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ABSTRACT 
Data broadcasting is well known for its excellent scalability. Most 
geographical data, such as weather and traffic, is public information 
that has a large amount of potential users which makes it very 
suitable for broadcast. The query response time is greatly affected by 
the order in which data items are being broadcast. This paper 
proposes an efficient method to place geographical data items over 
broadcast channel that reduces access time for spatial range queries 
on them. This paper then performs evaluation studies comparing 
different ordering methods: 1000 random orderings, R-Tree 
traversal ordering, Hilbert ordering and the optimized ordering 
based on the proposed method. The results show that the optimized 
ordering is significantly better than the others.  

Categories and Subject Descriptors 
H.2.4 [Database Management]: Systems 

General Terms 
Algorithms, Management, Measurement, Performance, Design 

Keywords 
Data Broadcast, Geographical Information, Cost Model, Query 
Processing, Optimization, Mobile Computing 

1. INTRODUCTION 
Data broadcasting is well known for its excellent scalability 
(Imielinski, 1997). Most geographical data, such as weather and 
traffic information, is public and has a large amount of potential 
users. It is attractive to broadcast geographical data in metropolitan 
areas to reduce the increasing demands for wireless bandwidth 
resources. Furthermore, for users that are able to be aware of their 
locations by using Global Position Systems (GPS), network 
infrastructures or their combinations (Konig-Ries, 2002), they can 
perform Location Dependent Queries (LDQ) (Seydim, 2001) to 
request Location Dependent Services (LDS). It is easy to see that 
LDQ on broadcast geographical data over air is particular interesting 
in the context of large-scale resource-efficient data dissemination in 
mobile computing. Spatial range query (Rigaux, 2002) processing 
on broadcast geographical data will be one of the most popular ways 
to provide LDS.   

In a broadcast system, a minimum logical unit in a broadcast 
sequence is called a bucket/frame, and a set of continuous buckets 
(either index or real data) is called a segment. Different from main 
memory or disk resident data accesses, accesses to a broadcast 
sequence are essentially one-dimensional. There are two important 
parameters in evaluating the performance of a broadcast system, 
namely Tune-in Time (TT) and Access Time (AT, or latency). TT is 
the amount of time spent by a client listening to the broadcast 
channel. AT is the average time elapsed from the time a client 
requests data to the time when all the required data is downloaded 
by the client. In Fig. 1, TT is equal to the summation of the lengths 
of the required data items (shaded) while AT is the duration between 
the initial access position and the last required data item. 

 

Fig. 1 Illustration of TT and AT 
 

In (Imielinski, 1997), AT is the sum of the Probe Wait (PW) and the 
Bcast Wait (BW) where the former is the average duration for 
getting to the next index segment and the latter is the average 
duration between the time when the index segment is encountered 
and the time when all the required data items are downloaded. We 
argue that it might be more appropriate to divide AT into four 
components: Index-Probe Wait (IPW), Index-Bcast Wait (IBW), 
Data-Probe Wait (DPW) and Data-Bcast Wait (DBW). IPW is the 
same as PW. IBW is the time duration from the time when the first 
index segment is met to the time when the last index segment is met. 
DPW is defined as the duration from the time the last index segment 
is reached to the time when the first data segment is reached. DBW 
is defined as the duration from the time when the first data segment 
is reached to the time when the last data segment is downloaded. 
The summation of IBW, DPW and DBW is equivalent to BW. 
Using the four components allows us to compute access time to 
index and data separately. We assume a client has already had an 
ordered set of pointers to the data items in the broadcast channel by 
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performing a spatial range query on the index segments which are 
either in the same channel with the data or in a separate index 
channel. The scenario we consider is the one in which the index and 
data are broadcast using two separate channels where a client may 
begin access the data channel at any position. These four 
components under this scenario are illustrated in Fig 2.  

 
Fig. 2 The Four Components in Access Time for the Scenario 

that Index and Data Use Separate Channels 

Spatial range query is a type of “Complex Query” (Lee, 2002) 
whose result set includes multiple data items. The query response 
time is greatly affected by the order in which data items are being 
broadcast. Suppose there are 6 data items {1,2,3,4,5,6} to broadcast 
and there are two data items {2,5} in a spatial range query result. It 
only takes two unit of time to retrieve the query result if data item 2 
and 5 are placed next to each other. However, it would take 4 unit of 
time to retrieve them in natural ordering. The placement is 
complicated when there are multiple such complex queries with 
different access frequencies over broadcast data.  

