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Abstract

Data broadcasting is well known for its excellent 

scalability. Multi-dimensional range queries, such as 

spatial range queries of geographical information for 

location dependent services, are very popular queries in 

mobile computing.  Query response time is greatly 

affected by the order in which data items are being 

broadcast. This paper proposes a non-greedy, low 

polynomial time cost optimization method to place data 

over a wireless broadcast channel for multi-dimensional 

range query processing. Experimental results show that 

the method, together with proper global constraints based 

on application semantics, can greatly reduce total access 

time to the data channel. Compared with the heuristic data 

placement methods purely based on the access 

frequencies, the reduction of access time can be as much 

as 54%.

1. Introduction 

Data broadcasting is well known for its excellent 

scalability (Imielinski, 1997). Previous work on data 

broadcasting has focused on retrieving a single data item 

from a broadcast channel while little work has been done 

on complex queries where a query result set has multiple 

data items (Lee 2002). It is obviously inefficient to 

retrieve the data items in a complex query by accessing 

the broadcast channel multiple times and retrieving one 

data item at a time. In this study, we consider a typical 

broadcast scenario introduced in (Imielinski, 1997), where 

data and its index are multiplexed into a single channel 

and index is placed ahead of data.

Range query processing has been extensively 

studied in disk-resident databases (Gaede, 1998). A range 

query often returns multiple data items . Although it is 

straightforward to map one-dimensional data items onto a 

broadcast channel for range queries based on their values, 

it is not a trivial issue to make such a mapping for multi-

dimensional data items for efficient range query 

processing.  The multi-attribute indexing method 

(Imielinski, 1997) proposed to fragment the first attribute 

and build an index for each fragment of the first attribute 

based on the values of a second attribute. These indices 

are distributed sequentially on a broadcast sequence. Data 

items that are indexed are placed right after the indices. 

As far as indexing is concerned, this is actually using one-

dimensional indexing methods consecutively for 

multidimensional indexing and thus is inefficient 

(Kriegel, 1984). We are not convinced that the sequence 

of the data items generated by the method is efficient for 

range queries either since no access frequencies of data 

items are considered. As discussed in (Tan, 1998), unlike 

queries that involve only a single data item, replicating 

data items, as in many broadcast-disk based techniques, 

generally will not help reducing access time in processing 

range queries. Thus we assume that both data and index 

are broadcast only once.   

In this study, we are interested in reducing total 

access time to the data channel for processing multi-

dimensional range queries by better placement of data 

items on a broadcast channel.  We represent all possible 

complex query result sets as hyper-edges in a hyper-graph 

where the data items are represented as nodes. We treat 

the access frequencies of the query result sets as the 

weights of the corresponding hyper-edges. An efficient 

non-greedy data placement method based on an 

approximation method for the graph Minimum Linear 

Arrangement (MinLA) problem (Bar-Yehuda, 2001) is 

proposed. Experimental results show that the method, 

together with proper global constraints imposed on the 

hyper-graph based on application semantics, can greatly 

reduce total access time to the data channel. Compared 

with the heuristic data placement methods purely based 

on the access frequencies, the reduction of access time 

can be as much as 54%.  

The rest of this paper is arranged as follows. 

Some background in data broadcast is introduced in 

Section 2 and then related work is reviewed in Section 3. 

Section 4 describes the optimization method. Section 5 

presents the experiments comparing the proposed method 

and other heuristic methods. Finally Section 6 is 

conclusions and future work directions. 

2. Background 

In a broadcast system, a minimum logical unit in 

a broadcast sequence is called a bucket/frame, and a set of 

continuous buckets (either index or real data) is called a 

segment. Different from main memory or disk resident 

data accesses, accesses to a broadcast sequence are 

essentially one-dimensional. There are two important 

parameters in evaluating the performance of a broadcast 
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system, namely Tune-in Time (TT) and Access Time 

(AT, or latency). TT is the amount of time a client spent 

listening to the broadcast channel. AT is the average time 

elapsed from the time a client requests data to the time 

when the client downloads all the required data . In Fig. 

1, TT is equal to the summation of the lengths of the 

required data items (shaded) while AT is the duration 

between the initial access position and the last required 

data item. 

