

Efficient Placement of Geographical Data Over Broadcast
Channel for Spatial Range Query Under Quadratic Cost Model

Jianting Zhang Le Gruenwald

The University of Oklahoma, School of Computer Science, Norman, OK, 73019

Contact author email: ggruenwald@ou.edu, Phone: 1-405-325-3498

ABSTRACT
Data broadcasting is well known for its excellent scalability. Most
geographical data, such as weather and traffic, is public information
that has a large amount of potential users which makes it very
suitable for broadcast. The query response time is greatly affected by
the order in which data items are being broadcast. This paper
proposes an efficient method to place geographical data items over
broadcast channel that reduces access time for spatial range queries
on them. This paper then performs evaluation studies comparing
different ordering methods: 1000 random orderings, R-Tree
traversal ordering, Hilbert ordering and the optimized ordering
based on the proposed method. The results show that the optimized
ordering is significantly better than the others.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

General Terms
Algorithms, Management, Measurement, Performance, Design

Keywords
Data Broadcast, Geographical Information, Cost Model, Query
Processing, Optimization, Mobile Computing

1. INTRODUCTION
Data broadcasting is well known for its excellent scalability
(Imielinski, 1997). Most geographical data, such as weather and
traffic information, is public and has a large amount of potential
users. It is attractive to broadcast geographical data in metropolitan
areas to reduce the increasing demands for wireless bandwidth
resources. Furthermore, for users that are able to be aware of their
locations by using Global Position Systems (GPS), network
infrastructures or their combinations (Konig-Ries, 2002), they can
perform Location Dependent Queries (LDQ) (Seydim, 2001) to
request Location Dependent Services (LDS). It is easy to see that
LDQ on broadcast geographical data over air is particular interesting
in the context of large-scale resource-efficient data dissemination in
mobile computing. Spatial range query (Rigaux, 2002) processing
on broadcast geographical data will be one of the most popular ways
to provide LDS.

In a broadcast system, a minimum logical unit in a broadcast
sequence is called a bucket/frame, and a set of continuous buckets
(either index or real data) is called a segment. Different from main
memory or disk resident data accesses, accesses to a broadcast
sequence are essentially one-dimensional. There are two important
parameters in evaluating the performance of a broadcast system,
namely Tune-in Time (TT) and Access Time (AT, or latency). TT is
the amount of time spent by a client listening to the broadcast
channel. AT is the average time elapsed from the time a client
requests data to the time when all the required data is downloaded
by the client. In Fig. 1, TT is equal to the summation of the lengths
of the required data items (shaded) while AT is the duration between
the initial access position and the last required data item.

Fig. 1 Illustration of TT and AT

In (Imielinski, 1997), AT is the sum of the Probe Wait (PW) and the
Bcast Wait (BW) where the former is the average duration for
getting to the next index segment and the latter is the average
duration between the time when the index segment is encountered
and the time when all the required data items are downloaded. We
argue that it might be more appropriate to divide AT into four
components: Index-Probe Wait (IPW), Index-Bcast Wait (IBW),
Data-Probe Wait (DPW) and Data-Bcast Wait (DBW). IPW is the
same as PW. IBW is the time duration from the time when the first
index segment is met to the time when the last index segment is met.
DPW is defined as the duration from the time the last index segment
is reached to the time when the first data segment is reached. DBW
is defined as the duration from the time when the first data segment
is reached to the time when the last data segment is downloaded.
The summation of IBW, DPW and DBW is equivalent to BW.
Using the four components allows us to compute access time to
index and data separately. We assume a client has already had an
ordered set of pointers to the data items in the broadcast channel by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
MobiDE’03, September 19, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-767-2/03/0009…$5.00.
.

30

performing a spatial range query on the index segments which are
either in the same channel with the data or in a separate index
channel. The scenario we consider is the one in which the index and
data are broadcast using two separate channels where a client may
begin access the data channel at any position. These four
components under this scenario are illustrated in Fig 2.

Fig. 2 The Four Components in Access Time for the Scenario

that Index and Data Use Separate Channels

Spatial range query is a type of “Complex Query” (Lee, 2002)
whose result set includes multiple data items. The query response
time is greatly affected by the order in which data items are being
broadcast. Suppose there are 6 data items {1,2,3,4,5,6} to broadcast
and there are two data items {2,5} in a spatial range query result. It
only takes two unit of time to retrieve the query result if data item 2
and 5 are placed next to each other. However, it would take 4 unit of
time to retrieve them in natural ordering. The placement is
complicated when there are multiple such complex queries with
different access frequencies over broadcast data.

