes by tracking the sample genes. 

2.2.2. The Details of the MATOM Algorithm 
STEP 1: Require users to set the map size and the 

final clusters' size (the map size is the number of nodes in 
the map and the final clusters' size is the number of genes 
in the final clusters). Initialize the weight vectors for the 
map nodes.   Each map node has a weight vector.  The 
weights of the nodes in the first map (or also called the 
first map layer) are randomly initialized by choosing 
some data elements from the data set, mi , as <mi1, mi2, … 
min>, where mi is the initial weight vector of map node i, 
and n is the number of attributes of the input data 
elements. Usually, the map size is chosen as 2x2. The 
number of training times (epochs) is usually set to max {1, 
4*munit/dlength}, where munit is the number of map 
nodes and dlength is the length of the data set [Juha 99]. 
MATOM chooses Gaussian Function as the neighborhood 
function, and hexagonal lattice as the map lattice [Juha 
99].  

STEP 2: Enter data and related information from the 
data set to the algorithm. Import the whole input data set 
into the training data set and sample data set into the 
reference data set.  

STEP 3: Determine the winner node or best match 
unit (BMU). BMU has the Euclidian shortest (minimum) 
distance to its data elements x: ||x-mb||=min {||x-mi||}, 
where mb is the BMU, mi is a weight vector of map node 
i, x is a vector representing a data element, the distance 

between x and mi is calculated using the Euclidean 

distance function, imx − ( )∑
=

−=
n
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ijj mx
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STEP 4: Update the weights within the neighborhood 
of the map nodes using the batch training rule. Each BMU 
(also called the centroid of a map node) is updated using 
the following batch training rule with the predefined 
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the neighborhood radius rate at the training time t (a 
neighborhood radius rate is a range of a radius between a 
winner node and its neighbors),  mj and mi are the 
positions of BMU b and its neighbor node i on this map 
layer. ( )tσ  is the neighborhood radius rate [radius_ini, 
radius_fin] at time t in which the initial radius (an 
optional parameter) is radius_ini= { }2/,1max mapsize  
(radius_ini can also be defined by users) and the final 
radius, radius_fin, is usually set as 1. Record the centroids 
of this map layer for constructing the relation tree later.  

STEP 5: Build a new layer of the map and delete the 
noise data in the previously trained map. Track critical 
nodes which are nodes containing the sample data 
elements. Construct a new layer of the map from the 
previous critical nodes. 

STEP 6: Construct a relation tree of the map nodes 
using the centroids of the maps. Build this tree structure 
for each layer of the multilayer maps using the single-link 
algorithm as follows: for each layer of the map, find the 
two nodes xi and xj that have the shortest 

distance { }jijis xxd −= ,min , store them as the two 

leaf nodes in the relation tree whose distance in the tree is 
corresponding to their distance in the map, then merge xi 
and xj into one node xk representing their average value, 
add xk to the nodes to be examined, and remove xi and xj 
from the nodes to be examined, then repeat the entire 
process until no new nodes are added to the relation tree. 
Each level of the tree is drawn from the nodes in one layer 
of the multilayer maps. The leaves of the tree represent 
the nodes of the maps.  

STEP 7: Terminate the algorithm if the size of the 
critical nodes reaches the one set in STEP 1; otherwise, 
repeat STEPs 3-7. 
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2.3. The Advantages and Disadvantages of 
MATOM 
 
2.3.1. Advantages 

• Through the multilayer neural network structure, 
MATOM deletes noise data by building a new layer from 
the critical nodes as well as reducing the percentage of 
noise data in new map layers. MATOM is robust and not 
sensitive to noise data because the structure of the 
multilayer maps allows MATOM to delete noise data at 
the beginning of the training process. MATOM can 
recognize the correct noise data by tracking critical nodes 
when the percentage of noise data is much higher than 
that of target data in the data set. There is no existing 
clustering algorithm that deletes noise data in this way. In 
a semi-supervised manner, MATOM would not miss the 
potentially interested data elements by tracking the 
critical nodes. 

• MATOM produces a relation tree of clusters that 
users can employ to adjust the algorithm parameters for 
use in its next executions, such as the size of the final 
clusters and the initial map size. This prevents users from 
repeatedly running MATOM blindly. The hierarchical 
clustering algorithm [9] draws a dendrogram tree to 
provide the relations of data elements in the whole data 
set. However, the relations of clusters provided by 
MATOM help users adjust the parameters of clustering 
training processes directly. Users obtain the degree of 
similarities among clusters through the distance of the 
clusters provided by the relation tree. This can be used to 
determine whether clusters should be merged or split. If 
there are two clusters that have a short distance in the 
relation tree, they can be merged together as one cluster 
for studying the profiles of genes in them. This helps 
biologists identify those genes’ behaviors in similar 
biological processes. On the other hand, users can adjust 
the size of the final clusters for the next clustering 
processes. For instance, if some critical nodes in the same 
level of the relation tree are far away from each other (i.e. 
the distance between them is long), the size of the final 
clusters can be adjusted to be smaller. By doing that, users 
can know the size of the final clusters that they should use 
in the next executions of MATOM. 

