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Abstract 

In this paper, we present a locking-based concurrency control scheme for object-oriented databases (OODBs). Our 
scheme deals with class hierarchy which is an important property in OODBs. The existing concurrency controls for a 
class hierarchy  perform well only for specific environments. Our scheme is based on so called special classes and 
can be used for any applications with less locking overhead than existing works, for both single inheritance and 
multiple inheritance. In this study, we show the superiority of our scheme over existing works. 
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1. Introduction 

 While conventional databases are suitable for modeling simple data type, object-oriented databases 

(OODBs) are good for managing non-standard applications such as computer-aided design (CAD) and 

computer-aided software engineering (CASE). These new applications require advanced modeling power 

in order to handle complex data and complex relationships among data. This can be extremely difficult or 

even impossible in conventional business-oriented applications. In an OODB, a class object consists of a 

group of instance objects and class definition objects. The class definition consists of a set of attributes 

and methods that read or modify attributes of an instance or a set of instances. Users can access objects 

by invoking methods. A typical  user transaction consists of a set of method invocations on objects [3].  

  In general, there are two types of access to an object: instance access methods (instance read 

method and instance write method) and class definition access methods (class definition read method 

and class definition write method) [1,3]. An instance access consists of consultations and/or modifications 

of attribute values in an instance or a set of instances. A class definition access consists of consultations 

of class definition and/or modifications of class definition such as adding/deleting an attribute or a method. 
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Commutativity is a criterion widely used to determine whether a method can run concurrently with 

methods in progress on the same object. Two methods commute if their execution orders are not important 

(i.e., their execution orders do not affect their results). Two methods conflict with each other if they do not 

commute. 

 Concurrency control is a mechanism used to coordinate access to the multi-user database so that 

the consistency of the database is maintained [2,12]. A concurrency control scheme allows multi-users 

rapid access to a database but incurs an overhead whenever it is invoked. This overhead may have a 

critical effect on OODBs where many transactions are long-lived. Thus, reducing the overhead is vital to 

improve transaction response time. 

 One of the major properties of an OODB is inheritance. That is, a subclass inherits definitions 

defined on its superclasses. Also, there is an is-a relationship between a subclass and its superclasses. 

Thus, an instance of a subclass is a specialization of its superclasses (and conversely, an instance of a 

superclass is a generalization of its subclasses) [10]. This inheritance relationship between classes forms a 

class hierarchy. While there are some operations on only one class such as class definition read or on 

only one instance such as instance write, there are two types of operations on a class hierarchy: instance 

access to all or some instances of a given class and its subclasses which we call IACH (Instance 

Access to Class Hierarchy) and class definition write . A query is an example of IACH  where a query 

is defined as an instance read to a given class and its subclasses [6]. Due to inheritance, the definitions of 

a class’ superclasses should not be modified, while the class and its instances are being accessed. Also, 

due to the is-a relationship between classes, the search space for a query against a class, say C, may 

include the instances of all classes in the class hierarchy rooted at C as well as instances of C. Thus, for a 

locking based concurrency control scheme, when a class definition write or query is requested on some 

class, say C, it is necessary to get locks for all subclasses of C as well as C. We call MCA (Multiple Class 
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Access) for class definition write and IACHs, and SCA (Single Class Access) for an operation to only 

one class such as class definition read and instance access to a single class.  

 In this paper, we present a locking-based concurrency control scheme for class hierarchy in 

OODBs. There are two approaches in the literature that deal with class hierarchy, explicit locking and 

implicit locking, both will be discussed in Section 2. These approaches may work well  only for specific 

applications in OODBs. Explicit locking may have less locking overhead for transactions concerned only 

with SCA. On the other hand, implicit locking may have less locking overhead for transactions concerned 

only with MCA. Our scheme is based on a so called special class, which will be defined in Section 3, and 

which can be used for any applications with less locking overhead. With an assumption that the number of 

access is stable  for each class, we show that our scheme performs better than both explicit locking and 

implicit locking. 

 This paper is organized as follows. In Section 2 we review previous studies. In Section 3 we present 

our class hierarchy locking scheme. In Section 4 we show how to assign special classes for a given class 

hierarchy and prove the superiority of our work to existing works. The paper concludes with plans for 

future research in Section 5.  