The objective of this paper is to provide an efficient and effective
optimization method to generate broadcast sequences that reduce the
access time for processing spatial queries on broadcast geographical
data. The rest of this paper is arranged as follows. Section 2 reviews
the related work. Section 3 presents the quadratic cost model and
Section 4 provides the optimization method. Experiments using
synthetic data sets are presented in Section 5, and finally Section 6
provides conclusions and future work directions.

2. RELATED WORK
Range queries are the most frequently used spatial queries and have
been extensively studied in disk-resident data management research.
Several cost models have been proposed for measuring the
performance of spatial indexing on range queries (Pagel, 1993;
Theodoridis, 1996; Theodoridis, 2000). The measurement used is
the number of disk accesses which is equivalent to TT in
broadcasting without considering paging and buffering effects.
However, to the best of our knowledge, there is no previous work
done on access time for spatial range queries on broadcast spatial
data.

There have been several studies on general data broadcast. Many of
them focus on indexing techniques to make tradeoffs between TT
and AT, such as tree-indexing (Imielinski, 1994a), hashing

(Imielinski, 1994b), signature (Lee, 1996) and hybrid (Hu, 2001a).
These studies can support only queries on one-dimensional data and
allow only one data item per access. Although (Imielinski, 1997)
proposed to chain data items that have the same values in different
meta-segments in its nonclustering index and multi-index methods,
it cannot be applied to data items that have different values but are
often in the same query results. Furthermore, in its performance
analysis, it assumes that it takes a whole broadcast cycle to retrieve
non-clustered data items of a particular value. That is an
unnecessary overestimation. The issue of multi-attribute data
broadcast and query was first addressed in (Hu, 2001b). However,
this work can handle only conjunction/disjunction queries that
involve fewer than three attributes. They are not suitable for spatial
range queries on geographical data.

Recent works on object-oriented database broadcast (Chehadeh,
1999) and relational database broadcast (Lee, 2002) allow multiple
data items to be accessed in a query. However, they assumed that
accesses to data items have predefined orders. They are not suitable
for spatial range queries since data items in a query result since the
order of data items in a range query result is not important. The
work presented in (Chung, 2001) is essentially similar to our cost
model of data access time. However, it excludes TT from the access
time for the items in the query result set which makes the total
access time a summation of multiple quadratic terms. To simplify
the result, it uses a linear function to approximate the quadratic cost,
which renders the model inaccurate. Furthermore, its proof of the
approximation is incorrect. None of the above cost models is
designed for spatial range queries. We believe that the cost model
we use, in which the access time for a single query is linear with
respect to a single quadratic term (see Section 3 for details), is more
concise and accurate.

From graph algorithms’ perspective, sequencing graph nodes can be
treated as a graph layout problem. A survey on graph layout
problems was presented in (Daíz, 2002). A window-based vertex
orderings with applications to circuit clustering was presented in
(Alpert, 1996) where unordered vertices are iteratively added to the
ordering based on their attractions to the previously ordered vertices.
(Bar-Yehuda, 2001) presented a polynomial time algorithm for
computing an optimal orientation (ordering) of a balanced
decomposition tree for the graph linear arrangement problem.
Although the theoretical approximation ratios were not improved,
experiments showed good results. A multi-scale scheme for MinLA
problem is presented in (Koren, 2002). Different from (Bar-Yehuda,
2001) which imposed global constraints on the ordering through the
Binary Decomposition Tree (BDT), it imposed many local
constraints restricting small sets of vertices throughout the entire
multi-scale hierarchy.

The only previous work on geographical data broadcast we know is
(Hambrusch, 2001). It studied the execution of spatial queries on
broadcast tree-based spatial index structures. Their work assumes
the client had very limited memory, the whole R-tree cannot be fit
into the client memory and the client has to discard some retrieved
R-Tree nodes to hold more useful ones during the query process.
Their work focus on reducing extra access time incurred by having
to access multiple broadcast cycles due to the discard and
replacement. We assume that a client has already had the pointers to
the data items in the data channel, either from another separate index
channel or from the same channel that combines both the data and
index. A client can sort the values of the pointers and thus only one
scan of the data channel is sufficient to retrieve all the data items.

31

3. THE COST MODEL
To reduce the access time to the data broadcast channel, we first
derive a cost model to compute the access time for spatial range
queries over broadcast geographical data. It will be used in the
optimization method presented in Section 4. The details of this cost
model have been presented in our previous work (Zhang, 2003).
Here we provide a summary of its results only which are given in the
followings.