The objective of this paper is to provide an efficient and effective 
optimization method to generate broadcast sequences that reduce the 
access time for processing spatial queries on broadcast geographical 
data. The rest of this paper is arranged as follows.  Section 2 reviews 
the related work. Section 3 presents the quadratic cost model and 
Section 4 provides the optimization method. Experiments using 
synthetic data sets are presented in Section 5, and finally Section 6 
provides conclusions and future work directions. 

2. RELATED WORK 
Range queries are the most frequently used spatial queries and have 
been extensively studied in disk-resident data management research. 
Several cost models have been proposed for measuring the 
performance of spatial indexing on range queries (Pagel, 1993; 
Theodoridis, 1996; Theodoridis, 2000). The measurement used is 
the number of disk accesses which is equivalent to TT in 
broadcasting without considering paging and buffering effects. 
However, to the best of our knowledge, there is no previous work 
done on access time for spatial range queries on broadcast spatial 
data.  

There have been several studies on general data broadcast. Many of 
them focus on indexing techniques to make tradeoffs between TT 
and AT, such as tree-indexing (Imielinski, 1994a), hashing 

(Imielinski, 1994b), signature (Lee, 1996) and hybrid (Hu, 2001a). 
These studies can support only queries on one-dimensional data and 
allow only one data item per access.  Although (Imielinski, 1997) 
proposed to chain data items that have the same values in different 
meta-segments in its nonclustering index and multi-index methods, 
it cannot be applied to data items that have different values but are 
often in the same query results. Furthermore, in its performance 
analysis, it assumes that it takes a whole broadcast cycle to retrieve 
non-clustered data items of a particular value.  That is an 
unnecessary overestimation. The issue of multi-attribute data 
broadcast and query was first addressed in (Hu, 2001b). However, 
this work can handle only conjunction/disjunction queries that 
involve fewer than three attributes. They are not suitable for spatial 
range queries on geographical data. 

Recent works on object-oriented database broadcast (Chehadeh, 
1999) and relational database broadcast (Lee, 2002) allow multiple 
data items to be accessed in a query. However, they assumed that 
accesses to data items have predefined orders. They are not suitable 
for spatial range queries since data items in a query result since the 
order of data items in a range query result is not important. The 
work presented in (Chung, 2001) is essentially similar to our cost 
model of data access time. However, it excludes TT from the access 
time for the items in the query result set which makes the total 
access time a summation of multiple quadratic terms. To simplify 
the result, it uses a linear function to approximate the quadratic cost, 
which renders the model inaccurate. Furthermore, its proof of the 
approximation is incorrect. None of the above cost models is 
designed for spatial range queries. We believe that the cost model 
we use, in which the access time for a single query is linear with 
respect to a single quadratic term (see Section 3 for details), is more 
concise and accurate.  

From graph algorithms’ perspective, sequencing graph nodes can be 
treated as a graph layout problem. A survey on graph layout 
problems was presented in (Daíz, 2002). A window-based vertex 
orderings with applications to circuit clustering was presented in 
(Alpert, 1996) where unordered vertices are iteratively added to the 
ordering based on their attractions to the previously ordered vertices. 
(Bar-Yehuda, 2001) presented a polynomial time algorithm for 
computing an optimal orientation (ordering) of a balanced 
decomposition tree for the graph linear arrangement problem. 
Although the theoretical approximation ratios were not improved, 
experiments showed good results. A multi-scale scheme for MinLA 
problem is presented in (Koren, 2002). Different from (Bar-Yehuda, 
2001) which imposed global constraints on the ordering through the 
Binary Decomposition Tree (BDT), it imposed many local 
constraints restricting small sets of vertices throughout the entire 
multi-scale hierarchy. 

The only previous work on geographical data broadcast we know is 
(Hambrusch, 2001). It studied the execution of spatial queries on 
broadcast tree-based spatial index structures. Their work assumes 
the client had very limited memory, the whole R-tree cannot be fit 
into the client memory and the client has to discard some retrieved 
R-Tree nodes to hold more useful ones during the query process. 
Their work focus on reducing extra access time incurred by having 
to access multiple broadcast cycles due to the discard and 
replacement. We assume that a client has already had the pointers to 
the data items in the data channel, either from another separate index 
channel or from the same channel that combines both the data and 
index. A client can sort the values of the pointers and thus only one 
scan of the data channel is sufficient to retrieve all the data items. 

