
Optimizing Data Placement Over Wireless Broadcast Channel

For Multi-Dimensional Range Query Processing

Jianting Zhang Le Gruenwald

The University of Oklahoma, School of Computer Science, Norman, OK, 73019

Contact author email: ggruenwald@ou.edu, Phone: 1-405-325-3498

Abstract

Data broadcasting is well known for its excellent

scalability. Multi-dimensional range queries, such as

spatial range queries of geographical information for

location dependent services, are very popular queries in

mobile computing. Query response time is greatly

affected by the order in which data items are being

broadcast. This paper proposes a non-greedy, low

polynomial time cost optimization method to place data

over a wireless broadcast channel for multi-dimensional

range query processing. Experimental results show that

the method, together with proper global constraints based

on application semantics, can greatly reduce total access

time to the data channel. Compared with the heuristic data

placement methods purely based on the access

frequencies, the reduction of access time can be as much

as 54%.

1. Introduction

Data broadcasting is well known for its excellent

scalability (Imielinski, 1997). Previous work on data

broadcasting has focused on retrieving a single data item

from a broadcast channel while little work has been done

on complex queries where a query result set has multiple

data items (Lee 2002). It is obviously inefficient to

retrieve the data items in a complex query by accessing

the broadcast channel multiple times and retrieving one

data item at a time. In this study, we consider a typical

broadcast scenario introduced in (Imielinski, 1997), where

data and its index are multiplexed into a single channel

and index is placed ahead of data.

Range query processing has been extensively

studied in disk-resident databases (Gaede, 1998). A range

query often returns multiple data items . Although it is

straightforward to map one-dimensional data items onto a

broadcast channel for range queries based on their values,

it is not a trivial issue to make such a mapping for multi-

dimensional data items for efficient range query

processing. The multi-attribute indexing method

(Imielinski, 1997) proposed to fragment the first attribute

and build an index for each fragment of the first attribute

based on the values of a second attribute. These indices

are distributed sequentially on a broadcast sequence. Data

items that are indexed are placed right after the indices.

As far as indexing is concerned, this is actually using one-

dimensional indexing methods consecutively for

multidimensional indexing and thus is inefficient

(Kriegel, 1984). We are not convinced that the sequence

of the data items generated by the method is efficient for

range queries either since no access frequencies of data

items are considered. As discussed in (Tan, 1998), unlike

queries that involve only a single data item, replicating

data items, as in many broadcast-disk based techniques,

generally will not help reducing access time in processing

range queries. Thus we assume that both data and index

are broadcast only once.

In this study, we are interested in reducing total

access time to the data channel for processing multi-

dimensional range queries by better placement of data

items on a broadcast channel. We represent all possible

complex query result sets as hyper-edges in a hyper-graph

where the data items are represented as nodes. We treat

the access frequencies of the query result sets as the

weights of the corresponding hyper-edges. An efficient

non-greedy data placement method based on an

approximation method for the graph Minimum Linear

Arrangement (MinLA) problem (Bar-Yehuda, 2001) is

proposed. Experimental results show that the method,

together with proper global constraints imposed on the

hyper-graph based on application semantics, can greatly

reduce total access time to the data channel. Compared

with the heuristic data placement methods purely based

on the access frequencies, the reduction of access time

can be as much as 54%.

The rest of this paper is arranged as follows.

Some background in data broadcast is introduced in

Section 2 and then related work is reviewed in Section 3.

Section 4 describes the optimization method. Section 5

presents the experiments comparing the proposed method

and other heuristic methods. Finally Section 6 is

conclusions and future work directions.

2. Background

In a broadcast system, a minimum logical unit in

a broadcast sequence is called a bucket/frame, and a set of

continuous buckets (either index or real data) is called a

segment. Different from main memory or disk resident

data accesses, accesses to a broadcast sequence are

essentially one-dimensional. There are two important

parameters in evaluating the performance of a broadcast

Proceedings of the 2004 IEEE International Conference on Mobile Data Management (MDM’04)

0-7695-2070-7/04 $20.00 © 2004 IEEE

system, namely Tune-in Time (TT) and Access Time

(AT, or latency). TT is the amount of time a client spent

listening to the broadcast channel. AT is the average time

elapsed from the time a client requests data to the time

when the client downloads all the required data . In Fig.