Let DS=[x1,x2)× [y1,y2) be the data space that defines all the
geographical point data items. Suppose the range query window is
(qx,qy). We define an Extended Region Ru of data item Pu as the
rectangle of (qx,qy) centred at Pu. Let iA be the area of Ri, jiA , be

the intersection of area of Ri and Rj, … nA ...2,1 be the intersection

area of R1, R2…Rn. Let iA~ be the part of iA query windows

centered in which solely contains point Pi, jiA ,
~

be the part of

jiA , query windows centered in which solely contains points Pi and

Pj, … nA ...2,1
~

 be the part of the intersection area of R1, R2…Rn that

contains all the n points. Note nA ...2,1
~

= nA ...2,1 .

We use hyper-graph to represent all possible spatial range query
result sets. Given a set of nodes V, a hyper-edge in the hyper-graph
consists of the nodes in a distinct spatial range query result set
{n1,n2..nk}. The access frequency of such a set, which is
proportional to

knnnA ,..., 21

~
, will be used as the weight of the

corresponding hyper-edge.

Let function π(u) map point u to its position in the broadcast
sequence. Let L be the broadcast cycle length. For a single query
result set contains k data items n1, n2 … nk,, let L2 denote the DBW
of a query result set with a query window size of (qx, qy), formally,

)}(),...(),(min{)}(),...(),(max{ 21212 kk nnnnnnL ππππππ −=
The average access time to data channel, i.e. from a client begin to
access data channel to the time all the data items are downloaded
(DPW+DBW) can be computed as follows and denoted as function
g(L2).

]
2

)()([1)(2
2

22
2

LLLLL
L

Lg −−−−= :

The total data access time for a query window (qx,qy) can be written
by summarizing the access time over all possible query result sets :

Let Q be all possible query windows and let

The total access time can be computed as follows:

4. THE OPTIMIZATION METHOD
Having presented the quadratic cost model in terms of total access
time in processing all possible spatial range query result sets for a
point data set, we next present the optimization method to reduce
the total access time.

4.1 General Ideas
It can be observed that the cost model we have developed is
structurally similar to the Minimum Linear Arrangement (MinLA)
problem in graph theory defined as follows (Daíz, 2002):

Where w(u,v) is the weight of an edge of nodes u and v in the graph.
Function π(u) is the same as that defined in Section 3 which maps
node u to its position in an arrangement (an ordering or a sequence
in our terms). The graph MinLA problem is a well-studied problem
and several efficient approximation methods have been proposed
(Bar-Yehuda, 2001; Koren, 2002). However, there are two problems
concerning the differences between MinLA and our cost model
which prevent us from using them directly. The first problem is that,
our cost model is quadratic with respect to the differences in the
positions of the beginning and ending nodes in a hyper-edge while it
is linear in MinLA as its name suggests. The second problem is that
there are multiple data items in a query result set and thus a hyper-
graph representation (Section 3) is more appropriate for our cost
model than a graph representation for MinLA.

To solve the first problem, we observe that the cost model for a
single query in terms of DPW+DBW, i.e. g(L2), increases
monotonically as DBW, i.e. L2, increases and vice versa (Section
3). Thus L2, which is the hyper-graph version of “edge length”, is a
good linear approximation of g(L2). By doing so we are expecting
that the optimized ordering where the optimization is based on the
definition of la(G) which is linear with respect to L2, is also a good
ordering according to quadratic cost model respect to L2. To solve

∑

∑

∑

∈

∈

∈

=

=

=

Qqyqx

qq
nn

Qqyqx

qq
ikji

Qqyqx

qq
jiji

yx

yx

yx

Aw

Aw

Aw

),(

),(
,...2,1,...2,1

),(

),(
,,

),(

),(
,,

~
...

~

~

)))()...2(),1(min())()...2(),1((max(*
...

)))(),(),(min())(),(),((max(*

)|)()((|*

,...2,1

1
,,

1
,

nngw

kjikjigw

jigw

Cost

n

nkji
kji

nji
ji

ππππππ

ππππππ

ππ

−+
+

−+

−

=

∑

∑

≤≤<≤

≤<≤

|)()(|)*,()(
),(

vuvuwGla
Evu

ππ∑
∈

−=

)))()...2(),1(min())()...2(),1((max(*~
...