 

2. Related Work 

 As discussed in Section 1, due to inheritance, class definition writes and IACHs on a class may 

need to access more than one class on a class hierarchy. There are two major existing approaches to 

perform locking on a class hierarchy: explicit locking [3,11] and implicit locking [6,9,10]. In explicit 

locking, for an IACH involving a class, say C, and all of its subclasses, and for a class definition write on 

a class C, a lock is set not only on the class C, but also on each subclass of C on the class hierarchy. For 

other types of access such as class definition read and instance access to a single class, a lock is set for 

only the class to be accessed (we call target class). Thus, for an MCA, transactions accessing a class 



 4

near the leaf level of a class hierarchy will require fewer locks than transactions accessing a class near 

the root of a class hierarchy. Another advantage of explicit locking is that it can treat single inheritance 

where a class can inherit the class definition from one superclass, and multiple inheritance where a class 

can inherit the class definition from more than one superclass, in the same way. However, this technique 

increases the number of locks required by transactions accessing a class at a higher level in the class 

hierarchy. 

 In implicit locking, setting a lock on a class C requires extra locking on a path from C to its root as 

well as on C. Intention locks [4,8] are put on all the ancestors of a class before the target class is locked. 

An intention lock on a class indicates that some lock is held on a subclass of the class. For MCA on a 

target class, locks are not required for every subclass of a target class. It is sufficient to put a lock only on 

the target class1 (in single inheritance) or locks on the target class and subclasses of the target class which 

have more than one superclass (in multiple inheritance) [10]. Thus, it can reduce lock overhead over 

explicit locking. But, implicit locking requires a higher locking cost when a target class is near the leaf 

level in the class hierarchy due to intention lock overhead.  

 For example, consider the following class hierarchy. Note that we select two OODBs, Orion [6] 

and O2 [3], for the illustration of two existing class hierarchy techniques. In order to update the class 

definition in class, say C, each scheme works as in Fig. 1.a. Here, for implicit locking, intention locks 

IWs corresponding to W (Write) locks are required for all superclasses on the path from C to the root A. 

Thus, if another transaction, say T1, needs to update the class definition in A (i.e., it needs to get W lock 

on class A), it does not have to search through each class in the class hierarchy because the help of the 

intention lock IW on class A. That is, since IW and W conflict each other, T1’s lock request is blocked on 

class A. In implicit locking, there is no conflict between intention locks, and between an intention lock and 

an SCA lock; however, there can be a conflict between an intention lock and an MCA lock depending on 
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the commutativity relationship. On the other hand, an explicit locking does not require any intention locks. 

But, it does require a Cw (Class Write) lock on each subclass (i.e., class D and E) of the target class 

through the class hierarchy since any modification of class definitions in C may affect the definitions of its 

subclasses. Also, locking for a query on C (assuming that all instances of C, D and E) can be done as in 

Fig. 1.b. 

 
Implicit locking in Orion          Explicit locking in O2       Implicit locking in Orion       Explicit locking in O2             
 
  IW lock  A                                                                    IR lock                  A     
    ↓                                                                                                  ↓ 
  IW lock   B                                                                  IR lock                   B 
    ↓                                                                                                  ↓ 
  W lock   C Cw lock                                              R lock                     C        IR lock 
    ↓                                                                                                  ↓ 
    D Cw lock                                                                           D        IR lock 
    ↓                                                                                                        ↓ 
    E Cw lock                                                                              E        IR lock 

Fig. 1.a. locking for class definition write in Orion and O2    Fig. 1.b. locking for query in Orion and O2 

 

3. Proposed class hierarchy locking scheme 

3.1. Basic idea 

 Our work is to develop a new class hierarchy locking scheme which can be used for any OODB 

applications with less locking overhead than both existing schemes, explicit locking and implicit locking. To 

achieve this, we designate some classes in the class hierarchy as special classes. Roughly, we define a 

special class (SC) as a class on which class definition writes or IACHs are performed frequently.  For 

our concurrency control purposes, how to determine if a class is a SC or not will be discussed in Section 4. 

 In this new class hierarchy locking scheme, intention locks are set on SCs only; thus, locking 

overhead is reduced compared to implicit locking which requires intention locks on every superclass of the 

target class. When a transaction needs to access an SC which is already intention locked, by invoking an 

MCA lock on it, a concurrency control can reduce conflict checking overhead due to the help of the 

                                                                                                                                                                                                                 
1  Note that, for a query to some instances of a class and its subclasses, locks are required for those individual 
instances in each subclass.  
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intention lock. That is, every conflict can be detected by the help of  commutativity relationships between 

intention locks and MCA locks on the SC. On the other hand, if a class has little or no possibility of being 

accessed by an MCA, there is no need to set an intention lock on that class since SCAs do not use 

intention locks to check for conflicts. As we discussed earlier, there is no conflict between an intention 

lock and an SCA lock and any conflict is determined only at target class. Thus, unlike implicit locking, we 

do not have to set an intention lock on every class on the path from a target class to a root. 