1, TT is equal to the summation of the lengths of the

required data items (shaded) while AT is the duration

between the initial access position and the last required

data item.

Fig. 1. Illustration of TT and AT

Fig. 2. The Four Components in Access Time

In (Imielinski, 1997), AT is the sum of the Probe

Wait (PW) and the Bcast Wait (BW) where the former is

the average duration for getting to the next index segment

and the latter is the average duration between the time

when the index segment is encountered and the time

when all the required data items are downloaded. We

argue that it might be more appropriate to divide AT into

four components: Index-Probe Wait (IPW), Index-Bcast

Wait (IBW), Data-Probe Wait (DPW) and Data-Bcast

Wait (DBW). IPW is the same as PW. IBW is the time

duration from the time when the first index segment is

met to the time when the last index segment is met. DPW

is defined as the duration from the time the last index

segment is reached to the time when the first data

segment is reached. DBW is defined as the duration from

the time when the first data segment is reached to the time

when the last data segment is downloaded. The

summation of IBW, DPW and DBW is equivalent to BW.

Using the four components allows us to compute access

time to index and data separately. We assume a client has

already had an ordered set of pointers to the data items in

the broadcast channel by performing a range query on the

index segments which are either in the same channel with

the data or in a separate index channel. The scenario we

consider is the one in which the index and data are

multiplexed into a single channel where a client needs to

go to the beginning of the multiplexed channel before

retrieving data items. These four components under this

scenario are illustrated in Fig 2.

By using these four components we are able to

separate the access time to index and the access time to

data. In this study we focus on the access time to data,

i.e., ATData=DPW+DBW. Let function π(u) map data item

u to its position in the broadcast sequence, ATData for

processing a single complex query that contains k data

items n1, n2 … nk is)}(),...(),(max{ 21 knnn πππ .

Consequently the total ATData for processing all possible

complex queries is

∈Qq

knnnqw)}()...(),(max{*)(21 πππ

where Q is the set of all possible complex queries and

w(q) is the weight of a single complex query q.

3. Related Work

There have been several studies on data

broadcast. Many of them have focused on indexing

techniques to make tradeoffs between TT and AT, such as

tree-indexing (Imielinski, 1994a), hashing (Imielinski,

1994b), signature (Lee, 1996) and hybrid (Hu, 2001a).

They can support only queries on one-dimensional data

and can search only one data item in a query result.

Although (Imielinski, 1997) proposed to chain data items

that have the same values in different meta-segments in

its non-clustering index and multi-index methods, it

cannot be applied to data items that have different values

but are often in the same query results (e.g. range queries

on attributes that have continuous values). Furthermore,

in its performance analysis, it assumed that it takes a

whole broadcast cycle to retrieve non-clustered data items

of a particular value. That is an unnecessary

Proceedings of the 2004 IEEE International Conference on Mobile Data Management (MDM’04)

0-7695-2070-7/04 $20.00 © 2004 IEEE

overestimation. The issue of multi-attribute data

broadcast and query was first addressed in (Hu, 2001b).

However, this work can handle only

conjunction/disjunction queries that involve fewer than

three attributes. They are not suitable for multi-

dimensional range queries.