Fig. 1. Illustration of TT and AT 

Fig. 2. The Four Components in Access Time 

In (Imielinski, 1997), AT is the sum of the Probe 

Wait (PW) and the Bcast Wait (BW) where the former is

the average duration for getting to the next index segment 

and the latter is the average duration between the time 

when the index segment is encountered and the time 

when all the required data items are downloaded. We 

argue that it might be more appropriate to divide AT into 

four components: Index-Probe Wait (IPW), Index-Bcast 

Wait (IBW), Data-Probe Wait (DPW) and Data-Bcast 

Wait (DBW). IPW is the same as PW. IBW is the time 

duration from the time when the first index segment is 

met to the time when the last index segment is met. DPW 

is defined as the duration from the time the last index 

segment is reached to the time when the first data 

segment is reached. DBW is defined as the duration from 

the time when the first data segment is reached to the time 

when the last data segment is downloaded. The 

summation of IBW, DPW and DBW is equivalent to BW. 

Using the four components allows us to compute access 

time to index and data separately. We assume a client has 

already had an ordered set of pointers to the data items in 

the broadcast channel by performing a range query on the 

index segments which are either in the same channel with 

the data or in a separate index channel. The scenario we 

consider is the one in which the index and data are 

multiplexed into a single channel where a client needs to 

go to the beginning of the multiplexed channel before 

retrieving data items. These four components under this 

scenario are illustrated in Fig 2. 

By using these four components we are able to 

separate the access time to index and the access time to 

data. In this study we focus on the access time to data, 

i.e., ATData=DPW+DBW. Let function π(u) map data item 

u to its position in the broadcast sequence, ATData for 

processing a single complex query that contains k data 

items n1, n2 … nk is )}(),...(),(max{ 21 knnn πππ .

Consequently the total ATData for processing all possible 

complex queries is  

∈Qq

knnnqw )}()...(),(max{*)( 21 πππ

where Q is the set of all possible complex queries and 

w(q) is the weight of  a single complex query q.

3. Related Work 

There have been several studies on data 

broadcast. Many of them have focused on indexing 

techniques to make tradeoffs between TT and AT, such as 

tree-indexing (Imielinski, 1994a), hashing (Imielinski, 

1994b), signature (Lee, 1996) and hybrid (Hu, 2001a). 

They can support only queries on one-dimensional data 

and can search only one data item in a query result.  

Although (Imielinski, 1997) proposed to chain data items 

that have the same values in different meta-segments in 

its non-clustering index and multi-index methods, it 

cannot be applied to data items that have different values 

but are often in the same query results (e.g. range queries 

on attributes that have continuous values). Furthermore, 

in its performance analysis, it assumed that it takes a 

whole broadcast cycle to retrieve non-clustered data items 

of a particular value.  That is an unnecessary 
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overestimation. The issue of multi-attribute data 

broadcast and query was first addressed in (Hu, 2001b). 

However, this work can handle only 

conjunction/disjunction queries that involve fewer than 

three attributes. They are not suitable for multi-

dimensional range queries. 

Recent works on object-oriented database 

broadcast (Chehadeh, 1999) and relational database 

broadcast (Lee, 2002) allow multiple data items to be 

accessed in a query. However, they assumed the access to 

data items has  predefined orders. They are not suitable 

for range queries since data items in a query result do not 

necessarily have a predefined order. Furthermore, the 

ordering heuristics proposed in (Chehadeh, 1999; Lee, 

2002) are greedy. The work presented in  (Chung, 2001) 

handles both DPW and DBW. However, it assumed that a 

user begins to access the data channel randomly which is 

different from the scenario we are considering where a 

user always goes to the beginning of a broadcast channel 

to retrieve data items. The data placement method 

proposed in in  (Chung, 2001) is also greedy and the data 

items having scheduled in a previous round will not 

change their orderings in the following rounds. Our 

method differs from all these works in that we try to 

examine an exponential number of orderings in a low 

polynomial complexity time. The exhaustive searching 

nature makes our method tend to produce orderings with 

high quality. 

4. The Optimization Method 

4.1. Basic Ideas 

Our method is motivated by the approximation 

algorithm for the graph Minimum Linear Arrangement 

(MinLA) problem proposed in (Bar-Yehuda, 2001). The 

goal in MinLA is to find an ordering that minimizes the 

weighted sum of the edge lengths in a sequence. 

Formally, the weighted sum of the edge lengths with 

respect to an ordering is defined as  

where w(u,v) is the weight of the edge (u,v) and π(u)

is the position mapping function as defined in Section 2. 