)))(),(),(min())(),(),((max(*~

|))()((|*~

),(
,...2,1

1

),(
,,

1

),(

),(

nngA

kjikjigA

jigA

Cost

yx

yx

yx

yx

qq
n

nkji

qq
kji

nji

qq
ij

qq

ππππππ

ππππππ

ππ

−+

+

−+

−=

∑

∑

≤≤<≤

≤<≤

32

the second problem, we adopt the approximation algorithm
proposed in (Bar-Yehuda, 2001) for our application. We have
proved the correctness of using the algorithm for hyper-graphs. The
proof can be found in ([HREF 1]) and is omitted here due to space
limitation.

An ordering of data items using a mapping function π is called the
ordering π. For the rest of this paper, we will call the access time of
the ordering π “linear cost” if it is computed according to the
definition of la(G), or “quadratic cost” if it is computed according to
our quadratic cost model. We next briefly introduce the approximate
algorithm for optimization proposed in (Bar-Yehuda, 2001) and
illustrate the method through a simple example.

4.2 The Approximation Algorithm
The approximation algorithm proposed in (Bar-Yehuda, 2001)
adopts a divide-and-conquer strategy. It imposes a global ordering
constraint on a graph by using a Binary Decomposition Tree (BDT).
A BDT T is a binary tree that has all the nodes in a graph as its leaf
nodes as shown in Fig. 6. For each tree t∈ T that has two sub-trees t1
and t2, we have two options in placing the nodes under it into a
broadcast channel, i.e., either the nodes under t1 are placed ahead of
the nodes of t2 (called 0-orientation), or the nodes under t2 are placed
ahead of the nodes under t1 (called 1-orientation). The algorithm
starts with the root of the BDT and computes the costs of the two
possible orientations of its two sub-trees recursively. The orientation
that has lower cost is kept while the one that has a higher cost is
discarded. The resulted orientations at each intermediate node of the
BDT form an orientation tree that has the same structure as the
BDT. The orientation tree determines an ordering sequence of all
the nodes in a graph.

Fig . 6 A Binary Decomposition Tree

Since t has two orientations and the orientations of its two sub-tress,
t1 and t2, are independent of each other, it is easy to prove that there
are 2n-1 orderings for a full and balanced BDT. The efficiency of the
algorithm is achieved by examining 2n-1 orderings in O(n2) time by
computing the cost of t from the costs, the left outer cuts and the
right outer cuts (see definitions below) of its two sub-trees in linear
time. The left outer cuts and the outer right cuts of t again can be
computed from the left outer cuts and the right outer cuts of its two
sub-trees in linear time.

The Cost L,V(t),R,π with regards to a BDT sub-tree t under the
ordering π is defined as the followings:

Where V(t) is the node set of t, L and R are the node sets that are to
the left of V(t) and to the right of V(t), respectively. When t is the
whole BDT, L=R=∅ , CostL,V(t),R,π is exactly the la(G). We next
show how to compute the costs under the two orientations
efficiently by recursive computation.

Let t̂ be an orientation tree node corresponding to the ordered
partition which consists of L, V(t) and R denoted as (L,V(t),R). We
call the left child left and the right child right in both orientations of
t. Suppose that each child of the BDT is assigned a cost for both 0-
orientation (i.e., cost(left(0) and cost(right(0)) or 1-orientation (i.e.,
cost(left(1) and cost(right(1)). The cost of t under the two
orientations can be computed as follow:

cost0=cost(left(0))+cost(right(0)) +|V(t2)|.cost(V(t1),R)
+|V(t1)|.cost(L,V(t2))

cost1=cost(left(1))+cost(right(1))+|V(t1)|.cost(V(t2),R)
+|V(t2)|.cost(L,V(t1))

Cost(L,V(t1)) and cost(L,V(t2)) are called left outer cuts an
cost(V(t1),R) and cost(V(t2),R) are called right outer cuts and the

can be computed recursively as follows. Let left_cut(t̂) an

right_cut(t̂) be the left outer cut (i.e., cost(L,V(t1)) or cost(L,V(t2)

and the right outer cut (i.e., cost(V(t1),R) or cost(V(t2),R)) of
respectively. Let in_cut be the total weight (cost) of edges whos
beginning node and ending node have t as the Least Commo

Ancestor (LCA). When t̂ is a leaf node, the values of the out

cuts are computed by considering the edges incident to t. When t̂
an intermediate node we have the followings:

cost(left_cut(t̂))=cost(left_cut(left(t̂)))

+cost(left_cut(right(t̂)))-cost(in_cut(t))

cost(right_cut(t̂))=cost(right_cut(left(t̂)))

+cost(right_cut(right(t̂)))-cost(in_cut(t))

Thus formula (1) can be rewritten as:

cost0=cost(left(0))+cost(right(0)) +|V(t2)|.cost(right_cut(1t̂)

+|V(t1)|.cost(left_cut(2t̂))

cost1=cost(left(1))+cost(right(1))+|V(t1)|.cost(right_cut(2t̂))

+|V(t2)|.cost(left_cut(1t̂))

As discussed earlier, the cost of t is the lower of the two costs, cos
and cost1.