Recent works on object-oriented database

broadcast (Chehadeh, 1999) and relational database

broadcast (Lee, 2002) allow multiple data items to be

accessed in a query. However, they assumed the access to

data items has predefined orders. They are not suitable

for range queries since data items in a query result do not

necessarily have a predefined order. Furthermore, the

ordering heuristics proposed in (Chehadeh, 1999; Lee,

2002) are greedy. The work presented in (Chung, 2001)

handles both DPW and DBW. However, it assumed that a

user begins to access the data channel randomly which is

different from the scenario we are considering where a

user always goes to the beginning of a broadcast channel

to retrieve data items. The data placement method

proposed in in (Chung, 2001) is also greedy and the data

items having scheduled in a previous round will not

change their orderings in the following rounds. Our

method differs from all these works in that we try to

examine an exponential number of orderings in a low

polynomial complexity time. The exhaustive searching

nature makes our method tend to produce orderings with

high quality.

4. The Optimization Method

4.1. Basic Ideas

Our method is motivated by the approximation

algorithm for the graph Minimum Linear Arrangement

(MinLA) problem proposed in (Bar-Yehuda, 2001). The

goal in MinLA is to find an ordering that minimizes the

weighted sum of the edge lengths in a sequence.

Formally, the weighted sum of the edge lengths with

respect to an ordering is defined as

where w(u,v) is the weight of the edge (u,v) and π(u)

is the position mapping function as defined in Section 2.

By relating w(u,v) with w(q) and relating |π(u)- π(u)| with

)}(),...(),(max{ 21 knnn πππ we can see that the

problem of optimizing the total access time is structurally

similar to the MinLA problem. However, there are several

significant differences. First, there are multiple data items

in a complex query result set (q) while there are only two

nodes associated with an edge (u and v). This difference

may be solved by extending a regular edge that only

consists of two nodes to a hyper-edge that consists of a

subset of the vertex set of the graph. We can define π(u)=

)}(),...(),(max{ 21 knnn πππ and π(v)=

)}(),...(),(min{ 21 knnn πππ . Second, the length of an

edge is defined as)}(),...(),(max{ 21 knnn πππ in our

problem while it is |π(u)- π(u)| in the MinLA problem.

Third, rather than computing |π(u)- π(u)| for an edge

directly, (Bar-Yehuda, 2001) computes it as a serial

summation of the sub-tree sizes of the Binary

Decomposition Tree (BDT) of a graph (see Section 4.2

below for a detailed description of BDT) to achieve its

efficiency while this is not possible in our problem.

In this study, we adopt the divide-and-conquer

strategy and several efficient graph data structures that

have been used in (Bar-Yehuda, 2001). We propose a

new method to minimize the total access time for all

possible multi-dimensional query result sets under the

broadcast scenario that data and index are multiplexed

into a single channel. Like (Bar-Yehuda, 2001), our

method checks all possible 2n-1 orderings that can be

derived from a BDT in O(n2) time complexity.

We next introduce the BDT which is the global

constraints imposed on the ordering of data items. We

then present the optimization method and illustrate the

process through a simple example. Before discussing the

complexity analysis of our proposed method, we discuss

several efficient graph data structures that are crucial to

achieve low complexity.

4.2. The Binary Decomposition Tree

A BDT T (Fig. 3) is a binary tree that has all the

nodes in a hyper-graph as its leaf nodes. For each tree

t∈T that has two sub-trees t1 and t2, we have two options

in placing the nodes under it into a broadcast channel, i.e.,

either the nodes under t1 are placed ahead of the nodes

under t2 (called 0-orientation), or the nodes under t2 are

placed ahead of the nodes under t1 (called 1-orientation).

The orientations at each intermediate node of the BDT

form a tree that has the same structure as that of the BDT.

An orientation tree determines an ordering sequence of all

the nodes in a graph.

Fig. 3. A Binary Decomposition Tree

|)()(|)*,()(
),(

vuvuwGla
Evu

ππ
∈

−=

Proceedings of the 2004 IEEE International Conference on Mobile Data Management (MDM’04)

0-7695-2070-7/04 $20.00 © 2004 IEEE

Since t has two orientations and the orientations

of its two sub-trees, t1 and t2, are independent of each

other, it is easy to prove that there are 2n-1 orderings for a

full and balanced BDT. The efficiency is achieved by

examining 2n-1 orderings in O(n2) time as shown below.