31



 

 

3. THE COST MODEL 
To reduce the access time to the data broadcast channel, we first 
derive a cost model to compute the access time for spatial range 
queries over broadcast geographical data.  It will be used in the 
optimization method presented in Section 4. The details of this cost 
model have been presented in our previous work (Zhang, 2003). 
Here we provide a summary of its results only which are given in the 
followings.   

Let DS=[x1,x2)× [y1,y2) be the data space that defines all the 
geographical point data items. Suppose the range query window is 
(qx,qy). We define an Extended Region Ru of data item Pu as the 
rectangle of (qx,qy) centred at Pu.   Let iA  be the area of Ri, jiA , be 

the intersection of area of Ri and Rj, … nA ...2,1 be the intersection 

area of R1, R2…Rn. Let iA~  be the part of iA  query windows 

centered in which solely contains point Pi, jiA ,
~

be the part of 

jiA , query windows centered in which solely contains points Pi and 

Pj, … nA ...2,1
~

 be the part of the intersection area of R1, R2…Rn that 

contains all the n points. Note nA ...2,1
~

= nA ...2,1 . 

We use hyper-graph to represent all possible spatial range query 
result sets. Given a set of nodes V, a hyper-edge in the hyper-graph 
consists of the nodes in a distinct spatial range query result set 
{n1,n2..nk}. The access frequency of such a set, which is 
proportional to 

knnnA ,..., 21

~
, will be used as the weight of the 

corresponding hyper-edge. 

Let function π(u) map point u to its position in the broadcast 
sequence. Let L be the broadcast cycle length. For a single query 
result set contains k data items n1, n2 … nk,, let L2 denote the DBW 
of a query result set with a query window size of (qx, qy), formally, 

)}(),...(),(min{)}(),...(),(max{ 21212 kk nnnnnnL ππππππ −=
The average access time to data channel, i.e. from a client begin to 
access data channel to the time all the data items are downloaded 
(DPW+DBW) can be computed as follows and denoted as function 
g(L2). 

]
2

)()([1)( 2
2

22
2
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L
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The total data access time for a query window (qx,qy) can be written 
by  summarizing the access time over all possible query result sets : 

 
 
 
 
 
 

 
  
 
 
 

Let Q be all possible query windows and let 
 
 
 
 
 
 
 

The total access time can be computed as follows:  

 

 

 

 

 

 

 

4. THE OPTIMIZATION METHOD 
Having presented the quadratic cost model in terms of total access 
time in processing all possible spatial range query result sets for a 
point data set, we next present the optimization method to reduce 
the total access time.   

4.1 General Ideas 
It can be observed that the cost model we have developed is 
structurally similar to the Minimum Linear Arrangement (MinLA) 
problem in graph theory defined as follows (Daíz, 2002): 

 

 

Where w(u,v) is the weight of an edge of nodes u and v in the graph. 
Function π(u) is the same as that defined in Section 3 which maps 
node u to its position in an arrangement (an ordering or a sequence 
in our terms). The graph MinLA problem is a well-studied problem 
and several efficient approximation methods have been proposed 
(Bar-Yehuda, 2001; Koren, 2002). However, there are two problems 
concerning the differences between MinLA and our cost model 
which prevent us from using them directly. The first problem is that, 
our cost model is quadratic with respect to the differences in the 
positions of the beginning and ending nodes in a hyper-edge while it 
is linear in MinLA as its name suggests. The second problem is that 
there are multiple data items in a query result set and thus a hyper-
graph representation (Section 3) is more appropriate for our cost 
model than a graph representation for MinLA. 

To solve the first problem, we observe that the cost model for a 
single query in terms of DPW+DBW, i.e. g(L2), increases 
monotonically as DBW, i.e. L2,  increases and vice versa (Section 
3). Thus L2, which is the hyper-graph version of “edge length”, is a 
good linear approximation of g(L2). By doing so we are expecting 
that the optimized ordering where the optimization is based on the 
definition of la(G) which is linear with respect to L2, is also a good 
ordering according to quadratic cost model respect to L2. To solve 
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the second problem, we adopt the approximation algorithm 
proposed in (Bar-Yehuda, 2001) for our application. We have 
proved the correctness of using the algorithm for hyper-graphs. The 
proof can be found in ([HREF 1]) and is omitted here due to space 
limitation.  