 In order to have fewer locks required for an MCA than those required by explicit locking, our 

scheme works as follows: for an SCA, a lock is set on only the target class, like explicit locking. For 

MCAs, unlike explicit locking which requires locks on the target class and all its subclasses, locks are set 

on every class from the target class to the first SC through the subclass chain of the target class. If there 

is no such SC, then locks are set on leaf classes. If the target class is an SC, then set a lock only on the 

target class. Thus, as we have discussed, by choosing an SC as a class on which MCAs are performed 

frequently, we can reduce locking overhead. 

 For example, consider the following class hierarchy in Fig. 2.a. Assume a transaction T1 invokes an 

MCA lock on class C6. Let LS1 be a lock setting for T1. Assuming that classes C1, C4 and C7 are SCs, 

then Fig. 2.b, 2.c, and 2.d show how locks are set in explicit locking, implicit locking, and our scheme. 

 
 C1   C1    C1: LS1    C1(SC): LS1  
 ↓   ↓    ↓   ↓ 
 C2   C2    C2: LS1    C2 
 ↓   ↓    ↓   ↓ 
 C3   C3    C3: LS1    C3  
 ↓   ↓    ↓   ↓ 
 C4   C4    C4: LS1    C4 (SC): LS1  
 ↓   ↓    ↓   ↓ 
 C5   C5    C5: LS1    C5 
 ↓   ↓    ↓   ↓ 
 C6   C6: LS1     C6: LS1    C6: LS1  
 ↓   ↓    ↓   ↓ 
 C7   C7: LS1   :  C7   C7 (SC): LS1  
 ↓   ↓    ↓   ↓ 
 C8   C8: LS1     C8   C8 
 ↓   ↓    ↓   ↓ 
 C9   C9: LS1     C9   C9 
 ↓   ↓    ↓   ↓ 
 C10   C10: LS1    C10   C10 



 7

  
 Fig. 2.a  Fig 2.b   Fig 2. c  Fig. 2.d 
 Class hierarchy    Explicit locking  Implicit locking Our scheme 

 

3.2. Lock Modes 

 We adopt instance level granularity for instance access and entire class object for class definition 

access, like Orion [6] and O2 [3]. Below we show locks needed for different types of instance and class 

access [7]. For convenience, we use lower-case letters and upper-case letters to name locks on an 

instance and a class, respectively. 

 
Operations                          Locks needed 
  
instance read                      r (on target instance) 
                                         TR, IMPR, INTSR, QR (on target class or its superclasses) 
 
instance write                    w (on target instance) 
                                         TW, IMPW, INTSW, QW (on target class or its superclasses) 
 
Class definition write         CW (on target class) 
                                         INTSW (intention lock for each SC on the path from the target class to its 
root) 
 
Class definition read         CR (on target class) 
                                        INTSR (intention lock for each SC on the path from the target class to its root) 
 

• instance read 

- (for SCA) TR (Target Read) lock means that some (not all) instances of a target class are r locked. A 

TR lock is set on a target class whenever an r lock is set on its instance. 

- (for SCA) IMPR lock (Implicit Read on target class) means that all instances are read locked implicitly. 

Like both explicit locking and implicit locking, we reduce locking overhead by setting an IMPR lock on the 

target class, not on individual instances, if the majority of instances are accessed. 
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- (for MCA) QR (Query Read on a target class) means that some or all instances of a target class and its 

subclasses are read locked as in implicit locking. We reduce locking overhead by setting an QR lock on 

only the target class, not setting TR or IMPR lock on the all subclasses of the target class. 

- An intention lock INTSR (Intention Superclass Read) is set for every SC on the superclass chain  from 

a target class to its root whenever an IMPR or TR or a QR lock is set on the target class. It indicates that 

some instance read lock is held on a subclass of the class. 

 

• Instance write  

- (for SCA) TW lock (Instance Write on target class) means that some (not all) instances of a target class 

are w locked. An TW lock is set on a target class whenever w lock is set on its instance. 