4.3 The Proposed Method and an Example

The proposed method is shown in Fig. 4. We postpone

the discussions of Step 3.b and Step 3.c until Section 4.4

since we need several efficient graph data structures.

However, there should not be any problem in

understanding the optimisation process through the

following example.

Fig. 4. The Process of the Optimization Method

The example we use to illustrate the optimization

method has 4 data items and 11 queries (hyper-edges).

The queries and their access frequencies (hyper-edge

weights) are listed in Table. 1. The BDT we use is shown

in Fig 5. For illustration convenience, we also use “+” to

denote the1-orientation and “-” to denote the 0-

orientation.

Fig. 5. The BDT of the Example

Table 1. The Hyper-graph of the Example

1 62

2 19

3 34

4 85

1,3 2

2,3 38

1,2 22

3,4 8

2,4 3

1,2,3 14

2,3,4 4

\

Fig. 6. Computing AT(2) and AT(1) Under 1-

Orientation of T11

1 Set the positions of all nodes to the specified

initial order, or the natural order of {1,2…n}

if no initial order is available. Set the starting

BDT node t to the root of BDT. Do step 2

and step 3 recursively.

2 If t is an intermediate node of BDT:

a) Test the two orientations of the sub-

trees t1 and t2 it points to by adding the

access time of t1 and t2 under the

orientations.

b) Set the orientation of t to the one that

has less access time.

3 If t is a leaf node of BDT:

a) Set the access time associated with the

node to zero.

b) Compute the position of the node.

c) Retrieve all the queries that contain this

node and their corresponding weights.

d) For each query that has the node as the

ending node in the broadcast sequence,

add position*weight to the access time

associated with the node.

Proceedings of the 2004 IEEE International Conference on Mobile Data Management (MDM’04)

0-7695-2070-7/04 $20.00 © 2004 IEEE

For T11 in 1-orientationas shown in Fig. 6, the

position of node 2 is 2 and the position of node 1 is 3,

thus AT(2) = 2*(4 + 38 + 19 + 3) = 128,

AT(1)=3*(2+14+22+62) =300 and

AT(T11
1)=128+300=428. Similarly we can also compute

AT(T11
0)=428. According to our convention, we will

choose 0-orientation if the two orientations have the same

cost. We next compute the cost of T12 under both

orientations.

For the T12 in 1-orientation as shown in Fig 7,

the position of node 3 is 1 and the position of node 4 is 0,

thus AT(3)=1*(8+34)=42, AT(4)=0 and

AT(T12
1)=42+0=42. Similarly for T12 in 0-orientation,

AT(3)=0, AT(4)= 1*(8+85)= 93, thus

AT(T12
0)=0+93=93. Since 42 is less than 93, 0-orientation

of T12 is the winner. Thus the total cost of T0 under 1-

orientation is AT(T0
1)= AT(T11

1)+ AT(T12
0) = 428+42=

470. Similarly the AT(T0) under 0-orientation is 517.

Thus the 1-orientation of T0 is the winner and the final

optimized ordering is [4,3,1,2] whose access time is

14.9% better than the access time of the natural ordering

of [1,2,3,4].

Fig. 7 Computing AT(T12) Under 1- and 0-

Orientations

4.4 Hyper-Graph Data Structures

Since we represent all possible query result sets

as a hyper-graph, we next introduce several efficient

graph data structures that are crucial in achieving

efficiency for our method. Some of them have also been

used in the implementation of (Bar-Yehuda, 2001).

First, the nodes of the hyper-edges are stored

sequentially in an array and the positions that mark the

endings of the hyper-edges in the array are stored in

another array. These positions serve as the indexes to the

nodes in the hyper-edges. The weights of the hyper-edges

are stored in a third array. The fourth array associated

with the hyper-graph contains the pointers to the leaf

nodes in the BDT. An inverse hyper-graph is also built

for the graph. It has an array to store sequentially the

hyper-edge IDs that contain the nodes in the original

graph. Similar to the index array used in a hyper-graph,

the positions that mark the endings of the nodes are stored

in the second array of the inverse hyper-graph.