4.3 An Example
We use the example data set shown in Fig. 7 to illustrate th
optimization algorithm. In this example, the query window size
10×10, thus all the four points (1, 2, 3 and 4) have extended area
(R1, R2, R3 and R4) of size 100, i.e. A1=A2=A3=A4=100. Th
intersection of R1 and R2 is R12 whose area is A12=36. Similarly w
have A13=16, A23=56, A24=7, A34=12, A123=14 and A234=4.
By using the Inclusion-Exclusion Theorem in set operations, we ca
compute 1

~A , the area of the distribution region of the centers of th
query windows that contain only the data point 1, as follows:

∈∩∈−
∈∩∈

∈∩∈−

= ∑
∈ otherwise

RvtVuutVvuw
LvtVuuvuw
tVvtVuvuvuw

Evu 0
)(|)()(|)*,(
)()(*),(

)()(|)()(|)*,(

],[Cost
),(

RV(t),L, π
π

ππ

π

(

33
(1)
d
y

d

))

t̂
e
n

er

is

)
 2
t0

e
is
s
e
e

n
e

A1-(A12+A13-A123)=100-36-16+14=62.

Similarly we can have 2
~A =19, 3

~A =34, 4
~A =85, 12

~A =22, 13
~A =2,

23
~A =38, 24

~A =3, 34
~A =8, 123

~A =14 and 234
~A =4. The hyper-

graph to represent the spatial semantics among the points is shown
in Fig. 7. Now we are ready to illustrate the optimization process.

Fig 7. The Example Point Data Set (Top) and Its Hyper-graph

Representation (Bottom)
We first remove the 4 hyper-edges that have only single node since
their average access time cost is always the half of the broadcast
cycle and do not contribute to the ordering. We then build a full and
balanced binary tree for the four nodes and use it as our BDT (Fig.
8). Among the remaining 7 hyper-edges, the common ancestor of
the nodes in edge {1,2} is rooted at T11 with in_cut of 22, the
common ancestor of the nodes in edge {3,4} is rooted at T12 with
in_cut of 8 and the common ancestors of the nodes in rest edges are
rooted at T0 with their total in_cut as the summation of the following
values: 2 for edge {1,3}, 38 for edge {2,3}, 3 for edge {2,4}, 14 for
edge {1,2,3} and 4 for edge {2,3,4}. Thus the total in_cut of T0 is
61.

Fig. 8 The BDT of the Example

Fig. 9 The Orientation Trees of Two Possible Orientations of T11

For illustration convenience, we also use “+” to denote the1-
orientation and “-“ to denote the 0-orientation. For the
orientation tree in Fig. 9 (a), the ordering of the four nodes is
{3,4,2,1}. Node 2 is the ending node of edges {2,3}, {2,4} and
{2,3,4}, thus the left_cut of node 2 is 38+3+4=45. Node 1 is also
the beginning node of edge {1,2} and thus its right_cut is 22.
Similarly, the left_cut of node 1 is 2+14+22=38 and the right_cut of
node 1 is 0. Since node 1 and 2 are leaf nodes, their costs are the
same as their left_cuts which are 45 and 38, respectively. Thus the
left_cut and the right_cut of their parents, T11, are 45+38-22=61 and
22+0-22=0, respectively. The total cost of T11 under the current 1-
orientation can be computed as 45+38+(22-22)*1+(38-22)*1=99. If
the orientation of T11 is switched to the 0-orientation (Fig. 9(b)), we
can get the left_cut of node 1 as 2, the right_cut of node 1 as 22, the
left_cut of node 2 as 81 and the right_cut of node 2 as 0, thus the
left_cut and and the right_cut of T11 under the current 0-orientation
are 2+81-22=61 and 22+0-22=0, respectively. The total cost of T11
is 2+81+(22-22)*1+(81-22)*1=142. Since the 1-orientation of T11
has smaller cost (99) than the 0-orientation cost of T11 (142) we set
1-orientation to T11. Similarly, we set 1-orientation to T12 since its
1-orientation cost (15) is smaller than its 0-orientation cost (66). The
left_cut and the right_cut under the 1-orientation of T12 are 0 and
61, respectively. Thus the total cost of T0 is 99+15+(61-61)*2+(61-
61)*2=114 under the ordering of [4,3,2,1]. This is the global
optimal cost of all possible orderings (4!=24).
To compare the goodness of the approximation, we enumerate all
possible 4!=24 orderings and compute both the linear cost and
quadratic cost of data access time as shown in Fig. 10. The x-axis
represents all possible individual ordering of the set of the 4 data
items. The y-axis represents the access time associated with each
data ordering. It is easy to see that they have the same trend. The
optimal order under the linear cost model is also the optimal order
under the quadratic cost model. This confirms our theoretical
results. The access time under the quadratic model is always larger
than that under the linear model as expected since the former
include both DPW and DBW while the latter includes only DBW.