• Employing the batch training rule, the weights of 
the map nodes in MATOM are independent of the order 
of the input sequence, which leads to more accurate 
clustering results. MATOM also reduces the percentage 
of false genes in the final results by avoiding the negative 
effect of the order of the input data sequence on the 
training process. In contrast, classical SOM using the 
sequential training rule [11] provides the final clusters 
that contain a high percentage of false genes because the 
sequential training process is sensitive to the order of the 
input data sequence. 

• MATOM provides a function to allow users to 
determine the size of the final clusters directly. This 
allows users to terminate MATOM when they desire. The 
existing clustering algorithms do not provide this kind of 
terminating functions.  

 
2.3.2. Disadvantages 

• MATOM requires users to predefine the size of 
the final clusters. Before analyzing data, users usually do 
not have any knowledge about this parameter. However, 
users can determine and adjust this parameter based on 
the relation tree of clusters provided by MATOM after the 
first time running the algorithm. Although K-means 
provides an error function determining the distance 
between the centroids of the final clusters and the data 
elements in the final clusters, which can be used to 
terminate K-means, the error value cannot produce any 
direct clue to adjust the value of K, which is a critical 
parameter of K-means. FLVQ has the same problem. 
Based on the neural network model, SOM and GNG 
cannot present the relations of the map nodes directly. 
Because of this limitation of SOM and GNG, it is difficult 
to adjust the map size in order to obtain better clustering 
results. 

• The initial map size is a critical parameter for 
MATOM. If users do not have sufficient knowledge about 
their target data elements, it is difficult for them to choose 
the correct map size. MATOM starting with a small map 
size may require a long time to finish the clustering 
process when target data elements are distributed in 
different map nodes. This is because MATOM needs to 
build many layers of maps to cluster target genes into 
different nodes. In another situation where target data 
elements should be clustered into one cluster, MATOM 
starting with a big map size may lead to false clustering 
results because it groups target data elements into 
different nodes of the initial big map at the beginning. In 
the situation where target data elements are distributed in 
different nodes, MATOM starting with a small initial map 
size also finds the correct clustering results through the 
multi-step construction of the new layers. Therefore, a 
small initial map size is recommended.  

• Users have to provide some target data elements 
that allow MATOM to cluster the related data elements 
correctly in a semi-supervised manner. If there are some 
data elements that users may be interested in but are not 
in the target data elements set, called hidden target data 
elements, MATOM could miss them totally in the 
clustering results. The clusters that contain hidden target 
data elements are called hidden target clusters. Although 
other clustering algorithms that do not delete noise data 
do not miss hidden target data elements in the final 
clustering results, users may also ignore them because 
users usually do not explore every cluster but focus on 
only the clusters containing the already-identified data 
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elements. MATOM sacrifices missing hidden target data 
elements to get a more efficient training process. 

 
3. Experimental Results 
 
3.1. The Proposed Evaluation Model 
 

From the research work on E. coli genes by the 
University of Oklahoma's Microarray Facility [13], there 
are thirteen genes regulated by yhiX and containing the 
putative yhiX binding motif, called target genes regulated 
by yhiX with high confidence. Another eleven genes 
regulated by yhiX but lacking the binding motif are called 
target genes regulated by yhiX with low confidence. The 
thirteen genes regulated by yhiX with high confidence 
should be clustered into one cluster. The eleven genes 
regulated by yhiX with low confidence should be 
clustered into another cluster. The profiles of these two 
clusters should be similar because the genes in those two 
groups are both regulated by yhiX, but the genes of the 
first group contain the putative yhiX binding motif and the 
genes of the second group lack the yhiX binding motif. In 
other words, the distance between the centroids of these 
two clusters is short.  

Unlike the traditional algorithm evaluation model, 
which measures execution time and memory space, our 
evaluation model focuses on the accuracy of the 
clustering results.  There are seven parameters in our 
evaluation model: n denoting the number of genes in a 
cluster; nh the number of genes regulated by yhiX with 
high confidence; nl the number of genes regulated by yhiX 
with low confidence; nfh the number of false genes in the 
cluster that should contain only genes regulated by yhiX 
with high confidence; nfl the number of false genes in the 
cluster that should contain only genes regulated by yhiX 
with low confidence; and nA the number of target genes 
with high and low confidence in the right clusters where 
target genes should be clustered. The performance 
measurements are defined as follows: 

• The percentage of genes regulated by yhiX with 

high confidence in the clusters: %
n
nC h

Th = . 