By using the arrays of the hyper-graph and the

corresponding inverse hyper-graph, we can perform the

following operations efficiently. First, we can retrieve all

the nodes in a hyper-edge of ID e by first retrieving the

ending position of e-1 and the ending position of e and

then retrieving all the nodes in the node array of the

hyper-graph. Second, we can retrieve all the hyper-edges

that contain a node v by first retrieving the ending

position of v-1 and the ending position of v and then

retrieving all the IDs of the hyper-edges between the two

positions in the index array of the inverse hyper-graph.

Note that we can retrieve the weight of a hyper-edge by

accessing the weight array of the hyper-graph using the

hyper-edge’s ID directly.

We next discuss the BDT in more detail. Each

node in the BDT contains a pointer to its parent and two

pointers to its two children. The parent pointer of the root

of the BDT is empty and the two children pointers of a

leaf node of the BDT are also empty. Each node also

contains an orientation flag and the size of the sub-tree

of the BDT that has the node as the root. Now we are

ready to show how to compute the position of a node

under a BDT efficiently.

As shown in Fig. 8, starting at a leaf node (6 for

example), we use the parent pointer associated with the

BDT node to travel from the leaf node all the way to the

root of the BDT. We check the orientation of the BDT

nodes along the path. If the sub-tree rooted at the node is

the right sub-tree of its parent then we add the sub-tree

size of its sibling to the position, otherwise we just skip.

In the BDT shown in Fig. 8, in the first step, since node 6

is the right child of T1 we add 1 to the position. In the

second step, since T1 is the left child of T2, we just skip.

In the third step, since T2 is the right child of T3, we add

3, which is the size of the left sub-tree of T3, to the

position. Since T3 is the left child of T4, which is the root

of the BDT, we skip again. Finally we get the position of

node 6 as 3+1=4. The cost of computing the position of a

leaf node is in the order of logn if the BDT is balanced.

Proceedings of the 2004 IEEE International Conference on Mobile Data Management (MDM’04)

0-7695-2070-7/04 $20.00 © 2004 IEEE

Fig. 8. Illustration of Computing the Position

of a BDT Node

We next show how to determine whether a node

is the ending node of a hyper-edge. We need some pre-

processing. For each hyper-edge we build a tree called the

Least Common Ancestor (LCA) tree. The process of

constructing a LCA tree is as follows. For each of the

node in the hyper-edge, we travel from the node all the

way to the root of the BDT as we did before and assign

the ID of the hyper-edge to the flags of all the

intermediate nodes on the paths. Next, starting from the

root of BDT, we first try to find a node of the BDT whose

both children’s flags are the ID of the hyper-edge and

travel down to only the child whose flag is the ID of the

hyper-edge. We repeat this process recursively until we

reach the leaf nodes of the BDT. We add a BDT node to

the LCA tree if its both children’s flags are the ID of the

hyper-edge or it is the leaf node of the BDT. Fig. 9 shows

the process where the ID represents the hyper-edge of

{1,4,5,6} and the dashed lines show the correspondence

between the nodes in the BDT and the LCA tree. Note

that each LCA tree is topologically a sub-tree of the BDT.

Since each LCA tree node stores a pointer to a copy of

the corresponding BDT node, the actual order of the

nodes in a hyper-edge represented by a LCA tree will also

change when the orientation of a related BDT node is

switched.

By using the LCA tree, we can determine

efficiently whether a leaf node of the BDT is the ending

node of a hyper-edge. We first start with the root of the

LCA tree of the node. We then follow the right children

until we reach a leaf node of the LCA tree to find the last

node in the hyper-edge under the current orientations of

the BDT. We compare the last node’s ID with the ID of

the BDT node to determine whether the node represented

by the leaf BDT node is the ending node of the hyper-

edge. The cost of the traversal is in the order of logm

where m is the number of nodes in the hyper-edge. We

assume the maximum number of the nodes in the hyper-

graph is bounded by a constant, thus the determination

can be made in small constant time.