An ordering of data items using a mapping function π is called the 
ordering π. For the rest of this paper, we will call the access time of 
the ordering π “linear cost” if it is computed according to the 
definition of la(G), or “quadratic cost” if it is computed according to 
our quadratic cost model. We next briefly introduce the approximate 
algorithm for optimization proposed in (Bar-Yehuda, 2001) and 
illustrate the method through a simple example.  

4.2 The Approximation Algorithm  
The approximation algorithm proposed in (Bar-Yehuda, 2001) 
adopts a divide-and-conquer strategy. It imposes a global ordering 
constraint on a graph by using a Binary Decomposition Tree (BDT). 
A BDT T is a binary tree that has all the nodes in a graph as its leaf 
nodes as shown in Fig. 6. For each tree t∈ T that has two sub-trees t1 
and t2, we have two options in placing the nodes under it into a 
broadcast channel, i.e., either the nodes under t1 are placed ahead of 
the nodes of t2 (called 0-orientation), or the nodes under t2 are placed 
ahead of the nodes under t1 (called 1-orientation).  The algorithm 
starts with the root of the BDT and computes the costs of the two 
possible orientations of its two sub-trees recursively. The orientation 
that has lower cost is kept while the one that has a higher cost is 
discarded. The resulted orientations at each intermediate node of the 
BDT form an orientation tree that has the same structure as the 
BDT. The orientation tree determines an ordering sequence of all 
the nodes in a graph. 

 
Fig . 6 A Binary Decomposition Tree 

Since t has two orientations and the orientations of its two sub-tress, 
t1 and t2, are independent of each other, it is easy to prove that there 
are 2n-1 orderings for a full and balanced BDT.  The efficiency of the 
algorithm is achieved by examining 2n-1 orderings in O(n2) time by 
computing the cost of t from the costs, the left outer cuts and the 
right outer cuts (see definitions below) of its two sub-trees in linear 
time. The left outer cuts and the outer right cuts of t again can be 
computed from the left outer cuts and the right outer cuts of its two 
sub-trees in linear time. 

The Cost L,V(t),R,π with regards to a BDT sub-tree t under the 
ordering π is defined as  the followings: 
 

 

 

Where V(t) is the node set of t, L and R are the node sets that are to 
the left of V(t) and to the right of V(t), respectively. When t is the 
whole BDT, L=R=∅ , CostL,V(t),R,π is exactly the la(G). We next 
show how to compute the costs under the two orientations 
efficiently by recursive computation.   

Let t̂ be an orientation tree node corresponding to the ordered 
partition which consists of L, V(t) and R denoted as (L,V(t),R). We 
call the left child left and the right child right in both orientations of 
t. Suppose that each child of the BDT is assigned a cost for both 0-
orientation (i.e., cost(left(0) and cost(right(0)) or 1-orientation (i.e., 
cost(left(1) and cost(right(1)). The cost of t under the two 
orientations can be computed as follow: 

cost0=cost(left(0))+cost(right(0)) +|V(t2)|.cost(V(t1),R) 
+|V(t1)|.cost(L,V(t2)) 

cost1=cost(left(1))+cost(right(1))+|V(t1)|.cost(V(t2),R) 
+|V(t2)|.cost(L,V(t1)) 

Cost(L,V(t1)) and cost(L,V(t2)) are called left outer cuts an
cost(V(t1),R) and cost(V(t2),R) are called right outer cuts and the

can be computed recursively as follows. Let left_cut( t̂ ) an

right_cut( t̂ ) be the left outer cut (i.e., cost(L,V(t1)) or cost(L,V(t2)

and the right outer cut (i.e., cost(V(t1),R) or cost(V(t2),R)) of 
respectively. Let in_cut be the total weight (cost) of edges whos
beginning node and ending node have t as the Least Commo

Ancestor (LCA).  When t̂  is a leaf node, the values of the out

cuts are computed by considering the edges incident to t. When t̂  
an intermediate node we have the followings: 

cost(left_cut( t̂ ))=cost(left_cut(left( t̂ ))) 

+cost(left_cut(right( t̂ )))-cost(in_cut(t)) 

cost(right_cut( t̂ ))=cost(right_cut(left( t̂ ))) 

+cost(right_cut(right( t̂ )))-cost(in_cut(t)) 

Thus formula (1) can be rewritten as:  

cost0=cost(left(0))+cost(right(0)) +|V(t2)|.cost(right_cut( 1t̂ )  

+|V(t1)|.cost(left_cut( 2t̂ ))                                               

cost1=cost(left(1))+cost(right(1))+|V(t1)|.cost(right_cut( 2t̂ ))  

+|V(t2)|.cost(left_cut( 1t̂ )) 

As discussed earlier, the cost of t is the lower of the two costs, cos
and cost1.  