• The percentage of genes regulated by yhiX with 

low confidence in the clusters: %
n
nC l

Tl = . 

• The percentage of false genes in the cluster that 
should contain only target genes regulated by yhiX with 

high confidence: %
n

n
C fh

Fh = .  

• The percentage of false genes in the cluster that 
should contain only target genes regulated by yhiX with 

low confidence: %
n

n
C fl

Fl = .  

• The accuracy of clusters is the percentage of 
target genes with high and low confidence that are 
grouped into the right clusters where the target genes 

should be clustered: %
n

nC A
A = . 

• The average percentage of the first four 

measurements:
N

C
C etgenesallt

i

ia

∑
= arg , where Ci is CTh, CTl, 

CFh or CFl , and N is the total number of all target clusters 
that contain the target genes.  

An ideal algorithm should give a zero value of CFh 
and CFl. A clustering algorithm may cluster some false 
genes in its final clusters. Therefore, it is important to 
measure the percentage of false genes. Moreover, the five 
performance measurements listed above can present the 
whole picture of the performance of a clustering 
algorithm. In the proposed performance evaluation model, 
CTha, CTla, CFha and CFla are used. Although the target 
genes with high confidence and with low confidence 
should be grouped into two separate clusters by an ideal 
clustering algorithm, they may be clustered into many 
clusters. This is the reason why CA is a key measurement 
to evaluate the performance of a clustering algorithm. CA 
measures the accuracy of the clustering results produced 
by the algorithm. In the evaluation model, an algorithm 
that has the best performance should yield higher values 
of CTha, CTla and CA and lower values of CFha and CFla.   

 
3.2. Performance Comparisons 
 

In this section, a performance comparison of the six 
existing algorithms (CLICK, Hierarchical Clustering, K-
means, SOM, GNG, and FLVQ) and MATOM using the 
proposed evaluation model is presented. The values of 
each measurement and the critical parameters of the 
algorithms are listed in Table 1. Figure 1 shows the 
percentages of target genes that each clustering algorithm 
can cluster in the right clusters.  Figures 2 and 3 show the 
capabilities of the algorithms to cluster the target genes 
with high confidence and low confidence, respectively.   

A good algorithm should have a high percentage of 
clustering accuracy and a low percentage of false genes in 
the final clusters. The average percentage of false genes in 
the final clusters of genes with high confidence, CFha, is 
recorded on the y-axis and the accuracy of clusters, CA, is 
on the x-axis. The accuracy of clusters only considers 
how many percents of the target genes with high and low 
confidence can be clustered into the right clusters, but 
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ignores the false genes in the right clusters.  Therefore, we 
also need to consider the percentage of false genes in the 
same performance measurement figure. For instance, in 
the experiments, K-means_2 clusters all the target genes 
into the right clusters, but it has more than 90% false 
genes in those clusters. Giving an extreme example, if 
there were a cluster that contained 4290 genes (the whole 
dataset), all targets would be in the right cluster but then 
there would be more than 99% of false genes in the same 
cluster. This kind of clustering results does not provide 
any valuable information.  

In Figure 1, MATOM has the best balance point of 
the accuracy of the clustering results and the percentage 
of false genes. This figure also verifies that the 
performance of the classical SOM using the sequential 
training rule is worse than that of the batch training 
version of SOM, a result that has been stated in a number 
of existing works [3]. The two versions of SOM have 
average performances in terms of clustering accuracy and 
percentage of false genes. As also shown in this figure, 
with different values of K, K-means provides totally 
different results. CLICK has an average performance in 
terms of the accuracy of the clustering results but gives a 
very high percentage of false genes. Therefore, it does not 
produce valuable clustering results. FLVQ has a very low 
clustering accuracy and is not suitable for gene expression 
analysis. GNG has an average performance in terms of 
clustering accuracy and percentage of false genes. By 
cutting the dendrogram tree to find the final clusters, the 
hierarchical clustering algorithm still yields only an 
average performance.  