- (for SCA) IMPW (Implicit Write) lock means that all instances of a target class are w locked implicitly. 

- (for MCA) QW (Query Write on a target class) means that some or all instances of a target class and 

its subclasses are write locked. 

- INTSW (Intention Superclass Write)lock is set for every SC on the superclass chain  from the target 

class to its root whenever an IMPW or TW or QW lock is set on an instance or class. 

 

3.3. Commutativity Relation Tables 

 In Tables 1 and 2, we provide commutativity relation among the lock modes introduced above.  

Y(Yes) and N (No) stand for commute, and not commute, respectively. 

 
a) instance 
      lock holder 

      r w 

  lock   r Y N 
  requester  w N N 
 
 
                           Table 1. Commutativity relation for locks on an instance 
 
 



 9

b) Class 
 
 As in implicit locking, conflicts between MCAs, if at least one of the lock holder and requester 

requires locks only on a class, conflict relationships are determined directly by read-read, read-write, 

write-write conflict. Otherwise (i.e., both require locks on a class as well as instances), conflicts are 

determined on individual instances. For conflicts between MCAs and intention locks, conflicts are 

determined as if an intention lock were a real lock. For example, setting  CW and INTSR on the same 

class will cause conflicts. Also, there is no conflict between SCAs and intention locks. 

 
 
 
        lock holder 
 
     CW CR TR     IMPR    INTSR      QR          TW    IMPW   INTSW      QW       
                                                                                                                                                          
 
   r        CW N N N N N N N N N            N   
  e       CR  N Y Y Y Y Y Y Y Y Y  
  q       TR  N Y Y Y Y Y Y N Y N  
  u       IMPR N Y Y Y Y Y N N Y N  
  e       INTSR N Y Y Y Y Y Y Y Y N  
  t        QR      N Y Y Y Y Y N N N            N  
  e        TW N Y Y N Y N Y N Y N  
  r        IMPW N Y N N Y N N N Y N   
                  INTSW  N Y Y Y Y N Y Y Y N  
                  QW N Y N N N N N N N N  

 
    Table 2. Commutativity table for locks on a class 
 
 
3.4. Class hierarchy locking algorithm for single inheritance 
 
 Our locking-based concurrency control scheme is based on two-phase locking which requires each 

transaction to obtain a read (or write) lock on a data item before it reads (or writes) that data item, and not 

to obtain any more locks after it has released some lock [5]. For a given lock request on a class, say C, we 

set locks on C and all classes on the class hierarchy to which the class C belongs as follows. For 

simplicity, we adopt strict two-phase locking [12] which requires each transaction to release all the locks 

at the commitment time.  
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Step 1) locking on SCs 

• For each SC (if any) through the superclass chain of C, check conflicts and set an intention lock  if it 

commutes. If it does not commute, block the lock requester. 

 

Step 2) Locking on a target class 

 •If the lock request is an SCA, check conflicts with locks set by other transactions and set one of TR, 

TW, IMPR, IMPW (depending on the lock request type) or CR (class definition read) on only the target 

class C if it commutes and set an r or w lock on the instance to be accessed (which we call target 

instance) if a method is invoked on the instance and commute. If it does not commute, block the 

requester.  

• If the lock request is an MCA, then, from class C to the first SC (or leaf class if there is no SC) through 

the subclass chain of C, check conflicts and set either CW, QR, or QW lock on each class if commute. If 

the class C is an SC, then set a lock only on C.  

 

 Note that we set a lock on the first SC so that we let other incoming transactions that access a 

subclass of the first SC check conflicts since those transactions need to set intention locks on the first SC. 

Thus, every conflict can be detected. The reason we set a lock on each class (besides the first SC) from 

the class C to the first SC (not including the SC) is as follows: if a lock is set only on the first SC, then 

some conflict may not be detected. For example, if a requester accesses a subclass of a lock holder’s 

class which is CW locked, then such a conflict may not be detected. 

•If class C has more than one subclass, perform the same step 2)  for each subclass chain of C.  