Fig. 9. Illustration of Determining the Ending

Node of a Hyper-Edge

4.5 Complexity Analysis

We are now ready to analyse the computation

complexity of the proposed method. Let S(N) be the total

computation cost for an N-nodes hyper-graph. Assuming

the corresponding BDT T is balanced. At each t∈T

having n nodes (i.e. n=|t|) we need to calculate the costs

of its two children under the two orientations which result

in 4*S(n/2) We also need one addition for each

orientation (to add the costs of t1 and t2) and one

comparison (to compare the costs of the two orientations).

Thus the complexity analysis of the total access time in

terms of the number of data items n is shown as in Fig. 9.

S(1) has the following components. It takes

O(logn) to compute the position of a node in Step 2.b as

discussed in Section 4.4. It takes constant time to retrieve

all the hyper-edges that contain the node by using the

inverse hyper-graph in Step 2.c. Also as discussed in

Section 4.4, it takes constant time to determine whether a

node is the ending node of a hyper-edge, thus the total

cost in Step 2.d is also bounded by a constant.

Furthermore, n varies from 100 to 10000 in many real

applications, thus logn varies from 7 to 14, which is

comparable to the multiplication of the average number of

hyper-edges that contain a node (10-20) and the average

depth of a LCA tree (3-5). We treat logn as a bounded

constant for the practical values of n. Thus we can claim

that our method has the complexity of O(n2).

Proceedings of the 2004 IEEE International Conference on Mobile Data Management (MDM’04)

0-7695-2070-7/04 $20.00 © 2004 IEEE

Fig. 9. Complexity Analysis

5 Experiments for Performance Evaluation

5.1 Generating Data Sets

In addition to the two parameters in generating random

data sets, i.e., the number of data items (M) and the

number of queries (Q), we also use the parameter of the

maximum number of data items in a query (N) to comply

with our assumption in the complexity analysis. In this

study, we set M=100, Q=100 and N=10. We assume our

data are two- dimensional whose data space is (0,1) by

(0,1) and the access frequency for each query is between

0 and 100. Instead of generating query ranges directly,

we first pick seed data items and generate random

numbers between 1 and N. We then retrieve the N-nearest

data items of the seed data items and use their Minimum

Bounding Rectangles (MBR) as the query ranges. By

doing so we free ourselves from the time-consuming try-

and-error processes to make sure that the number of data

items in a generated query result set is less than N. We

generate 100 such data sets and perform evaluation of our

proposed method on them in the following sub-sections.

All our experiments are performed on a Dell Dimension

4100 personal computer with 866MHZ processor and

512M memory. For the rest of this section, when we say

“A is c% better than B” we compute c as the percentage

of the reduced access time from the broadcast ordering

given by method B to the broadcast ordering given by

method A divided by the access time of the broadcast

ordering given by method A, i.e., c=(B-A)/A=B/A-1.

5.2 Optimization of R-Tree Ordering

R-Tree (Guttman, 1984), R+-Tree (Sellis, 1987) and

R*-Tree (Beckmann, 1990) are well-known multi-

dimensional indexing techniques. They are designed to

put data items close to each other into the same branch

while put data items far away from each other into

different branches. Since data items that are close to each

other in multi-dimensional space are more likely to be

queried together in multi-dimensional queries, using R-

Tree as the base is a good candidate to construct a BDT.

We replace an m-branches R-tree node with a small

binary tree and combine all such small binary trees to

build a BDT as shown in Fig. 10. The total access time in

the 100 data sets for the ordering of traversal of the R-

Tree and the optimized ordering are compared in Fig. 12.

The average percentage of the reduced access time for the

100 data sets is 9.8% and the maximum of that is 19.2%.