34

Fig. 10 Comparison of Access Time of Linear versus

Quadratic Models

5 EXPERIMENTS
We perform experiments to compare three data ordering methods: 1)
Random ordering without taking any data semantics into
consideration, 2) Ordering using Heuristics, such as R-Tree traversal
ordering and Hilbert ordering, 3) Ordering using the proposed
optimization method. In this section, we first describe the data sets
used in our experiments, then we present the comparison results.

5.1 Generating Data Sets
We use five synthetic data sets in our experiments with sizes of
100,200, 300, 400 and 500 points, respectively. They all have a data
space of [0,1) ×[0,1) and we use a query window size of (0.1,0.1).
The points in the data sets are generated randomly within the data
space and with the following restrictions: First, the Extended Region
of a point intersects with no more than N other Extended Regions.
This is to ensure that the lengths of the hyper-edges are bounded by
the constant N to be complied with the requirements of the
optimization algorithm. We choose N to be 10 in the experiments.
Second, The distances between a point and the points that fall into
its extended region are no less than 1% of the radius of the query
window (0.005 in our experiments). This is to prevent us from
generating very tiny intersected regions to ensure that the weights of
the hyper-edges is not too small to be meaningful for optimization.
And third, we remove the points whose extended region does not
intersect with any other extended regions since they do not
contribute to ordering of the nodes as discussed at the beginning of
Section 4.3. This might make the size of some data sets slightly less
than their original size, e.g., data sets 1,3,4 and 5 listed in Table 1.
Table 1 shows the parameters of the five data sets. It can be
observed that as the number of the points increases, both the number
of hyper-edges and the average nodes per hyper-edge increase
monotonically.

Table 1. Parameters of the Data Sets

Data
Set

of
 Points

of
Hyper-
edges

Total # of
Nodes in All
Hyper-edges

Average
Nodes Per

 Hyper-edge
1 96 253 667 2.64
2 200 1054 3393 3.22
3 294 1796 6358 3.54
4 382 2111 8854 4.19
5 452 2147 10802 5.03

5.2 Comparison of Random Orderings
To form a basis for the comparisons of different orderings, we first
generate 1000 random orderings (i.e., data items are sequenced
randomly) and compute their access time. We report the minimum,
the maximum and the average access time among the 1000 random
orderings as shown in Table 2. Note that all the access times
reported in this and the following sub-sections are the costs under
the quadratic cost model.

Table 2. Results of 1000 Random Orderings

Data
Set

Minimum
AT

(Rand_Min)

Maximum
AT

(Rand_Max)

Average
AT

(Rand_Ave)

Improvement

AveRand
MinRandRand

_
max −

1 41.89 47.05 44.73 11.54%
2 218.79 236.23 228.69 7.63%
3 365.46 385.18 374.98 5.26%
4 357.93 376.95 369.09 5.15%
5 293.27 306.24 300.74 4.31%

From the results we can see that the improvement percentage
(defined as the difference of the maximum and minimum divided by
the average) decreases as the data set size increases. This is
understandable since the possible number of orderings (n!) increases
very fast as the data set size (n) increases, and hence, the portion of
1000 and n! decreases dramatically consequently. This means that
the possibility of getting good ordering sequence decreases
dramatically by only randomly examining a constant number of
orderings, which again suggest ordering heuristics and low-cost
optimization methods are desirable. We will examine the
effectiveness of the two heuristics, R-Tree traversal ordering and
Hilbert ordering, we are going to provide and the optimization
method provided in Section 4 in the next two sub-sections.