 As an example, consider the following lock requests by two transactions T1 and T2 on a class 

hierarchy in Fig. 3.a  

a) T1: class definition write (CW) request on class C6  
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b) T2: class definition read on class C5 

 
 Let LSi be a lock LS set by transaction Ti. Assume that class C1, C4 and C7 are SCs. As seen in 

Fig 3.b, 3.c, and 3.d, 7, 12 and 11 locks are required for T1 and T2 by our scheme, explicit locking, and 

implicit locking, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 C1  C1(SC): INTSW1; INTSR2  C1    C1: INTSW 1; INTSR2 
 ↓  ↓                                                         ↓                                              ↓ 
 C2  C2     C2    C2: INTSW 1; INTSR2 
 ↓  ↓                                                          ↓                                             ↓ 
 C3  C3     C3    C3: INTSW 1: INTSR2 
 ↓             ↓                                                          ↓                                             ↓ 
 C4  C4(SC): INTSW1; INTSR2  C4    C4: INTSW 1, INTSR2 
 ↓  ↓                                                          ↓                                             ↓ 
 C5  C5: CR2    C5:CR2    C5: INTSW 1; CR2 
 ↓  ↓                                                          ↓                                             ↓ 
C51 C6        C51 C6:CW 1   C51: C6: CW 1  C51 C6: CW 1 
↓ ↓     ↓ ↓    ↓           ↓                                 ↓         ↓ 
C52 C7  C52 C7(SC):CW 1   C52:  C7: CW 1  C52 C7 
 ↓  ↓                                                          ↓                                             ↓ 
 C8  C8     C8: CW 1   C8 
 ↓  ↓                                                          ↓                                             ↓ 
 C9  C9      C9: CW 1   C9 
 ↓  ↓                                                          ↓                                             ↓ 
C91 C10  C92  C91   C10   C92                C91:CW 1  C10:CW 1 C92:CW 1       C91 C10  C92 
 ↓   ↓                                                          ↓                                             ↓ 
 C11  C11      C11: CW 1   C11 
 ↓   ↓                                                          ↓                                            ↓ 
 C12  C12     C12: CW 1   C12 
 ↓  ↓       ↓      ↓ 
 C13 C121 C13 C121            C13: CW 1 C121:CW 1  C13 C121 

 
Fig 3.a class hierarchy   Fig. 3.b. Locks with Fig. 3.c. Locks with  Fig. 3.d. Locks with 
              Our scheme    Explicit locking     Implicit locking 
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3.5. Considering Multiple Inheritance  

 The above protocol works for a single inheritance class hierarchy. But, it does not work for a 

multiple inheritance class hierarchy. Consider the following class hierarchy in which a class J has two 

superclasses, H and I in Fig. 4. a. Suppose a transaction T1 sets a QR lock on class F (Fig. 4. b). Suppose 

now another transaction T2 sets a CW lock on class G (Fig. 4.c). Even though T1 already sets a conflict 

lock mode QR on class J and K implicitly, T2 can get a lock successfully since intention locks on class A 

which is only common class requiring locks by both transactions do not conflict. That is, the above protocol 

does not work correctly.  

 In order to make the above protocol work correctly in multiple inheritance, we adopt the principle 

from Orion [6]: when setting a QR, PQR, QW, PQW, or CW lock on a class C, also set those locks on 

subclasses of C which have more than one superclass. Then only those subclasses need to be examined 

for conflict checking. Also, we set intention locks on each class through only one superclass chain of the 

target class. In this example, using our scheme, lock settings for QR lock on class F are changed as in Fig. 

4.d. 

 
 
        A       A (SC): INTSR                  A: INTSR, INTSW                       A: INTSR 
    
B   C  B          C     B     C            B         C 
↓   ↓  ↓          ↓     ↓     ↓            ↓         ↓ 
D   E  D (SC): INTSR    E (SC)    D: INTSR    E: INTSW            D: INTSR              I 
↓   ↓  ↓          ↓     ↓     ↓            ↓         ↓ 
F   G  F: QR          G    F: QR      G: CW           F: QR                   G 
↓   ↓  ↓          ↓     ↓     ↓            ↓         ↓ 
H   I  H (SC): QR       I (SC)    H: QR    I : CW           H: QR                   I 
 
      J                   J                                         J                                                  J: QR 
     ↓                          ↓                                         ↓                                                 ↓ 
     K                          K                                         K                                                K 
 
   Fig. 4.a                       Fig. 4.b                                   Fig. 4.c                                          Fig. 4.d 
class hierarchy            QR lock on class F                    CW lock on class G                        Locks with multiple 
                     inheritance consideration 
                     in our scheme 
 
3.6. Correctness of our scheme  
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 Now, we prove that our algorithm is correct, that is, it satisfies serializability [5]. We prove this by showing 

that, for any lock requester, its conflict with a lock holder (if any) is always detected. With this proof, since our class 

hierarchy locking scheme is based on two-phase locking, it is guaranteed that our scheme satisfies serializability [5]. 