By relating w(u,v) with w(q) and relating |π(u)- π(u)| with 

)}(),...(),(max{ 21 knnn πππ we can see that the 

problem of optimizing the total access time is structurally 

similar to the MinLA problem. However, there are several 

significant differences. First, there are multiple data items 

in a complex query result set (q) while there are only two 

nodes associated with an edge (u and v). This difference 

may be solved by extending a regular edge that only 

consists of two nodes to a hyper-edge that consists of a 

subset of the vertex set of the graph. We can define π(u)=

)}(),...(),(max{ 21 knnn πππ  and π(v)=

)}(),...(),(min{ 21 knnn πππ . Second, the length of an

edge is defined as )}(),...(),(max{ 21 knnn πππ  in our 

problem while it is |π(u)- π(u)| in the MinLA problem. 

Third, rather than computing |π(u)- π(u)| for an edge 

directly, (Bar-Yehuda, 2001) computes it as a serial 

summation of the sub-tree sizes of the Binary 

Decomposition Tree (BDT) of a graph (see Section 4.2 

below for a detailed description of BDT) to achieve its 

efficiency while this is not possible in our problem.   

In this study, we adopt the divide-and-conquer 

strategy and several efficient graph data structures that 

have been used in (Bar-Yehuda, 2001). We propose a 

new method to minimize the total access time for all 

possible multi-dimensional query result sets under the 

broadcast scenario that data and index are multiplexed 

into a single channel. Like (Bar-Yehuda, 2001), our 

method checks all possible 2n-1 orderings that can be 

derived from a BDT in O(n2) time complexity.  

We next introduce the BDT which is the global 

constraints imposed on the ordering of data items. We 

then present the optimization method and illustrate the 

process through a simple example. Before discussing the 

complexity analysis of our proposed method, we discuss 

several efficient graph data structures that are crucial to 

achieve low complexity. 

4.2. The Binary Decomposition Tree 

A BDT T (Fig. 3) is a binary tree that has all the 

nodes in a hyper-graph as its leaf nodes. For each tree 

t∈T that has two sub-trees t1 and t2, we have two options 

in placing the nodes under it into a broadcast channel, i.e., 

either the nodes under t1 are placed ahead of the nodes 

under t2 (called 0-orientation), or the nodes under t2 are 

placed ahead of the nodes under t1 (called 1-orientation).

The orientations at each intermediate node of the BDT 

form a tree that has the same structure as that of the BDT. 

An orientation tree determines an ordering sequence of all 

the nodes in a graph. 

Fig. 3. A Binary Decomposition Tree
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Since t has two orientations and the orientations 

of its two sub-trees, t1 and t2, are independent of each 

other, it is easy to prove that there are 2n-1 orderings for a 

full and balanced BDT.  The efficiency is achieved by 

examining 2n-1 orderings in O(n2) time as shown below.  

4.3 The Proposed Method and an Example 

The proposed method is shown in Fig. 4. We postpone 

the discussions of Step 3.b and Step 3.c until  Section 4.4 

since we need several efficient graph data structures. 

However, there should not be any problem in 

understanding the optimisation process through the 

following example.     

Fig. 4. The Process of the Optimization Method 

The example we use to illustrate the optimization 

method has 4 data items and 11 queries (hyper-edges). 

The queries and their access frequencies (hyper-edge 

weights) are listed in Table. 1. The BDT we use is shown 

in Fig 5. For illustration convenience, we also use “+” to 

denote the1-orientation and “-” to denote the 0-

orientation. 

Fig. 5. The BDT of the Example 

Table 1. The Hyper-graph of the Example 

1 62 

2 19 

3 34 

4 85 

1,3 2 

2,3 38 

1,2 22 

3,4 8 

2,4 3 

1,2,3 14 

2,3,4 4 

\

Fig. 6. Computing AT(2) and AT(1) Under 1-

Orientation of T11

1 Set the positions of all nodes to the specified 

initial order, or the natural order of {1,2…n} 

if no initial order is available. Set the starting 

BDT node t to the root of BDT. Do step 2 

and step 3 recursively.

2 If t is an intermediate node of BDT: 

a) Test the two orientations of the sub-

trees t1 and t2 it points to by adding the 

access time of t1 and t2 under the 

orientations.  

b) Set the orientation of t to the one that 

has less access time.  

3 If t is a leaf node of BDT:  

a) Set the access time associated with the 

node to zero.  

b) Compute the position of the node.  

c) Retrieve all the queries that contain this 

node and their corresponding weights.  

d) For each query that has the node as the 

ending node in the broadcast sequence, 

add position*weight to the access time 

associated with the node. 
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For T11 in 1-orientationas shown in Fig. 6, the 

position of node 2 is 2 and the position of node 1 is 3, 

thus AT(2) = 2*( 4 + 38 + 19 + 3) = 128, 

AT(1)=3*(2+14+22+62) =300 and 

AT(T11
1)=128+300=428. Similarly we can also compute 

AT(T11
0)=428. According to our convention, we will 

choose 0-orientation if the two orientations have the same 

cost. We next compute the cost of T12 under both 

orientations. 