5.3 Comparison of Two Heuristics
Space Filling Curves (SFC) (Gade, 1998), such as row-wise

enumeration of the cells, Peano curve or Z-Ordering, Hilbert-
Ordering and Gray-Ordering, which transforms multi-dimensional
data into one-dimension can be used to generate the orderings by
comparing the SFC code. Although spatial index trees such as the
R-Tree family (Guttman, 1984; Sellis, 1987; Beckmann, 1990) are
not originally designed to be aware of the order of data items,
traversals of these trees do generate orderings that can be used to
sequence the data items. Since spatial indexing methods usually
maintain spatial adjacencies, the orderings generated by SFCs and
spatial index tree traversals are good candidates. They have low
computation costs since it takes linear time to traverse an R-Tree
and O(n*logn) to sort Hilbert SFC codes to generate an ordering. In
this sub-section, we evaluate the access time under both Hilbert
ordering and R-Tree traversal ordering. The results are listed in
Table. 3.
From the results we can see that Hilbert ordering is only marginally
better than the average of 1000 random orderings while R-Tree
traversal ordering is more significantly better than the average. It
suggests that R-Tree traversal ordering can be a very good ordering
heuristic.

35

Table 3. Comparisons of Hilbert and R-Tree Traversal Ordering
Access Time with 1000 Random Orderings Average

Data
Set

Rand-
Ave

Hilbert
Ordering

(HO)

R-Tree
Ordering

(RO)

Hilbert
Ordering

Improvement
1_ −

HO
AveRand

R-Tree
Ordering

Improvement
1_ −

RO
AveRand

1 47.05 45.28 40.06 3.91% 5.17%
2 236.23 228.95 201.68 3.18% 3.08%
3 385.18 373.18 318.81 3.22% 8.77%
4 376.95 363.46 313.4 3.71% 6.58%
5 306.24 297.77 254.73 2.84% 10.09%

5.4 Optimization of R-Tree Ordering
In this section we compare the optimized ordering with the R-Tree
ordering and the average of 1000 random orderings. Since the
computation time for optimization for all the five data sets are no
more than 3 seconds on our Dell Dimension 4100 personal
computer with 866MHZ processor and 512M memory, we will not
include the computation cost at the server side in our discussion,
rather we focus on the access time at the client side. The results for
the five data sets are listed in Table 4.

Table 4. Comparison Optimized Ordering, R-Tree Ordering and
1000 Random Orderings Average

Data
Set

Rand-
Ave

R-Tree
Ordering

(RO)

Optimized
R-Tree

Ordering
(OO)

Improv1
1−

OO
RO

Improv2
1_ −

OO
AveRand

1 47.05 40.06 38.09 17.45% 23.52%
2 236.23 201.68 195.65 17.13% 20.74%
3 385.18 318.81 293.1 20.82% 31.42%
4 376.95 313.4 294.04 20.28% 28.20%
5 306.24 254.73 231.38 20.22% 32.35%

From the results we can see that the access time of the optimized
orderings are about 17% to 20% better than the heuristic R-Tree
ordering and 21% to 32% better than the 1000 random orderings
average. The improvements are thus significant.

6. CONCLUSIONS AND FUTURE WORK
DIRECTIONS
In this paper, we propose to use the access time of DBW to
approximate the access time of DPW+DBW and convert the
optimization problem under the quadratic cost model into a MinLA
optimization problem. The method is based on two observations.
The first observation is the structural similarity between the
quadratic cost model we previously developed and the MinLA
problem. The second observation is the monotonic relationship
between the cost in terms of DPW+DBW and the DBW for a single
query. The experiment results using the five synthetic data sets
based on optimization method showed that the optimized ordering is
21%-32% better than the 1000 random orderings average under our
quadratic cost model. This confirms that both the approximation and
the optimization are effective.
For future work, we plan to include access time to the index channel
in our cost model and explore more ordering heuristics as well as
exact and/or approximation optimization methods. Also we plan to

do more experiments using both synthetic and real data sets with
different sizes, distributions and densities to examine the
effectiveness and scalabilities of the optimization methods.