Also, for simplicity, we prove only for single inheritance. For multiple inheritance, the correctness can be proved 

similarly as in single inheritance.  If a lock requester is an SCA, then its lock holders (whose lock modes need to be 

checked for conflict with lock requester) consist of transactions holding locks on the target class and all special 

classes in the superclass chain of the target class. If a lock requester is an MCA, then its lock holders include those 

defined above plus transactions holding locks on each class from the target class to the first special class in the 

subclass chain of the target class. 

 There are four cases depending on the types of lock requesters and holders. 

case 1) the lock holder is an SCA 
          the lock requester is an SCA 

If a lock holder (LH) and a lock requester (LQ) access different classes, there is no conflict. If a lock holder and a 

lock requester access the same class, there is no conflict on all special classes through the superclass chain of 

the target class because intention locks on SCs are compatible with LQ ; conflicts can be detected on the target 

class (for example, IMPW and TR) or target instance (for example, TR and TW). 

 
case 2)  the lock holder is an SCA 
            the lock requester is an MCA 

If the LH is holding a lock on a superclass of the LQ’s class, there is no conflict since the LQ does not access the LH’s 

class. If the LH is holding a lock on the LQ’s class or subclass, then there are two subcases. If there exists an SC 

between LH and LQ, then conflict is detected on the nearest SC through the subclass chain of the LQ’s class (case 

2.1). Otherwise, the conflict is detected on the class of LH (case 2.2). Let R and H be two classes on which the LQ 

requests a lock and the LH holds a lock, respectively. In case 2.1, as shown in Fig. 5.a, a conflict (if any) is checked on 

SC1, which is the nearest special class of the LQ’s class through its subclass chain, since the LH has an intention lock 

on SC1 and the requester requests CW, QR or QW on SC1. On the other hand, in case 2.2, for subcase a, a conflict (if 

any) is checked on H as in Fig. 5.b since the LH does not have any intention locks through the superclass chain of R 

and the LQ needs to set a CW, QR or QW lock on H. For subcase b, conflict (if any) is checked on H as in Fig 5.c 
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since intention locks on all special classes through the superclass chain of H are compatible and the requester needs 

to set a CW, QR or QW lock on H. 

 
 
  • (R)     • (R)     • (SC1) 
  • SC1     •     • 
  •     •     • 
  •     •     • 
  •     • (H)     • 
  • SC2     • SC1     • (SC2) 
  •     •     • 
  •      •     • (R) 
  • SC3     • SC2     • 
  • (H)     •     • (H) 

        Fig 5. a. Case 2.1                Fig. 5.b. Subcase a of case 2.2              Fig. 5.c. Subcase b of case 2.2 

 
case 3)  the lock holder is an MCA 
             the lock requester is an SCA 

If the LH is holding a lock on a subclass of the LQ, there is no conflict. If LH is holding a lock on the class of LQ or 

on a superclass of LQ, then there are two cases in which conflicts will be detected. If there exists some SCs 

between LQ and LH, the conflict is detected on the nearest SC to LH through the subclass chain of LH such as SC2 

in Fig. 6.a (case 3.1). Otherwise, conflict is detected on the class of LQ as in Fig. 6.b (case 3.2). 

 

     •       • 
    • SC1      •  SC1 
    • (H)      •  (H) 
    •       • 
    •      •  (R) 
    • SC2      • SC2 
    •      • 
    • SC3      • SC3 
     • (R)      • 
    •       • 

            Fig. 6. a. Case 3.1                                 Fig. 6.b. Case 3.2 

 

case 4 ) the lock holder is an MCA 
            the lock requester is an MCA 

If the LH accesses the same class or superclass of the LQ’s class, the conflict is detected as in either case 3.1 or 

case 3.2. On the other hand, if the LH accesses subclass of the LQ’ class, the conflict is detected as in  either case 

2.1 or case 2.2.    
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 From cases 1), 2), 3) and 4),  we can conclude that, for any lock requester, it is guaranteed that its conflict with 

a lock holder (if any) is always detected. Also, since our scheme is based on two-phase locking, serializability is 

guaranteed [5]. 

 

4. Special Class Assignment and Its Performance Evaluation 

4.1. Special class assignment  

 Assume that we have information on the number of access to each class (by different transactions) 

in an OODB. For our scheme, we need to know only two types of number of access to each class: SCA 

and MCA. With this number of access information for each class, we determine if the class is designated 

as an SC or not as follows. 