Fig. 10. Constructing a BDT by Replacing a R-Tree

Node with a BDT Sub-Tree

5.3 Optimization of Graph Partition Tree

Ordering
Since we represent all possible query result sets

as a weighted hyper-graph, it is natural to use graph
partition techniques to generate a BDT as used in (Bar-
Yehuda, 2001). An illustration of using graph partition to
construct a BDT is shown in Fig. 11.

Although graph partition is a NP-complete
problem , some heuristics and approximation algorithms
are fast enough for our problem where the number of
nodes in a graph is typically 100-10000. In this study we
use a hyper-graph partition package called HMETIS
([HREF 1]) to perform recursive bisection and generate a
BDT accordingly. By taking access frequencies (edge
weights) into consideration explicitly, the quality of the
BDT and the optimization result are expected to be better
than the R-Tree based results. This has been confirmed by
our experiments. The results of the same 100 data sets
are shown in Fig. 13.

1*4)1(*

3*
14

14
)1(*)2(

3*)1...44()1(*4

33*43*4...)
2

(*4

33*4...]3)
2

([4

...

33*4)
2

(*4

3]3)
2

(*4[*4

3)
2

n
S(*4S(n)

22

1
2

1

2

2

2

−+=
−

−+=

+++=

++++=

++++=

=

++=

+++=

+=

+

−

nSn

S

S

n
S

n
S

n
S

n
n

S

k
k

kkk

k

k

k

k

k

Proceedings of the 2004 IEEE International Conference on Mobile Data Management (MDM’04)

0-7695-2070-7/04 $20.00 © 2004 IEEE

Fig. 11. Constructing a BDT by Graph Partition

5.4 Comparison with Two Heuristics

We also generate two broadcast orderings using

two popular heuristics. The first one is based on the

decreasing order of summarized node weights, i.e., we

add up all the weights of the hyper-edges that contain a

node to get the summarized weight of the node. The data

items that are corresponding to the nodes are sequenced

according to the decreasing order of their weights. The

second heuristic is edge-based. We sort the hyper-edges

according to their deceasing weights. All the nodes in the

hyper-edge that has the largest weight are placed at the

beginning of the broadcast sequence. We then check the

hyper-edge that has the second largest weight and place

its nodes that have not been placed onto the broadcast

sequence. This process is repeated until all the nodes in

the hyper-graph representation have been placed onto the

broadcast sequence.

 Comparisons of the experiment results of the

two heuristic orderings with the optimized orderings

using R-Tree and graph partition tree as BDTs are shown

in Fig. 14. The average total access time of the 100 data

sets are almost identical for the two heuristics. The

optimized ordering using R-Tree as BDT is on average

about 22% better than the two heuristic orderings.

Furthermore, optimized ordering using a graph partition

tree as the BDT is on average about 54% better than the

two heuristic orderings using the 100 data set. Optimized

ordering is the best data placement method in our

experiments.

6 Conclusions and Future work Directions

In this study, we considered the problem of data

placement on a broadcast channel for efficient multi-

dimensional range query processing. We proposed an

efficient optimization method using a divide-and-conquer

strategy and several efficient graph data structures that

can examine 2n-1 orderings in O(n2) time for practical n

values that vary from 100 to 10000. Our experiments

using 100 synthetic data sets on the two heuristic methods

and the optimization method (using R-Tree and graph

partition tree as BDTs) suggest that using graph partition

tree as the BDT for optimization achieves the best data

access time that could be as much as 54% better than the

heuristic orderings.

For future work, we plan to take access time to

the index channel into consideration and explore more

ordering heuristics as well as exact and/or approximation

optimization methods. Finally we plan to do more

experiments using both synthetic and real data sets with

different sizes and distributions to examine the

effectiveness and scalabilities of the optimization method.