For the T12 in 1-orientation as shown in Fig 7, 

the position of node 3 is 1 and the position of node 4 is 0, 

thus AT(3)=1*(8+34)=42, AT(4)=0 and 

AT(T12
1)=42+0=42. Similarly for T12 in 0-orientation, 

AT(3)=0, AT(4)= 1*(8+85)= 93, thus 

AT(T12
0)=0+93=93. Since 42 is less than 93, 0-orientation 

of T12 is the winner. Thus the total cost of T0 under 1-

orientation is AT(T0
1)= AT(T11

1)+ AT(T12
0) = 428+42= 

470. Similarly the AT(T0) under 0-orientation is 517. 

Thus the 1-orientation of T0 is the winner and the final 

optimized ordering is [4,3,1,2] whose access time is 

14.9% better than the access time of the natural ordering 

of [1,2,3,4]. 

Fig. 7 Computing AT(T12) Under 1- and 0-

Orientations 

4.4 Hyper-Graph Data Structures 

Since we represent all possible query result sets 

as a hyper-graph, we next introduce several efficient 

graph data structures that are crucial in achieving 

efficiency for our method. Some of them have also been 

used in the implementation of (Bar-Yehuda, 2001). 

First, the nodes of the hyper-edges are stored 

sequentially in an array and the positions that mark the 

endings of the hyper-edges in the array are stored in 

another array. These positions serve as the indexes to the 

nodes in the hyper-edges. The weights of the hyper-edges 

are stored in a third array. The fourth array associated 

with the hyper-graph contains the pointers to the leaf 

nodes in the BDT. An inverse hyper-graph is also built 

for the graph. It has an array to store sequentially the 

hyper-edge IDs that contain the nodes in the original 

graph. Similar to the index array used in a hyper-graph, 

the positions that mark the endings of the nodes are stored 

in the second array of the inverse hyper-graph.  

By using the arrays of the hyper-graph and the 

corresponding inverse hyper-graph, we can perform the 

following operations efficiently. First, we can retrieve all 

the nodes in a hyper-edge of ID e by first retrieving the 

ending position of e-1 and the ending position of e and 

then retrieving all the nodes in the node array of the 

hyper-graph. Second, we can retrieve all the hyper-edges 

that contain a node v by first retrieving the ending 

position of v-1 and the ending position of v and then 

retrieving all the IDs of the hyper-edges between the two 

positions in the index array of the inverse hyper-graph. 

Note that we can retrieve the weight of a hyper-edge by 

accessing the weight array of the hyper-graph using the 

hyper-edge’s ID directly.  

We next discuss the BDT in more detail.  Each 

node in the BDT contains a pointer to its parent and two 

pointers to its two children. The parent pointer of the root 

of the BDT is empty and the two children pointers of a 

leaf node of the BDT are also empty. Each node also 

contains an orientation flag and   the size of the sub-tree 

of the BDT that has the node as the root. Now we are 

ready to show how to compute the position of a node 

under a BDT efficiently.  

As shown in Fig. 8, starting at a leaf node (6 for 

example), we use the parent pointer associated with the 

BDT node to travel from the leaf node all the way to the 

root of the BDT. We check the orientation of the BDT 

nodes along the path. If the sub-tree rooted at the node is 

the right sub-tree of its parent then we add the sub-tree 

size of its sibling to the position, otherwise we just skip. 

In the BDT shown in Fig. 8, in the first step, since node 6 

is the right child of T1 we add 1 to the position. In the 

second step, since T1 is the left child of T2, we just skip. 