Starting from each leaf class until all classes are checked. 

step 1) If a class is a leaf, then do not designate it as an SC. 

         If  a class C has not been considered for SC assignment and all subclasses of C have been already  

        considered (i.e.,  they have been determined for SC assignment),  then  do the followings  

                for class C and all of the subclasses, 

                    calculate the number of locks (N1) when the class is designated as an SC 

                    calculate the number of locks (N2) when the class is not designated as an SC 

     // In calculation, we do not consider any superclass of C yet. This is due to the bottom-up 
                       // approach in our SC assignment. That is, for each class C, we perform SC assignment  
                       // only for C, and all subclasses of C. 
 

step 2) Designate it as an SC only if N1 < N2 . That is, the class can be an SC only if the number of locks 

can be reduced by doing so. 

 For example, consider a simple class hierarchy as in Fig 7.a and assume that we have number of 

access information on the hierarchy as in Fig. 7.b. The numbers represent the numbers of access to the 

class by different transactions. For example, in Fig. 7.b, 100 MCAs are performed on class C1 and 300 
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SCAs on C1, by different transactions accessing this class hierarchy. Note that, for MCAs, the numbers 

represent only access initiated at a given class. Thus, we do not count MCA access numbers initiated at 

its superclasses. In our SC assignment scheme, since C4 and C5 are leaf classes, they are not designated 

as SCs. At the class C3, if C3 is designated as an SC, the number of locks needed for class C3, C4 and C5 

are 450 (for C3), 300 (for C4) and 400 (for C5), respectively, resulting 1150 locks for the three classes. 

That is, C3  needs only 450 locks since any locks are not necessary for its subclass as in implicit locking. 

On the other hand, any access C4 and C5 needs intention locks on C3, resulting 300 and 400 locks for C4 

and C5, respectively. On the other hand, if C3 is not designated as an SC, then the total number of locks 

needed for classes C3, C4, and C5 are 1200 locks, where 850 locks are for C3 (800 locks for MCA and 50 

locks for SCA), 150 locks are for C4 (100 locks for MCA and 50 locks for SCA), and 200 locks are for C5 

(100 locks for MCA and 100 locks for SCA). In this case, our scheme works as in explicit locking.  Thus, 

class C3 becomes an SC. Similarly, two classes C1 and C2  become non-SCs. Fig. 7.c shows the result of 

our SC assignment scheme based on access frequency information. 

 

                            C1                               C1 : MCA:100, SCA: 300                                                            C1 

                            C2                               C2 : MCA: 200, SCA: 200                                                       C2 

                            C3                               C3 : MCA:400, SCA: 50                                                          C3 :SC 

                    C4               C5                     C4  : MCA: 100, SCA: 50                                                   C4                 C5 
  
                                                               C5 : MCA:100, SCA: 100 
  
Fig. 7.a. Simple class hierarchy     Fig. 7.b. Access numbers for each class       Fig. 7.c. Result of SC assignment     
 

 For  multiple inheritance, the same SC assignment scheme can be applied. For example, consider a 

simple multiple class hierarchy as in Fig. 8.a. and assume that we have frequency information on the 

hierarchy in Fig. 8.b. Assume that, when C5 is locked, C3 is chosen for intention lock setting. The result of 

SC assignment scheme is shown in Fig. 8.c. 
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                       C1                                  C1: MCA: 50, SCA: 100                                    C1 

                   C2                                  C2 : MCA: 600, SCA: 200                                 C2 :SC 
 
                 C3          C4                          C3 : MCA: 100, SCA:150                          C3              C4  
 

                      C5                                   C4 : MCA: 300, SCA: 100                                   C5 
  
                                                             C5 : MCA: 100, SCA: 50 
 
Fig. 8.a. Simple class hierarchy          Fig 8.b. Access numbers for each class    Fig. 8.c. Result of SC assignment 
 
 
 
4.2. Performance evaluation of our scheme  

 In this subsection, we show that our scheme performs better than both explicit locking and implicit 

locking. That is, assuming that the number of access is stable for each class, we show that our scheme 

incurs either equal or fewer number of locks than both explicit locking and implicit locking. Our proof is 

based on induction. 

Claim: with stable number of access  for each class, our class hierarchy scheme performs better 

than both explicit locking and implicit locking. 