4.3 An Example 
We use the example data set shown in Fig. 7 to illustrate th
optimization algorithm. In this example, the query window size 
10×10, thus all the four points (1, 2, 3 and 4) have extended area
(R1, R2, R3 and R4) of size 100, i.e. A1=A2=A3=A4=100. Th
intersection of R1 and R2 is R12 whose area is A12=36. Similarly w
have A13=16, A23=56, A24=7, A34=12, A123=14 and A234=4.  
By using the Inclusion-Exclusion Theorem in set operations, we ca
compute 1

~A , the area of the distribution region of the centers of th
query windows that contain only the data point 1, as follows: 
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A1-(A12+A13-A123)=100-36-16+14=62. 

Similarly we can have 2
~A =19, 3

~A =34, 4
~A =85, 12

~A =22, 13
~A =2, 

23
~A =38, 24

~A =3, 34
~A =8, 123

~A =14 and 234
~A =4.  The hyper-

graph to represent the spatial semantics among the points is shown 
in Fig. 7. Now we are ready to illustrate the optimization process.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 7. The Example Point Data Set (Top) and Its Hyper-graph 

Representation (Bottom) 
We first remove the 4 hyper-edges that have only single node since 
their average access time cost is always the half of the broadcast 
cycle and do not contribute to the ordering. We then build a full and 
balanced binary tree for the four nodes and use it as our BDT (Fig. 
8). Among the remaining 7 hyper-edges, the common ancestor of 
the nodes in edge {1,2} is rooted at T11 with in_cut of 22, the 
common ancestor of the nodes in edge {3,4} is rooted at T12 with 
in_cut of 8 and the common ancestors of the nodes in rest edges are 
rooted at T0 with their total in_cut as the summation of the following 
values: 2 for edge {1,3}, 38 for edge {2,3}, 3 for edge {2,4}, 14 for 
edge {1,2,3} and 4 for edge {2,3,4}. Thus the total in_cut of T0 is 
61. 
 
 

 
 

 
 
 
 

Fig. 8 The BDT of the Example 
 

 
 
 
 
 

 
Fig. 9 The Orientation Trees of Two Possible Orientations of T11 

For illustration convenience, we also use “+” to denote the1-
orientation and “-“ to denote the 0-orientation. For the 
orientation tree in Fig. 9 (a), the ordering of the four nodes is 
{3,4,2,1}. Node 2 is the ending node of edges {2,3}, {2,4} and 
{2,3,4}, thus the left_cut of node 2 is 38+3+4=45. Node 1 is also 
the beginning node of edge {1,2} and thus its right_cut is 22. 
Similarly, the left_cut of node 1 is 2+14+22=38 and the right_cut of 
node 1 is 0. Since node 1 and 2 are leaf nodes, their costs are the 
same as their left_cuts which are 45 and 38, respectively. Thus the 
left_cut and the right_cut of their parents, T11, are 45+38-22=61 and 
22+0-22=0, respectively. The total cost of T11 under the current 1-
orientation can be computed as 45+38+(22-22)*1+(38-22)*1=99. If 
the orientation of T11 is switched to the 0-orientation (Fig. 9(b)), we 
can get the left_cut of node 1 as 2, the right_cut of node 1 as 22, the 
left_cut of node 2 as 81 and the right_cut of node 2 as 0, thus the 
left_cut and and the right_cut of T11 under the current 0-orientation 
are 2+81-22=61 and 22+0-22=0, respectively. The total cost of T11 
is 2+81+(22-22)*1+(81-22)*1=142. Since the 1-orientation of T11 
has smaller cost (99) than the 0-orientation cost of T11 (142) we set 
1-orientation to T11.  Similarly, we set 1-orientation to T12 since its 
1-orientation cost (15) is smaller than its 0-orientation cost (66). The 
left_cut and the right_cut under the 1-orientation of T12 are 0 and 
61, respectively. Thus the total cost of T0 is 99+15+(61-61)*2+(61-
61)*2=114 under the ordering of [4,3,2,1]. This is the global 
optimal cost of all possible orderings (4!=24).  
To compare the goodness of the approximation, we enumerate all 
possible 4!=24 orderings and compute both the linear cost and 
quadratic cost of data access time as shown in Fig. 10. The x-axis 
represents all possible individual ordering of the set of the 4 data 
items. The y-axis represents the access time associated with each 
data ordering. It is easy to see that they have the same trend. The 
optimal order under the linear cost model is also the optimal order 
under the quadratic cost model. This confirms our theoretical 
results. The access time under the quadratic model is always larger 
than that under the linear model as expected since the former 
include both DPW and DBW while the latter includes only DBW. 
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Fig. 10 Comparison of Access Time of Linear versus 