In the third step, since T2 is the right child of T3, we add 

3, which is the size of the left sub-tree of T3, to the 

position. Since T3 is the left child of T4, which is the root 

of the BDT, we skip again. Finally we get the position of 

node 6 as 3+1=4.  The cost of computing the position of a 

leaf node is in the order of logn if the BDT is balanced.  
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Fig. 8. Illustration of Computing the Position 

of a BDT Node

We next show how to determine whether a node 

is the ending node of a hyper-edge. We need some pre-

processing. For each hyper-edge we build a tree called the 

Least Common Ancestor (LCA) tree. The process of 

constructing a LCA tree is as follows. For each of the 

node in the hyper-edge, we travel from the node all the 

way to the root of the BDT as we did before and assign 

the ID of the hyper-edge to the flags of all the 

intermediate nodes on the paths. Next, starting from the 

root of BDT, we first try to find a node of the BDT whose 

both children’s flags are the ID of the hyper-edge and 

travel down to only the child whose flag is the ID of the 

hyper-edge. We repeat this process recursively until we 

reach the leaf nodes of the BDT. We add a BDT node to 

the LCA tree if its both children’s flags are the ID of the 

hyper-edge or it is the leaf node of the BDT. Fig. 9 shows 

the process where the ID represents the hyper-edge of 

{1,4,5,6} and the dashed lines show the correspondence 

between the nodes in the BDT and the LCA tree. Note 

that each LCA tree is topologically a sub-tree of the BDT. 

Since each LCA tree node stores a pointer to a copy of 

the corresponding BDT node, the actual order of the 

nodes in a hyper-edge represented by a LCA tree will also 

change when the orientation of a related BDT node is 

switched.  

By using the LCA tree, we can determine 

efficiently whether a leaf node of the BDT is the ending 

node of a hyper-edge. We first start with the root of the 

LCA tree of the node. We then follow the right children 

until we reach a leaf node of the LCA tree to find the last 

node in the hyper-edge under the current orientations of 

the BDT. We compare the last node’s ID with the ID of 

the BDT node to determine whether the node represented 

by the leaf BDT node is the ending node of the hyper-

edge. The cost of the traversal is in the order of logm

where m is the number of nodes in the hyper-edge. We 

assume the maximum number of the nodes in the hyper-

graph is bounded by a constant, thus the determination 

can be made in small constant time. 

Fig. 9. Illustration of Determining the Ending 

Node of a Hyper-Edge 

4.5 Complexity Analysis 

We are now ready to analyse the computation 

complexity of the proposed method. Let S(N) be the total 

computation cost for an N-nodes hyper-graph. Assuming 

the corresponding BDT T is balanced. At each t∈T

having n nodes (i.e. n=|t|) we need to calculate the costs 

of its two children under the two orientations which result 

in 4*S(n/2) We also need one addition for each 

orientation (to add the costs of t1 and t2) and one 

comparison (to compare the costs of the two orientations). 

Thus the complexity analysis of the total access time in 

terms of the number of data items n is shown as in Fig.  9.  

S(1) has the following components. It takes 

O(logn)  to compute the position of a node in Step 2.b as 

discussed in Section 4.4. It takes constant time to retrieve 

all the hyper-edges that contain the node by using the 

inverse hyper-graph in Step 2.c. Also as discussed in 

Section 4.4, it takes constant time to determine whether a 

node is the ending node of a hyper-edge, thus the total 

cost in Step 2.d is also bounded by a constant. 

Furthermore, n varies from 100 to 10000 in many real 

applications, thus logn varies from 7 to 14, which is 

comparable to the multiplication of the average number of 

hyper-edges that contain a node (10-20) and the average 

depth of a LCA tree (3-5). We treat logn as a bounded 

constant for the practical values of n. Thus we can claim 

that our method has the complexity of O(n2).
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Fig. 9. Complexity Analysis 

5 Experiments for Performance Evaluation 

5.1 Generating Data Sets 

In addition to the two parameters in generating random 

data sets, i.e., the number of data items (M) and the 

number of queries (Q), we also use the parameter of the 

maximum number of data items in a query (N) to comply 

with our assumption in the complexity analysis. In this 

study, we set M=100, Q=100 and N=10. We assume our 

data are two- dimensional whose data space is (0,1) by 

(0,1) and the access frequency for each query is between 

0 and 100.  Instead of generating query ranges directly, 

we first pick seed data items and generate random 

numbers between 1 and N. We then retrieve the N-nearest 

data items of the seed data items and use their Minimum 

Bounding Rectangles (MBR) as the query ranges. By 

doing so we free ourselves from the time-consuming try-

and-error processes to make sure that the number of data 

items in a generated query result set is less than N. We 

generate 100 such data sets and perform evaluation of our 

proposed method on them in the following sub-sections. 

All our experiments are performed on a Dell Dimension 

4100 personal computer with 866MHZ processor and 

512M memory. For the rest of this section, when we say 

“A is c% better than B” we compute c as the percentage 

of the reduced access time from the broadcast ordering 

given by method B to the broadcast ordering given by 

method A divided by the access time of the broadcast 

ordering given by method  A, i.e., c=(B-A)/A=B/A-1.