Figure 2 reports the capabilities of the algorithms in 
clustering the target genes with high confidence. The 
average percentage of false genes in the clusters of genes 
with high confidence, CFha, is recorded on the y-axis and 
the average percentage of target genes with high 
confidence, CTha, is on the x-axis. MATOM is a semi-
supervised clustering algorithm, which tracks the thirteen 
target genes with high confidence during the clustering 

process. MATOM will not miss the target genes with high 
confidence. Therefore, for MATOM, in the clusters of 
target genes that have high confidence, the percentage of 
false genes is more important than that of target genes. In 
Figure 2, MATOM has the highest percentage of target 
genes with high confidence and the lowest percentage of 
false genes. In Figure 2, K-means_3, K-means_1, 
hierarchical clustering, FLVQ and GNG also have better 
performances than K-means_2, CLICK, SOM_1, and 
SOM_2. The batch version of SOM has fewer false genes 
than the sequential version of SOM, and thus is more 
suitable for the E. coli gene expression data analysis. 
CLICK and K-means_2 have almost 100% of false genes 

Figure 3 assesses the capabilities of the algorithms in 
clustering target genes with low confidence. The average 
percentage of false genes in the clusters of genes with low 
confidence, CFla, is recorded on the y-axis and the average 
percentage of target genes with low confidence, CTla, is on 
the x-axis. In Figure 3, SOM_1 performs better than 
MATOM and other unsupervised manner clustering 
algorithms. But examining Figure 1, the batch version of 
SOM does not cluster more target genes in the right 
clusters. In other words, the batch version of SOM has 
lower accuracy of clustering results than MATOM. 
Combining the performances recorded in Figures 1 and 3, 
MATOM performs the best because of its highest 
accuracy of clusters and its second-highest percentage of 
the target genes with low confidence as well as its lowest 
percentage of false genes. K-means_1, K-means_2 and 
CLICK do not find more target genes with low 
confidence, but have more than 80% of false genes. 
Hierarchical clustering is poor at clustering the target 
genes with low confidence. FLVQ, with the worst 
performance in Figure 3, does not find any target genes 
with low confidence. GNG, K-means_3, and the 
sequential version of SOM cluster a small number of 
target genes with low confidence but have more than 80% 
of false genes in the final clusters. 

Table 1. The Performances Results of the Clustering Algorithms 
Algorithm Critical Parameter Ctha Ctla Cfha Cfla Ca 
Hierarchical 
Clustering cutoff=1.54 52.00% 4.00% 44.00% 44.00% 62.50% 
K-means_1 K=100 52.93% 17.88% 47.07% 82.12% 41.66% 
K-means_2 K=3 1.46% 1.24% 98.54% 98.76% 100.00% 
K-means_3 K=200 54.63% 13.88% 45.37% 86.11% 41.67% 
GNG 22 map nodes 57.14% 9.52% 42.86% 90.48% 66.67% 
SOM_1 Map size 4x20; batch training rule 44.44% 33.33% 55.56% 66.67% 54.17% 
SOM_2 Map size 4x20; sequential training rule 33.33% 12.82% 66.67% 87.18% 75.00% 
CLICK EdgeThreshold=6 7.63% 2.66% 92.37% 97.34% 62.50% 
FLVQ Initial 50 clusters 62.94% 0.00% 37.05% 0.00% 16.67% 
MATOM Initial map size 2x2, size of final cluster 18 79.41% 25.80% 17.65% 74.19% 79.17% 
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Figure 1. The Accuracy of the Clustering Results vs. Percentage of False Genes in the Final Clusters 
of Target Genes with High Confidence 
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of Target Genes with High Confidence 

3.3 Comparison Conclusions 
 

From the analysis above, it can be concluded that 
MATOM performs the best among the studied clustering 
algorithms in analyzing the E. coli gene expression data. 
MATOM has the best balance points in Figures 1 and 3. 
Although the batch version of SOM performs a little bit 
better than MATOM in Figure 3, the batch version of 
SOM has much lower accuracy of clusters than MATOM 
in Figure 1 does.  

Comparing with other clustering algorithms, 
MATOM provides several functions to analyze gene 
expression data, such as the relation tree of clusters and 
the function to allow users to determine the size of the 
final clusters. In a semi-supervised manner, MATOM 
avoids the negative influence of noise data on the 
clustering process. As seen in the performance 
comparison, MATOM has more advantages and useful 
features for clustering E. coli gene expression data than 
other algorithms do. 
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Figure 3. The Target Genes with Low Confidence vs. the Percentage of False Genes in the Clusters 
of Target Genes with Low Confidence 

 
4. Conclusions and Future Research 
 

This paper proposed a novel clustering algorithm 
called Multilayer Adjusted Tree Organizing Map 
(MATOM) to analyze the E. coli gene expression data. 
The paper then presented the comparison results for 
clustering the E. coli gene expression data and showed 
that MATOM performs the best. MATOM was developed 
to take the characteristics of the E. coli gene expression 
data into consideration. For other biological analysis 
applications that also share the properties similar to those 
of the E. coli gene expression data, MATOM should yield 
a good performance. However, to verify this, our future 
work includes running MATOM on other biological data 
sets.  
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