Quadratic Models 

5 EXPERIMENTS 
We perform experiments to compare three data ordering methods: 1) 
Random ordering without taking any data semantics into 
consideration, 2) Ordering using Heuristics, such as R-Tree traversal 
ordering and Hilbert ordering, 3) Ordering using the proposed 
optimization method. In this section, we first describe the data sets 
used in our experiments, then we present the comparison results.  

5.1 Generating Data Sets 
We use five synthetic data sets in our experiments with sizes of 
100,200, 300, 400 and 500 points, respectively. They all have a data 
space of [0,1) ×[0,1) and we use a query window size of (0.1,0.1). 
The points in the data sets are generated randomly within the data 
space and with the following restrictions: First, the Extended Region 
of a point intersects with no more than N other Extended Regions. 
This is to ensure that the lengths of the hyper-edges are bounded by 
the constant N to be complied with the requirements of the 
optimization algorithm. We choose N to be 10 in the experiments. 
Second, The distances between a point and the points that fall into 
its extended region are no less than 1% of the radius of the query 
window (0.005 in our experiments). This is to prevent us from 
generating very tiny intersected regions to ensure that the weights of 
the hyper-edges is not too small to be meaningful for optimization. 
And third, we remove the points whose extended region does not 
intersect with any other extended regions since they do not 
contribute to ordering of the nodes as discussed at the beginning of 
Section 4.3. This might make the size of some data sets slightly less 
than their original size, e.g., data sets 1,3,4 and 5 listed in Table 1. 
Table 1 shows the parameters of the five data sets. It can be 
observed that as the number of the points increases, both the number 
of hyper-edges and the average nodes per hyper-edge increase 
monotonically.  

Table 1. Parameters of the Data Sets 

Data 
Set 

# of 
 Points 

# of  
Hyper-
edges 

Total  # of  
Nodes in All 
Hyper-edges 

Average  
Nodes Per 

 Hyper-edge 
1 96 253 667 2.64 
2 200 1054 3393 3.22 
3 294 1796 6358 3.54 
4 382 2111 8854 4.19 
5 452 2147 10802 5.03 

5.2 Comparison of Random Orderings  
To form a basis for the comparisons of different orderings, we first 
generate 1000 random orderings (i.e., data items are sequenced 
randomly) and compute their access time. We report the minimum, 
the maximum and the average access time among the 1000 random 
orderings as shown in Table 2. Note that all the access times 
reported in this and the following sub-sections are the costs under 
the quadratic cost model.  

Table 2. Results of 1000 Random Orderings 

Data
Set

Minimum 
AT  

(Rand_Min)

Maximum 
AT  

(Rand_Max)

Average 
AT  

(Rand_Ave) 

Improvement 

AveRand
MinRandRand

_
_max_ −

1 41.89 47.05 44.73 11.54% 
2 218.79 236.23 228.69 7.63% 
3 365.46 385.18 374.98 5.26% 
4 357.93 376.95 369.09 5.15% 
5 293.27 306.24 300.74 4.31% 

 
From the results we can see that the improvement percentage 
(defined as the difference of the maximum and minimum divided by 
the average) decreases as the data set size increases. This is 
understandable since the possible number of orderings (n!) increases 
very fast as the data set size (n) increases, and hence, the portion of 
1000 and n! decreases dramatically consequently. This means that 
the possibility of getting good ordering sequence decreases 
dramatically by only randomly examining a constant number of 
orderings, which again suggest ordering heuristics and low-cost 
optimization methods are desirable. We will examine the 
effectiveness of the two heuristics, R-Tree traversal ordering and 
Hilbert ordering, we are going to provide and the optimization 
method provided in Section 4 in the next two sub-sections. 