References
[1]. Charles J. Alpert, Andrew B. Kahng: A general framework for

vertex orderings with applications to circuit clustering. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
4(2): 240 –246(1996

[2]. N.Beckmann, H.-P. Kriegel, R.Schneider, B.Seeger, The R*-
tree: An efficient and robust access method for points and
rectangles. SIGMOD Conference, 1990:322-331

[3]. Y. C. Chehadeh, A. R. Hurson, Mohsen Kavehrad: Object
Organization on a Single Broadcast Channel in the Mobile
Computing Environment. Multimedia Tools and Applications
9(1): 69-94 (1999)

[4]. Josep Daíz and Jordi Petit and María Serna: A Survey on
Graph Layout Problems. ACM Computing Surveys, 34(3): 313-
356 (2002)

[5]. Yon Dohn Chung, Myoung-Ho Kim: Effective Data Placement
for Wireless Broadcast. Distributed and Parallel Databases
9(2): 133-150 (2001)

[6]. V.Gaede, O.Günther: Multidimensional access methods. ACM
Computing Survey, 30(2):170-231 (1998)

[7]. A.Guttman, R-trees: A dynamic index structure for spatial
searching. SIGMOD Conference, 1984:47-54

[8]. S. Hambrusch, C.-M. Liu, W. Aref, S. Prabhakar: Query
Processing in Broadcasted Spatial Index Trees. SSTD,2001:
502-521

[9]. Qinglong Hu, Wang-Chien Lee, Dik Lun Lee: A Hybrid Index
Technique for Power Efficient Data Broadcast. Distributed and
Parallel Databases, 9(2): 151-177 (2001)

[10]. Qinglong Hu, Wang-Chien Lee, Dik Lun Lee: Indexing
Techniques for Power Management in Multi-Attribute Data
Broadcast. MONET 6(2): 185-197 (2001)

[11]. T. Imielinski, S. Viswanathan, B. R. Badrinath: Energy
Efficient Indexing On Air. SIGMOD Conference, 1994:25-36

[12]. T. Imielinski, S. Viswanathan, B. Badrinath: Power Efficient
Filtering of Data on Air. EDBT, 1994: 245-258

[13]. T. Imielinski, S. Viswanathan, B. R. Badrinath, Data on Air:
Organization and Access. IEEE Transactions on Knowledge
and Data Engineering, 9(3): 353-372 (1997)

[14]. Birgitta König-Ries, etc.: Report on the NSF Workshop on
Building an Infrastructure for Mobile and Wireless Systems.
SIGMOD Record 31(2): 73-79 (2002)

[15]. Y. Koren, D. Harel: A Multi-Scale Algorithm for the Linear
Arrangement Problem, Lecture Notes in Computer Science,
Vol. 2573, Springer Verlag, 2002:293-306

[16]. Guanling Lee, Shou-Chih Lo, Arbee L. P. Chen: Data
Allocation on Wireless Broadcast Channels for Efficient Query
Processing. IEEE Transactions on Computers 51(10): 1237-
1252 (2002)

[17]. Wang-Chien Lee, Dik Lun Lee, Using Signature Techniques
for Information Filtering in Wireless and Mobile
Environments. Distributed and Parallel Databases, 4(3): 205-
227 (1996)

36

[18]. Bernd-Uwe Pagel, Hans-Werner Six, Heinrich Toben, Peter
Widmayer: Towards an Analysis of Range Query Performance
in Spatial Data Structures. PODS 1993: 214-221

[19]. Philippe Rigaux, Michel O. Scholl, Agnes Voisard, Spatial
Databases: With Application to GIS, San Diego, CA:
Academic Press 2002

[20]. T. Sellis, N. Roussopoulos and C. Faloutsos. The R+-Tree: A
Dynamic Index for Multi-Dimensional Objects. VLDB
Journal, 1987:507-518

[21]. Ayse Y. Seydim, Margaret H. Dunham, Vijay Kumar: Location
dependent query processing. MobiDE, 2001: 47-53

[22]. Yannis Theodoridis, Timos K. Sellis: A Model for the
Prediction of R-tree Performance. PODS 1996: 161-171

[23]. Yannis Theodoridis, Emmanuel Stefanakis, Timos K. Sellis:
Efficient Cost Models for Spatial Queries Using R-Trees.
TKDE 12(1): 19-32 (2000)

[24]. Reuven Bar-Yehuda, Computing an optimal orientation of a
balanced decomposition tree for linear arrangement problems.
Journal of Graph Algorithms and Applications, 5(4): 1-27
(2001)

[25]. Jianting Zhang, Le Gruenwald, Prioritized Sequencing for
Efficient Query on Broadcast Geographical Information in
Mobile-Computing, ACM-GIS, 2002: 88-93

[26]. Jianting Zhang, Le Gruenwald, An Access Time Cost Model
for Spatial Range Queries On Broadcast Geographical Data
Over Air, to appear in DEXA 2003

[HREF 1] http://coecs.ou.edu/Jianting.Zhang/pdfs/proof.pdf

37