Proof) We use induction on the number n in a given class hierarchy. Let n be the number of classes 

considered in SC assignment scheme so far. Let NE, NI and NO be the number of locks by explicit locking, 

implicit locking and our locking, respectively, for classes considered  in SC assignment so far. 

• n =1 : NE = NI = NO 

• n=2 : In this case, without loss of generality, two classes are formed as follows. 

                           C1 (SC)                                C1 
                            ↓                                         ↓ 
                           C2 (leaf)                               C2 (leaf) 

                                 case a)                                  case b) 

If C1 (superclass) is an SC as in case a), then NO ≤ NE otherwise C1 would not be an SC, and NO = NI. If 

C1 is not an SC as in case b), similarly NO ≤ NI, and NO = NE. 
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Assume that our scheme works up to n = K 

• n = K+1: without loss of generality, we can consider (K+1)th class as a root of the classes considered 

for SC assignment. Let x be a root (i.e., (K+1)th class) and y1...ym be the first m SCs through the subclass 

chains of x as in Fig. 9. Also, Let N (x:SC) and N (x:non-SC) be the numbers of locks required in our 

scheme when a class x is designated as an SC and x is not designated SC, respectively (we assume that 

all subclasses of x have been considered in the SC assignment scheme). 

 
 
                                                                  • x 
 
                                                    • y1        • y2        • ym 
 
                                             •              •             •              • 
 
                                                Fig. 9. The case where x is not SC 
 
 
case a) Assume that x is not SC (i.e., N (x:SC) > N (x:non-SC)) 
 
 We first prove that NO ≤ NE: for locks required for SCA to class x, both schemes need the same 

number of locks. For MCA to class x, for our scheme, locks are required for each class from x to y1...ym 

and subclasses of x which have more than one superclass, if multiple inheritance. On the other hand, locks 

are required from x to every subclass of x by explicit locking. Also, for locks required for access to 

classes other than x, NO ≤ NE by induction assumption and no intention locks on x are necessary by our 

scheme. Thus, NO ≤ NE for any access.  

 Now, we prove that NO ≤ NI.  

subcase a.1), NO ≤ N(x:SC). Otherwise, x would be an SC by our SC assignment scheme. 

subcase a.2) We prove that N(x: SC) ≤ NI. In implicit locking, every class is an SC since any access to 

class C needs intention locks on superclasses of C and any MCA access to C need no locks other than a 

lock on class C. This is corresponding to our scheme where all classes are SCs. Thus, for locks required 

for access to x, both schemes incur the same number of locks. For locks required for access to other than 
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x, intention locks (if necessary) are needed to be set on x by both schemes. But, for locks required for 

access to classes other than x, NO ≤ NI by induction assumption.  Thus, N (x :SC) ≤ NI. This implies that 

NO ≤ NI.  

 

case b) Assume that x is SC (i.e., N(x:SC) < N(x:non-SC)) 

NO ≤ NI: same as subcase a.2 

Now, we prove that NO ≤ NE. 

subcase b.1), NO ≤ N(x:non-SC). Otherwise, x would not be a SC by our SC assignment scheme. 

subcase b.2) N(x:non-SC) ≤ NE: for locks required for SCA to class x, both schemes incur the same 

number of locks. For MCA to class x, locks are needed from x to y1...ym  as in Fig. 9 and subclasses of x 

which have more than one superclass, if multiple inheritance, in our scheme. But locks are required from x 

to every subclass of x in explicit locking. For locks required for access to classes other than x, NO ≤ NE by 

induction assumption. Thus, NO ≤ NE. 

 From cases a) and b), with stable number of access to a class hierarchy, we can conclude that our 

scheme incurs less or at least equal number of locks than both explicit and implicit locking. 

 

5. Further work 

 In this paper, we present a concurrency control scheme for class hierarchy in OODBs. Our scheme 

is based on special class in order to reduce locking overhead. With assumption that number of access for 

each class is stable, our scheme always incurs fewer number of locks than both explicit locking and 

implicit locking, for both single inheritance and multiple inheritance. 

 In order to compare our work with both implicit locking and explicit locking in real environment, we 

will conduct simulation using some representative OODB benchmark. Also, in our work, locking 

granularity is instance object and class object for instance access and class definition access, respectively. 
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We are currently developing a class hierarchy locking scheme with finer granularity. That is, we are 

adopting attribute level granularity instead of instance, and finer class definition instead of entire class 

object,  in order to provide better concurrency among transactions. 
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