5.3 Comparison of Two Heuristics 
Space Filling Curves (SFC) (Gade, 1998), such as row-wise 

enumeration of the cells, Peano curve or Z-Ordering, Hilbert-
Ordering and Gray-Ordering, which transforms multi-dimensional 
data into one-dimension can be used to generate the orderings by 
comparing the SFC code.  Although spatial index trees such as the 
R-Tree family (Guttman, 1984; Sellis, 1987; Beckmann, 1990) are 
not originally designed to be aware of the order of data items, 
traversals of these trees do generate orderings that can be used to 
sequence the data items. Since spatial indexing methods usually 
maintain spatial adjacencies, the orderings generated by SFCs and 
spatial index tree traversals are good candidates. They have low 
computation costs since it takes linear time to traverse an R-Tree 
and O(n*logn) to sort Hilbert SFC codes to generate an ordering. In 
this sub-section, we evaluate the access time under both Hilbert 
ordering and R-Tree traversal ordering. The results are listed in 
Table. 3. 
From the results we can see that Hilbert ordering is only marginally 
better than the average of 1000 random orderings while R-Tree 
traversal ordering is more significantly better than the average. It 
suggests that R-Tree traversal ordering can be a very good ordering 
heuristic. 
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Table 3. Comparisons of Hilbert and R-Tree Traversal Ordering 
Access Time with 1000 Random Orderings Average  

Data 
Set 

Rand-
Ave 

 
 
 

Hilbert 
Ordering 

(HO) 
 
 

R-Tree 
Ordering 

(RO) 
 
 

Hilbert  
Ordering 

Improvement 
1_ −

HO
AveRand  

R-Tree 
Ordering 

Improvement
1_ −

RO
AveRand

1 47.05 45.28 40.06 3.91% 5.17% 
2 236.23 228.95 201.68 3.18% 3.08% 
3 385.18 373.18 318.81 3.22% 8.77% 
4 376.95 363.46 313.4 3.71% 6.58% 
5 306.24 297.77 254.73 2.84% 10.09% 

5.4 Optimization of R-Tree Ordering 
In this section we compare the optimized ordering with the R-Tree 
ordering and the average of 1000 random orderings. Since the 
computation time for optimization for all the five data sets are no 
more than 3 seconds on our Dell Dimension 4100 personal 
computer with 866MHZ processor and 512M memory, we will not 
include the computation cost at the server side in our discussion, 
rather we focus on the access time at the client side. The results for 
the five data sets are listed in Table 4.  

Table 4. Comparison Optimized Ordering, R-Tree Ordering and 
1000 Random Orderings Average 

Data  
Set 

Rand-
Ave 

 
 

R-Tree 
Ordering  

(RO) 
 

Optimized 
R-Tree 

Ordering 
(OO) 

Improv1 
1−

OO
RO  

Improv2 
1_ −

OO
AveRand

1 47.05 40.06 38.09 17.45% 23.52%
2 236.23 201.68 195.65 17.13% 20.74%
3 385.18 318.81 293.1 20.82% 31.42%
4 376.95 313.4 294.04 20.28% 28.20%
5 306.24 254.73 231.38 20.22% 32.35%

 
From the results we can see that the access time of the optimized 
orderings are about 17% to 20% better than the heuristic R-Tree 
ordering and 21% to 32% better than the 1000 random orderings 
average. The improvements are thus significant.  

6. CONCLUSIONS AND FUTURE WORK 
DIRECTIONS 
In this paper, we propose to use the access time of DBW to 
approximate the access time of DPW+DBW and convert the 
optimization problem under the quadratic cost model into a MinLA 
optimization problem. The method is based on two observations. 
The first observation is the structural similarity between the 
quadratic cost model we previously developed and the MinLA 
problem. The second observation is the monotonic relationship 
between the cost in terms of DPW+DBW and the DBW for a single 
query.  The experiment results using the five synthetic data sets 
based on optimization method showed that the optimized ordering is 
21%-32% better than the 1000 random orderings average under our 
quadratic cost model. This confirms that both the approximation and 
the optimization are effective.  
For future work, we plan to include access time to the index channel 
in our cost model and explore more ordering heuristics as well as 
exact and/or approximation optimization methods. Also we plan to 

do more experiments using both synthetic and real data sets with 
different sizes, distributions and densities to examine the 
effectiveness and scalabilities of the optimization methods. 
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