5.2 Optimization of R-Tree Ordering 

R-Tree (Guttman, 1984), R+-Tree (Sellis, 1987) and 

R*-Tree (Beckmann, 1990) are well-known multi-

dimensional indexing techniques. They are designed to 

put data items close to each other into the same branch 

while put data items far away from each other into 

different branches.  Since data items that are close to each 

other in multi-dimensional space are more likely to be 

queried together in multi-dimensional queries, using R-

Tree as the base is a good candidate to construct a BDT. 

We replace an m-branches R-tree node with a small 

binary tree and combine all such small binary trees to 

build a BDT as shown in Fig. 10.  The total access time in 

the 100 data sets for the ordering of traversal of the R-

Tree and the optimized ordering are compared in Fig. 12. 

The average percentage of the reduced access time for the 

100 data sets is 9.8% and the maximum of that is 19.2%.  

Fig. 10. Constructing a BDT by Replacing a R-Tree 

Node with a BDT Sub-Tree 

5.3 Optimization of Graph Partition Tree 

Ordering
Since we represent all possible query result sets 

as a weighted hyper-graph, it is natural to use graph 
partition techniques to generate a BDT as used in (Bar-
Yehuda, 2001). An illustration of using graph partition to 
construct a BDT is shown in Fig. 11.  

Although graph partition is a NP-complete 
problem , some heuristics and approximation algorithms 
are fast enough for our problem where the number of 
nodes in a graph is typically 100-10000. In this study we 
use a hyper-graph partition package called HMETIS 
([HREF 1]) to perform recursive bisection and generate a 
BDT accordingly. By taking access frequencies (edge 
weights) into consideration explicitly, the quality of the 
BDT and the optimization result are expected to be better 
than the R-Tree based results. This has been confirmed by 
our experiments.  The results of the same 100 data sets 
are shown in Fig. 13. 
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Fig. 11. Constructing a BDT by Graph Partition 

5.4 Comparison with Two Heuristics 

We also generate two broadcast orderings using 

two popular heuristics. The first one is based on the 

decreasing order of summarized node weights, i.e., we 

add up all the weights of the hyper-edges that contain a 

node to get the summarized weight of the node. The data 

items that are corresponding to the nodes are sequenced 

according to the decreasing order of their weights. The 

second heuristic is edge-based. We sort the hyper-edges 

according to their deceasing weights. All the nodes in the 

hyper-edge that has the largest weight are placed at the 

beginning of the broadcast sequence. We then check the 

hyper-edge that has the second largest weight and place 

its nodes that have not been placed onto the broadcast 

sequence. This process is repeated until all the nodes in 

the hyper-graph representation have been placed onto the 

broadcast sequence.  

 Comparisons of the experiment results of the 

two heuristic orderings with the optimized orderings 

using R-Tree and graph partition tree as BDTs are shown 

in Fig. 14.  The average total access time of the 100 data 

sets are almost identical for the two heuristics. The 

optimized ordering using R-Tree as BDT is on average 

about 22% better than the two heuristic orderings. 

Furthermore, optimized ordering using a graph partition 

tree as the BDT is on average about 54% better than the 

two heuristic orderings using the 100 data set.  Optimized 

ordering is the best data placement method in our 

experiments. 

6 Conclusions and Future work Directions 

In this study, we considered the problem of data 

placement on a broadcast channel for efficient multi-

dimensional range query processing. We proposed an 

efficient optimization method using a divide-and-conquer 

strategy and several efficient graph data structures that 

can examine 2n-1 orderings in O(n2) time for practical n

values that vary from 100 to 10000. Our experiments 

using 100 synthetic data sets on the two heuristic methods 

and the optimization method (using R-Tree and graph 

partition tree as BDTs) suggest that using graph partition 

tree as the BDT for optimization achieves the best data 

access time that could be as much as 54% better than the 

heuristic orderings.  

For future work, we plan to take access time to 

the index channel into consideration and explore more 

ordering heuristics as well as exact and/or approximation 

optimization methods. Finally we plan to do more 

experiments using both synthetic and real data sets with 

different sizes and distributions to examine the 

effectiveness and scalabilities of the optimization method. 
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Fig. 12. Comparison of Original and Optimized R-Tree Traversal Orderings 

Fig. 13. Comparison of Original and Optimized Graph Partition Tree Traversal Orderings

Fig. 14. Comparisons of the Two Heuristic and the Two Optimized Orderings 
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