Proceedings of the 2004 IEEE International Conference on Mobile Data Management (MDM’04)

0-7695-2070-7/04 $20.00 © 2004 IEEE

References

1. Norbert Beckmann, Hans-Peter Kriegel, Ralf

Schneider, Bernhard Seeger: The R*-Tree: An

Efficient and Robust Access Method for Points

and Rectangles. SIGMOD Conference 1990:

322-331

2. Y. C. Chehadeh, A. R. Hurson, Mohsen

Kavehrad: Object Organization on a Single

Broadcast Channel in the Mobile Computing

Environment. Multimedia Tools and

Applications 9(1): 69-94 (1999)

3. Josep Daíz and Jordi Petit and María Serna: A

Survey on Graph Layout Problems. ACM

Computing Surveys, 34(3): 313-356 (2002)

4. Yon Dohn Chung, Myoung-Ho Kim: Effective

Data Placement for Wireless Broadcast.

Distributed and Parallel Databases 9(2): 133-150

(2001)

5. V.Gaede, O.Günther: Multidimensional access

methods. ACM Computing Survey, 30(2):170-

231 (1998)

6. A.Guttman, R-trees: A dynamic index structure

for spatial searching. SIGMOD Conference,

1984:47-54

7. Qinglong Hu, Wang-Chien Lee, Dik Lun Lee: A

Hybrid Index Technique for Power Efficient

Data Broadcast. Distributed and Parallel

Databases, 9(2): 151-177 (2001)

8. Qinglong Hu, Wang-Chien Lee, Dik Lun Lee:

Indexing Techniques for Power Management in

Multi-Attribute Data Broadcast. MONET 6(2):

185-197 (2001)

9. T. Imielinski, S. Viswanathan, B. R. Badrinath:

Energy Efficient Indexing On Air. SIGMOD

Conference, 1994:25-36

10. T. Imielinski, S. Viswanathan, B. Badrinath:

Power Efficient Filtering of Data on Air. EDBT,

1994: 245-258

11. T. Imielinski, S. Viswanathan, B. R. Badrinath,

Data on Air: Organization and Access. IEEE

Transactions on Knowledge and Data

Engineering, 9(3): 353-372 (1997)

12. Hans-Peter Kriegel: Performance Comparison of

Index Structures for Multi-Key Retrieval.

SIGMOD Conference 1984: 186-196

13. Guanling Lee, Shou-Chih Lo, Arbee L. P. Chen:

Data Allocation on Wireless Broadcast Channels

for Efficient Query Processing. IEEE

Transactions on Computers 51(10): 1237-1252

(2002)

14. Wang-Chien Lee, Dik Lun Lee, Using Signature

Techniques for Information Filtering in Wireless

and Mobile Environments. Distributed and

Parallel Databases, 4(3): 205-227 (1996)

15. Bernd-Uwe Pagel, Hans-Werner Six, Heinrich

Toben, Peter Widmayer: Towards an Analysis of

Range Query Performance in Spatial Data

Structures. PODS 1993: 214-221

16. T. Sellis, N. Roussopoulos and C. Faloutsos. The

R+-Tree: A Dynamic Index for Multi-

Dimensional Objects. VLDB Journal, 1987:507-

518

17. Kian-Lee Tan, Xu Yu, Generating broadcast

programs that support range queries, TKDE

10(4):668-672:1998

18. Reuven Bar-Yehuda, Computing an optimal

orientation of a balanced decomposition tree for

linear arrangement problems. Journal of Graph

Algorithms and Applications, 5(4): 1-27 (2001)

[HREF 1] http://www-

users.cs.umn.edu/~karypis/metis/hmetis/

Proceedings of the 2004 IEEE International Conference on Mobile Data Management (MDM’04)

0-7695-2070-7/04 $20.00 © 2004 IEEE

Fig. 12. Comparison of Original and Optimized R-Tree Traversal Orderings

Fig. 13. Comparison of Original and Optimized Graph Partition Tree Traversal Orderings

Fig. 14. Comparisons of the Two Heuristic and the Two Optimized Orderings

Proceedings of the 2004 IEEE International Conference on Mobile Data Management (MDM’04)

0-7695-2070-7/04 $20.00 © 2004 IEEE

	footer1:

